The Pros and Cons of Invisible Mass and Modified Gravity

Stacy McGaugh
University of Maryland

GMU, April 13, 2007
What gets us into trouble is not what we don’t know.

It’s what we know for sure that just aint so.

- Mark Twain
A few things we know for sure...

\[\nabla^2 \Phi = 4\pi G \rho \]
\[F = ma \]

which basically means

\[mV^2/R = GMm/R^2 \]

i.e,

\[V^2 = GM/R \]

ergo...

The universe is filled with nonbaryonic cold dark matter.
Spiral Galaxy Rotation Curve

Longer arrows represent larger orbital velocities.
Galaxy Cluster
Large Scale Structure
A tree diagram with various branches and nodes, including:

- **Axions**
- **WIMPs**
- **Newton Stars**
- **White Dwarf**
- **Strange Magnet**
- **Fast Stars**
- **Brown Dwarf**
- **Jupiters**
- **Asymmetric Gravity**
- **Weyl Gravity**
- **MACHOs**
- **Dark Clusters**
- **Cold Gas**
- **MOND**
- **MASS**
- **Cold DM**
- **Hot DM**
- **Non Baryonic**
- **Baryonic**
- **Einstein**
- **Dynamics**
- **Gravity**
- **Mass**
- **MOND**
- **Disk DM**
- **Oort Discrepancy**
- **Spiral Galaxy Flat Rotation Curves**
- **Cluster Velocity Dispersions**
- **Large Scale Structure**
- **Bulks Flows**
- **Ω = 1**

The diagram includes mathematical expressions:

\[
\frac{M_*}{M_T} \times 0.1
\]

\[
\frac{M_*}{M_T} \times 0.2
\]
Axions
WIMPs
Neutron Stars
White Dwarfs
Strange Quark
Einstein
Dark Clusters
MACHOs
Cold Gas
MOND
Asymmetry
MOND
Cold DM
Hot DM
Non-Baryonic
Baryonic

Disk DM
Spiral galaxy
flat rotation curves
Cluster Velocity dispersions
Large Scale Structure
Bulk flows

Ω = 1

M* / M* x 0.1
M* / M* x 0.2
Pruning the tree

Baryonic Dark Matter

Many candidates:
- brown dwarfs
- Jupiters
- very faint stars
- very cold molecular gas
- warm ($\sim 10^5$ K) ionized gas

Can usually figure out a way to detect them: most have been ruled out.
Pruning the tree

Hot Dark Matter

Obvious candidate:
neutrinos

...but not enough.

Also
- neutrinos suppress structure formation
- can’t crowd together closely enough
 (phase space constraint)
Pruning the tree

Cold Dark Matter

Some new particle, usually assumed to be **WIMPs** (Weakly Interacting Massive Particle) don’t interact electromagnetically, so very dark.

Two big motivations:

1) total mass outweighs normal mass from BBN
 \[\Omega_m \approx 6 \Omega_b \]
2) needed to grow cosmic structure
There isn’t enough time to form the observed cosmic structures from the smooth initial conditions unless there is a component of mass independent of photons.

\[t = 1.8 \times 10^5 \text{ yr} \]

\[t = 1.4 \times 10^{10} \text{ yr} \]

very smooth: \(\frac{\delta \rho}{\rho} \sim 10^{-5} \)

very lumpy: \(\frac{\delta \rho}{\rho} \sim 1 \)

\(\frac{\delta \rho}{\rho} \propto t^{2/3} \)

Both (1) and (2) hold only when gravity is normal.
Constraints predating SN, CMB

age = 13 Gyr

H_0

Ω_m

ΛCDM

$\Omega_m = 1$
ΛCDM

- Baryons
- Dark Matter 23%
- Dark Energy 73%
Pros - Invisible Matter

- Apparently required by wide array of data
- Provides self-consistent cosmology
- Explains large scale structure
- ΛCDM model parameters well constrained
We have direct knowledge of < 1% of this stuff.

“Cosmologists are often wrong, but never in doubt”
- Lev Landau
Baryonic Mass

\(M_b \left(M_\odot \right) \)

\(10^6, 10^7, 10^8, 10^9, 10^{10}, 10^{11}, 10^{12}, 10^{13}, 10^{14}, 10^{15} \)

Circular Velocity

\(V_c \) (km s\(^{-1}\))

\(10^1, 10^2, 10^3 \)

\(\Lambda CDM \) problematic → \(\Lambda CDM \) OK

Slope and normalization wrong

Small scatter poses a fine-tuning problem
On Galaxy Scales...

- Measure rotation velocity; find
- Properties depend systematically on
 - Total Baryonic Mass
 - Baryon Distribution
 - Acceleration
High Surface Brightness (HSB)

Low Surface Brightness (LSB)

\[\Sigma(R) = \Sigma_0 e^{-R/h} \]

Azimuthally averaged light distribution typically exponential for spiral disks.
NGC 6822 (Weldrake & de Blok 2003)

\[V \sin i = V_{sys} + V_c \cos \theta + V_r \sin \theta \]
NGC 6946

Stars

H\textsubscript{i} gas

Boomsma 2005
NGC 6946: $M_* / L_B = 1.1 \, M_\odot / L_\odot$
Newton says
\[V^2 = GM/R. \]
Equivalently,
\[\Sigma = M/R^2 \]
\[V^4 = G^2 M \Sigma \]

Therefore
\[\text{Different } \Sigma \text{ should mean different TF normalization.} \]
NGC 2403

UGC 128

Same global L,V

Very different mass distributions
$R_p \approx 2.2h$
No Residuals from TF rel’n

Not even where disk contribution is maximal
Requires fine balance between dark & baryonic mass

Cons - Invisible Matter

- Serious fine-tuning problems
- Halo-by-halo missing baryon problem
- Cusp/core problem
- Missing satellite problem
- Do dark matter particles actually exist?
\(\Lambda \text{CDM} \) predicts too much dark mass at small radii.
Cons - Invisible Matter

- Serious fine-tuning problems
- Halo-by-halo missing baryon problem
- Cusp/core problem
- Missing satellite problem
- Do dark matter particles actually exist?
M31 (Gendler)
Juerg Diemand "Via Lactea" simulation

Kravtsov et al. 2004
Cons - Invisible Matter

- Serious fine-tuning problems
- Halo-by-halo missing baryon problem
- Cusp/core problem
- Missing satellite problem
- Do dark matter particles actually exist?

CDMS, LHC, & GLAST should all see something soon
One begins to worry that...

GRAVITY IS ARBITRARY!
MOND
M Odified Newtonian Dynamics
introduced by Moti Milgrom in 1983

instead of dark matter, suppose the force law changes such that

\[\text{for } a \gg a_o, \quad a \Rightarrow g_N \]
\[\text{for } a \ll a_o, \quad a \Rightarrow \sqrt{g_N a_o} \]

where

\[g_N = \frac{GM}{R^2} \]

is the usual Newtonian acceleration.

More generally, these limits are connected by a smooth interpolation fcn \(\mu (a/a_o) \) so that

\[\mu (a/a_o) a = g_N. \]

MOND can be interpreted as a modification of either inertia (\(F = ma \)) or gravity (the Poisson eqn).
MOND predictions

- The Tully-Fisher Relation
 - Slope = 4
 - Normalization = \(\sqrt{a_0 G} \)
- No Dependence on Surface Brightness
- Dependence of conventional M/L on radius and surface brightness
- Rotation Curve Shapes
- Detailed Rotation Curve Fits
- Stellar Population Mass-to-Light Ratios

Disk Galaxies with low surface brightness provide particularly strong tests

None of the following data existed in 1983.

At that time, LSB galaxies which were widely thought not to exist.
The Tully-Fisher Relation

- Slope = 4
- Normalization = $1/(a_0G)$
- Fundamentally a relation between Disk Mass and V_{flat}
- No Dependence on Surface Brightness

- Dependence of conventional M/L on radius and surface brightness
- Rotation Curve Shapes
- Surface Density \sim Surface Brightness
- Detailed Rotation Curve Fits
- Stellar Population Mass-to-Light Ratios

MOND predictions

- ✔ The Tully-Fisher Relation
- ✔ Slope = 4
- ✔ Normalization = $1/(a_0G)$
- ✔ Fundamentally a relation between Disk Mass and V_{flat}
- ✔ No Dependence on Surface Brightness

$M_d (M_\odot)$ vs. V_{flat}
In MOND limit of low acceleration

\[a = \sqrt{g_N a_0} \]

\[\frac{V^2}{R} = \sqrt{\frac{GM}{R^2}} a_0 \]

\[V^4 = a_0 GM \]

observed TF!
The Tully-Fisher Relation

- Slope = 4
- Normalization = $1/(a_0 G)$
- Fundamentally a relation between Disk Mass and V_{flat}
- No Dependence on Surface Brightness

MOND predictions

- The Tully-Fisher Relation
 - Slope = 4
 - Normalization = $1/(a_0 G)$
 - Fundamentally a relation between Disk Mass and V_{flat}
 - No Dependence on Surface Brightness

- Dependence of conventional M/L on radius and surface brightness
 - Rotation Curve Shapes
 - Surface Density \sim Surface Brightness
 - Detailed Rotation Curve Fits
 - Stellar Population Mass-to-Light Ratios
The Tully-Fisher Relation

- Slope = 4
- Normalization = 1/(a_0G)
- Fundamentally a relation between Disk Mass and \(V_{\text{flat}} \)
- No Dependence on Surface Brightness

MOND predictions

- The Tully-Fisher Relation
 - Slope = 4
 - Normalization = 1/(a_0G)
 - Fundamentally a relation between Disk Mass and \(V_{\text{flat}} \)
 - No Dependence on Surface Brightness
- Dependence of conventional M/L on radius and surface brightness
- Rotation Curve Shapes
 - Surface Density ~ Surface Brightness
 - Detailed Rotation Curve Fits
 - Stellar Population Mass-to-Light Ratios
The Tully-Fisher Relation
- Slope = 4
- Normalization = 1/(a_0 G)
- Fundamentally a relation between Disk Mass and V_{flat}
- No Dependence on Surface Brightness
- Dependence of conventional M/L on radius and surface brightness
- Rotation Curve Shapes
- Surface Density ~ Surface Brightness
- Detailed Rotation Curve Fits
- Stellar Population Mass-to-Light Ratios

MOND predictions

\[\xi = \frac{V^2}{G\mu_o} \]

Not a fit
Residuals of MOND fits

All data

$\sigma_{V/V} < 5\%$

R (kpc)
The Tully-Fisher Relation

- Slope = 4
- Normalization = $1/(a_0 G)$
- Fundamentally a relation between Disk Mass and V_{flat}
- No Dependence on Surface Brightness

MOND predictions

- The Tully-Fisher Relation
 - ✔️ Slope = 4
 - ✔️ Normalization = $1/(a_0 G)$
 - ✔️ Fundamentally a relation between Disk Mass and V_{flat}
 - ✔️ No Dependence on Surface Brightness

- ✔️ Dependence of conventional M/L on radius and surface brightness

- ✔️ Rotation Curve Shapes

- ✔️ Surface Density ~ Surface Brightness

- ✔️ Detailed Rotation Curve Fits

- ✔️ Stellar Population Mass-to-Light Ratios
Line: stellar population model (mean expectation)
The Tully-Fisher Relation

- Slope = 4
- Normalization = 1/(a_0G)
- Fundamentally a relation between Disk Mass and V_{flat}
- No Dependence on Surface Brightness

- Dependence of conventional M/L on radius and surface brightness
- Rotation Curve Shapes
- Surface Density ~ Surface Brightness
- Detailed Rotation Curve Fits
- Stellar Population Mass-to-Light Ratios
Those are the pros.

What are the cons?

• You don’t know the Power of the Dark Side

• Can MOND explain large scale structure?

• Can it provide a satisfactory cosmology?

• Can it be reconciled with General Relativity? TeVeS

• Does it survive other tests?

Clusters problematic
1E 0657-56 - “bullet” cluster (Clowe et al. 2006)

direct proof of dark matter?
bullet cluster shows same baryon discrepancy in MOND as other galaxy clusters

MOND suffers a missing mass problem! unseen baryons? heavy neutrinos?
observed shock velocity

bullet cluster collision velocity

observed shock velocity

MOND

bullet cluster collision velocity

MOND works too well in galaxies to be a coincidence. Either

MOND is correct, or

Dark Matter mimics MOND

Either way, new physics is implicated:

- gravity?

\[a_0 \sim cH_0 \sim c\Lambda^{1/2} \]

- new properties of dark matter?

"I think you should be more explicit here in step two."
BBN: \[\omega_b = \Omega_b h^2 \propto \eta_{10} \]