ASTR 601 - Radiative Processes

HOMEWORK \#4 (Tue Oct. 13, 2009)
due: Tue Oct. 20 in class

1 Fermi-Dirac and Bose-Einstein distributions (15pts)

In class we have calculated the mean particle number $\langle N\rangle$ and the pressure for a gas of photons (Bosons with chemical potential $\mu=0$).
(a) Derive expressions for $\langle N\rangle$ and the pressure, P, for a gas of fermions in the relativistic and non-relativistic limits. Start from the expressions derived in class for the grand potential and grand canonical partition function for Fermions. The general expression for $\langle N\rangle$ and the pressure P can be written in terms of the Fermi integrals:

$$
f_{n}(z)=\frac{1}{\Gamma(n)} \int_{0}^{\infty} \frac{x^{n-1} d x}{z^{-1} \exp (x)+1}
$$

where $z=\exp (\mu / k T)$ and Γ is the Gamma function.
(b) Write down the general expressions (for $\mu \neq 0$) for $\langle N\rangle$ and P for a Boson gas in the relativistic and non-relativistic limits. You can write the results in terms of the Bose integrals:

$$
g_{n}(z)=\frac{1}{\Gamma(n)} \int_{0}^{\infty} \frac{x^{n-1} d x}{z^{-1} \exp (x)-1} .
$$

(c) Derive the equation of state, $P(n, T)$, for Fermions and Bosons in the relativistic and non-relativistic limits. Explore the differences between degenerate ($\mu>k T$) and non-degenerate $(\mu \ll k T)$ non-relativistic gas and degenerate $\left(\mu>m c^{2}\right)$ relativistic gas. Note: this problem is long but quite easy. Please, be concise

2 Three-level quantum System (15pts)

Consider a system of two particles which can be in any of three quantum states of energy $0, \Delta$ or 3Δ. The system is in contact with a heat reservoir at temperature T. Write down the partition function $Z(T)$ and the grand partition function $Q(\mu, T)$ for three cases:
(a) Maxwell-Boltzmann (distinguishable) particles.
(b) Fermi-Dirac (indistinguishable) particles (Fermions).
(c) Bose-Einstein (indistinguishable) particles (Bosons).

Be sure to account for the multiplicity of ways $\left(g_{i}\right)$ of obtaining a given total energy $E_{i}=\sum n_{i} \epsilon_{i}$, where n_{i} is the occupation number and ϵ_{i} is the energy level. Hint: For Maxwell-Boltzmann (distinguishable) particles the partition function for N particles is $Z_{N}=\left(Z_{1}\right)^{N}$, where Z_{1} is the partition function for one particle (you can verify that). The grand partition function is related to Z_{N} by: $Q=\sum_{N=0}^{\infty} \exp [N \mu / k T] Z_{N}$.

