CARMA memo xxx - 10feb2004

—draft- CARMA MIRIAD —draft—

a.k.a. MIRIAD V4, a.k.a. the ABC’s of MIRIAD

Teuben, P.J. and Wright, M.C.H.
University of Maryland, College Park, MD 20742
Radio Astronomy laboratory, University of California, Berkeley, CA, 94720

ABSTRACT

We summarize the current status of MIRIAD, in particular efforts that have been
going on since the introduction of CVS for code management in early 2001. Miriad is
routinely used for BIMA, OVRO, ATNF and WSRT data reduction. In collaboration
with WSRT and ATNF several modules for the analysis of data from these arrays
have been added to MIRIAD. MIRIAD is being used for ALMA, ATA, CARMA, and
LOFAR simulations. Support for more than 256 antennas and for datasets larger than
2GB (8GB upcoming) has been added to enable ATA and LOFAR simulations. Other
new directions include the WSRT parallelization efforts and a python interface to
miriad.

1. Introduction

After Sault departed Illinois in 1990(7), development of miriad continued in two separate
versions: the A (ATNF, initially Sault) and B (BIMA, first at Illinois, then at Maryland). An
attempt was made to merge the two versions, as presented in a proposal by Teuben at a BIMA
board meeting in 2000 (?7), but the ATNF group preferred to continue their own development.
This proposal in turn was triggered by the departure of the then miriad maintainer Doug Roberts,
which left no formal support for Miriad maintenance at NCSA. The flat tree and RCS-based
checkin/checkout system was inflexible, and adding new files was very complicated. Early in 2001
the situation became critical (software rot etc.), and Maryland decided to take the RCS system
and import it into CVS for a more modern approach to shared development. which was dubbed
Version 3 of Miriad.

This version had a 2 year development cycle, which nominally ended February 2003, when the
Version 4 branch was merged into the mainline development. In practice this meant that Version
3 would only obtain bug fixes for as long as we need it. In January 2004 Version 3 was closed,
since data could now be reliably transferred between Miriad3 and Miriad4.

-2 —

We now consider Miriad4 the ”C” release (C for CARMA), which also signals the manual
merging of as much ATNF specific code as can be managed, as well as Oosterloo’s WSRT code
(the initial impetus to solve the 2GB problem came from Tom Oosterloo at the WSRT where
Miriad is now used routinely).

2. MIRIADI1 and MIRIAD2

Here is a brief chronology of the development of Miriad. Version numbers were not really as
well established as they are from 3.0 onwards.

1987 Miriad ("V1”) developed by Sault, largely based on his experiences with WERONG. Initially
mainly dealing with visibilities, and a simple image interface. At that time GIPSY was
thought to be the image analysis package, though fairly soon image analysis routines were
added to Miriad.

1990 Bob Sault moved to ATNF, and together with Neil Killeen were responsible for a substantial
portion of development, and a large number of new and improved tasks (some ATCA
specific).

1990 Mark Stupar overhauls the directory structure, much to Sault’s chagrin (the basis of the
later split between the “A” “B” versions of MIRIAD. We call this Miriad V2.

1995 flat tree RCS archive in Illinois (Doug Roberts)

1997 mini (C) version of the miriad library, as used in AIPS++, was extracted. Later (see below)
this was coded in ANSI-C, for portability. This ”mini” library was code-wise identical to the

one in miriad.
2001 Miriad V3 born out of CVS, coincides with the move of development from NCSA to UMD.
2003 Miriad V4 with files larger than 2GB and 8GB. Also dubbed the CARMA release.

2004 Miriad V3.1.1 (Released as 04janl3) was the last official Miriad V3.

3. MIRIAD3

Here is a list of the accomplishments of MIRIAD V3. We have release Version 3.1.1, which is
now off a branch (-r MIR3) since MIRIAD V4 is now at the head of development. Only bug fixes
are applied to this version of MIRIAD.

1. Miriad source code imported into CVS

-3 -

2. Minor bug fixes, minor feature additions, and a few new program here and there (e.g.
deproject, rotcurmask)

3. (some of it done before?) antenna could be 1..256, since baselines were counted (256%*A1+A2).
Already the ATA needed about 500, so the formulae was changed

4. fighting with the SONG team to keep the software in sync (not 100% successfull yet)

5. started to integrate ATNF specific code (therefor loosing the need for two versions of
miriad?). We may have to keep up with some of the new things in the ATNF release, since
they have expressed no real interest in merging the versions.

4. MIRIAD4

In the following list only a few items have been implemented!, most is just an incomplete
wish list.

1. website needs to be simplified. currently on
http://www.astro.umd.edu/ teuben/miriad/ and only linked in via
http://bima.astro.umd.edu/miriad/ where it should be.

2. * pyramid: a simple python interface

3. * last remaining remnants of the old (baseline=256*A1+A2) formulue, and introduction of
the new formulae that can handle > 2048 antennae. 7777 Eric Greisen chimed in. Can’t use
> 256 due to random groups convention (well, maybe 20477). But our fits program can’t
handle > 256 for now. Internally we can do 2048 (for now), though there is a suggested
formulae to change this to 32768, the absolute maximum for an integer*4.

4. are we sure LFS is working for fits files?? needs to be tested (since AIPS++ just ran into
that, i began to wonder too....)

5. MAXBUF could be bigger? better optimized? configure (see below) will do this eventually.

6. * The split MAXDIM/MAXDIM2, MAXANT/MAXANT?2 is still not perfect... too many
parameters always will result into situations wehre it didn’t work.

Also note there is some code for old vectorizing compilers/machines that use compiler
directives like c#maxloop 32. For MAXANT > 32 obviously this will not do much good.

Nisted with a *

10.

11.

12.

13.

14.

15.

16.

17.

18.

— 4 —

. export of small variables into type safe locations (as in NEMO’s outkeys= interface).

. should introduce an integer VERSION in the visibility data, just to make sure that data in

the future remains in lock with the software

. integer*8 support; ratty flag to go back to the old situation if the fortran compiler does not

support integer*8 [this will support scratchfiles > 8GB]|
write out proper long integers in itemize question is how fortran can do this?

a conversion routine from MIR4 to MIR3 format (int8 — int) if possible this program/script
should check if all the int8 variables are short enough that they can be cut into an int4:

nwcorr
ncorr

vislen (points to visdata, which does not need to be changed)

? flags 7?7 could this ever be > 2GB 777

? wflags

programs that read ascii files, tables and such should *as a rule* skip lines that start with
the (universal unix) comment symbol (#)

mir-config that can spit out the cflags, libs etc... for example , in the current release uvio is
not linked with LF'S, unlike the rest. so uvio will hang....

* use scropen8,scrclose8,scread8,scrwrite8 in addition to scropen stuff. this will simplify the

amount of code that needs integer*8

design a fftw interface to miriad’s fft routines - should give an impressive speedup, certainly
on intel hardware

the UVFITS random groups format should be replaced with the modern FITS IDI format
(used by VLBA, AIPS++ 7, SMA, etc.). Also related to the 256 maximum number of
antennae problem.

autoconf; see MIR /install for a start on this.

a better mir.test to excersize and certify a release

ATNF specific tasks:

atlod Convert an RPFITS file into Miriad uv format.

atfix Apply various miscellaneous corrections to ATCA visibility data

-5

elevcor Correct ATCA data for elevation-dependent gain
plboot Set the flux scale of a visibility dataset given a planet obs. *okok

WSRT specific tasks:

OVRO specific tasks:

5. DataI/O

The Miriad Benchmark memo introduced a simple but workable benchmark to excersize the
miriad (UV) I/O system to aid in understanding the scaleability. The uvgen task in particular
can be estimated to calculate the amount of time it takes for a snapshot to be written to disk.

6. CVS

Here are some technical notes on CVS usage in MIRIAD, including branching, tagging and

versioning:

Branching: only done for serious development that has to happen in parallel to ongoing
development, particularly when it’s an experiment that may fail.
(some of these can also happen in a persons private sandbox that never gets

committed)
cvs co miriad # checkout a fresh copy, (tag it??77)
cvs tag -b # branch it

cvs update -r BTNAME

cvs co miriad # checkout another fresh copy
cvs —-j BTNAME # merge it, resolved conflict, build it, test it, etc.etc
cvs ci # check back all the changes

Tagging: normally done when a version changes (e.g. from 4.0.2 to 4.0.3)

Do this from a clean checkout (also to prevent that WIP and RAD gets tagged)

cvs co miriad

cd miriad

edit VERSIONS <- add the date that 4.0.2 is done, and mark 4.0.3 as "W.I.P"
edit cvs.tags <- add 4_0_2, which is what you’re about to do

cvs tag mir_4_0_2

edit VERSION <- change to the new one, 4.0.3 in this case

cvs ci VERSION

7. Miriad 2003 telecon

7.1. Agenda

I see our goals as:
1. Determine what enhancements to the Miriad might warrant an increased
investment in development.
2. Determine if there is sufficient need for a face-to-face meeting to
coordinate such development.
3. Develop a prototype agenda for such a face-to-face meeting.

AGENDA

Below is a list of possible areas of development. I recommend that for
each topic we attempt to briefly address the following questions:

What is the motivation for pursuing this topic? How important is it?

Would the topic require fundemental changes to the Miriad software
infrastructure?

Are their obvious paths to achieving desired capabilities?

Does the topic require more discussion?

There are quite a few topics here, so we can’t get into too much detail.
(A need for detailed discussion is perhaps motivation for a face-to-face.)

Topic:

* 64-bit platform support

* Large file support (Miriad, FITS)

* Improved scripting with Python (enhancements to pyramid)
- better integration with Miriad tasking

-7 -

- flexible interrogation of uv and image datasets
- returning task output to scripting environment
- integration of non-task software
* Parallel Processing
- need framework?,
- transparent handling of platform dependence (e.g. parallel clean)
* Parallel I/0
* Improved Visualization
- user’s choice?
- interactions with tasks, scripting environment?
* Algorithm development
- support for heterogenous primary beams
- multi-scale deconvolution
- new calibration techniques: use of WVR, joint solving for
polynomials in gain curves.
* General evolution of Miriad processing environment?
If we imagine Python allowing for the integration of other
software or other modes of processing, how does that change the
way we look at Miriad as a processing environment? How do we
plan for the future (e.g. multi-processing, GUIs, distributed

processing)?

7.2. Minutes

Miriad Development Working Group Minutes
2003-06-11 Wednesday 1pm ET

Attendance:
MD: Peter Teuben, Stuart Vogel, Marc Pound
IL: Dick Crutcher, Ray Plante, Dave Mehringer
UCB: Mel Wright

GOALS

1. Determine what enhancements to the Miriad might warrant an increased

investment in development.

2. Determine if there is sufficient need for a face-to-face meeting to
coordinate such development.

3. Develop a prototype agenda for such a face-to-face meeting.

AGENDA

Below is a list of possible areas of development. I recommend that for
each topic we attempt to briefly address the following questions:

What is the motivation for pursuing this topic? How important is it?

Would the topic require fundemental changes to the Miriad software
infrastructure?

Are their obvious paths to achieving desired capabilities?

Does the topic require more discussion?

There are quite a few topics here, so we can’t get into too much detail.
(A need for detailed discussion is perhaps motivation for a face-to-face.)

Topic:
* 64-bit platform support
* Large file support (Miriad, FITS)
* Improved scripting with Python (enhancements to pyramid)
- better integration with Miriad tasking
- flexible interrogation of uv and image datasets
- returning task output to scripting environment
- integration of non-task software
* Parallel Processing
- need framework?,
- transparent handling of platform dependence (e.g. parallel clean)
* Parallel I/0
* Improved Visualization
- user’s choice?
- interactions with tasks, scripting environment?
* Algorithm development
- support for heterogenous primary beams
- multi-scale deconvolution
- new calibration techniques: use of WVR, joint solving for
polynomials in gain curves.
* General evolution of Miriad processing environment?

-9 —

If we imagine Python allowing for the integration of other
software or other modes of processing, how does that change the
way we look at Miriad as a processing environment? How do we
plan for the future (e.g. multi-processing, GUIs, distributed
processing)?

MINUTES

Dick explained the motivation for this meeting (failure of AIPS++ to
build a user community, examination of how to support high-end
processing, ...). There were many comments about the need to be
science driven.

Mel: On-the-fly, parallel processing will become increasingly
important for future telescopes with high data rates (e.g. ATA).

Ray: We should assume that enhancements should not
diminish current capabilities nor require a major change in how users
use the package.

We assumed all gathered had copy of agenda and the draft memo, "CARMA
MIRIAD". Peter indicated that the agenda was a more general list
compared to the memo’s wish list; the wish list items, thus, would be
covered in the agenda.

* 64-bit Platform Support

There is a build on IL’s Itanium box, thanks to Peter, using 32-bit
compatability mode. True 64-bit support should be straight-forward
and can be handled via compile flags. No further discussion needed.

* Large File Support

There are two limits: 2 GB & 8 GB. The latter requires integer*8
support in general and a minor change at the format level (dataset

size pointer; see compatibility issues below). Solution is fairly well
understood. Peter: some minor improvements supporting the EOD pointer
within the uvio layer would be useful.

Compatibility Issues:

,10,

*

Miriad4 will be able to read either Miriad4 or Miriad3 datasets.

*

Miriad4 will convert automatically to Miriad4 datasets in any task
that creates new output datasets.

* Ray: Are there any compatibility issues for tasks that do in situ
updates (e.g. uvflag)?

Miriad3 will be updated to at least detect Miriad4 datasets. May
attempt to deal with them if they are small enough; otherwise,
fail.

*

No further discussion needed.
* Improved scripting with Python

Desired capabilities:

- better integration with Miriad tasking:

automatic generation of task interfaces as Python functions

Ray has investigated how to expose necessary metadata to Python
- flexible interrogation of uv and image datasets:

to get info like how many channels in a window

allows generic recipes to adapt to datasets
- returning task output to scripting environment

ex: getting stats from histo into Python variables.

probably requires mods in task Fortran code

could develop simple API that could be integrated into

tasks piecemeal, as needed. (not all tasks would need this.)

- integration of non-Miriad task software

e.g. using other Python modules like XML

accessing software from other astronomical packages.

These are important for the Pipeline but are useful to desktop users
as well. None of these are particularly difficult, but it would
require additional coordination and, most importantly, input from

users.

Mel: Concern about how tightly we bind to Python. What if something
better comes along later?

Peter: SWIG will help with this: define binding SWIG’s interface
meta-language, SWIG then can generate bindings for various
supported scripting languages.

—11 -

* Parallel Processing
x Parallel I/0:

Two approachs:

1. Mel explained that parallel I/0 can often be effectively achieved by
strategic splitting of datasets, primarily by channel. This solution
requires no change to the format. Possible downside is whether this
rough cut approach limits the amount of effective parallism that can
be achieved (compared to something more fine-grained). Do we forsee
splitting data in ways other than channel?

2. An alternative would be to convert Miriad datasets (Miriad57) to HDF5
format with transparent support for parallel I/0. This format is
well-supported and widely used, and substantial expertise resides at
NCSA. The downside is that it could have substantial costs in
rewriting the Miriad I/0 layer and to users in supporting backward
compatibility.

We recommend a two-pronged prototyping approach: Test out how far we
can go with the rough-cut approach, and to do a study in collaboration
with the HDF group to understand how Miriad data might be stored in
HDF5.

[Ray notes: we expect to start prototyping the former approach in the
Pipeline. It makes sense to do the latter at NCSA as well.]

** Parallel Processing

What strategies do we want to apply? DIY embarrasingly parallel (EP) at
the script level? fine-grained parallelization with MPI?

What examples are there of parallelization that isn’t fundementally
channel-based? Mosaicing (of continuum sources), Gridding?

Ray: We have experience with MPI (from AIPS++), but we would like to
push the EP approach as far as we can before considering MPI. MPI is
more intrusive to the fortran layer and is ultimately less flexible to
running in different parallel environments (e.g. clusters, Condor

- 12 —

pools, and service-based distributed computing).
* Improved Visualization

Ray: Is visualization adequate in Miriad? Have users been
sufficiently successful with current available choices (Karma, DS9,
Aipsview, Miriad visualization tasks)? Where is interaction with
tasks and scripting environment important (e.g. creating clean boxes)?
Is it sufficiently well supported?

Peter: Less publicized capability for creating clean boxes using DS9.

Peter: Current assessment of support for Miriad
DS9 -- image data piped from Miriad (using DS9’s XPA mechanism)
Karma -- reads Miriad natively (or via FITS?)
Aipsview -- currently supports FITS and Miriad (via AIPS++ lib)
IDL -- via FITS

Marc: we should not invest in re-implementing what already exists with
current apps.

Peter: one area that is a bit crude still, IMHO, is WIP. There
already exists a Python binding to PGPlot, so perhaps there is an
opportunity to improve things.

Conclusion: no fundemental changes necessary. Incremental
improvements to enable new functionality using one or more of the
existing viz options may be helpful.

** IDL Support

There was a discussion thread on the prospects of supporting IDL.
Since there are a number of people within our community that use IDL,
there may be some benefit.

Peter: have resource at UMD in Stephen White.

Ray expressed concern about getting into a situation of supporting
duplicate functionality in IDL and Python.

,13,

Peter did not think that there would be significant demand for
manipulating uv-data in IDL; however, there would certainly be
interest in reading Miriad images. Given IDLs existing image display
and manipulation capabilities, supporting IDL need not be more than
providing a Miriad image reader.

* Algorithm Development
Dick: Question: How capable is Miriad as a development environment?

Mel: Experience has shown that it is quite capable as new tasks have
been submitted by a variety of people. The typical pattern for
development is to take an existing task and modify it or use it
as a template.

Peter: The processing model is not as general as the Measurement
Equation formalism used by AIPS++ (as the ME didn’t exist when
Miriad was developed). There are some aspects of the library
that might be considered expert knowlegde, but the capabilities
are all there.

Ray: Two philosophical points (i.e. they may be important enough at
this point to drive any changes to Miriad infrastructure):

1) The development pattern of modifying existing tasks may
limit one’s ability to try something fundementally
different.

2) One of features of AIPS++ that was meant to make new
development easier is the exposing of low-level data and
algorithm access to the scripting layer; this allows people
to try out ideas in a rapid development environment before
investing in a C++ implementation. We are not envisioning
supporting this in Miriad.

Specific Capabilities:
** Support for heterogeneous primary beams

Ray: what currently exists?
Mel: The basic functionality exists pb* routines support this.
Primary beams are usually pre-defined. There is one that is the

- 14 —

geometric mean of an OVRO and BIMA beam; nothing currently does this

combination automatically. Could be improved.
Dick: What about the case of different antennas looking at different
fields?

Mel: Initially we thought about allowing for this; however, after some

thought one realizes that there are a host of complicated, systematic

errors one has to deal with. The effort for handling these
correctly may not be worth any increase in observing speed.

** Multi-scale deconvolution
Mosmem attempts this in its own way; it’s slow.

GILDAS has this functionality; can we use it (e.g. call it from
Python?)

The AIPS++ version is based on the GILDAS idea; however, it is
implemented differently. Its implementation uses the standard AIPS++
decon tools to do the deconvolution on different scales. The
coordinatation and combination of subsequent models are done in the
scripting layer (glish).

Conclusion: there is user interest, but there are several approaches
that could be tried.

** New Calibration techniques

use of WVR...
Mel: when this was prototyped before, WVR data were converted to
corrections stored in a gains item. Straight-forward from there.

using optical pointing offsets to correct pointing errors...
Mel: best done on-line

decorrelation corrections...
[more words?]

Conclusion: while there do not seem to be any critical path
capabilities needed for CARMA, there is room for improvements and
experimentation with new techniques.

,15,

* General Evolution of Miriad Processing environment.

**x GUIs

Peter: experience shows that users want scripts more than GUIs.

Mel:

Ray:

Python would allow users to experiment with simple GUIs. Some
people have created personal, custom GUIs as convenient way of
running scripts with different inputs. A little bit of glue
for describing Miriad task (and script) inputs would make it
easier to create GUIs.

GUIs consider imp. for ALMA, according to the requirements.
GUIs are helpful for guiding new users through a process; this
is considered an advantage of GILDAS.

There are different types of GUIs:

1) High-level, user-oriented GUIs dedicated to a specific
sequence of processing steps; often refered to as
"wizards". This level was never achieved with AIPS++,
though highly desired by users, according to their
feedback.

2) General workflow GUIs. This is an integrated GUI
environement for stitching together and launching tasks.
ATPS++ had this, but it was not well-liked.

3) Custom GUIs: highly specialized interfaces to a
particular task. xcorf is an example. These are often
costly to build.

4) Quick-custom GUIs: these would be the simple GUIs whipped
up by users, as Peter described.

Given our experience with Users, there is not a lot of demand
for 2). Some experimentation could be done with 1) as needed.
GUIs of type 3) will be written whenever needed, but not as a
general practice.

I’ve started looking into the kind of glue Peter referred to

,16,

as part of improving the integration of tasks in Python; it

would also make building GUIs easier.

Conclusion: the main priority right now is to provide just enough
support to allow experimentation (by both users and developers) in
Python. Any coordinated effort toward GUIs should be user-driven.

CONCLUSIONS/ACTION ITEMS

We have identified some areas that could use further developement.
For most of these, we have a sense of what level of effort is
warrented. We have decided to collect these ideas and incorporate
them into Peter’s draft note, transforming it into a white paper.
This will be distributed to our user community to get feedback.

We will proceed to work on the white paper over email and possibly
another telecon. It is likely that we would postpone a face-to-face
meeting until after the white paper is prepared and some feedback

gotten from users.

Is Peter willing to be white paper editor? Ray expects to be an
active contributer.

Action Items:
Ray: type up minutes and distribute. Done.
collect corrections/additions
Peter: file minutes into rough draft in some form
to start transformation to white paper.

References

[1] WERONG - Sault’s thesis? 19867
[2] Sault R.J., Teuben P.J., Wright M.C.H., 1995, “A retrospective view of Miriad” in Astronomical
Data Analysis Software and Systems IV, ed. R. Shaw, H.E. Payne, J.J.E. Hayes, ASP Conf. Ser.,
77, 433-436.
[3] Teuben - BIMA memo 81 on miriad benchmarks (a “live” document)

