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dS=v dt_em

dt=dS cos(theta)/c=v/c cos(theta)dt_em
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Spectrum. I. Mono-energetic CRs

Effect of beaming:

Opening angle δθ = 2/γ

dtem = (δθ/ωB) ∼ 1/γωB ∼ ωL

Thus the frequency of the pulse is shorter by
a factor of γ
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Form cyclotron to synchrotron
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Form cyclotron to synchrotron
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Form cyclotron to synchrotron

0 2 4 6 8 10

-1

-0.5

0

0.5

1

time

0 20 40 60 80 100

0

0.002

0.004

0.006

0.008

0.01

frequency

Synchrotron Radiation: II. Spectrum – p.4/18



Relativistic effects make the frequency higher by
another factor γ2

In the observer frame of reference:

δtrec = δtem(1 − β cos θ)

where θ ∼ δθ is the viewing angle

Thus,

dtrec = dtem(1 − β + βδθ2/2) =

= dtem(1/2γ2 + 1/2γ2) = dtem/γ2

Similarly can derive superluminal motions proposed by M.J. Rees:
vobs ∼ dsδθ/dtrec ∼ vemγ, that can be > c.

Including the pitch angle:
ωc = 3/2γ3ωB sinα = 1.5γ2ωL sinα where ωL = qB0

mc Larmor freq.
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Spectrum. I. Mono-energetic CRs

Details of the spectral shape are not important as we will see later.

F (x) ∝







∝ x1/3 for x ≪ 1

∝ x1/2 exp (−x) for x ≫ 1

where x = ω/ωc. Maximum of F (x) at x = 0.29

What is the normalization of P (ω)?

dP

dω
∼

P

ωc
∼

(2/3)γ2β2sin2α(q4/m2c3)B2
0

(3/2)γ2(qB0/mc) sinα
=

4

9

B0q
3sinα

mc2

Indeed consedering the correct normalization of F (x) we have,

dP (ω)

dω
=

√
3

2π

B0q
3 sin α

mc2
F (x)
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Spectrum. II. Power-law distribution of CRs

nγdγ = n0γ
−pdγ

with p ∼ 2.5.

P ∝
∫

∞

1

P (γ)nγdγ

where P (γ) ∝ γ2. Assume for simplicity F (x) = δ(x − 1). Set
ν′ = νc = γ2νL, dν′ = 2γdγνL,

P (ν) ∝
∫

δ(ν − ν′)

(

ν′
νL

)(1−p)/2
dν′

2νL
∝ ν−(p−1)/2

Thus, Synchrotron is characterized by a power law spectrum with slope

−(p−1)/2 ∼ −0.7. The flux now depends on the combination of n0 and

B0. Need more info to measure the magnetic field!
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Synchrotron self-absorption

We have seen the synchrotron emission mechanism: what about
absorption? and stimulated emission?

We can have both: absorption is important at low frequencies.
Why?

For synchrontron the source function is Sν ∝ B
−1/2
0 ν5/2.

Here is the qualitative derivation. For BB:

Sν =
2ν2

c2

(

hν

ehν/kT − 1

)

→
2ν2

c2
KT

kT is energy of thermally excited harmonic oscillator. Replace kT

with appropriate energy. ǫ = γmec
2 = me2

c(ν/νL)1/2. Thus,

Sν ∝ B
−1/2
0 ν5/2.

What is the flux in the optically thick regime?
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First of all we have Iν = Sν in optically thick regime.

Fmax
ν = πIν(Rsource/dist)2 ∝ B

−1/2
0 ν5/2

max(Rsource/dist)2

Can break the degeneracy n0B0 and measure magnetic field.
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In addition there seems to be a maximum flux of synchrotron
radiation from compact radio sources. Why?
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Inverse Compton losses

Tb = c2Iν

2kBν2 brightness temperature

In 1969 Kellermann and Pauling-Tohth noted that in compact radio
sources Tb(max) < 1012 K (clearly this is non-thermal emission)

How can this observation be explained?

Recall that Lc

Ls
=

Uph

UB
where Uph ∝ Fνν

For B0 = 10−3 Gauss, γ = 103 → γ2ωL ∼ 109 Hz

Compton scattering with ultra-rel electrons of GHz photons
→ γ2ν ∼ 1015 Hz (optical wavelengths)
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Astrophisical sources of synchrotron radiation

Pulsars

SN remnants (for example, the Crab nebula)

Gamma ray bursts

Radio Galaxies (jets from AGN)
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Application to Radio Galaxies

In 1959 Burbidge noticed a problem with the energetic requirements of
radio galaxies

In radio galaxies synchrotron dominates the entire spectrum from
10 meter to mm wavelengths

Near equipartition of UCR and UB minimizes the energy
requirement to produce the observed luminosity

Rlobes ∼ 30 kpc, B0 ∼ 10−5 Gauss (from peak of spectrum near
optically thick synchrotron)

Etot = ECR + Emag ∼ 2Emag = (4π/3)R3
lobes

B2

0

8π ∼ 1058 ergs

This is an enormous amount of energy: about energy generated
by 107 SN explosions
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In addition synchrotron cooling of lobes is extremely short:

mec
2γ̇ = −PSync = −2β2γ2cσT UB sin2 α

tcool = −
γ

γ̇
∼

mec

2σT UBγ sin2 α

tcool ∼ 107 yrs forγ = 104andB0 = 10−5 Gauss

Need engine that keeps pumping energetic electrons: SMBH at the
center of galaxy.
However, our assumption of γ = const in the derivation of the
sychrotron radiation is valid because the period of gyration is typically
of the order of seconds: ≪ tcool.
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