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Wave propagation in plasma

∇ · E = 4πρe ∇× E = −
1

c

∂B

∂t
(Faraday law of induction)

∇ · B = 0 ∇× B =
4πJe

c
+
∂E

∂t
(Amper law)

Look for solution of plane monochromatic waves in the form

E = e0e
i(k·x−ωt),

B = b0e
i(k·x−ωt),

and suppose the plasma response is also

ρe = ρ0e
i(k·x−ωt),

Je = j0e
i(k·x−ωt),
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Maxwell’s equations become:

ik · E = 4πρe ik × E = i
ω

c
B

ik · B = 0 ik × B =
4π

c
Je − i

ω

c
E

Model of a cold electron plasma:
Assume electron’s motion is thermal and NR: in the equation of motion
of the electron we can drop k · x ∼ x/λ term in comparison with ωt ∼ 1

term because during one oscillation period x≪ λ: x = v/ν ≪ c/ν = λ.
NR equation of motion of electrons is:

mev̇ = −e
(

E +
v

c
× B0

)

For NR electrons B term in EM field drops. But we retain net B0 = B0ẑ

field. For simplicity let’s consider electromagnetic radiation propagating
along B0. We will see that any component of B0 perpendicular to k̂

has negligible effect on the electron’s motion. Plasma Effects – p.3/17



We can express an arbitrarily polarized EM wave propagating in the
z-direction as the sum of left- and right- circularly polarized waves:

E± ≡ (x̂ ± iŷ)E0e
−iωt

We can then search for a solution for v in the same form:

v = (x̂± iŷ)v0e
−iωt

Substitution in equation:

−iωmev = −e
(

E +
v

c
× B0

)

gives

−iωmev0 = −eE0 ∓ ie
v0
c
B0

Thus,

v =
−ieE

me(ω ∓ ωL)
, where ωL ≡

eB0

mec
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Therefore the current is,

Je = −neev = σcondE.

The electric conductivity is

σcond =
inee

2

me(ω ∓ ωL)
=

iωpe
4π(ω ∓ ωL)

,

where we have defined the plasma frequency as

ωpe ≡
4πnee

2

me
= 5.6 × 104n1/2

e rad/s

if we express ne in units of cm−3. The equation above represents
Ohm’s law for this problem. However, the system suffers no true
dissipation (for ω 6= ωL). The electric conductivity is purely imaginary
thus, as expected, we obtain

〈Je · E〉 =
1

4
(J∗

e
· E + Je · E

∗) = 0. Plasma Effects – p.5/17



The charge density can be derived from equation. of charge
conservation:

∂ρe
∂t

+ ∇ · Je = −iωρe + ik · Je = 0 → ρe =
k · Je

ω

Now we can plug ρe in Coulomb’s law:

k · E

(

1 −
ω2
pe

ω(ω ∓ ωL)

)

= 0

If we identify the expression in parenthesis as the plasma dielectric

constant, ǫ, we have ∇ · D = 0, where the displacement vector is
defined as D ≡ ǫE.
Form this equation we infer that k and E are mutually perpendicular
(why?). Thus, ρe = 0 (no charge separation) and ∇ · Je = 0.
However, Je may be different from zero.
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Dispersion relation for EM waves in cold plasma

Now we can plug Je in Ampere’s law (with displacement current):

k × B = −
ω

c
ǫE

If we take the cross product of both sides of the equation and use the
relationship k × k × B = k(k · B) − k2B = −k2B (see HW#5) we have

−k2B = −ǫ
ω

c
k × E = −ǫ

(ω

c

)2

B

which yields the desired dispersion relation:

ǫω2 = k2c2 or
ω

k
= ±

c

ǫ1/2
= ±

c

nr

where we have defined the index of refraction nr ≡ ǫ1/2.
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Physical interpretation of plasma frequency

Clearly if ǫ < 0 then the wave number k is imaginary: the wave is
exponentially damped. This is call “evanescent wave” since there is not
dissipation or absorption of the EM wave.
Let’s first consider the case of weakly magnetized plasma: ωL ≪ ω.
In this case ǫ = 1 − (ωpe/ω)2.
Waves with frequency ω < ωpe cannot propagate in the medium and
will be reflected (ωpe is also known as plasma cutoff frequency).
Earth’s atmosphere has ne ∼ 106 cm−3, λpe = 2πc/ωpe ∼ 30 meters.
What is the physical interpretation? Let’s consider the longitudinal
displacements of electrons (why?) in response to propagation of EM
wave.
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Wave travels toward the ceiling. Electric field is in the x-direction:

+ + - + - + - + -

+ - + - + - + - -

+ + - + - + - + -

+ - + - + - + - -

+ 0 0 0 0 0 0 0 -

This looks like a capacitor. Electric field: Ex = 4πenex. Equation of
motion of free electrons:

meẍ = −eEx = −meω
2
pex

What is this?
In Maxwell’s equation displacement current is ∂E/∂t ∼ −iωEx.
Conduction current 4πJe ∼ −4πeneẋ = −Ėx = iωpeEx. Thus, the sum
is zero for ω = ωpe. EM wave cannot propagate!
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Application I. Pulsar dispersion measure

vf = ω/k = c/ǫ1/2 can be > c!
No problem (why?). The group velocity is

vg =
∂ω

∂k
= c/ǫ1/2−

(

ckω2
pe

ǫ3/2ω3

)

∂ω

∂k
= c/ǫ1/2−vg(1−ǫ)/ǫ→ vg = cǫ1/2 < c

Let’s consider a radio pulse from a pulsar at distance r. The travel time
is:

tω =

∫ r

0

ds

vg
=

∫ r

0

ds

c
ǫ−1/2 ∼

r

c
+

2πe2

meω2
DM

where we have assumed ǫ−1/2 ∼ 1 + (ωpe/ω)2/2 ∼ 1 and we have
defined the dispersion measure of the medium:

DM ≡

∫ r

0

neds.

This is the column density of free electrons. Thus 〈ne〉 ≡ DM/r. Plasma Effects – p.10/17



Application II: Faraday rotation
Let’s now consider the case in which B0 is not negligible. In this case
the dispersion relation depends on the verse of polarization of the
radiation. This means that left- and right- circular polarized waves
travel in the medium at different speed. For ω ≫ ωpe we have:

ǫ
1/2
± = 1 −

1

2

ω2
pe

ω2

(

1 ±
ωL
ω

)

= 1 −
1

2

ω2
pe

ω2
∓

1

2

ωLω
2
pe

ω3

Thus the dispersion relation can be written as the sum of two terms,

k± = ǫ
1/2
±

ω

c
= k0 ∓ ∆k

where

k0 ≡
ω

c

(

1 −
ω2
pe

2ω2

)

, and ∆k ≡
ω2
peωL

2ω2c

where the expression for k0 is the previously found dispersion relation

(in absence of magnetic field).
Plasma Effects – p.11/17



NOTE: The magnetic field that is relevant in the problem (in ωL) is the
component of B parallel to the direction of propagation of the wave.
Let’s consider a wave that is emitted at the source with net linear
polarization along the x-direction:

E = x̂E0e
−iωt ≡

1

2
[(x̂ + iŷ) + (x̂ − iŷ)]E0e

−iωt

After propagating a distance r (along the z-axis) trough a magnetized
plasma toward the observed, the electric field behaves as

E = x̂E0e
−iωt ≡

1

2
[(x̂ + iŷ)e

R

r

0
(k0+∆k)dz + (x̂ − iŷ)e

R

r

0
(k0−∆k)dz]E0e

−iωt

Let’s define ϕ ≡
∫ r

0
k0dz, and ψ ≡

∫ r

0
∆kdz = 2πe3

m2
e
c2ω2 RM where the

“rotation measure” is defined

RM ≡

∫ r

0

neB||ds
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Factoring the common phase eiϕ and expanding e±ψ we obtain

E = (x̂ cosψ + ŷ sinψ)E0e
ϕ−iωt

Thus, the orientation of the linearly polarized radiation rotates by an
angle ψ. This angle depends on the frequency of radiation and the RM.
We can use measurements of linearly polarized radiation at different
frequencies to measure RM. If DM is also measure we can derive the
mean strength of the magnetic field along the line of sight:

〈B||〉 =
RM

DM
∼ 3µG in the ISM

Application to the ISM in our Galaxy:

UB =
3B2

||

8π
∼ 1 × 10−12erg/cm3 ∼ 1 eV/cm3

We have roughly equipartition of energy between magnetic field, CR,
turbulent and thermal pressure: UB ∼ UCR ∼ Uth ∼ Uturb. Plasma Effects – p.13/17



Cherenkov Radiation
Radiation from relativistic charges moving in a plasma with nr > 1. In
this case the velocity of the charges can exceed the phase velocity
vf = c/nr.
The Lienard-Wiechert potentials still give the E and B field for a
moving charge with replacement of c→ c/nr = vf , E → nrE,
e→ e/nr.
Thus, the beaming term K = 1 − (v/vf ) cos θ may vanish. In
consequence a uniformly moving particle can now radiate.
Also, if the velocity of the particle is v > vf the potential at a point may
be determined by two retarded positions of the particle (not just one).
The space is divided in 2 regions: inside the Cherenkov cone where
each point feels the potential from two retarded positions of the
particle, and outside. Cherenkov radiation is confined within the cone.
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VERITAS Cherenkov telescope
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Razin Effect
When nr < 1 in a cold plasma, Cherenkov radiation cannot occur.
However, there is an effect important for synchrotron radiation (need
thermal plasma together with relativistic CRs).
The beaming effect, important for synchrotron radiation may vanish if
the opening angle is never small:

θ ∼
1

γ
∼
√

1 − n2
rβ

2

There are two regimes. At low frequencies nr is small and we have

θ ∼
√

1 − n2
r ∼

ωpe
ω
.

At high frequencies nr ∼ 1 and we get θ = 1/γ.
Thus, if ω ≪ γωpe the medium may suppress the beaming effect that
produces synchrotron radiation. This is known as the Razin effect.
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