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Nonlinear dynamical models have became powerful tools for studying and fore-

casting magnetospheric dynamics driven by solar wind inputs. In this thesis, the

techniques of phase space reconstruction from time series data are used to develop

new methods for modeling and predicting the spatio-temporal dynamics of the mag-

netosphere. For these studies, new databases covering the solar maximum period

were compiled to enable accurate modeling of the magnetosphere during intense

geospace storms. The main contributions of the thesis are:

Weighted Mean Field Model and Its Application to the Intense

Storms. The nonlinear dynamical models of the coupled solar wind-magnetosphere

system derived from observational data yield efficient forecasts of space weather. An

improved version of the mean field model, derived from a set of nearest neighbors in

the phase space reconstructed from the data, was developed by assigning weights to

the nearest neighbors. A new correlated database was compiled and used to model

and forecast the geospace storms of October-November 2003 and April 2002, and

resulted in improved forecasts of the intense storms.



Mutual Information Analysis of Spatio-Temporal Dynamics. The mu-

tual information functions enable studies of the nonlinear correlations of dynamical

systems. A high resolution database for a six month period of solar wind and ground-

based magnetometer data from 12 high latitude stations was used to compute the

mutual information functions representing the correlations inherent in the system.

Using two different window lengths of 6 and 24 hr, the spatio-temporal dynamics

was analyzed using these functions for the different stations. The spreads in the

average mutual information show strong correlations with the solar wind changes

and the time evolution of mutual information yields a westward expansion of the

disturbed region, starting from the near midnight sectors.

Modeling and Predictions of Spatio-Temporal Dynamics of the Mag-

netosphere. The spatial structure of the magnetospheric dynamics is crucial to

space weather forecasting. The database of the magnetic field perturbations at 39

magnetometers belonging to the IMAGE and CANOPUS during year 2002 was used

to study the spatio-temporal structure. A longitudinal sampling process utilizing

the daily rotation of Earth was used to construct a two-dimensional representation of

the high latitude magnetic perturbations. The nonlinear model was used to predict

the spatial structure of geomagnetic disturbances during geospace storms.

Results presented in this dissetation provide a comprehensive study of the

magnetosphere using nonlinear data derived models. The new weighted mean field

model, mutual information analysis and spatio-temporal dynamics advance our un-

derstanding of the solar wind-magnetosphere coupling. These results can be used

to develop new and more detailed space weather forecasting tools.
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Chapter 1

Introduction

Above the Earth’s atmosphere, there is a vast region extending into inter-

planetary space that is permeated by highly fluctuating magnetic fields, plasma

and energetic particles. The collective, often violent, changes in space environ-

ment of Earth driven by the solar wind are commonly referred to as space weather.

Variations in the solar wind plasma density, flow velocity, the direction of the in-

terplanetary magnetic field (IMF), etc. cause significant changes throughout the

Earth’s magnetosphere, ionosphere, and on the ground with severe consequences in

our technological infrastructure [Baker et al., 1998]. In the recent several decades,

humans have increasingly used space-based assets for navigation, communication,

military reconnaissance and exploration. Changes in the currents flowing through

the ionosphere can cause disruption to power distribution systems, long-line tele-

phone networks, radio communications, and corrosion of pipelines on the ground.

Changes in the radiation environment near Earth can seriously affect satellite op-

erations through spacecraft charging and generation of false commands. Thus with

more satellites launched into space, more reliance on wired and wireless communica-

tion, understanding and predicting the geospace environment is becoming increas-

ingly important. Space weather and its predictability has now become a focus of

magnetospheric physics.
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Figure 1.1: Three dimensional view of the Earth’s magnetosphere and
the associated currents, fields and plasma regions (From Kivelson and
Russell [1995].)

The solar wind couples to the magnetosphere and ionosphere at higher lati-

tudes. Figure 1.1 shows schematically a three dimensional view of Earth’s magneto-

sphere and the associated currents, fields and plasma regions. The magnetosphere-

ionosphere-atmosphere system is complicated and constitutes a highly coupled sys-

tem.

A fascinating and easily observed manifestation of the solar wind-magnetosphere

coupling is the aurora. Figure 1.2 shows a picture of an auroral display taken above

Alaska. Earth’s magnetic field acts as “wires” to transmit the solar wind energy

to the ionosphere, where the energy is dissipated mainly as heat, and to accelerate

charged particles circling fairly close to Earth. The ionosphere in the northern and

southern regions acts as the primary resistor in the circuit that is responsible for

2



Figure 1.2: Picture of an auroral display taken above Alaska (From
www.webshots.com).

the aurora. The auroral radiation is emitted by atmospheric constituents that are

excited by particles precipitating from the magnetosphere.

As depicted in Figure (1.1), the solar wind flow brings energy and momentum

to Earth. The presence of Earth’s magnetic field prevents direct entry of the solar

wind through the outer boundary of the magnetosphere, the magnetopause, and

the solar wind is deflected around it after having been slowed down to sub-Alfvénic

velocities by the Earth’s bow shock. Earth’s magnetic field is sufficiently strong

that it can usually keep the solar wind from approaching closer than about 10

Earth radii (RE). The boundary between the magnetosphere and the solar wind

is the magnetopause. The region between the bow shock and the magnetopause is

the magnetosheath. The kinetic pressure of the shocked solar wind compresses the
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dipolar terrestrial magnetic field and, on the nightside of Earth, transforming it into

a long, tail-like structure, the magnetotail. The tail lobe of the magnetotail consists

of two regions with nearly antiparallel magnetic fields. The transition region is called

the neutral sheet. The central part of the magnetotail, in the neighborhood of the

neutral sheet, is populated with plasma with energies of several KeV. This region,

the plasma sheet, is connected to the auroral ionosphere along magnetic field lines.

Closer to Earth, energetic ions with energies of some tens of KeV oscillate between

the converging magnetic fields in the northern and southern ionosphere and drift

westward under the influence of gradient and curvature drift. The westward drift

constitutes a considerable current encircling Earth at radial distance of several RE,

and is called the ring current.

The direction of the solar wind interplanetary magnetic field (IMF) is a con-

trolling factor on the configuration of Earth’s magnetosphere. The solar wind-

magnetosphere coupling is enhanced when the IMF turns southward, a portion of

the transferred energy accumulates in the magnetotail and is often explosively re-

leased in a process called magnetospheric substorm. The magnetosphere is a highly

dynamic system under these conditions and the magnetospheric substorms are the

elementary disturbances with a typical time scale of an hour. When the IMF re-

mains southward for an extended interval, the energy transfer from the solar wind

into magnetosphere continues over extended periods of time and the ring current

grows under the influence of the solar wind variations, leading to geospace storms

with typical time scales of days, and are characterized by strong decreases in the

surface magnetic field. The extremes of space weather occur when intense solar ac-
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tivity is strongly coupled to the solar wind-magnetosphere-ionosphere system during

geospace storms.

The Earth’s magnetosphere is a non-autonomous dynamical system, driven by

the solar wind. Studies of the magnetospheric dynamics using dynamical models

derived from correlated databases of the solar wind - magnetosphere system have

enhanced our understanding of the complex behavior of the magnetosphere.

The evolution of a dynamical system is described by a trajectory in an ap-

propriately defined state space and such a trajectory characterizes the system com-

pletely. Recent developments in dynamical systems theory can be used to obtain

these trajectories from observational data, thus yielding a good understanding of

the system dynamics, and leading to predictive capability. This dynamical model

derived from data is referred to as data derived model and has given a new frame-

work for describing the complex behavior of the magnetosphere. The advantage of

this model based on the observational data is its ability to yield the inherent dy-

namics, independent of modeling assumptions. The global dynamical nature of the

magnetosphere is evident from its phenomenology [Siscoe, 1991], from the global

MHD simulations [Lyon, 2000] and from dynamical studies using observational data

[Sharma, 1995]. The data derived models have led to considerable progress in the

modeling and forecasting of the solar wind-magnetosphere coupling as an input-

output system.

One of the earliest methods used to analyze the solar wind-magnetosphere

coupling is the linear prediction filter, which assumes a linear relationship between

the input time series I(t) (solar wind convective electric field V BS) and output time
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series O(t) (geomagnetic activity index AE or AL)(details see Chapter 3). Many

studies have shown that the linear analysis alone is not sufficient to describe the

complex behavior from the coupling of the solar wind and magnetosphere [Baker

et al., 1990; Vassiliadis and Klimas, 1995]. The nonlinear dynamical approach has

been used to yield a new insight into the behavior of the magnetosphere during

geomagnetic storms and substorms [Vassiliadis et al., 1990; Sharma, 1995]. These

studies have established the nonlinear dynamical behavior of the magnetosphere,

in spite of being driven by the turbulent solar wind. These results are further

strengthened by the good agreement between the data derived models and global

MHD simulations [Shao et al., 2003].

The application of the phase space reconstruction techniques to the auroral

electrojet index AE, which is among the most widely used indices in the study

of substorms, showed evidence that the global dynamics represented by AE time

series is low dimensional [Vassiliadis et al., 1990]. In this low dimensional state

the dynamical behavior can be described by a small number of variables, and this

implies that the magnetosphere is predictable. This has stimulated the study of

forecasting substorms [Vassiliadis et al., 1995; Weigel et al., 1999], storms [Valdivia

et al., 1996], and space weather in general.

The nonlinear dynamical techniques have been used to develop models for sev-

eral types of magnetospheric and ionospheric activities. The simplest form of this

prediction technique is the local-linear technique, which uses only the linear term in

an expansion around the initial conditions. Considering the solar wind - magneto-

sphere to be an input - output system, the phase space is reconstructed using the
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geomagnetic indices and the solar wind data [Vassiliadis et al., 1992; Price et al.,

1994; Valdivia et al., 1995; Vassiliadis et al., 1995a]. In this reconstructed space,

the time evolution is characterized by trajectories computed from the data by time

delay embedding [Packard et al., 1980; Takens, 1981; Abarbanel et al., 1993]. A

collection of neighboring points in this phase space evolves in a similar fashion, and

the evolution of a specified initial condition is then determined by its nearest neigh-

bors. The high degree of predictability of these models gave strong evidence that

nonlinear models can be used to develop accurate and reliable forecasting tools for

space weather. Recent studies using time series data have shown that the coherence

on the global magnetospheric scale can be obtained by averaging over the dynamical

scales. A model for the global features can be obtained by a mean field technique of

averaging outputs corresponding to similar states of the system in the reconstructed

phase space [Ukhorskiy et al., 2002, 2004]. The mean field model was used to obtain

the center of mass by a simple averaging of all the states in the specified NN nearest

neighbors around the current state. Under the mean field model, it is assumed that

all of the nearest neighbors should be within similar distances from the center of

mass of the nearest neighbors. However the states close to the current state should

be expected to contribute more than those farther away in deciding the predicted

state. Based on this recognition, the weighted mean filed filter based on the mean

field filter is proposed to improve the accuracy and efficiency of predictions [Chen

and Sharma, 2006]. This technique takes into account the distances of the nearest

neighbors to the center of mass, and a set of weight factors which depend inversely

on the distances of each nearest neighbor from the mass center are introduced. The
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neighbors closer to the center of mass contribute more than those farther away, thus

yield improved predictions.

During geomagnetically active periods, the global response has been studied

extensively using nonlinear dynamical techniques [Valdivia et al., 1996; Ukhorskiy

et al., 2002; Chen and Sharma, 2006]. However, the global features of magneto-

sphere are in general captured by the geomagnetic indices. For example, the auroral

electrojet index AL, used in the studies of substorms, is the lower envelope of the

combined plots of the magnetic field variations at the designated magnetometer

stations in the auroral region [Mayaud, 1984], and thus has no spatial dependence.

Similarly, the Dst index, used in the studies of geospace storm, is an average of the

magnetic field variations at the mid-latitude stations and is thus a global index.

However the regional and local features measured by spacecraft-based imagers

and ground-based instruments are essential for advancing our understanding of the

magnetosphere. The importance of understanding the spatial structure of magne-

tosphere has led to the development of dynamical models based on the data from

the magnetometer stations [Valdivia et al., 1999a,b]. Thus the spatial structure of

geomagnetic activity is the next key issue that would enable the understanding of

the dynamics of the different regions. This is a prerequisite to developing the ca-

pability to make regional forecasts of space weather. At the same time, recognizing

the nonlinear nature of the magnetosphere and its evident complexity, it is essential

to use functions which can reveal the more complicated dependence. The average

mutual information is an effective measure of correlation on the spatial distribution

structure than the commonly used linear autocorrelation functions for a spatially
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extended time series data [Chen et al., 2007]. The studies of other nonlinear dy-

namical systems [Fraser and Swinney, 1986; Roulston, 1999] also conclude that the

average mutual information has a more general applicability than previously recog-

nized and can be used to yield new details of large scale open systems, such as the

magnetosphere.

Although the studies using geomagnetic indices [Price et al., 1994; Vassiliadis

et al., 1995a; Ukhorskiy et al., 2002, 2004; Chen and Sharma, 2006] have shown

the potential of nonlinear time series analysis in yielding predictive models, they

lack the spatial dependence of the magnetospheric dynamics. The importance of

understanding the spatial structure of geospace disturbances has led to the devel-

opment of dynamical models based on the data from the magnetometer stations

distributed around the globe. Valdivia et al. [1999a] modeled the evolution of the

spatial structure of the ring current using the time series data from six mid-latitude

ground magnetometers. A similar approach led to a two dimensional representation

of the high latitude geomagnetic perturbations in magnetic latitude and magnetic

local time from 15 magnetometers of the IMAGE magnetometer array [Valdivia et

al., 1999b]. These models however lack the ability to predict, due mainly to the

limited data used to develop the models.

Recognizing the need for extensive data in building the models, large databases

from the magnetometers in the CANOPUS and IMAGE chain is compiled for the

periods of strong geomagnetic activity at all local times. This database is then

used to reconstruct regional dynamical models of substorms, covering both latitude

and longitude. Such a two-dimensional model is reconstructed in the same way as
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the nonlinear filter techniques, e.g. the local input-output filters, but taking into

consideration different local times.

The following chapters present the research results of this dissertation: The

phenomenology of solar wind-magnetosphere coupling is reviewed in Chapter 2, with

emphasis on the global and multi-scale properties of magnetospheric dynamics dur-

ing substorms. Chapters 3 - 6 comprise the main body of the thesis. Chapter 3

discusses the applications of the new nonlinear techniques on the well known Lorenz

attractor, the observational data of AE index, and the prediction using the local

linear filter methods. Chapter 4 discusses an improved filter, the weighted mean

field filter, and its applications on three intense storms in years 2002 and 2003. In

Chapter 5, the mutual information function is used to study the inherently nonlin-

ear spatial dynamics of the magnetosphere through a spatially extended time series

data. In Chapter 6, the time series data of the distributed observations are used to

develop spatio-temporal dynamics of the magnetosphere using phase space recon-

struction techniques. The nonlinear model is used to predict the spatial structure of

geomagnetic disturbances during geospace storms. The main results are summarized

in Chapter 7.
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Chapter 2

Solar Wind-Magnetosphere Coupling: Data Derived and Global

MHD Models

Observations have shown that the direction of solar wind interplanetary mag-

netic field (IMF) has a controlling role on the configuration of Earth’s magneto-

sphere. This is because the coupling between the solar wind and the magnetosphere

is controlled by the solar wind magnetic field through the process of magnetic recon-

nection. When regions with differently directed magnetic fields come in contact, it is

possible for magnetic field lines to break and reconnect. Dungey [1963] first sketched

the topology of the magnetosphere for northward and southward IMF. Figure (2.1)

(from Dungey [1963]) shows schematic plots of the magnetospheric topology for

northward and southward IMF. For steady northward IMF, magnetic reconnection

occurs in the cusp region, where oppositely directed field lines of solar wind and

terrestrial origin intersect. While for steady southward IMF, magnetic reconnec-

tion occurs on the dayside magnetopause, turning closed field into open field lines

(that is one end connected to the Earth and the other in the solar wind). The

reconnected, open field lines take part in the antisunward motion of the solar wind

and get dragged to the nightside where the tail lobe field is enhanced. To maintain

a steady state, reconnection must occur on the nightside that feeds magnetic flux

back to the dayside through magnetospheric convection. Geomagnetic substorms

11



(a)

(b)

Figure 2.1: Topology of the magnetosphere in north-south plane for
northward and southward interplanetary field, according to J. W.
Dungey in the early 1960s. In the steady state, the plasma flows as
indicated by the short arrows. Symbol “N” refers to the neutral point of
the magnetic reconnection. (a) With northward IMF. (b) With south-
ward IMF. (From Dungey [1963])

occur when the magnetospheric convection is enhanced, generally by a strong con-

tinuous southward IMF. The magnetospheric substorms continue to be one of the

most actively studied phenomenon in space physics.

2.1 Magnetospheric Dynamics during Substorms

The magnetospheric substorm is a dynamic reconfiguration of the magneto-

sphere accompanied by strong energy dissipation, that returns the magnetosphere

from a high to a low energy state. Observations show that the kinetic energy flux

12



of the solar wind impinging on the dayside magnetopause with its cross-section of

about 30 RE (Earth radii) is about 104 GW for typical solar wind conditions. During

a typical substorm event, about 1015 joule of energy is deposited into the ionosphere

on a 30 minutes timescale [Kamide and Baumjohann, 1993].

The substorm is a global phenomenon whose manifestation can be observed in

nearly all regions of the magnetosphere and ionosphere, as it involves a large number

of processes occurring in a wide variety of spatial and temporal scales. They are

the most pronounced manifestations of the storage and release processes and have

typical time scales of a few hours, with well-defined phases, viz. growth, expansion

and recovery phases. In the growth phase, energy from the solar wind is stored

in the magnetosphere, resulting in a stressed tail-like configuration. This phase is

typically associated with southward turning of the IMF which causes the magnetic

reconnection at the day side magnetopause. The reconnection of an originally closed

magnetic field line with IMF leads to a transfer of energy and momentum from the

solar wind to the magnetosphere. The free end of the open lines are convected to

the nightside and are reconnected at 50 − 80RE. These reconnected field lines are

then convected back towards the inner-magnetosphere. The motion of magnetic

filed lines across the polar cap leads to the formation of regular two cell convec-

tion pattern in the polar ionosphere. This process lasts several tens of minutes to

an hour before substorm onset. During the expansion phase of a substorm, the

stored magnetic energy in the tail is released. The substorm onset can be due to

reconnection of stressed field lines, a northward turning of the IMF or an increase

of solar wind dynamic pressure. During the expansion phase, observations show

13



an earthward bulk flow and particle injection towards the auroral zones along the

filed lines. In the same time, the plasma beyond the reconnection region is ejected

downstream. In the ionosphere, at the expansion phase onset, the equatorward dis-

crete auroral arc brightens. A westward traveling surge and auroral bulge are also

formed. The growth of ionospheric currents is initially localized in a longitude sec-

tor centered around the midnight at high latitude, and leads to a rapid increase in

westward electrojet current. After the release of energy, the system slowly returns

to ‘normal’ during the recovery phase. The main observational features [Kamide

and Baumjohann, 1993; Lui, 1990; Kivelson and Russell, 1995; Wiltberger, 1998],

are summarized in Table 2.1.

2.2 Global and Multi-scale Phenomena of the Magnetosphere

The terrestrial magnetosphere is driven by the solar wind and exhibits complex

dynamical features. It is prototypical of large-scale open systems and its dynamics

is essentially determined by the interactions between its different components or

regions, and the characteristics of its driver, the solar wind. Underlying cause of

the complex dynamics of the magnetosphere is the inherent nonlinearity of the

magnetospheric plasma and the turbulent nature of the solar wind. Furthermore,

the magnetosphere is far from equilibrium, especially during geomagnetically active

periods, mainly due to the solar wind variability.

Substorms exhibit multi-scale behavior, viz. they have broad band power

spectra in a wide range of spatial and temporal scales. The multiscale behavior of

14



Table 2.1: Key observed features of the solar wind, ionosphere and different regions

of magnetosphere during substorms

Regions Growth Phase Expansion Phase Recovery Phase

Solar Wind Southward turning of IMF Substorm expansion onset trig-

gered externally by changes in

the IMF/solar wind character-

istics.

Leakage of magnetospheric par-

ticle upstream.

Ionosphere Enlargement of polar cap

size; two convection cell;

ionospheric electrojets en-

hancements; Quiet auroral arcs

drift equatorwards.

Aurora brightens and expands

in nightside; a westward trav-

elling surge (WTS); magnetic

bays; Substorm electrojet; Pi2

and PiB pulsations.

Double oval structure forms,

and eastward propagating

omega bands are seen on the

equatorward one.

Near-Earth Tail lobe field strength in-

creases; Cross-tail current in-

creases; stretched field lines

form; Thin current sheet; tail-

ward of the dipole-like field

lines

Earthward high speed plasma

flows; Decrease in tail cross-

section; Injections of acceler-

ated (tens of keV) particles.

dipolarization spread in local

time.

Magnetosphere returns into the

pre-substorm state.

Mid-tail Lobe filed reduction; Plasma

sheet thinning.

Plasma sheet recovers.

the magnetosphere has been recognized in many different ways. The power law de-

pendence of the AE index provided a quantitative measurements of the multiscale

behavior [Tsurutani et al., 1990]. The studies of power law nature of the mag-

netospheric response AE index using structure function show multiscale behavior

features [Takalo et al., 1992]. During the global auroral energy deposition events,

the studies of the UVI images show that auroral images of the internal scales of the

magnetosphere were found to have similar power laws in both quiet and active pe-
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riods. However, during active periods, the global energy dissipation had a different

scale. These features were interpreted as consistent with an avalanching system [Lui

et al., 2000].

The coexistence of global coherence and multiscale behavior is a key feature

of the magnetosphere [Sitnov et al., 2000]. The global coherence can be viewed as

a first order phase transition, and the multiscale behavior as arising from a second

order phase transition with the accompanying scale invariance [Sitnov et al., 2000,

2001; Sharma, 2001; Ukhorskiy, et al., 2002; Shao et al., 2003].

The phase transition-like behavior of the magnetosphere during substorms was

derived from the correlated input-output data of the solar wind - magnetosphere

system, the solar wind input being the induced electric field V BS, and the magneto-

spheric response, the auroral electrojet index AL [Bargatze et al., 1985; Sharma et

al. 2000; Sitnov et al. 2000, 2001]. The magnetospheric dynamics was reconstructed

from this data using the singular spectrum analysis (SSA) [Broomhead and King,

1986]. This technique uses the embedding of the original time series into a multi-

dimensional space by using the time delay embedding and then sorting the linear

combinations of the delayed time series to provide a suitable approximation of the

dynamics [details see Chap.3]. The phase space reconstructed from the three leading

eigenvectors reveals the regular component of magnetospheric dynamics. The SSA

spectrum of the database during substorm time shows clear power-law dependence,

as shown in Figure 2.2(a).

After the analysis of the observational data using the singular spectrum anal-

ysis, similar time series produced using the AL index generated by global MHD

16



simulations were studied. The same characteristics showing global and multiscale

features [Shao et al., 2003] were obtained and are shown in Figure 2.2(b). Figure

2.2(a) indicates that the singular spectrum of the observed-AL index data obeys

power law with an exponent of around -1. Also Figure 2.2(b) indicates that the

singular spectrum of the pseudo-AL index data, computed from the global MHD

simulation [Shao et al., 2003] obeys power law with an exponent of around -1.5. Thus

both the observed and pseudo-AL index show multi-scale behavior, although the lat-

ter is cleaner than the former. This is because the global MHD model works well on

large scales and low frequency regions and smoothes local and high frequency fluc-

tuations. It is clear from this comparison that both actual and simulated V BS−AL

data show multiscale feature.

(a) (b)

Figure 2.2: Log–Log Plots of SSA eigenvalues for observed-AL or pseudo-
AL index and V BS parameters alone as well as for the combined data.
(a) Singular spectrum of AL − V BS data inferred from Bargatze et al.
[1985] data (first 20 intervals) (from [Sitnov et al., 2000]) (b) the coupled
vBS–pseudo-AL index system derived from global MHD model. (from
[Shao et al., 2003]).

17



The three principal components in the SSA analysis [Sitnov et al., 2000; Shao

et al., 2003] have been used to represent the dynamics of substorms. By project-

ing the original trajectory matrix along these eigenvectors, a time series data of

the dynamical evolution is obtained. The eigenvectors are rotated to minimize or

maximize the output and input components in each, and the first three eigenvectors

are shown in Figure 2.3. These three eigenvectors are Po, Pi and P3, which are

closely related to time averaged value of input (V BS), output (AL) and the time

derivative of the input, respectively. The magnetospheric dynamics represented by

these three variables computed from the actual and simulated data are shown in

Figure 2.4(a) and (b), respectively. In this figure, the component Po is color coded

and the circulation flows given by dP3/dt and dPo/dt are represented by the arrows.

Both the 3D surface plots exhibit a two level structure. These figures represent the

substorms as transition from a high (red/orange) level to a low (green/blue) level,

and thus exhibit a phase transition-like behavior of substorms. Also from these two

plots, the substorm cycle patterns are clear, with the arrows showing the trajectory

of the substorm evolution. On the average, the dynamical manifolds obtained from

the SSA of the actual and simulated AL with the same solar wind conditions are

similar. Both plots show that the evolution of the magnetosphere on the largest

scale is quite regular and resembles the temperature-pressure-density diagram of

equilibrium phase transitions in a two phase system, .e g., the water-steam system.

Sitnov et al. [2001] suggested that the scale free properties of the data can

be attributed to the dynamics in the vicinity of a critical point and associated with

second-order phase transitions. The magnitude of the largest fluctuations of AL time
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Figure 2.3: (a)-(c) are the original three leading eigenvectors obtained
from the singular spectrum analysis (SSA). (a)The first eigenvector;
(b)The second eigenvector; (c)The third eigenvector. (d)-(f) are the
three leading eigenvectors after the eigenvectors in (a)-(c) are rotated.
Each eigenvector is composed of output and input components. The out-
put component is blue-shaded and the input component is green-shaded
(Shao et al., 2003).
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Figure 2.4: The 2D surface approximation of the manifold represent-
ing magnetospheric dynamics on the basis plane (P3,Pi). The principle
component Po is color-coded. The circular flows given by dPi/dt and
dPo/dt are represented by arrows. The phase transition map (Left) is
from actual observed AL data (Sitnov et al., 2000); (Right) is from the
pseudo-AL index derived from global MHD mode (Shao et al., 2003).

derivative has a power-law dependence on the average value of V BS, as shown in

Figure 2.5. This scenario of substorms is similar to a model in which the dynamical

manifold has a cusp catastrophe [Lewis,1991], shown in Figure 2.6. The evolution

of an isolated substorms is indicated by dashed arrows.

2.3 Summary

The global and multi-scale aspects of the magnetosphere have been recognized

and studied separately. The data derived and global MHD models provide inte-

grated models of these inherent properties of solar wind – magnetosphere coupling.

The good agreement between these models show that the global and multi-scale
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(a) (b)

Figure 2.5: An analogue of the input-output critical exponent inferred
from Bargatze et al. [1985] data (fist 20 intervals) (left) and from the
data of global MHD simulation (right).

features are inherent in the magnetospheric dynamics. The coherent behavior of the

magnetosphere is evident in large scale phenomena like the formation of plasmoids,

the recovery of the field line and the formation of global current systems. The multi-

scale features are manifested in the small scale phenomena like MHD turbulence,

and current disruption during substorms.

Most contemporary approaches to the data derived modeling of the magne-

tospheric substorm do not account for the existence of global and multi-scale phe-

nomena and thus do not provide a complete description of the observed time series.

The low dimensional dynamical models effectively extract the time series constituent

generated by the large-scale coherent behavior, but are unable to predict the high

dimensional multi-scale features. Also the avalanche and turbulence models can

reproduce a variety of the scale free power spectra for multi-scale portion of the
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Figure 2.6: Hypothetical cusp catastrophe manifold that was expected
to approximate the substorm dynamics of the magnetosphere according
to the model of Lewis [1991]. The evolution of an isolated substorms is
shown by dashed arrows. (Sitnov et al., 2000)

observed time series, but can not relate them to the global features of the mag-

netospheric dynamics and the variations in the solar wind input. The global and

multi-scale constituents of the solar wind-magnetosphere coupling co-exist and are

critical in the understanding the magnetosphere dynamics.
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Chapter 3

Nonlinear Dynamical Techniques for Driven Systems

The solar wind-magnetosphere coupling is an input-output system and the

techniques of nonlinear dynamical system theory have been used to model and fore-

cast its dynamics. Earlier, the linear filter techniques have been used extensively

to model input-output systems and have provided the linear response characteris-

tics. However these techniques are not sufficient for describing the magnetospheric

response to the solar wind. Among the nonlinear dynamical techniques, time delay

embedding and phase space reconstruction play a key role in data derived model-

ing, and led to time series forecasting techniques based on local-linear filters. The

local linear filter techniques have been used to study the global and multi-scale

features of the magnetospheric dynamics by using the input-output phase space re-

constructed from the time series data of V BS as the input and AL index as the

output. These techniques and their applications to the solar wind-magnetosphere

coupling are briefly reviewed in this chapter.

3.1 Linear Prediction Filter

A major problem in solar-terrestrial physics is the understanding of how solar

wind mass, momentum and energy couple into and subsequently flow through the

magnetosphere. There are two models which have been used widely: direct driven
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model and loading-unloading model. In both the models, the energy transfer or cou-

pling process is initiated by enhanced magnetic energy input in the magnetosphere

due to solar wind variability. The magnetosphere is essentially a non-autonomous

system because its dynamics is continuously driven by the solar wind.

One of the earliest methods used to analyze the solar wind-magnetosphere

coupling is linear prediction filters [Bargatze et al., 1985; Clauer, 1986]. This method

uses a filter to model the linear relationship between measured magnetospheric and

solar wind quantities. A linear relationship between the solar wind input time series

I(t) and the geomagnetic activity output time series O(t) driven by the solar wind

is assumed so that

O(t) =
∫ ∞

0
f(τ)I(t− τ)dτ (3.1)

where f(τ) is the linear prediction filter. This filter is calculated only based on

the previous inputs and not on previous outputs, which means there is no feedback

in the system. Clauer et al. [1981] used the solar wind input V BS, V 2BS and

the solar wind coupling function ε along with the linear filtering routines to model

the response of the AL and AU indices to solar wind variation. The solar wind

coupling function ε = V B2l20 sin4(θ/2) is identified as the dynamo power delivered

from the solar wind to the open magnetosphere [Akasofu, 1979]. Clauer et al. [1981]

suggested that the response of the magnetosphere is not completely linear because

the properties of the filter vary with the magnitude of the geomagnetic activity.

Bargatze et al. [1985] compiled a large database of simultaneously measured
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time series data of the solar wind induced electric field V BS and the auroral electro-

jet index AL. This database has been used widely in many studies. The solar wind

data is from IMP8 satellite and the period spans from November, 1973 to December

1974. The whole database consists 34 isolated intervals, which contain 42,216 points

with 2.5 min resolution. These data intervals are selected as isolated intervals pre-

ceded and followed by at least 2-hour segments of quiet solar wind input and AL

index values and are arranged in the order of increasing geomagnetic activity. A

stack plot of the linear prediction filters obtained from dataset, arranged in order

of increasing geomagnetic activity level from bottom to top, is shown in Figure 3.1.

The filters 1-18 have two response pulses near 20 min and 60 min. The filters

19-30 have only a response pulse which reach an amplitude peak near 20 min and

decay thereafter. The geomagnetic activity corresponding to the filters 19-30 is

stronger than that corresponding to the filters 1-18. Thus the filter peak at a time

lag near 20 min for intervals of strong geomagnetic activity is interpreted as the

time scale of the dynamic response of the magnetosphere and is associated with

direct dissipation. It corresponds to electrojet activity related to direct interaction

between the solar wind and the magnetosphere. The 60 min time lag of the other

peak for intervals of moderate activity corresponds to the loading of energy in the

magnetotail and its energy release at expansion phase onset. The absence of the

second peak at the 60 minute time lag at the highest levels of the activity motivated

an analogue model based on a dripping faucet [Baker et al., 1990]. In this model,

the loading-unloading cycle of the magnetosphere was considered to be chaotic when

the loading rate is increased beyond a threshold value. It was concluded that the
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response of the magnetosphere to V BS, represented by AL index, is not completely

linear.

These studies have motivated many studies of the nature of the solar wind-

magnetosphere coupling. For example, Vassiliadis and Klimas [1995] compared the

moving average filter with LRC-circuit filters, which were derived from the solar

wind-magnetosphere coupling linear model. It was suggested that the discrepancy

between the details in filter structure is due to intrinsic nonlinearity of the system,

and the assumption of system linearity is almost certainly invalid. However, linear

analysis alone is not sufficient to describe this complex behavior. The tools of

nonlinear dynamics and deterministic dynamical theory are expected to yield a

new insight into the behavior of the magnetosphere during geomagnetic storms and

substorms.

3.2 Nonlinear Dynamical Studies Using Time Series Data

The multi-scale nature of the magnetosphere has been recognized mainly by

the power law dependence of many observed variables [Tsurutani et al., 1990, Lui

et al., 2000; Sitnov et al., 2003]. Recent studies using time series data have shown

that the magnetosphere is inherently multiscale, and the solar wind - magnetosphere

coupling can be treated as a nonlinear dynamical system. The recent developments

in the theory of nonlinear dynamical systems have led to new techniques based on

the characterization of the intrinsic phase space structure using time series data.

In this section, we review these nonlinear dynamical approaches, in particular the
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Figure 3.1: A stock plot of linear prediction filter for all levels of ge-
omagnetic activity. The impulse response functions relating the input
V BS with the output AL index [from Bargatze et al., 1985]
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techniques of phase space reconstruction.

Dynamical systems are mathematical objects used to model physical phenom-

ena whose state changes over time. The evolution rule of the dynamical system is

a fixed rule that describes what future states follow from the current state. The

rule is deterministic: for a given time interval only one future state follows from the

current state, e.g., as a map:

yt+1 = f(yt) (3.2)

where each vector yt represents a state of the systems in N-dimension phase

space, f is a nonlinear operator acting on all points. At any given time, the solution

of the map can be written as a flow of known points in the phase space. In the

case of a dissipative system, the flow eventually contract to a set of few degrees of

freedom which is called an attractor. The nonlinear systems with a few degrees of

freedom can create output signals that look complex and mimic stochastic signals

from the point of view of conventional time series analysis. The reason for this is that

trajectories with nearly identical initial conditions will separate from one another at

an exponentially fast rate, leading to chaos. The key difference is that the short-term

prediction is not ruled out for a chaotic system if there are a reasonably low number

of active degrees of freedom. For this purpose, however, the state of the system has

to be specified in terms of the complete set of its components in the phase space.

At the same time, it is common that only a limited number of variables can be

measured in experiments. It turns out that the complete set of dynamical variables

can still be reconstructed using the delay embedding technique.
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An embedding is a smooth map, say Φ, from the manifold S to a space R

such that its image Φ(S) ⊂ R is a smooth submanifold of S. So the embedding Φ,

a diffeomorphism between S and Φ(S), is a smooth invertible function with smooth

inverse. The space which contains the image will be called the embedding space and

its dimension the embedding dimension.

Before applying the nonlinear techniques on the solar wind - magnetosphere

coupling system, we study a specific time series data generated from the well known

Lorenz attractor[Lorenz, 1963].

dx(t)

dt
= σ(y(t)− x(t)),

dy(t)

dt
= −x(t)z(t) + rx(t)− y(t), (3.3)

dz(t)

dt
= x(t)y(t)− bz(t).

These equations are derived from a finite mode truncation of the partial dif-

ferential equations describing the thermal driving of convection in the lower atmo-

sphere. The time series x(t) which results from solving the Lorenz equations using a

fourth-order Runge-Kutta integrator using time step dT = 0.009 is shown in Figure

3.2. When the parameter values r = 28, b = 8/3 and σ = 10.0 are selected, the

system produces chaotic dynamics. The trajectory of the three degrees of freedom

system [x(t), y(t), z(t)] in a three dimensional space is shown as Figure 3.3. The

characteristic structure of the long term orbit of the Lorenz system, the Lorenz at-

tractor, is apparent. The time evolution is organized by the two unstable foci and

intervening saddle point.
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Figure 3.2: A sample of the time series x(t) corresponding to motion on
the attractor of the full Lorenz model.
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Figure 3.3: The attractor of the full Lorenz model (σ = 10, b = 8/3, r =
28) in three-dimension phase space.
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A chaotic nonlinear system can be modeled by a few nonlinearly coupled ordi-

nary differential equations. This remarkable property arise from the inherent char-

acteristic of a dissipative nonlinear system, viz. its phase space volume contracts as

the system approaches its asymptotic state. This dynamical states may generally be

described by fewer variables than the original system. The attractor is characterized

by its dimension, which is the lower bound to the number of independent variables

necessary to describe the attractor.

One of the hallmarks of chaotic behavior is the sensitivity of any orbit to

small changes in initial condition or small perturbations anywhere along the orbit.

Because of this sensitivity, it is inappropriate to compare two orbits of a nonlinear

system directly with each other. However the attractor is the same which each orbit

visit during its evolution. These are independent of initial conditions and provide

a direct analogy to the Fourier frequencies of a linear dynamical system. System

identification in nonlinear chaotic systems means establishing a set of invariants for

each system of interest and then comparing observations to that library of invariants.

In nonlinear dissipative systems the dimension has fractional values and is called a

fractal. This property is indicative of chaotic dynamics governing the motion on the

attractor.

If the system variables are sufficiently nonlinearly coupled, the details the char-

acteristic quantities of the phase space can be computed from one or few variables

[Packard et al., 1980,Takens, et al., 1980; Ruelle, 1989]. The time delay embed-

ding technique is an appropriate approach for using time series data to reconstruct

the phase space and obtain the system’s characteristic quantities. We construct a

31



m-component phase vector Xi from a time series x(t) as:

Xi = {x1(ti), x2(ti), · · · , xm(ti)}. (3.4)

where xm(ti) = x(ti + (m− 1)T ) and T is a proper time delay.

The time lag T and the dimension of the space m in the time-lagged vectors

Xi need to be specified in Equation 3.4. If the dimension m is larger than the

attractor dimension 2mA, which can be fractional, then the attractor as seen in the

space with lagged coordinates will be smoothly related to the attractor as viewed in

the original physical coordinates, which we do not know. In practice, if we choose

m large enough, physical properties of the attractor that we wish to extract from

the measurements will be the same when computed on the representative in lagged

coordinates and when computed in the physical coordinates. The procedure of

choosing sufficiently large m is known as embedding, and the dimension that work

is called an embedding dimension mE. Time-delay embedding is the only systematic

method for going from scalar data to multidimensional phase space [Abarbanel et

al., 1993].

3.3 Time Delay and Embedding Dimension

The time delay T and embedding dimension m are two key parameters in phase

space reconstruction. Several methods are used to estimate these two key parame-

ters, such as mutual information, correlation integral, singular value decomposition,

etc. In the following these methods and applications to the Lorenz Attractor and
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the real time series observation data of AE index are discussed.

3.3.1 Mutual Information Function

Consider two random systems variables, X1 and X2, with possible outcomes

i1 and i2 from the measurements of the systems. There is a probability distribution

associated with each system governing the possible outcomes of observations on

them. The average mutual information between measurements of i1 and i2 is defined

as [Cover and Thomas, 1991]:

I(X1, X2) =
∑

i1

∑

i2

℘12(i1, i2) log2

[
℘12(i1, i2)

℘1(i1)℘2(i2)

]
(3.5)

where ℘1(i1) and ℘2(i2) are the probability distributions of random variables X1 and

X2 assuming states i1 and i2, respectively, and ℘12(i1, i2) is their joint distribution.

The average mutual information is a generalization to the nonlinear world from

the linear correlation function. When the measurements of systems X1 and X2 are

completely independent, ℘12(i1, i2) = ℘1(i1)℘2(i2), and I(X1, X2) = 0. To place this

abstract definition into the context of observations from a physical system x(n), The

average mutual information between observations at n and n+T is [Gallager, 1968]:

I(T ) =
N∑

n=1

p(x(n), x(n + T ))log2

∣∣∣∣∣
p(x(n), x(n + T ))

p(x(n))p(x(n + T ))

∣∣∣∣∣ . (3.6)

The proper time delay T depends on the property of I(T ). If T is too small,

the measurements x(n) and x(n+T ) tell us so much about one another that we need

not make both measurements. If T is too large, then I(T ) will approach zero, and
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Figure 3.4: Average mutual information I(T ) as a function of time lag
T for the Lorenz data.

nothing connects x(n) and x(n+T ), so this is not useful. Fraser and Swinney [1986]

suggest that we choose that Tm where the first minimum of I(T ) occurs as a useful

selection of time lag T . This minimum can be used as a time lag for phase space

reconstruction.The mutual information of the Lorenz attractor is shown in Figure

3.4. The first minimum of the mutual information is around 0.1, about 10 times of

the integration time step 4t = 0.009, and this value can be used as a proper time

delay in the phase space reconstruction.

In order to estimate the time delay for the reconstruction of the magnetospheric

dynamics, we use the time series data of 1-min averaged time series AE index for

January 1983 (Figure 3.5). The average mutual information I(T ) in this case is

shown in Figure 3.6. There is no apparent minimum value at some specific time lag
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Figure 3.5: Time series data of the auroral electrojet index AE on Jan-
uary 1983 with 1 minute resolution

T and this does not mean that I(T ) loses its role as a good standard for selection of

T , but only the first minimum criterion need to be replaced, e. g., (T )/I(0) ≈ 1/5

[Abarbanel et al., 1993]. From Figure 3.6, we estimate T = 10−20 min as a suitable

time delay for this AE time series data.

3.3.2 Correlation Integral

An attractor is characterized by a set of points determined by the evolution of

the system variables and the space in which these points are located is determined

by its dimension. When the 3D Lorenz attractor (Figure 3.3) is projected onto 1D,

e. g., in the x axis (Figure 3.2), we cannot see the structure of this nonlinear system

properly. So it is necessary to unfold the system in a larger embedding space in
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Figure 3.6: Average mutual information I(T ) as a function of time lag
T for AE index.

order to discern the dynamical structure. Once a time delay has been chosen, the

embedding dimension can be obtained from the time series data, e. g., by using the

correlation integral.

If an attractor is properly unfolded by choosing a large enough dimension,

the properties of this attractor depend on the distance between points in the phase

space, and the characteristic quantities should be preserved for higher values of the

embedding dimension. Thus increasing the embedding dimension m after its attrac-

tor dimension has been reached will not affect on these properties. The correlation

integral function is defined for N vectors in an m-dimensional space for the distance

r as [Eckmann and Ruelle 1985]:
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Figure 3.7: Sequence of correlation integrals C(r) for Lorenz data in
embedding dimension m = 1, · · · , 8

C(r,m) = lim
N→+∞

1

N2

N∑

i=1

N∑

j=1

Θ(r − |Xi −Xj|), (3.7)

where Θ is the Heavyside function. The correlation dimension is defined as

ν = lim
r→0

log C(r,m)

log r
(3.8)

We can evaluate C(r) as a function of m and determine when the slope of

its logarithm as a function of log(r) becomes independent of m. We applied the

correlation integral function defined by Equation 3.7 on the Lorenz attractor data

set and on the AE index data for 1983; the results are shown as log− log plots of

C(r) as a function of m in Figures 3.7 and 3.8, respectively. In Figure 3.7, it is clear

that for m ≥ 3, the slope of function C(r) becomes independent of the value of m.

Thus we can choose m = 3 as a proper embedding dimension for Lorenz attractor.
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Figure 3.8: Sequence of correlation integrals C(r) for AE index data in
embedding dimension m = 1, · · · , 8

Also for the function C(r) of the AE index of 1983 in Figure 3.8, when m ≥ 4,

the slope of C(r) are nearly parallel each other and are independent of the value of

m. So we can choose m = 4 as an approximate embedding dimension in the phase

space of auroral electrojet.

If the number of points is large enough, the distribution of C(r,m) will exhibit

a power law distribution with a small r as:

C(r,m) ∼ rν , (3.9)

where ν is the correlation dimension, and can be computed from Equation 3.8. In

practice, ν is computed as:

ν =
4 log C(r,m)

4 log r
, (3.10)
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With the increase of the dimension m, the correlation dimension will converge to

a value, and the nearest integer greater than this value is the minimum number

of degrees freedom of the system, if an attractor exists. But, in the absence of an

attractor, the phase space will be filled, and the computed dimension will correspond

to the embedding dimension m. The correlation dimension of the AE index of

January 1983 converges to a value between 3-4 [Vassiliadis et al., 1990] when m is

large than 10, and thus the magnetosphere behaves as a low dimensional dynamical

system.

Although the computation of the correlation dimension from the time series

data has limitations [Shan et al., 1991a, 1991b; Robert, 1991], such as the choice of

the time delay, the finite data length and the data noise level, similar value were

obtained from other datasets. The Bargatze [et al. 1985] dataset, with 40,000 points

of 2.5 minute resolution AL index, gives a correlation dimension between 3 and 4

[Vassiliadis et al., 1990; Roberts, et al., 1991]. For the 1-5 April 1983 AE index, 7200

points of 1 minute resolution AE gives a smaller correlation dimension at 2.4 [Shan

et al., 1991a]. These studies indicate that the phase space of the magnetospheric

activity can be considered as a low dimensional system. However, as Prichard

and Price [1992] pointed out the estimate of the dimension of non-stationary time

series with long autocorrelation time, such as AE and AL indices, is low. This is

because the datasets used to compute the correlation dimension include not only

the correlation between the different passes of the trajectory but also those along

the trajectory. If the highly correlated parts along the trajectory are dominant in

the computation when the length of the sampling time is roughly the same as the
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autocorrelation time, the dimension may be spurious. Upon excluding the points

within a specified distance from the reference point [Theiler, 1986], the convergence

to a fixed slope was not obtained for most segments of AE and AL data, which

means the low dimensionality is questionable. However this issue can be resolved,

at least in part, by using singular spectrum analysis and it was shown that global

magnetospheric dynamics is indeed low dimensional [Sharma, et al., 1993].

3.3.3 Singular Spectrum Analysis

Singular spectrum analysis [Broomhead and King, 1986] can estimate the effec-

tive variable number needed to describe the system from its spectrum of eigenvalues.

We can construct an m-dimension delay vector matrix:

A = N−1/2




x1(t1) x2(t1) · · · xm(t1)

x1(t2) x2(t2) · · · xm(t2)

...
...

. . .
...

x1(tN) x2(tN) · · · xm(tN)




(3.11)

where N is the total number of the vectors. This N × m matrix contains all the

dynamical information in the data. If the system is a low dimensional system, there

exist a small number of the linearly independent vectors obtained from the singular

spectrum analysis. In the absence of noise, the eigenvalues corresponding to these

few independent vectors are nonzero, and the rest of the other eigenvalues are zeros.

So the number of nonzero eigenvalues is the number of independent vectors, and

also the number of the variables required to describe the system. However, the time

series data of a real dynamical system are inevitably noisy. This leads to a small
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number of significant eigenvalues, while the other eigenvalues define a noise floor.

The number of the eigenvalues above the noise floor is an estimate of the number of

degrees of freedom. The corresponding eigenvectors define the orthogonal directions

in the embedding phase space.

3.4 Phase Space Reconstruction

The singular value decomposition (SVD) approach was applied on the data ob-

tained from the Lorenz model (Equation 3.4), in which time evolution is organized

by two unstable foci and an intervening saddle point. The first plot of Figure 3.9

is the time delay reconstruction from a time delay embedding x(t) versus x(t + τ),

where τ = 20. The time series data of the x component of Lorenz attractor, shown in

Figure 3.2, can be used to compute the singular spectrum, and obtain its dominant

eigenvalues, and then the time series can be projected on the corresponding eigen-

vectors, which are the principal coordinates in the embedding space. The projected

variables (y1, y2, y3) can then be used to describe and reconstruct the dynamics of

the original Lorenz attractor.

The three projections on the planes obtained from three orthogonal principal

directions are shown in Figure 3.9(b)-(d). It is clear that there is a qualitative

relationship between the Lorenz attractor itself and its reconstruction from one of

the coupled variables. The dynamical features are seen to be preserved.

In the solar wind-magnetosphere system, the state space reconstructed by

time-delay embedding is quite noisy, due in part to the randomness of the solar
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(a) (b)

(c) (d)

Figure 3.9: Application of singular spectrum analysis on Lorenz attractor
(a) the projection of attractor from a time delay embedding x(t) vs.
x(t + τ) with τ = 20. (b)-(d) Plots of variable y1, y2, y3 obtained from
projection on three orthogonal principle directions.
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Figure 3.10: The normalized singular spectra computed from the AE
index for T=40 min and m = 5, 10, 15, 20, 25 as labeled.

wind driver. Applying the technique of singular spectrum analysis on the time se-

ries measurements of AE index (1983) [Sharma et al., 1993], the three dominant

eigenvalues for this nonlinear system are shown in Figure 3.10, where the eigen-

values are normalized to the largest eigenvalue. Each curve corresponds to the

different embedding dimension m and τ = 40 min is chosen as the time delay after

consideration of the loading-unloading time scales of 20-60 min for substorms. The

first three eigenvalues are far away from the near-zero noise floor for all values of

m. However, the higher order eigenvalues lie within a “noise floor” with different

dimension m. In the m–dimensional embedding space, the eigenvalues yield the rel-

atively strong orthogonal principal directions. So these first three eigenvalues and

their corresponding eigenvectors define a three dimension system in the embedding
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Figure 3.11: The phase space of the magnetospheric activity recon-
structed from a time-delay embedding x(t) versus x(t+T ), with T = 40
min

(a) (b)

Figure 3.12: The phase space of the magnetospheric activity recon-
structed from the AE index. (a) a plot of variables y2 and y3 obtained
by projections along 2nd, 3rd eigenvector. (b) smoothed by adjacent 19
points
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space.

The reconstructed phase space from the embedding technique is shown in Fig-

ure 3.11. Also the reconstructed phase space by using singular spectrum analysis

to project the trajectory matrix onto the (y2 − y3) plane is shown in Figure 3.12.

Although both reconstructed phase spaces show clearly the dynamic trajectory pat-

terns, the one based on time-delay embedding shows a high level of random noise

along the orbit, while the trajectory pattern from the SVD shows much less noise,

indicating that the SVD method can remove noise significantly. Thus the SVD

method not only removes the random effect of the turbulent solar wind and reveals

the inherent nonlinear dynamic aspect of the system, but also yields a new way to

analyze the time series. This cleaner trajectory in Figure 3.12(b) is obtained by a

moving average along the trajectory.

3.5 Nonlinear Input-Output Modeling of the Magnetosphere

The driven nature of the magnetosphere is ubiquitous in many input-output

models, either linear or nonlinear, of the solar wind (input) driving the geomagnetic

activity (output). A dynamical input-output model can be constructed from the

time series data of the input I(t) and the output O(t) of the system. As before, it

is assumed that if a phase space is large enough to unfold the dynamical attractor,

the phase space reconstructed from the time series is appropriate for modeling the

evolution of the system. Consequently, the future states can be derived from the

known evolution of the similar states.
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In an input-output model of the solar wind-magnetosphere system during sub-

storms, the solar wind convective electric field V BS is commonly used as the input

and the geomagnetic activity index AL or AE as the output. Thus the input-output

vector in the 2m dimensional embedding space can be constructed as

Xi = {I1(ti), I1(ti), · · · IMI
(ti), O1(ti), O1(ti), · · ·OMO

(ti)} (3.12)

where MI = MO = m. The 2m-dimensional state vector Xi at t = t1, t2, · · · , tN , can

now be used to construct a trajectory matrix for the dynamics of the system as:

X = N−1/2




I1(t1) I2(t1) · · · Im(t1) O1(t1) O2(t1) · · · Om(t1)

I1(t2) I2(t2) · · · Im(t2) O1(t2) O2(t2) · · · Om(t2)

...
...

. . .
...

...
...

. . .
...

I1(tN) I2(tN) · · · Im(tN) O1(tN) O2(tN) · · · Om(tN)




(3.13)

where N is the number of vectors. This N × 2m matrix contains all the dynam-

ical features of the system contained in the data and yields its evolution in the

reconstructed phase space.

3.5.1 Nonlinear Moving Average Filter

The local linear prediction technique is an extension of the linear prediction

filter that allows for nonlinear coupling. The local-linear technique uses only the

linear term in an expansion around the initial conditions. It should be noted that the

reconstructed phase space captures the nonlinearity of the system and the linearity
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used in this technique is only local, thus retaining the nonlinearity in the dynamical

behavior. At this point, a linear approximation to the nonlinear curve can be used

to predict the next step in the evolution. This approximation is valid only locally

in a small range, thus the linear-local fitting must be repeated at each time steps

to predict the next step. This implies that the local-linear filter varies along the

dynamical trajectory, and thus takes into account the nonlinear features of the

system.

The main idea of this method is the use of the trajectories in the neighborhood

of the state at time t to predict its location at the next time step. Knowing how the

neighboring trajectories evolve, the location of the current state x(t) at next time

step t + T can be predicted. As noted above, the procedure is locally linear but is

essentially nonlinear as the features of the neighboring trajectories are taken into

account by considering a small neighborhood. For a given time series, a proper em-

bedding dimension is obtained when two states xk and xn, which are close together

in the embedded phase space, yield the next states of Ok+1 and On+1 which are also

close together [Vassiliadis et al., 1995, Valdivia et al., 1996; Ukhorskiy et al., 2002].

The predicted output On+1 can be described as a nonlinear function of the

input In and current output On as

On+1 = F (In, On). (3.14)

In this model, the geomagnetic activity is represented by a state vector and

the function F governing the evolution of the magnetospheric state On depends on

both the input and the previous states. A Taylor expansion of F up to the linear
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terms gives:

On+1 ≈ F (0)(Ic
n, O

c
n) +

MI−1∑

i=0

AiδIi+1,n +
MO−1∑

j=0

BjδOj+1,n

= F (0)(Ic
n, O

c
n) + AδIn + BδOn.

The zero order term F (0) is a function of (Ic
n, Oc

n), the center of expansion, while δOn

and δIn are small deviations from the center. All the three parameters F(0), δOn,

δIn can be obtained from the known data, which is referred to as the training set.

Given the current state, the states similar to it in the training set are selected as the

first step. The similarity of the current state with any other state in the training set

is quantified by the Euclidean distance between them in the embedding space. The

states within a specified distance of the current state are referred to as the nearest

neighbors (NN).

The average value of the state vectors of the nearest neighbors is usually

defined as the center of the expansion, referred as the center of mass, and is used

in defining the nonlinear filters for short term and long-term predictions of auroral

indices [Ukhorskiy et al., 2002]. Thus

On+1 = 〈On+1〉NN + AδIn + BδOn. (3.15)

where 〈On+1〉NN = 1
NN

∑NN
k=1(~I

k
n, ~Ok

n) .

Ukhorskiy et al. [2002] pointed out that for a long-term prediction of AL time

series, the terms other than the center of mass consist of the higher order terms

of the filter for local-linear ARMA filter. These terms cannot be modeled in a
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consistent manner and should be ignored in developing a global model. The predic-

tion procedure then reduces to a search of the average response of the system. In

this forecasting method the choice of the nearest neighbors (NN) and the embed-

ding dimension (2m) are crucial. A large number of neighbors are likely to lead to a

smoothing of the variations while a small number may lead to wide variations among

the chosen states. The choice of the embedding dimension of the input (output) m

is based on the unfolding of the dynamics in the reconstructed phase space. For a

state Xn, if the dimension 2m and its NN nearest neighbors represent the system

properly, the average over NN nearest neighbors defines the smooth manifold of

dimension 2m on which its dynamics can be predicted. The prediction using the

mean field approach [Ukhorskiy et al., 2004] is:

On+1 =
1

NN

NN∑

k=1

Xk. (3.16)

The local linear ARMA and the local linear mean field filters have been used

to model the magnetosphere with the correlated database [Bargatze et al., 1985] of

solar wind and geomagnetic activity time series [Ukhorskiy et al., 2002, 2004]. Both

these techniques yield good results for small or medium values of the dimension,

indicating that the global aspects of the magnetospheric dynamics can be modeled

as a low-dimensional system.

The prediction accuracy is quantified by the normalized mean square error

(NMSE):

η =
1

σ0

√√√√ 1

N

N∑

i=1

(Oi −O∗
i )

2. (3.17)
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where Oi and O∗
i are the observed and predicted data, respectively, and σ0 is the

standard deviation of Oi.

In summary, the local moving average forecasting procedure using the delay

coordinate embedding has the following steps:

• Create a trajectory matrix of time-lagged vectors describing the entire history

of the system from time series data (Equation 3.13).

• Assume a functional relationship between past states and future states in the

neighborhood of some x∗.

• Search the trajectory matrix for the closest states (distance sense) to the most

recent states and form nearest neighbor (NN) matrix.

XNN =




x1(t1)

...

xk(tk)




k×2m

. (3.18)

where xi result in smallest k values of ‖xi(ti) − x(tN)‖, 1 ≤ i ≤ k ≡ number

of nearest neighbors.

• Obtain the evolved neighbors from the trajectory matrix and form evolved

neighbor matrix (ENM.)

XENM =




x1(t1 + δt)

...

xk(tk + δt)




k×2m

. (3.19)

where δt is the resolution of the time series.

50



• Calculate center-of-mass (COM) of nearest states and form localized neigh-

bor matrix (LNM) and evolved localized nearest neighbor matrix (ELNM).

XENM =




x1(t1)− x∗com(tN)

...

xk(tk)− x∗com(tN)




k×2m

=




x′1(t1)

...

x′k(tk)




(3.20)

where x∗com(tN) =
(∑k

i=1
xi,1(ti)

k
, . . . ,

∑k

i=1
xi,1(ti)

k

)
. The ELNM is constructed

with a similarly defined center-of-mass.

• Solve the matrix equation for the evolution of neighborhood to obtain the

first order term of the functional. Solve the equation to obtain A: X′
LNMA =

X′
ELNM ⇒ Am×m = (X′

LNM)−1X′
ELNM . One may use SVD to find (X′

LNM)−1 =

VW−1UT = V(diag(1/ωj))U
T.

• Form the affine model which best fits the reduced LNM to the reduced ELNM.

L[x] = Ax + c. (3.21)

where c ≡ x∗com(tN + δt)

• Project the COM-subtracted recent state onto the LNM reduced subplane

and evaluate the affine model. Evaluate L
[
(x(tN)− x∗com(tN))′

]
which gives a

linear approximation to x(tN+1)

• The first component of the model output vector is the scalar prediction for

the time series.

(x̃(tN+1))1 ≈ F[x(tN)] = O(tN+1). (3.22)
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To illustrate the applications of the method on time series forecasting, we

apply this procedure to a well known input-output system, viz. synchronized Lorenz

system. In this system, the x-component of the first Lorenz attractor is used as a

driver for the second Lorenz attractor. Both attractor use same parameters r =

28, b = 8.0/3, σ = 10. And the y-component of the second Lorenz can be considered

as an output of the non-autonomous chaotic dynamical system driven by the x-

component of the first Lorenz attractor as an input. The input x-component of

the first attractor is shown on Figure 3.13(a), and the output y-component of the

second attractor and its forecasts are shown in Figure 3.13(b). The NMSE of the

real output data and its prediction results is only 0.05.

The modeling of the solar wind-magnetosphere coupling with the use of local-

linear average moving filter has provided many new results on the nature of the

dynamics of the magnetosphere system. Before we describe the new studies, we

revisit some of the results by using the local-linear average moving filters [Vassilidis

et al., 1995]. The 31st Bargatze et al. [1985] interval is used to make forecasts by

using the local moving average filter with the optimized parameters as shown in

Figure 3.14. The local linear SVD filter and mean field filter are used to calculate

the evolution function of the neighborhood, respectively. From Figure 3.14(b) and

3.14(d), it is clear that the both predicted AL indices capture the main changes of

the magnetospheric dynamics during substorms in both nonlinear prediction filters.

Thus both these filters yield good prediction results and are feasible forecasting

tools.
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(a)

(b)

Figure 3.13: Long-term prediction on y component of synchronized
Lorenz attractor. The driven x component of Lorenz is shown on the
upper panel, the local linear moving average model output and the ob-
served data are shown on the bottom panel. (black solid line is observed
data, red dashed line is predicted data)
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(a)

(b)

(c)

(d)

Figure 3.14: Long-term predictions of AL time series in the 31st interval
of Bargatze et al.[1985] database. The model input −V BS time series is
shown on the upper panels. The bottom panel shows the model output
(red line) together with the observed AL (black line) data. The left
panels are from Local linear filter, and the right panels are from mean
field filter.
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3.6 Low-Dimensional Models with Specified Processes

The nonlinear dynamical model derived from time series data does not depend

on the physical process but contain all the dynamical details inherent in the data.

Considering the leading process during substorms to be magnetic reconnection, sim-

plified low-dimensional models with a set of coupled ordinary differential equations

have been developed [Klimas, 1992; Horton and Doxas, 1996].

A three dimensional Faraday loop model of the magnetotail was developed con-

sidering the magnetic field geometry and plasma content of the magnetotail [Klimas

et al., 1992]. This time-dependent global convection model is a nonlinear model

and motivated by the transition from regular to chaotic loading and unloading. The

model can be characterized as a nonlinear damped harmonic oscillator that is driven

by the loading-unloading cycle. It is a second-order ordinary differential equation

with variable coefficients that governs the time evolution of the cross-tail electric

field in the current sheet. Several of the parameters which enter the Faraday loop

model are fixed by requiring the model to reproduce observable substorm behavior.

Another model of the solar wind driven magnetosphere-ionosphere system

(WINDMI) was developed for the substorm dynamics [Horton and Doxas, 1996,

1998]. This model considers the global flow of energy from the solar wind through

the magnetosphere to the ionosphere. The WINDMI model, which is a six dimen-

sional model, is based on the magnetic reconnection in the night-side magnetotail,

coupled to the ionosphere by the region 1 currents. The equations of this model

describe a complex driven-damped dynamical system and exhibits a variety of dy-
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namical states including low-level steady plasma convection, quasiperiodic releases

of geotail stored plasma energy into the ionospheric substorms, and states of con-

tinuous strong unloading provisionally identified as magnetic storms. The six ODEs

representing the magnetosphere-ionosphere system, with the consideration of the

energy balance relations, can provide physically meaningful values for the major

energy distribution in the magnetosphere [Thiffeault and Horton, 1996].

The WINDMI model provides a possibility of understanding truly global as-

pects of magnetospheric physics in a simple way, but not from local or point mea-

surements [Smith et al., 2000]. An important advantage of the WINDMI model is

that energy conservation guarantees a bound on the division of the solar wind power

into the various major energy components. The value of the parameters used in the

model were initially selected from geometrical and plasma parameters known from

the physics of the magnetotail-ionosphere system. These value were adjusted by

comparisons between the model output and observational data, known as the mini-

mum of the average relative variance. The database of intermediate and high level

of geomagnetic activity [Bargatze et al., 1985] were chosen to test the performance

of the system [Horton et al., 1999, 2001]. The WINDMI model can capture many

magnetospheric features, although the errors are relative large.

The low dimensional models with specified process, such as WINDMI model,

can be considered as alternatives to the predictive models derived entirely from the

data. These methods of modeling and forecasting complement each other and a

better understanding their strengths and weaknesses can lead to improved space

weather forecasting tools.
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3.7 New Database for Spatio-Temporal Dynamics during Active Pe-

riods

The widely used database [Bargatze et al., 1985] is for a low activity period and

thus is not suitable for modeling the periods of high activity. Two new databases

are compiled to overcome this difficulty. The first database is for the years 2001,

corresponding to the peak of the last solar cycle, and consists of the solar wind

and auroral electrojet index data. The second database is for year 2002 and con-

sists of the data of the solar wind, AL and magnetic field variations at 57 ground

magnetometer stations.

The datasets compiled for the studies in this thesis contain solar wind plasma

and IMF key parameters, and ground magnetometer measurements (years 2001 and

2002). The first database includes the solar wind data obtained from ACE through

Coordinated Data Analysis Web (CDAWEB) at 64 sec and 4 min time resolution

in the geocentric solar magnetospheric (GSM) coordinates, and the year 2001 AL

index data obtained from the World Data Center (WDC), Kyoto. This database is

discussed in detail in Chapter 4. The second database includes year 2002 AL index

data derived from the Assimilative Mapping of Ionospheric Electrodynamics (AMIE)

model [Aaron Ridley, private communication], and the ground measurements from

three ground-based observation network: CANUPOS (Canadian Auroral Network

for the Open Program Unified Study ), IMAGE (International Monitor for Auroral

Geomagnetic Effects) and WDC. Currently the data from a total 57 ground mag-

netometers, 13 of them from CANOPUS, 26 from IMAGE and 18 from WDC, have
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been compiled. The specifications of these magnetometer stations are given in Ta-

ble. 3.1. And the details of the database used in the different parts in this thesis

are fully discussed in the following chapters.

3.8 Summary

The solar wind is the driver of geomagnetic activity and the coupled solar

wind-magnetosphere system can be viewed as an input-output system. The phase

space in which the dynamics of the coupled system evolves can be reconstructed

from the geomagnetic indices and solar wind data using the techniques of time

delay embedding. The basis for using this technique is the nonlinearity of the

magnetosphere which couples different degrees of freedom and the dissipation which

limits the phase space volume, thus yielding a system that can be described in terms

of a small number of leading variables obtained from the data. Predictability is a

natural consequence of the property of low dimensionality. To develop forecasting

tools and to forecast geomagnetic activity, the use of the nonlinear dynamical models

derived from time series data is critical.

Nonlinear dynamical models of the magnetosphere derived from observational

time series data using phase space reconstruction techniques have advanced our un-

derstanding of its dynamics. In particular, it is now recognized that the dynamics

is dominated by global features, thus showing an overall coherence in the magneto-

sphere. This forms the basis for the predictability of the magnetospheric behavior

and space weather. These techniques have been successful in developing nonlinear
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models for predicting the global dynamics in terms of the geomagnetic indices, such

as the auroral electrojet index AL.

To overcome the deficiency of the databases in the high activity periods, two

new databases near the peak of the last solar cycle were compiled for the further

studies.
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Table 3.1: Ground Magnetometer Stations

CANOPUS IMAGE

Geographic Coordinates Magnetic Coordinates

COde Full Name Lat.(◦ N) Lon.(◦ E) Code Full Name Lat.(◦ N) Lon.(◦E)

CH Fort-Churchill 265.920 58.763 NAL Ny-Alesund 11.950 78.920

CO Contwoyto-Lake 248.750 65.754 LYR Longyearbyen 15.820 78.200

DA Dawson 220.890 64.048 HOR Hornsund 15.600 77.000

ES Eskimo-Point 265.950 61.106 HOP Hopen-Island 25.010 76.510

GI Gillam 265.360 56.376 BJN Bear-Island 19.200 74.500

IS Island-Lake 265.340 53.856 TRO Tromso 18.940 69.660

MM Fort-Mcmurray 248.790 56.657 AND Andenes 16.030 69.300

PI Pinawa 263.960 50.199 LEK Leknes 13.540 68.130

RA Rankin-Inlet 267.890 62.824 ABK Abisko 18.820 68.350

RB Rabbit-Lake 256.320 58.222 KIR Kiruna 20.420 67.840

SI Fort-Simpson 238.770 61.756 LOZ Lovozero 35.080 67.970

SM Fort-Smith 248.050 60.017 SOR Soroya 22.220 70.540

TA Taloyoak 266.450 69.540 MAS Masi 23.700 69.460

WDC IVA Ivalo 27.290 68.560

Code Full Name Lat.(◦ N) Lon.(◦ E) MUO Muonio 23.530 68.020

ALE Alert 297.50 82.500 PEL Pello 24.080 66.900

BJN Bjornoya 19.200 74.500 SOD Sodankyla 26.630 67.370

BMT BeijingMingTombs 116.200 40.300 RVK Rorvik 10.980 64.940

CBI Chichijima 142.180 27.100 OUJ Oulujarvi 27.230 64.520

CSY Casey 100.530 -66.280 HAN Hankasalmi 26.650 62.300

HTY Hatizyo 139.820 33.080 DOB Dombas 09.110 62.070

HUA Huancayo 284.670 -12.050 NUR Nurmijarvi 24.650 60.500

KAK Kakioka 140.190 36.230 UPS Uppsala 17.350 59.900

KNY Kanoya 130.880 31.420 TAR Tartu 26.460 58.260

LRM Learmonth 114.100 -22.220 KIL Kilpisjarvi 20.790 69.020

LRV Leirvogur 338.300 64.180 KEV Kevo 27.010 69.760

MAB Manhay 5.680 50.300

MAW Mawson 62.880 -67.600

MMB Memambetsu 144.190 43.910

TND Tondano 124.950 1.290

TRO Tromso 18.950 69.670

TSU Tsumeb 17.700 -19.220

VAL Valentia 349.750 51.930
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Chapter 4

Modeling and Prediction of the Magnetospheric Dynamics During

Intense Geospace Storms

4.1 Introduction

The solar wind-magnetosphere coupling is enhanced when IMF turns south-

ward, leading to geospace storms and substorms. When the IMF remains southward

for an extended interval, the ring current grows under the influence of the solar wind

variations, leading to geospace storms with typical time scales of days, characterized

by strong decreases on the surface magnetic field. The solar wind characteristics are

strongly dependent on the solar activity, and thus the data derived models obtained

for a dataset corresponding to a particular period need not apply to another period.

For example, the well known Bargatze [1985] (hereafter referred to as the BBMH

dataset) dataset corresponds to a period of weak solar activity.

During October-November 2003, nearly 2 years after the last solar maximum,

two extremely big geospace storms occurred. Two strong coronal mass ejections

(CME) occurred on October 28-29, 2003 with velocities of more than 2000 km/s

near the Sun and reached Earth after a travel time of only 19 hours. The arrival of

the first coronal mass ejection from the center of the solar disc led to an immediate

start of a G5 storm, an extreme geomagnetic storm on the NOAA space weather scale
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that runs from G1 to G5. During October 29-31, 2003, the Advanced Composition

Explorer (ACE), located at 220 RE upstream of Earth, detected extreme conditions

in the solar wind. The solar wind speed reached as high as 2000 km/s and the

maximum of the southward component of the interplanetary magnetic field (IMF)

was -58.31 nT, leading to geomagnetic field index AL values as low as -2778 nT.

On April 19, 2002 and November 20, 2003, two more extreme geomagnetic storms

driven by solar wind velocities of 696 km/s and 766 km/s, and southward IMF

of -32.03 nT and -53.02 nT, measured by ACE led to the AL index values of -

1851 nT and -2499 nT, respectively. These three intense geospace storms provide

important opportunities for the study of the nonlinear phase space reconstruction

under extreme conditions. In order to model and predict such intense storms, a

correlated database of the solar wind and magnetospheric variables of the year 2001,

which is close to the peak period of 11-year solar cycle, is compiled.

4.2 Correlated Database of Solar Wind-Magnetosphere Coupling un-

der Strong Driving

4.2.1 Year 2001 Storm Database for Solar Maximum Period

During the period of maximum solar activity, the magnetosphere is strongly

driven and the year 2001 near the last solar maximum was chosen for compiling a

database for such an epoch. This database contains solar wind flow speed V , the

north-south component BZ of the IMF and the AL index for the 11 months of 2001

(January to November). The solar wind data were obtained from ACE at 64 sec and
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4 min time resolution in the geocentric solar magnetospheric (GSM) coordinates,

and the AL index data were obtained from the World Data Center (WDC), Kyoto.

The ACE data, obtained from Coordinated Data Analysis Web (CDAWEB), and

the AL data were averaged to 5 min resolution. The ACE satellite is located at the

L1 point, about 218-248 RE from Earth and with a solar wind bulk speed of 420

km/s along the Sun-Earth direction, it gives a 60 minutes lead time. So in compiling

the correlated database of the geomagnetic field measurements (AL), and the solar

wind (V BZ), a time lag of 1-hour is used. The location of ACE at a fixed position

largely removes the problem of propagating the solar wind data from the spacecraft

to the magnetopause.

The solar wind data for 2001 were compiled for a set of data intervals, each

defined as any continuous data longer than 12 hours with no more than half-hour

data gap. The dataset contains 81 intervals with periods 12 hours to 3 days long.

The data gaps in these intervals were interpolated linearly to satisfy the data con-

tinuity requirement. Two criteria, similar to those used in Bargatze et al. [1985],

were used to select the data segments: (1)A data interval bounded at both ends by

around 1 hours segment of weak, nearly zero, solar wind input and small values of

the AL index. (2) If more than one data segment with a day long time data interval

satisfy the first criterion, the interval is separated into different intervals.

During January-November 2001, there were 81 such data intervals containing

33931 data points at 5-min resolution, satisfying the above conditions. The cor-

related solar wind induced electric field V BZ and the auroral electrojet index AL

for 81 intense storm intervals during year 2001 are shown on Figure 4.1. During
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this period of strong solar activity, intense substorms and storms were triggered

with higher frequency. If we define a strong geomagnetic storm as having Dst less

than -100 nT, we find that there are 12 such storms in 2001 compared with 4 such

storms in 1995 and 1 in 1996. Thus the 2001 database is appropriate for studying

the properties of geomagnetic activity during a solar maximum. The selected 81

events are separated into 3 activity levels by the average values of V BS: medium

(〈V BS〉 ≤ 1500 nT·km/s), high (1500 nT·km/s ≤ 〈V BS〉 ≤ 2500 nT·km/s), and

super (〈V BS〉 ≥ 2500 nT·km/s). To model a specific event, we choose the corre-

sponding activity level to which it belongs and use it as a reference database.

A comparison of the characteristic parameters of the year 2001 and the BBMH

is given in Table 4.1 and Figure 4.2. From the definitions of the activity levels

and Table 1, we find that most data intervals of the BBMH database are in the

medium activity level, and a small number of data intervals are in high activity

level. However, for the 2001 dataset, only 2/5 of the data intervals are in the

medium level group, and 3/5 of the data intervals are in the high and super activity

levels. The counts of V BS and AL within the proper bin sizes for the BBMH and

the 2001 datasets are shown on Figure 4.2. It clearly shows that the 2001 database

has much more events with V BS bigger than 1000 nT·km/s and AL smaller than

-200 nT. And also there are many cases with V BS bigger than 10,000 nT·km/s and

AL smaller than -1000 nT (belonging to the super group) in the 2001 database but

none in the BBMH database. It may be noted that BS = −BZ for southward IMF,

so that V BS is positive. We calculated the mean value of solar wind condition input

for each data intervals. Among these mean value of each event, the maximum one
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Figure 4.1: The correlated solar wind induced electric field (V BZ) and
the auroral electrojet index AL for 81 intense storm intervals during year
2001. The geomagnetic activity in these intervals during the peak of the
last solar cycle is very high and correspondents to strong driving by the
solar wind. (a)V BZ (b)AL.

65



of V BS for the year 2001 and the BBMH databases are 13116 nT·km/s and 2989

nT·km/s, respectively, showing the strong driving of the magnetosphere in 2001.

Table 4.1: Comparison between BBMH [Bargatze et al., 1985] and Year 2001

databases

Level 1 Level 2 Level 3

(Medium) (High) (Super)

BBMH Database 26 7 1

Year 2001 Database 33 32 16

4.2.2 The Intense Geospace Storms during October-November 2003

and April 2002

During 2002-2003 there were three intense storms, occurring in April 2002, Oc-

tober 2003, and November 2003. The solar wind data from ACE through CDAWEB

and the corresponding geomagnetic field index AL were compiled for these storms.

However for the October 2003 event there were some problems with the solar wind

velocity data during October 28-30, 2003, the critical period for the interaction of

the violent solar wind with the geomagnetic field. For this period we adopt the mod-

ified solar wind velocity data [Skoug et al., 2004] from Solar Wind Electron Proton

Alpha Monitor (SWEPAM) [McComas et al., 1998], whose measurement capability

was pushed to the limit during the event. The SWEPAM ion instrument collects

data in two modes-normal (tracking) mode and search mode, each of which required
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Figure 4.2: Statistics of the events in the BBMH and Year 2001
databases. (a)V BS (bin size = 100) (b) AL (bin size = 20). The events
represent averages over the indicated bin sizes. The differences in the
magnetospheric response in the two databases are not as pronounced as
in the solar wind variable.

64 seconds for a full measurement. During the period beginning at 1241UT on 28

October and ending at 0051UT on 31 October, the high background noise levels

due to the penetrating radiation from the intense solar energetic particle caused the

solar wind tracking algorithm to fail in recording the solar wind during the high-

speed events. However the search mode data with 33-minute resolution are available

during this high-speed solar wind period and are used in compiling the database.

For the November 2003 and April 2002 events, the solar wind velocity and IMF

data are from ACE obtained through CDAWEB (http://cdaweb.gsfc.nasa.gov/). In

the correlated databases, 1-hour time delays were applied on all these events, as in

the 2001 database.
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4.3 Local-Linear Weighted Mean Filter

In the mean field model discussed at Chapter 3, all the states in the specified

neighborhood, the NN nearest neighbors were used to obtain the center of mass

by a simple averaging procedure. It is however clear that the states close to the

current state should contribute more than those farther away. A new filter based on

the mean field filter is used to improve the accuracy and efficiency of predictions.

This weighted filter takes into account the distance of the nearest neighbors and is

not just a simple average over the NN nearest neighbors. Since some of the nearest

neighbors are farther from each other and also farther away from the center of mass,

a set of weight factors g which depend inversely on the distances of each nearest

neighbor from the center of mass is introduced as

gk =
1

d2
k

/
NN∑

i=1

1

d2
i

. (4.1)

where di is the Euclidean distance of the ith nearest neighbor from the center of

mass. Then the predicted output is modified as:

On+1 =
1

NN

NN∑

k=1

Xk • gk. (4.2)

If all the nearest neighbors have the same distance from the center of mass, the

weighted mean-field filter will yield the same prediction as the mean field filter.

However if the NN nearest neighbors have a wide range of the distances, the nearest

neighbors will dominate the output of the prediction. The inclusion of nearest

neighbors farther away should not affect the prediction significantly as these will

have smaller weights, thus making the predictions less sensitive on NN .
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4.4 Modeling and Prediction During Superstorms

4.4.1 October-November 2003 Superstorms

The weighted mean field filter is used to model the solar wind-magnetosphere

coupling during the superstorms of October-November 2003. The earlier works by

Vassiliadis et al. [1995], Weigel et al. [1999] and Ukhorskiy et al. [2002], used V BS

as the model input and applied the nonlinear moving-average filter, neural network

filter and mean field average filter, respectively. It was shown that using appropriate

parameters the filter responses are stable and yield good long-term predictions. The

best filter parameters were chosen to be those yielding the minima of the prediction

errors. In these studies, the solar wind input was taken to be V BS, the product of

the solar wind velocity and the southward component of IMF, and consequently the

input becomes zero when the IMF is northward.

In the studies below, we take the solar wind input as V BZ , which includes

both the northward and southward components of IMF. This enables the model to

include the effects of northward IMF, although these may be weaker than those of

the southward IMF.

In order to obtain the optimal nonlinear weighted mean field filter for super-

storms, the following steps are adopted. First, the activity level of the solar wind

driving is computed by averaging the southward component of V BZ . Then both

the input (V BZ) and output (AL) of the time interval corresponding to the same

activity level of the magnetospheric activity from the 2001 database are selected as

the training set. For the two superstorms, the super level (〈V BS〉 ≥ 2500 nT·km/s)
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of the 2001 database is selected. Second, using all the selected data intervals of

input (V BZ) and its corresponding output (AL) as a training set, the index AL is

predicted for the superstorms using the weighted mean filter discussed above. The

normalized mean square error (NMSE) is used to determine the optimal parameters

for the prediction by comparing the predicted and actual AL. In this model, the

time resolution (5 min) of the training set is chosen as the time delay T , and the

other three free parameters are used to minimize the NMSE. The first two parame-

ters are the embedding dimensions MI and MO, and as in the previous studies, we

take m = MI = MO, which determines the vector length in the phase space to be

2m. The third parameter is the number of nearest neighbors NN . A wide range of

values of these parameters are used in the model to obtain the optimal predictions

for the superstorms of November 19-23 and October 26-November 01 of 2003 and

these are shown in Figure 4.3. The solar wind convective electric filed (−V BZ) for

these events is shown in Figures 4.3a and 4.3c. There is a sudden enhancement of

the solar wind convective electric field V BS in the early part of these events that

drives the geospace storms. The predicted and real AL are plotted in the panels

(b) and (d) of Figure 4.3. The solid lines represent the real AL and the dotted lines

represent the predicted AL. Iterative predictions of the November 2003 storm were

carried out for 7500 minutes (125 hours) with a minimum NMSE of 0.792 and the

maximum correlation coefficient of 0.758. Also for the predictions of the October

2003 storm, made for 10000 minutes (167 hours), yielded a minimum NMSE of 0.911

and a maximum correlation coefficient of 0.714. In these figures the model output

closely reproduces the large-scale variations of AL and captures some of the most
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abrupt changes. Also preceding the AL minima, there are sharp jumps with positive

V BZ , corresponding to the abrupt enhancements of the northward IMF. However,

the southward IMF is the main driver of the geomagnetic storms, and it is not clear

how well the model captures the effects of positive IMF enhancements.

In the earlier studies using the BBMH dataset [e.g., Vassiliadis et al., 1995;

Weigel et al., 1999; Ukhorskiy et al., 2002, 2004], a major part of the dataset was

used as the training set and the predictions were made for the remainder of the

dataset. Consequently there were many similar states in the phase space. However

for the two superstorms of 2003, it is hard to find so many similar big substorms in

the available databases, such as that of year 2001. The nearest neighbor searches

in these cases yields only a few states close to the superstorms. If we use a large

number of nearest neighbors and a simple arithmetic averaging, the output of the

model is smoothed over these and cannot capture the peak of the substorms. In

such cases the weight factor g plays an important role and the averaging procedure

yields improved predictions.

The dependence of the prediction errors on the filter parameters is shown in

Figure 4.4, in which the panels (a) - (d) shows the surface plots of NMSE as functions

of NN and m for the November and October 2003 storms. For the November 2003

storm, the NMSE surface plots have a significant drop from 1.2 to 0.75 when m is

increased from 1 to 3. With a further increase of m, NMSE returns back to 0.9

and has similar values until m reaches 11. With m in the range 12-14, the NMSE

surface reaches another minimum, independent of NN . With further increase of

m, NMSE starts to grow again. The overall structure of the surface plot of NMSE
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Figure 4.3: The weighted mean-field predictions for storms: (a-b):
November 19-26, 2003, (c-d): October 26-November 03, 2003, and (e-
f): April 15-24, 2002. The left panel is −V BZ , and the right panel is
the real AL (black solid line) and predicted AL (red dotted line)
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Figure 4.4: The normalized mean square error (NMSE) of the predictions
plotted against the number of nearest neighbors NN and the embedding
dimension m. (a-b): November storm; (c-d): October storm; (e-f): April
storm. Plots on right are the 2D projection from the left panel. Each
line represents a particular value of NN .
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Figure 4.5: The normalized mean square error (NMSE) of the predictions
of the November 2003 using mean-field filter model. (a): NMSE surface
plot; (b): 2D projection of (a).

is a “canyon” with a broader range of m values for all values of NN , than in the

earlier models [Vassiliadis et al., 1995; Ukhorskiy et al., 2002]. The prediction results

have similar correlations and prediction error surfaces when m varies in the range

12 - 14, independent of the number of nearest neighbors NN . This also indicates

the dimension of the magnetosphere phase space to be 12 - 14, which indicates

the presence of the multiscale component of the solar wind-magnetospheric activity

[Ukhorskiy et al., 2002].

However for the October 2003 storm, the NMSE surface is more complicated.

The valley in m around 2-4, shown in Panels (c) and (d) of Figure 4.4, is much

deeper than that around 10-12, and yield better predictions. During 29-30 October

2003, SWEPAM measured solar wind speed in excess of 1850 km/s, almost the

highest speed directly measured in the solar wind. But, despite the unusual high

speed many of the other solar wind parameters were not particularly unusual in
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comparison with other large events [Skoug et al., 2004]. Comparing with the solar

wind speed at 750 km/s on November 20, 2003, the October 2003 high-speed events

in which the solar wind speed was 2-3 times faster than those typical for large solar

wind transient events did not produce an unusually larger geomagnetic storm. This

may be due to the short-lived BS, although large in value, and so the storm of

October 2003 is driven partially by the dynamic pressure and large positive BZ .

The phase space in this case is expected to be significantly different from those of

the storms caused by southward IMF.

The role of the weight factor g and the dominance by the first few nearest

neighbors can be examined by using the values computed from the dataset. For the

November 2003 storm, a total of 8 nearest neighbors are considered in the model.

Out of these the weight factors for the first 3 accounts for 48% on average, with the

maximum reaching as high as 85%. Thus the first three nearest neighbors dominate

the predictions, which enhance the ability of such models to make better predictions

under extreme conditions when the number of similar events in the database is small.

To further understand the effects of the g factor, we use the mean field average filter

without the weight factors to predict the substorms during November 2003 using the

year 2001 database. The NMSE surface plots of predicted AL are shown in Figure

4.5, following the same format as in Figure 4.4. The best prediction results are

almost the same as those of the weighted mean field filter. The NMSE surface plots

for the two cases, with and without the weight factors, are similar for NN values in

the range 1 - 11, and when NN is larger than 12, the bottom of the NMSE profile

become wider and higher in Figure 4.5. This means that the predictions become
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Figure 4.6: The comparison of the mean field filter model on the pre-
diction of the November 2003 storm with weight factor and without the
weight factor g. (a) NN = 8 with g; (b) NN = 8 without g; (c)
NN = 18 with g; (d) NN = 18 without g; (e) NN = 28 with g; (f)
NN = 28 with g
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worse with the increase of NN when it is bigger than 12. Thus the weight factor g

is effective in controlling the quality of the predictions by reducing the contributions

of the nearest neighbors which are farther away when their distances are distributed

over a wide range. Also since the prediction efficiency drops when NN is larger

than 12, better predictions are made with NN less than 12. Among the predictions

with NN less than 12, we can define a narrow canyon when m is around 2-5 so that

the whole phase space is unfolded well and yields good predictions. The resulting

predictions are similar to those obtained using the weighted mean filter prediction.

The weight factor g is expected to play an important role in the cases, such

as extreme events, which do not have many similar states in the database. The

predictions from different nearest neighbors (NNs) with and without the weight

factors g are shown in Figure 4.6. To highlight the differences clearly, the period

of low activity before and after the storm main phase are neglected. In the case

of NN = 8, the predictions with and without g factors are very similar. When

NN is bigger than 12 as suggested from NMSE surface plots, the prediction with

g become much better than those without it. The comparisons for NN = 18 and

NN = 28 during the storm main phase are shown on Figure 4.6(c)-(f). The effect

of g is more pronounced in the case NN = 18, as higher values lead to averaging

over more neighbors which are significantly different.

77



4.4.2 April 2002 Superstorm

The intense storm of 17-20 April 2002 has a minimum value of Dst of -154.2

nT, occurring around 0900UT on April 20, 2002, and is a good case for modeling

using the 2001 database for intense geomagnetic activity. During this storm the AL

index reached a minimum of ALmin at -1851 nT and −V BZmax reached a peak

value of 16652 nT·km/s. A comparison of key parameters of the storms is given in

Table 4.2. Compared with the AL index minima of -2778 nT and -2499 nT, and

−V BZ maxima of 69330 nT·km/s and 32640 nT·km/s, respectively, for the October

and November 2003 storms, it is clear that the storm of April 2002 is the least active

of the three storms. Also from the two databases, it is clear that the biggest events

during the year 1973 [Bargatze et al., 1985] and the year 2001 are widely different.

The biggest storm in year 2001 has the maximum and mean of solar wind input

value of 32015 nT·km/s and 13116 nT·km/s, respectively, and the corresponding

AL index values are -2701 nT and -450 nT. On the other hand, the biggest storms

during 1973, it has only 14291 nT·km/s as the maximum of the solar wind input and

2989 nT·km/s as its mean value, which are about 30% - 50% of the corresponding

values for the year 2001. Also the corresponding AL index values of -1867 nT and

-413 nT are much smaller than those in the year 2001 database. From Table 4.2, we

also note that the April 2002 storm has intensity similar to the biggest event of the

BBMH database, and October and November 2003 storms have intensities similar

with the biggest one in the year 2001 database.

The weighted mean field filter technique was applied to the April, 2002 storm

78



Table 4.2: Intensities of October 2003, November 2003, and April 2002 storms

October

2003

November

2003

April 2002 Biggest

Event in

BBMH

Biggest

Event in

Year 2001

Maximum −V BZ (nT km/s) 69,330 32,640 16,652 14,291 32,015

Minimum AL (nT) -2778 -2499 -1851 -1867 -2701

Mean of −V BZ (nT km/s) 4619 3560 2511 2989 13,116

Mean of AL (nT) -441 -315 -316 -413 -450

period using the 2001 database as the training set. The prediction results and

NMSE surface plots are shown in Figure 4.3(e and f) and Figure 4.4(e and f). The

iterative predictions of the April 2002 storm were carried out for 10 days they yield

a minimum NMSE of 0.748 and a maximum correlation of 0.831. These figures

show that the model also reproduces the large-scale variations of AL very well.

Also the NMSE surface plots (Figure 4.4) shows a single valley around m ∼ 2 − 4

independent the value of NN , in contrast to the two minima in the cases of October

and November 2003 storms.
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Figure 4.7: The weighted mean field predictions on November 2003 storm
using the BBMH, Year 2001 and combined databases. The solid line is
real AL data, dotted line is predicted results. (a) BBMH database (b)
Year 2001 database (c) Combined database (d) NMSE for 250-minute
segments, solid line represent BBMH database, dotted line represent
Year 2001 database, dashed line represent combined database.
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4.4.3 Comparison of Predictions using Bargatze et al. [1985] and

Year 2001 databases

In order to compare the predictions using different databases as the training

sets, the storms of November 2003 and April 2002 are predicted using the BBMH

database. To highlight the differences clearly, the periods of quiet and low activity

before and after the main phase of the storms are neglected. The results of the

storm of November 2003 are shown in Figure 4.7(a). It is clear that the peaks of AL

cannot be predicted, mainly due to the absence of similar strong substorms in the

BBMH database. The overall predictions have an NMSE of 0.847 and a correlation

coefficient of 0.772. The predictions of for the same period using the year 2001

database and the combined database of year 2001 and BBMH are shown on Figure

4.7(b) and 4.7(c), respectively. A comparison of these predictions, Figure 4.7(a)-(c),

shows the substantial improvement with the inclusion of the year 2001 database,

either as the complete training set or as a part of a bigger training set. This is

clearly due to the presence of many events in the year 2001 database similar to

those in the November 2003 storm. It may be noted that the correlations among

the predicted and actual AL in the three cases are not substantially different in

spite of the very different qualities of the predictions, e.g., between Figure 4.7(a)

and Figure 4.7(b) or Figure 4.7(c). This brings into focus the inability of the linear

correlation functions to provide an adequate measure of the predictive capability.

In order to compare the predictability for different segments of the database, the

November 2003 event was separated into smaller segments of 250 min or 50 data
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Figure 4.8: The weighted mean field predictions on April 2002 storm
using the BBMH, Year 2001 and Combined databases. The solid line is
real AL data, dotted line is predicted results. (a) BBMH database (b)
Year 2001 database (c) Combined database (d) NMSE for 250-minute
segments, solid line represent BBMH database, dotted line represent
Year 2001 database, dashed line represent combined database.

points each. The comparisons of the NMSE for the different segments are shown in

Figure 4.7(d). It is clear that the NMSE for the data segments with large values of

AL in the 2001 dataset are much smaller than those of the similar segments in the

BBMH dataset. Also the NMSE of the segments of the year 2001 database are very

similar to those of the BBMH and 2001 datasets combined. Further, except for the

segments containing the large values of AL, the NMSE for the other segments have

similar values for both the datasets.

The BBMH database is expected to yield better predictions for the storm of
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April 2002, a weaker storm compared to the November 2003 storm. The predictions

and their NMSE are shown in Figure 4.8(a)-(c). The predictions are found to be

almost the same when the three databases, viz. BBMH, year 2001, and the two

combined, are used as the training sets. Also the NMSE values for 250 min intervals

are shown in Figure 4.8(d), and that NMSE have similar values in most of the

segments.

The NMSE values for the predictions of all three storms, using the BBMH,

Year 2001 and combined databases as the training sets, are given in Table 4.3. This

table compares not only the NMSE for the predictions for the whole storm period,

but also those of the main phase of the storms. The errors in the predictions of the

storm main phases are systematically higher than those for the whole storm period.

This could be expected, at least partly, as the periods of intense activity are harder

to predict than the less active periods. However it should be noted that the NMSE

values is depend on the number of points N, as given by Eq. (3.17), and it can yield

smaller values for larger N. Thus the NMSE values yield a useful comparison when

the data sizes are similar and caution is essential otherwise. For the predictions

for the entire intervals of October and November 2003 storms, NMSEs when the

BBMH database alone is used are 1.003 and 0.847, respectively, much larger than

the corresponding values of 0.911 and 0.792 for the year 2001 database. However

NMSE for the year 2001 database alone are 0.911 and 0.792, which are very close

to those for the combined database, viz. 0.939 and 0.792, respectively. The same

results are obtained on the NMSE values for the main phases of the October and

November 2003 storm predictions. For the main phase of the October event, NMSE
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is 1.181 when the BBMH database is used, 1.064 for the 2001 database, and 1.101

for the two databases combined. For the November 2003 event, NMSE is 1.059

for the BBMH database, 0.979 for the 2001 database, and 0.955 for the combined

database. Thus there are no significant differences in these cases.

Table 4.3: The normalized mean square error (NMSE) of the predictions of all three

storms using the BBMH, Year 2001 and combined databases. Both the NMSE of

the whole event and of the main phases are shown

BBHM Database 2001 Level 3 Database BBHM+2001 Level 3

Database

Whole Main Phase Whole Main Phase Whole Main Phase

October 2003 1.003 1.181 0.911 1.064 0.939 1.101

November 2003 0.847 1.059 0.792 0.979 0.792 0.955

April 2002 0.727 0.924 0.748 0.952 0.747 0.943

In the case of the April 2002 storm, all the NMSE values obtained using

different databases are similar, indicating that the BBMH and the 2001 databases

yield similar predictions. However the 2001 database is a better choice for the

October-November 2003 storms, as the comparisons in Figures 4.7 and 4.8 indicate.

The remaining parts, viz. the quieter periods of the October-November 2003 and

the whole of April 2002 storms can be predicted very well using both the BBMH

and Year 2001 databases as the training sets.

To further compare the predictions using the BBMH and year 2001 databases,
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the observed and predicted AL are plotted in Figure 4.9. The left panels are the

plots of the observed and predicted AL index for the three storms. In order to

examine the comparison in more detail, the AL values are averaged over a bin size

of 20 nT, and this yields the three right panels. These plots show the similarities and

differences between the two databases. For the April 2002 storm, the predictions

(Figure 4.9, panels e and f), show no significant difference for the two datasets.

However, for the November 2003 (Figure 4.9, panels a and b), and the October

2003 (Figure 4.9, panels c and d) storms, the predictions using the 2001 database

are much better than those using the BBMH database. On the other hand, for

the low activity periods of these two storms, the predictions are similar. Also for

all three storms, the low activity periods show most points along the 45-degree

line, implying predictions with high accuracy. The predictions for the entire April

2002 storm and the low activity periods of the 2003 October-November storms show

similarities. The differences in the predictions are mainly in the high activity parts of

2003 October-November storms. These similarities and differences indicate that the

magnetospheric responses to similar solar wind inputs are similar. The differences

are likely to be due to the lack of the big events in the BBMH database, rather than

fundamental differences in the magnetospheric response.

The analysis of the storms with different intensities and using different databases

indicates that the geomagnetic response during the solar minimum and solar max-

imum periods have similar behavior. The 2001 and BBMH databases can thus

be considered to complement each other. The combination of these two databases

under different solar activities provides a comprehensive database for improved mod-
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eling and prediction of magnetospheric activity under a wide range of solar wind

conditions.

The size N of the databases used to reconstruct the phase space is an important

issue. When the embedding dimension m is known, the number of the data in each

dimension can be estimated broadly as N1/m. Thus when m is relative large, the

number of the data in each dimension will be significant small, which limit the phase

space reconstruction, in principle. However, in our studies, m ' 2 − 3 for these 3

superstorms are proper embedding dimensions, in which cases the reconstructed

phase space are well populated. Comparing the prediction results from using the

databases of year 2002 level (N = 5743), BBMH (N = 21108) and the combination

of the year 2002 and BBMH (N = 55039) in Figure 4.7 and 4.8, the prediction

results are similar and independent of the sizes of the databases, indicating that the

databases in our study are large enough for proper embedding.

4.5 Discussion

The modeling of magnetospheric response to strong driving by the solar wind

is important not only for a better understanding of the solar wind - magnetosphere

coupling and but also for developing our capability to forecast extreme conditions.

During the last solar maximum there were many intense geospace storms and the

existing models had limited success in forecasting these accurately. In order to

develop better models and improve forecasting capability, a correlated database of

the solar wind and the magnetospheric response was compiled for the year 2001
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Figure 4.9: Comparison of real AL and predicted AL under the BBMH
and Year 2001 databases. (a-b): November 2003 storm; (c-d): October
2003 storm; (e-f): April 2002 storm. The right panel are the averaged
values at bin size=20 of the events in the left panel.
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during the peak of the last solar cycle. In this database, the solar wind variable is

the induced electric field and the magnetospheric response is the auroral electrojet

index AL. This database is particularly well-suited for modeling using the phase

space reconstruction techniques.

The mean field approach to the modeling of the global magnetospheric dy-

namics [Ukhorskiy et al., 2002, 2004] is used to develop nonlinear dynamical models

of the magnetospheric response from the year 2001 database. These predictions

are then compared with the models based on the Bargatze et al. [1985] database,

corresponding to a solar minimum period (1973 - 1974). The predictions for the big

storms of October and November 2003 and April 2002 yields improved forecasts,

especially for the intense storms.

The mean field approach has the advantage of yielding iterative predictions

without having to fix model parameters, in particular the number of nearest neigh-

bors NN and the dimension of the embedding space m [Ukhorskiy et al., 2002,

2004]. However during intense storms the number of similar events is usually small

and this limits the ability to predict big events. In order to improve the predictabil-

ity in such situations the mean field approach is modified by assigning weights to

each of the nearest neighbors. These weights are inversely proportional to the square

of the distance and leads to improvements in the predictions. The forecasting capa-

bility of the model is quantified in terms of a normalized mean square error (NMSE)

computed from the predicted and actual AL values.

For a reconstructed phase space, the evolutions of the system variables are

closely related to the corresponding number of embedding dimension. The dynam-
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ical model of the solar wind - magnetosphere coupling specifies its evolution in the

reconstructed input-output phase space of dimension 2m. The prediction error sur-

faces obtained from NMSE values, averaged over different nearest neighbors NN ,

and are shown on Figure 4.10 for all 3 storms. The prediction error surfaces have

minima for m ∼ 2 − 4, indicating proper embedding and this is in agreement with

the results of Vassiliadis et al. [1995] based on the modeling using the BBMH

database. These results show the low dimensional nature of the coupled solar wind-

magnetosphere system on the global scale, corresponding to the length of the best

filter m ∗ T ∼ 10 − 20 mins, which is in agreement with the loading time scales.

However for the November 2003 event, NMSE surface yield another minimum at

m ∼ 12 − 14 corresponding the time scale of 60-70 min lengths, which is close to

the typical unloading time scale. These values of the embedding dimension are in

agreement with the results of Ukhorskiy et al. [2002], based on the modeling using

the BBMH database. The averaged NMSE for the April 2002 storm (Figure 4.10),

indicates a local minimum for m ∼ 12 − 14, although it has lower value when m

is over 20. Figure 4.10 shows that there are two minima in averaged NMSE, and

these may be associated with directly-driven and unloading time scales. Consider-

ing that the October and November 2003 storms are stronger storms than the April

2002 storm, the differences in NMSE minima indicate a more complicated phase

space for the superstorms compared to that of moderate storms. Further analysis

is needed to draw clear conclusions on the nature of the reconstructed phase spaces

under different solar activity conditions. However, it is clear that the embedding

dimension m ∼ 2 − 4, corresponding to time scales of 10-20 mins, yields minimum
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Figure 4.10: The averaged NMSEs over an ensemble of nearest neighbors
(NN). Three curves correspond to averages of curves in Figure 4.4b, 4.4d,
4.4f, respectively. All three cases have two minima: the first minimum
at m=2-4 is clear, while the second one at m ∼ 12 − 14 is clear for the
November 2003 storm and less so for the other two storms.

errors in all cases. The second minima in NMSE at m ∼ 12− 14 is more prominent

in the case of the November 2003 storm. For modeling purposes, embedding dimen-

sion of m ∼ 12 − 14 seems appropriate from the point of view of smaller errors in

the predictions. However it raises important issues from the viewpoint of a proper

reconstruction of the phase space.
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Chapter 5

Spatio-Temporal Dynamics of the Magnetosphere During Geospace

Storms: Mutual Information Analysis

5.1 Introduction

The magnetospheric response to the solar wind consists of global, regional and

local features. The global features described by geomagnetic indices were discussed

in the previous chapters. The spatio-temporal dynamics of the magnetosphere, viz.

the spatial structures, the coupling among them, and their evolution, are not well

studied nor understood. It is however a critical component of space weather studies

because of the importance of forecasting the location and timing of events with

potential for damage to technological systems.

Most of the recent studies based on state space reconstruction have used the

global geomagnetic indices, such as the auroral electrojet index AL and disturbance

storm time index Dst, as the representations of the geomagnetic activity. These

studies provide a global understanding the nonlinear coupling of the solar wind and

magnetosphere. The importance of understanding the spatial structure of geospace

disturbances, especially for space weather studies, has led to the development of dy-

namical models based on the data from individual magnetometer stations [Valdivia

et al., 1999a; 1999b].
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Valdivia et al. [1999a] modeled the evolution of the spatial structure of the

ring current using the time series data from six mid-latitude ground magnetometers.

A similar approach led to a two dimensional representation of the high latitude

geomagnetic perturbations in magnetic latitude and magnetic local time from 15

magnetometers of the IMAGE magnetometer array[Valdivia et al., 1999b].

The data from the high latitude chain of magnetometers have been used to

study many geophysical processes, e.g., the double-cell convection pattern [Friis-

Christensen et al., 1988], filed aligned current structure [Lanzerotti et al., 1986], and

correlations with transients in the solar wind [Sibeck et al., 1989]. The development

of models for spatio-temporal dynamics from the observational data is essential for

advancing our understanding of the magnetosphere.

The spatial structure of the magnetosphere, e.g., during geospace storms as

reflected in the ASYM index, a measure of the departure of the H perturbations

from the axial symmetry expected for a ring current, arises from the correlations

among different regions and from the solar wind varibility. Such correlations are

normally studied using linear cross-correlation functions which provide the simplest

level of correlations in the system. However, considering the nonlinear nature of the

magnetosphere and its evident complexity, it is essential to use functions which can

reveal the more complicated dependence. The mutual information function [Fraser

and Swinney, 1986] characterizes the degree to which a set of measured variables

are independent of each other, and has been used to yield dynamical quantities such

as the appropriate time delay for reconstruction of dynamics. In this chapter,the

mutual information functions are used to study the spatial-temporal dynamics from
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the solar wind data and the magnetic field variations measured by ground magne-

tometers. The average mutual information(AMI) functions are used to characterize

inter-relationship among the magnetic field measurements from the high latitude

magnetometer stations. Also the correlations of the average mutual information

to the changes in the solar wind dynamic pressure and convective electric field are

studied to yield new insights on the dominant physics. Such studies need long time

series data and the dataset for the 6 month period January-June 1979 [Kamide et

al., 1998] is used in this study.

5.2 Mutual Information Function and Spatially Distributed Geospace

Data

Along with the development of the global dynamical models, it is important to

understand the correlations among the different regions of geospace and the mutual

information (defined in Equation 3.6) is a suitable function for such studies. In a

study focused on geomagnetic activity using AL data with 1-hour time resolution,

Prichard et al. [1996] utilized the information theory to demonstrate some peri-

odicity in substorm occurrence time from the mutual information functions. This

study showed a significant level of predictability in the dynamics, in agreement with

studies of the prediction using dynamical techniques. These studies [e.g.,Edwards

et al.,2000 ; March et al.,2005] imply that mathematical constructs such as the

mutual information are suitable to the study of the spatially dependent solar wind-

magnetospheric coupling.

93



5.2.1 Average Mutual Information

Information theoretic functionals stress statistical relationships and emphasize

both linear and nonlinear dependencies [Fraser and Swinney, 1986; Prichard and

Theiler, 1995; Kantz and Schreiber, 1999]. The commonly used functions such as

correlation functions are effective in bringing out the linear correlations in the data.

In the studies of complex systems it becomes necessary to employ functions that

can reveal both the linear and nonlinear correlations so that the underlying features

of the system can be characterized properly. The function that we choose to employ

is known as average mutual information (AMI) defined as Equation 3.5.

One may interpret AMI as a measure of the uncertainty of values of X1 resolved

by observing values of X2. Although fundamentally dimensionless, the units of

AMI are commonly called bits to reflect the use of information in coding theory.

In general, average mutual information is inversely proportional to the degree of

statistical independence of its arguments. For a calculation on a time series data of

a single variable, the AMI can be defined as

I(τ, x, δ) =
K∑

i=1

K∑

j=1

pij(x(t), x(t− τ)) log2

[
pij(x(t), x(t− τ))

pi(x(t))pj(x(t− τ))

]
(5.1)

where δ is defined such that (max(x)−min(x))δ−1 = K, the number of bins in the

discretized distributions. Here, we replace ℘ by p to stress that Equation (5.1) is

calculated from a finite data set and therefore is not the actual distribution, but

rather, an approximation. Also, while Equation (3.5) represents a single value,

Equation (5.1) is a function of the time delay τ . The function I(τ, x, δ) is analogous
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to the autocorrelation function of linear signal processing; however it is more general

in the statistical sense previously described: the autocorrelation is the expectation of

a quadratic polynomial statistic, while AMI represents the expectation of the average

degree of independence incorporating all higher orders. Originally, AMI calculations

were motivated by their ability to yield the measures of optimal time lag in the

reconstruction of chaotic systems using time-delay embedding technique [Fraser and

Swinney, 1986; Abarbanel et al, 1993]. However, their probabilistic nature hints at

a more general applicability to any complex system. Figure 5.1(a) illustrates the

calculation of AMI (Equation 5.1) for all twelve ground magnetometer stations in

the auroral region and AL for three days of data centered on the April 3, 1979

storm. The average mutual information function of a time-lagged series represents

the uncertainty in x(t) resolved through knowledge of previous values of the series.

Thus, I(τ, x1) < I(τ, x2) implies that there is more certainty about (i.e. higher

probability of certain) future values of x2(t) than x1(t), based on observations of

their histories. More generally, the magnitude of this difference, |I(τ, x1)− I(τ, x2)|,

is indicative of the degree to which different time series maintain the information

content represented by Equation (5.1). It is this notion that we wish to exploit.

In analogy with time series of twelve spatially distributed magnetometers,

consider n spatially separated time series, so that, one has an n-component time

series {x1(t), · · · , xn(t)}. One may also determine the spread 4I(τ)between the

various I(τ, xi) defined as

4I(τ) = max
i
{I(τ, xi)} −min

i
{I(τ, xi)} (5.2)
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Figure 5.1: (a) Calculation of time-lagged average mutual informa-
tion(AMI) for twelve magnetometer stations and AL (dotted) for three
days of data centered on the April 3, 1979 storm. The shaded region
is the LIMI quantity (Equation 6 in the text). The information spread
(Equation 3) is also labeled. (b) Calculation of autocorrelation for the
same data as (a). The localized autocorrelation spread (Equation 9) is
labeled.

In accordance with the interpretation above, Equation (5.2) gives a measure of

the global difference in information retention for a time delay τ . We wish to ascertain

how this global measure varies in response to variations in system input and compare

to variations in I(τ, xmin). Additionally, we examine whether such a measure can

better distinguish features through use of the commonly used quantities, such as

the linear autocorrelation function.

We also mention the error and biases associated with computations using

Equation (5.1), since they are often neglected in the literature. Naturally, infor-

mation theoretic calculations will depend on the amount of data (N) and the dis-

cretization (δ) used to approximate the probability distributions. Since N will be

somewhat small in many computations, one should have a reliable estimate for the
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errors in the calculation. Roulston [1999] illustrates how the standard error formula

familiar to physicists can be used to derive a relation for the variance in observed

values of average mutual information. This relation is

σI(τ) =




ln 2

N

K∑

k=1

K∑

l=1


log2

(
K∑

i=1

pki

)
+ log2




K∑

j=1

pjl


− log2 pkl + I(τ, x, δ)




2

pkl(1− pkl)




1/2

(5.3)

where pab is understood to represent the joint probability pab(x(t), x(t − τ)). The

error is based on a Taylor expansion of Equation (3.5) to second order in the pa-

rameter εk = (pk − ℘k)/℘k (i.e. the deviation from the ”true” probability). The

primary assumption is that for large enough N and δ, ε will be small.

5.2.2 Localized Integrated Mutual Information

Since the magnetospheric data sets consist of extended quiet and active pe-

riods, calculations of AMI over the entire dataset, e.g., the first six-month period

of 1979 are inappropriate. Substorms represent intervals of increased informational

complexity, and their specific characteristics could be lost in a calculation incorpo-

rating six months of data. To overcome this obstacle, we employ a sliding window

of width w to compute the mutual information functions and the spread among

them using Equations (5.1) and (5.2) for the entire magnetometer data set. Sliding

calculations of information measures are effective indicators of complexity changes

[Torres and Gamero, 2000]. Additionally, given a δ, the mutual information is gen-

erally greater as complexity increases. For situations where a disturbance is not
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global (i.e., the time series for one or some stations fluctuates over a much greater

range than the others), the mutual information function will likely be substantially

different. To insure an appropriate baseline for the comparison of the different cases,

independent of activity level, we define

Il(t, x(t, w), δ)± σIl
=

∫ τf

0
I(τ, x(t, w), δ)dτ ±

∫ τf

0
σIdτ (5.4)

as the localized integrated mutual information (LIMI). The quantity x(t, w) is a

time series data of length w centered at t, viz. it is defined on the interval [t−w, t].

LIMI gives a means for quantifying the time scales of disparate intervals of

activity at different spatial locations. We can generate a localized spread by substi-

tuting Equation (5.4) into Equation (5.2) resulting in

4Il
(t, δ) = max

i
{Il(t, xi(t, w), δ)} −min

i
{Il(t, xi(t, w), δ)} (5.5)

We can obtain a crude estimate of the error in Equation (5.5) by taking

σ4l
(t, δ) = σmax Il

+ σmin Il
(5.6)

The resulting 4Il
(t, δ)± σ4l

(t, δ) is a local (in time) measure of the difference

in information retention (repeatability) in a spatially extended system. The shaded

region of Figure 5.1(a) delineates the quantity represented by Equation (5.5). At

minimum, the LIMI spread quantifies the homogeneity of time scales at different

spatial locations over an extended period of time. A broader interpretation suggests

that 4Il
(t, δ) quantifies the homogeneity of the response of the system to distur-

bances, whether external (solar wind induced) or internal (self-organizing). If a
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disturbance is global and homogeneous in its spatial variations, the average mu-

tual information functions should be similar at all locations. When the disturbance

induces different information retention characteristics at different locations, LIMI

spread will be larger. Of course, one can define a quantity similar to Equation (5.5)

for the linear autocorrelation

A(τ, x) =
1

σ2
x

N∑

i=1

[x(i + τ)− x̄][x(i)− x̄] (5.7)

where σ2
x is the variance of the length N series and x̄ is the arithmetic average.

Since −1 ≤ A(τ) ≤ 1, there is no need for the integrals of Equation (5.4). In fact,

because A(τ) can be negative, an integral is ill advised. If the series is localized as

in Equation (5.4), one can define the autocorrelation spread as

4Al
(t) = max

i
{τi | A(τ, xi(t, w) = .5} −min

i
{τi | A(τ, xi(t, w) = .5} (5.8)

In other words, autocorrelation spread defined here represents the spread in

autocorrelation functions at A(τ) = 0.5. Figure 5.1(b) shows the calculation of

autocorrelation functions for the same data as Figure 5.1(a). The dotted line with

arrows represents the autocorrelation spread. One may attribute the general dif-

ferences between LIMI and autocorrelation spreads to higher order, statistically

significant nonlinear relationships that arise in response to disturbances in the solar

wind or internally generated in the magnetosphere.

5.3 Database of Spatio-Temporal Variability of the Magnetosphere

The primary data set used in this study is one-minute resolution time series

data set of the horizontal component of the magnetic field perturbations at the 12
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high-latitude magnetometer stations in the auroral region. This data for the first

six months of 1979 contains 260,640 values per time series with 1-min resolution

for each station, and has been used for many studies [e.g., Kamide et al., 1998].

Although the AL index values give a good measure of the maximum intensity of

the westward electrojet, the construction of the index as an envelope raises concern

about the loss of essential spatio-temporal information.

The solar wind data used for the same period of 1979, but with a time resolu-

tion of five-minutes is obtained from both the ISEE 3 and IMP8 satellites yielding

the relevant solar wind parameters: the z-component of the interplanetary magnetic

field, BZ , the x-component of the solar wind velocity, V , and the number density

of the ions n. From these parameters, the solar wind electric field, Esw = V BZ ,

and the dynamic pressure, Pram = nMHV 2, where MH is proton mass, are derived.

Since the magnetic reconnection of the dayside magnetopause, which is responsible

for the transfer of the magnetic flux into the magnetosphere, is effective when BZ

is southward, we take BZ = −BS and zero otherwise. Figure 5.2 shows the solar

wind data, V BS, Pram and AL index corresponding to the first six months of 1979.

It is apparent that there are plenty of active periods in both the solar wind and

AL. Additionally, there are many quiet periods and intermittent bursts of activity

that may or may not be correlated with the solar wind input. It is the goal of

this chapter to analyze and characterize the key features of the nonlinear dynam-

ics of the magnetosphere, especially its spatio-temporal behavior, by using mutual

information function.

An important issue regarding the data sets that needs to be addressed is the
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Figure 5.2: Solar wind parameters V BS and Pram for the first six months
of 1979. The bottom panel is the -AL index for the same period.
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appearance of gaps in the ground magnetometer data. Though not significant over

the entire period of 1979, the amount of magnetometer data gaps of ten minutes or

more are significant enough to be of concern. Because techniques developed in this

chapter utilize short duration (6 hour to few days) from the entire six months data,

gaps on the order of tens minutes (representing the ratio of the invalid or missing

data with the length of whole data subset α = 5% − 10%) are significant. Since

we will look at probability distributions of highly oscillatory data, interpolation

procedures may contaminate the probability outcomes. Instead, when gaps account

for greater than two percent of a magnetometer’s reading over any data subset, the

data is excluded from the analysis. Gaps below the two percent threshold are set

equal to the average of the subset. This is expected to have a negligible effect on

our results.

5.4 Average Mutual Information Analysis of Magnetospheric Dy-

namics

The average mutual information analysis is carried out for the above dataset

of 12 high latitude stations during the first 6 months of 1979. For the compu-

tations using Equation (5.5), the moving window w is defined on the time series

[t − w, t], so that when the window slides every 60 minutes, total of 24 hour×180

day=4320 values of localized integrated self-mutual information (LIMI) are gener-

ated for each magnetometer station. The quantity represented in Equation (5.4)

can be interpreted as the total amount of information conveyed by observing the
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previous τf values of the series. We use an integral as opposed to a simple τ

width, in Equation (5.4), because in contrast to autocorrelation, there is no up-

per bound on AMI. In general, one cannot define a mutual information time in

a manner similar to autocorrelation (i.e. autocorrelation time is the time lag

where autocorrelation is 1/2) because there are several minima for the mutual

information of a data series. If the I(τ, xi(t, w), δ) are monotonically decreasing

and nonintersecting to τf , I(τ, x1(t, w), δ) < I(τ, x2(t, w), δ) for all τ < τf implies

I(t, x1(t, w), δ) < I(t, x2(t, w), δ). The monotonic behavior of I(τ, xi(t, w), δ) is com-

mon in natural data sets, and it mimics the exponential decay in autocorrelation of

systems exhibiting power-law statistics. In general, I(τ, xi(t, w), δ) is decreasing and

nonintersecting to τf = 30 minutes, so we chose τf equal to this value. To satisfy

the error criteria of Equation (5.3) we use δ = 10 nT.

We calculate the LIMI spread and its associated error as of Equations (5.5) and

(5.6), and the localized autocorrelation spread as of Equation (5.8) for the entire six

months with w = 360 and 1440 minutes. These window widths correspond to 1/4

day and 1 day of the 1 min resolution data. The window width is a critical choice

in the estimation of the mutual information. A window width that is too long

may cause long and slow variations in the mutual information functions because

a sudden change can affect many sliding windows, from the moment it is located

in the first sliding window to the moment it moves out of the last sliding window.

Thus the mutual information will be dominated by the sudden changes although

there might have been many quiet and active periods between these two windows.

On the other hand, a window width that is too short may lead to poor estimates of
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the mutual information when the time delay τ is relatively big compared with the

length of a single sliding window. From Equation 5.1, the valid length of the dataset

used to compute pij(x(t), x(t− τ)) is shorter when τ is large. Also considering that

substorms can last several tens minutes to several hours, the length of the dataset

used to compute the mutual information should be significantly longer than these

time scales. Thus we choose 2 different sliding window lengths: 6 hour and 24 hour

to define two different cases. First, the focus is on the short, local but non-diurnal

variations. Second, the focus is on the whole magnetosphere region including the

diurnal variations. From these considerations the 6 hour and 24 hour window widths

are appropriate for the studies of the long and short term variations using mutual

information functions.

5.4.1 Analysis with Window Length w = 24 hour

We first analyze the time series data with a sliding window w = 24 hr or 1440

min. The locations and codes of the 12 high latitude magnetometers are given in

Table 5.1 and the perturbations of the horizontal components H of the geomagnetic

field under the same universal time are shown in Figure 5.3. Usually from these

measurements at 12 individual stations, AL and AU indices are derived from the

lower and upper envelopes of the perturbations, respectively, thus neglecting all

spatial information. Consequently it is hard to determine effects of the changes in

the solar wind variables such as the induced electric field and dynamic pressure on

the spatial distribution of magnetospheric activity from these indices.
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Figure 5.3: The horizontal component of the magnetic perturbations at
12 ground magnetometer stations during February 16-23, 1979. The 12
station (Table 1; Mayaud, 1980) color codes are indicated on the plot.
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Table 5.1: Auroral Magnetometer Stations

IAGA Geographic Coordinates Magnetic Coordinates

Observatory Code Lat.(◦ N) Lon.(◦ E) Lat.(◦ N) Lon.(◦E)

Abisko ABK 68.36 18.82 66.04 115.08

Dixon Island DIK 73.55 80.57 63.02 161.57

Cape Chelyuskin CCS 77.72 104.28 66.26 176.46

Tixie Bay TIK 71.58 129.00 60.44 191.41

Cape Wellen CWE 66.17 190.17 61.79 237.10

Barrow BRW 71.30 203.25 68.54 241.15

College CMO 64.87 212.17 64.63 256.52

Yellowknife YKC 62.40 245.60 69.00 292.80

Fort Churchill FCC 58.80 265.90 68.70 322.77

Poste-de-la-Baleine PBQ 55.27 282.22 66.58 347.36

Narsarsuaq NAQ 61.20 314.16 71.21 36.79

Leirvogur LRV 64.18 338.30 70.22 71.04

The main advantage of LIMI compared to the conventional AL and AU in-

dices is its spatial dependence. And compared to the data from the magnetometer

stations itself, LIMI can characterize in a statistical manner the correlation, linear

and nonlinear, among the different regions.

The storm of February 16-23 (47-54th day of the year, defined as DOY 47-54)

is analyzed first. During February 16-23, a geospace storm was driven by the solar
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wind with velocities of 646-766 km/s, and southward IMF of -18 nT, leading to AL

values as low as -863 nT and index Dst value going down to -106 nT. The sliding

window w = 24 hr (1440 min) provides variations within a day, in particular those

changes in the day side and the night side regions. The data gap threshold, the

percentage of invalid or missing data to the whole sliding window length, α = 0.02

is chosen to identify invalid data gaps among the data subsets of a window width

w for each individual station. The AMIs of 12 individual stations computed with

24 hour windows are shown in Figure 5.4(a). Also the corresponding LIMI, the

solar wind westward convective electric field V BS and the dynamic pressure Pram

are shown in Figure 5.4(b)-(d). On DOY 47, an abrupt increase in the dynamic

pressure the southward component of the interplanetary magnetic field drives en-

hanced magnetospheric activity, including a storm with Dst =-106 nT and many

substorms. The AMIs, computed from the variations in the H component at each

of the stations, increase with the increases in Pram and V BS, indicating growing

complexity of the magnetosphere. This shows that the magnetospheric states have

stronger correlation in time, say compared with quiet periods. However, if this mag-

netospheric disturbance is global and simultaneous, all 12 station distributed over

the whole auroral region should have similar response to the variations of the solar

wind conditions, and their AMIs should have similar characteristics, viz. similar

changes in values. If the disturbance is local and it will have significant time delays

relative to the different station locations, and the AMIs calculated at these locations

should be different in times and amplitudes. The AMI values shown in Figure 5.4(a)

exhibit a global pattern on the whole, with significant variations among the different
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stations. We can see the difference not only on the time of the change from a low

to a high level, but also on the amplitudes among stations. This is in agreement

with the recognition that the magnetosphere has both global and multiscale features

[Ukhorskiy et al., 2002; Sharma et al., 2005]. It should however be noted that the

multiscale features are now evident from the spatial as well as temporal variations,

compared to the temporal behavior obtained from the AL data alone [Ukhorskiy et

al., 2002, 2004].

As the dynamic pressure Pram returns to a normal level and the solar wind

magnetic field becomes more northward, the magnetospheric response is less active

and all the AMIs decrease to lower levels around DOY 50. After being quiet for

about a day, a sharp increase in Pram, and an increase in V BS, trigger a set of big

substorms. The AMIs then return to higher values with wider variations among the

stations. The localized integrated mutual information, representing the difference

in the magnetospheric responses at the 12 stations to the same solar wind driver, is

shown in Figure 5.4(b). As we can see, the enhancement of LIMI is a good synoptic

representation of the differences in the local conditions as well as the correlations

among them. Also as seen in Figure 5.4(c) and (d), the LIMI values have good

correlations with the dynamic pressure Pram and the convective electric field V BS.
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Figure 5.4: (a) Average mutual information for 12 auroral region mag-
netometers during Feb.16-23, 1979 computed for a moving window of
w = 1 day. Each line represents a individual station (Table 1) and color
coded as in Figure 5.3. (b) The LIMI spread (c) the solar wind dynamic
pressure, and (d)the solar wind flow induced electric field V Bs at cor-
responding times. Each AMI and LIMI point are computed from the
previous window length of 1 day, hence the 1-day initial gaps in LIMI
and AMI.
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5.4.2 Substorm Dynamics from LIMI with Window Length w = 6

hour

The AMIs computed with a 1-day window length yield the local perturbations

and their heterogeneity during storm times. However the spatial structure, such

as the initial perturbation locations, and the coupling among the locations during

an active storm are averaged over all local times. The magnetic field perturbations

measured at a ground magnetometer always contain the day-night (positive and

negative) periodic variations during both quiet and active periods. The effects of

this day-night variation can be avoided to a large extent, by choosing a shorter

sliding window within this periodicity, so that the computed AMIs correspond to

similar local times or the local spatial regions. There are other consideration related

to the choice of the time scales. First, τ = 30 min is the time delay used in the

computation and the length of a window should be much longer than τ . Because

of the time delay τ , the maximum computational length used is L− τ , L being the

total length of the sliding window. To make the distribution of the effective dataset

L− τ close to the actual distribution of the whole datasets, we need L >> τ . Sec-

ond, the substorms usually last from several tens of minutes to several hours and

the length of data should cover more than a whole substorm in order to extract

its dynamical features. Based on these considerations, a 6-hour length window is a

proper choice for computing the AMIs to study the dynamical variations character-

istic of a localized region and for comparing the dynamics among different locations

in longitude.
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The AMIs for the 12 stations computed using a 6-hour sliding window for the

same storm as Figure 5.4(a), viz. 16-23 February 1979 (DOY47-54), are shown in

Figure 5.5(a). Unlike Figure 5.4(a), the variations of AMIs show strong fluctuations

on shorter time scales. The intersections of different color lines indicate the complex-

ity of the magnetosphere and the average or global behavior is now harder to define.

Following the definitions of AU and AL, we use the upper and lower envelopes of

all 12 AMI values of the individual stations to compute two new quantities AMIU

and AMIL, and these are shown in Figure 5.5(b). A comparison of AMIU and

AMIL with AU and AL, respectively, in Figure 5.5, shows that AMIU and AMIL

are similar to AU and AL indices, which are directly derived from the magnetic

field perturbations. The correlation of AMIU-AU and AMIL-AL are 0.61 and 0.73,

respectively. The similarities of AMIU and AMIL with AU and AL show that the

feature of the magnetosphere perturbations described by AU and AL are captured

by AMIs. Although the plots of AMIU and AMIL are similar to the geomagnetic

indices, AMIU and AMIL measure relationships, linear as well as nonlinear, among

the multiple stations at the different locations instead of the maximum and mini-

mum values of the perturbations. Thus the complexity of the spacial structure of

the magnetosphere can be characterized by AMI which includes both temporal and

spatial information. The AMIU measures the minimum correlation during one sub-

storm period among the globally distributed magnetometers, while AMIL measures

their maximum correlation.

In order to examine the magnetic field variations independent of the effects

due to the rotation of Earth, the data are projected on 12 virtual regions with 30◦
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Figure 5.5: (a) Average mutual information for moving windows (w =6
hours) from 12 auroral region magnetometer stations during Feb.16-23,
1979. Each line represents an individual station, and color coded as in
Figure 5.3. (b) Upper and lower envelopes of the superposed plots of all
moving AMI. (c) AL and (d)AU indices.
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extent uniformly distributed in the high latitude region of magnetosphere, starting

from noon and moving towards dusk. The AIMs are computed by using the linear

interpolations from the 12 known stations in the Solar Magnetic (SM) coordinate

system. In this coordinate system, the 12 virtual regions or sectors are fixed in the

high geomagnetic latitude region of the Earth, and do not rotate with Earth, and

thus are like 12 stationary detectors monitoring the magnetic field variations at any

instant. The AMIs based on these 12 virtual fixed stations are shown in Figure

5.6(a). Unlike the many intersections of the data from different stations (color

lines) in Figure 5.5(a), the greenish lines representing the virtual stations close to

the midnight sectors are systematically above the bluish color lines representing the

virtual stations close to the noon sectors, indicating that the AMIs of the stations

close to the midnight sectors are higher than those of the stations close to the noon

sectors. The AMIs with color ranges from dark green to light green correspond

to the time series data with the center [t − 3hour, t + 3hour], t ∼ 12 − 18hour in

SM coordinate system. Figure 5.6(b) is a color map plot showing the evolution

of the AMIs at the 12 virtual stations during 1979 February 16-23 (DOY 47 - 54)

storm period. The entire storm evolution is clearly depicted in Figure 5.6(b). The

substorm activity starts at DOY 47 and the AMIs start to increase in the midnight

sector, then it gradually expands to the dusk and dawn sectors. After reaching

the maximum expansion at DOY 49, AMI values decrease in the near-midnight

sectors. One day later, another larger scale change in AMIs starts expanding from

the midnight sectors to the dawn and dusk flanks, even reaches the dayside sectors,

and then returns to the smaller AMI values corresponding to those of quiet time
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periods. The substorm expansion starts in the midnight and post midnight sectors,

and then the perturbations gradually expand to a wider region between the dusk

and dawn sectors, extending up to the dayside sectors. The largest perturbations are

located in the near midnight regions, consistent with the substorm phenomenology

[McPherron, 1995].

5.4.3 Longer Time Scale Features of LIMI

In order to compare the localized integrated mutual information spreads with

localized autocorrelation spreads, these quantities are computed for the entire January-

June 1979 dataset with a window width w = 1440 minutes (1 day) and 1 min resolu-

tion. Figure 5.7(c) shows the time evolution of LIMI, or 4I(t), defined by Equation

5.5, while Figure 5.7(e) shows the autocorrelation spread 4A(t) defined by Equation

5.8. We note that there are apparent features of 5.7(c) that are not present in 5.7(e).

Also the mean AMI of the 12 stations is shown in Figure 5.7(d). To assess the role

of solar wind activity in the variations of Figure 5.7(c), we compare the results of

LIMI, mean AMI and autocorrelation spread with V BS and Pram. From the mean

AMI in Figure 5.7(d), we note that the increases in the AMI values have good cor-

respondence with the variations in the solar wind V BS and Pram, especially with

V BS shown in Figure 5.7(a). The appearance of sudden maxima in 4I(t) is found

to correspond to abrupt changes in the solar wind variations. However, this corre-

spondence is not clear in the spread in the autocorrelation, shown in Figure 7(d).

Figure 5.7 suggests that the 4I(t) maxima are associated with the abrupt changes
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Figure 5.6: (a)Average mutual information with moving window of w =6
hours for 12 sectors under the Solar Magnetic (SM) coordinate system
during Feb.16-23 (DOY 47 - 54), 1979. Each line represents one vir-
tual individual station; (b) The time evolution of AMI of 12 sectors.
Dashed line represent the midnight sector. (12 sectors SC1-SC12: sec-
tors starting from noon with 2-hour apart and its numbers increasing
toward dusk.)
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in Pram and V BS. Although, the correlation between sudden changes in V BS with

the peaks in 4I(t) is not exactly one-to-one, a peak in 4I(t) corresponds to strong

variations in the solar wind. Also, the mean AMI always shows a good correlation

with the solar wind changes. During extended period of southward interplanetary

magnetic field and high dynamic pressure, the corresponding mean AMI values are

always high, as shown in Figure 5.7(d). To further compare the LIMI and the mean

AMI with the solar wind convective electric field V BS, comparisons of the LIMI and

the mean AMI of 12 stations with the solar wind V BS are plotted on Figure 5.8(a)

and (b), respectively. In order to examine the comparison clearly, LIMI and mean

AMI are averaged over a bin size of 0.02 of the normalized V BS, and this shows that

the average AMI follows clearly a linear relationship with V BS at both low values

and saturates at higher values. LIMI shows a linear relationship with V BS over a

large range of the solar wind activity, and a wider scatter at higher activity levels.

5.5 Spatio-Temporal Dynamics Averaged over 6 and 24 hr Windows

The average mutual information function is applied to the data of local mag-

netic field variations using two window lengths of w = 6 hours and 24 hours and

yields many interesting features. The 6-hr window covers a quarter of the auroral

region, and the 24-hr window covers the entire dayside and nightside. The 24-hr

window gives a longer and global scale information and the 6-hr window gives a

shorter and localized information. From Figure 5.7, it is apparent that 4I(t) max-

ima correspond to the main solar wind disturbances, viz. V BS and Pram. Almost all

116



Figure 5.7: (a) Solar wind V BS. (b) Pram. (c) The spread in LIMI
computed with 24 hr moving windows during first 6 months of 1979. (d)
Moving window (w =1 day) calculation of AMI during first 6 months
of 1979. (e) Moving window (w =1 day) calculation of autocorrelation
spread during the same period.

117



Figure 5.8: Comparison of the LIMI, AMI with the simultaneous V BS.
(a)The correlation between V Bs and LIMI at sizebin=0.02 of normalized
V BS during first 6 months of 1979. (b)The correlation between V Bs

and Average AMI at sizebin=0.02 of normalized V BS during the same
period.

118



of the large perturbations result in large values of 4I(t), indicating a close connec-

tion between the magnitudes of the disturbances and LIMI. The magnitude of LIMI

reflects the differences in the magnetospheric activities at different spatial locations,

and relates to different levels of solar wind input conditions, particularly to the dif-

ferent magnitudes of the solar wind dynamic pressure (Figure 5.9). Figures 5.9(a)

and (b) show two substorm epochs on DOY 78 and DOY 90, both corresponding

to high values of the solar wind magnetic field, but with different magnitude of dy-

namic pressure. On DOY 80, driven by a high dynamic pressure and a significant

V BS, the AMIs of all 12 stations increase almost simultaneously and the increases

in the amplitudes at individual stations are similar, leading to a high value of the

mean mutual information and a moderate mutual information spread. But with a

moderate dynamic pressure level and a high value of V BS, the AMIs of individual

stations rise at different times and with different amplitudes, which cause a large

mutual information spread. These results can be interpreted in terms of the physical

processes underlying substorms. With a southward interplanetary magnetic field,

magnetic reconnection is enhanced at the magnetopause and the magnetic flux flows

downtail, resulting in an unloading process and the growth of the westward electro-

jet current in the nightside ionosphere. This nightside current expansion is localized

and the magnetometers register these effects with appropriate delays and with dif-

ferent amplitudes. This results in a wide range of the time scales of the auroral

expansion at the different stations. However, with a sudden change in the dynamic

pressure, the magnetopause is strongly compressed, thus facilitating a simultaneous

expansion, and the entire magnetosphere is perturbed at approximately the same
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time. The AMIs of all stations show the near simultaneous response in Figure 5.9(a),

corresponding to nearly simultaneous activation and homogeneous scale variability

over the entire auroral region.

It is clear from Figure 5.7, that the average mutual information function can

resolve the spatial dependence and time scales, while the commonly used autocorre-

lation function cannot. To further compare the performance of these two functions

to the spatially distributed time series data, we computed the autocorrelation func-

tion (Equation 5.8) for the storm of February 16-23 (Figure 5.6). A 6 hour data

window is used to compute the autocorrelation spread and 12 virtual stations fixed

in the magnetosphere to measure the spatial variation in the same manners as in the

case of mutual information function. The autocorrelation spread on these 12 virtual

stations during DOY 47-54 are shown in Figure 5.10(a) and its 2D plot is shown in

Figure 5.10(b). Unlike in Figure 5.6(a), where the greenish color lines are always

above the bluish color lines, the lines in Figure 5.10(a) show strong irregularity. All

color lines intersect each other and represent the values of the autocorrelation at

different locations do not have a systematic difference. Also as seen in the 2D plot

of Figure 5.6(a), there is an apparent local maximum in the night sector during

a strong storm. The region of high autocorrelation values appear not only on the

night sector, but are also seen in the day sector. During the storm of DOY 48-49,

there variations in the autocorrelation function do not indicate a clear picture of

the westward current expansion during a substorm, which are seen in the previous

studies [Kidd and Rostoker, 1991; McPherron, 1995]. The average mutual informa-

tion function, on the other hand, is seen to be an appropriate method to describe
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Figure 5.9: (a)AMI during March 19, 2006(DOY 78) for w =6 hour. (b-
c) Corresponding V BS and Pram. (d)AMI during April 01, 2006(DOY
90), and corresponding V BS(e) and Pram (f). The color codes are the
same as in Figure (5.3).
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changes in the variation in the ionospheric currents during substorms. Furthermore,

we conclude that this spatial dependence has a strong nonlinear component, since

generalized nonlinear statistics are necessary to isolate such behavior. For the cases

with different w values, the inability of the autocorrelation functions to reveal the

magnetospheric response to sudden changes in the solar wind is apparent. Clearly,

for w > 3 days, the appearance of significant maxima is effectively eliminated due

to the averaging of the probability distributions over different activity levels. This

supports the need for using localized complexity measures. If measures are not lo-

calized in time, data influenced by qualitatively different processes (with different

time scales) are grouped together, and essential information is lost.

The results discussed above show that the average mutual information is a

more effective measure of correlation than the commonly used functions, such as

linear autocorrelation, for a spatially extended time series data. This conclusion

from studies of other nonlinear dynamical systems [Fraser and Swinney, 1986; Roul-

ston, 1999] is further strengthened by the results presented here. The information

theoretic functionals, such as average mutual information, have a more general ap-

plicability than previously recognized and can be used to yield new details of large

scale open systems, such as the magnetosphere.
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Figure 5.10: (a) Autocorrelation function for 12 sectors in the Solar
Magnetic (SM) coordinate system during Feb.16-23, 1979 (w =6 hours).
Each line represents one virtual individual station; (b) The time evolu-
tion of the autocorrelation functions of the 12 sectors. (same color code
as Figure 5.6). Dashed line represent the midnight sector.
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Chapter 6

Spatial Structure of the High Latitude Magnetic Perturbations

6.1 Introduction

Ground based observations of ionospheric electrodynamic features are capa-

ble of tracking rapid changes in the electric fields and currents, conductivities and

associated magnetic field perturbations [Brekke et al., 1974]. However, individ-

ual instruments have limited spatial coverage, and many instruments are needed

to obtain global coverage of the changing patterns of the electrodynamic feature.

Currently some mostly detailed ionosphere electrodynamic information is provided

by incoherent scatter radars, but relatively few instruments exist over the world.

Magnetometers are much more numerous but do not measure the ionospheric field

directly as do the radars. However, they provide complementary information about

global electric currents with relatively good spatial coverage. Given the existence of

many magnetometers chains around the globe, they became critical to the study of

the solar wind-magnetosphere-ionosphere coupling.

The magnetic field variations, measured continuously at a number of locations

on the ground, are produced by current systems and result in extensive spatio-

temporal data. However, measurements from a large number of ground magne-

tometers are too variable to provide direct information. Consequently magnetic

indices were introduced in the studies of solar-terrestrial physics. As discussed in
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earlier chapters, many indices, e. g., AL, AE and Dst are widely used.

The detailed spatial structure of magnetic field, current system, conductance

and its related parameters are very important for space physics modeling. These

patterns are a direct result of solar wind-magnetosphere-ionosphere interaction, and

reflect the flow of plasma and of electric current throughout much of the magne-

tosphere [e.g. Burke and Doyle, 1986; Mauk and Zanetti, 1987]. Models of the

ionosphere require the details of these parameters in order to simulate the upper

atmospheric dynamics, energetics, and chemistry with reasonable accuracy [Schunk

and Szuszczewicz, 1988]. Also the models of thermospheric dynamics need to de-

tails of plasma convection at high latitudes in order to model correctly the effects

of ion drag and Joule heating [e.g. Robel et al., 1987; Rees et al., 1987]. Knowledge

of the large scale electric fields and current patterns can also be very useful for

knowing how to interpret a variety of localized upper atmospheric observations in

the global context [Pellinen et al., 1982]. Modeling of inner magnetospheric convec-

tion and particle populations require knowledge of the electric potential distribution

around the ionospheric poleward edge of auroral oval [Wolf and Spiro, 1985; Senior

and Blanc, 1987]. This requires the details of the spatial patterns of ionosphere

and magnetosphere. However, the electrodynamic state of the high latitude iono-

sphere is highly variable. This variability manifests itself in the global patterns of

ionospheric convection and three dimensional electric current systems. While many

relevant observations exist, they each typically cover only small portions of the entire

high latitude ionosphere, and it has been difficult to synthesize them on a contin-

uous basis. The well-known Assimilative Mapping of Ionospheric Electrodynamics
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(AMIE) model is an empirical model derived from the observational data. The

AMIE procedure synthesizes the diverse observations of high latitude ionospheric

electrodynamics into schematic maps of conductances, electric field, currents and

related parameters by using statistical information obtained from the available data

[Richmond and Kamide 1988; Richmond, 1992; Knipp et al., 1994; Richmond et

al., 1998]. AMIE makes it possible to establish the real-time links to the various

important data sources.

Although AMIE is a powerful and useful tool to explore the spatial structure

through the coherent pattern of conductivity, electric field and currents, the non-

linear couplings play an important role that requires improvement. The experience

gained by AMIE applications so far points as a key improvement of the inclusion of

nonlinear coupling effects between the conductivities and the electromagnetic fields.

Another drawback of the fitting procedure is the restriction of the number of pa-

rameters allowed in the model. These limitations motivate the development of a

data derived model using the measurements of magnetic field variation from the

high latitude magnetometer arrays.

The shortcomings of the nonlinear global dynamical models in neglecting the

spatial dependence have motivated studies of the evolution of the spatial structure

of the magnetosphere using the time series data from ground magnetometers. Val-

divia et al. [1999a] modeled the evolution of the spatial structure of the ring current

using the time series data from six mid-latitude ground magnetometers. A similar

approach led to a two dimensional representation of the high latitude geomagnetic

perturbations in magnetic latitude and magnetic local time from 15 magnetometers
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of the IMAGE magnetometer array [Valdivia et al., 1999b]. The role of nonlin-

earity in the coupling between solar wind parameters and the local magnetic field

perturbations was shown in both studies, although the models yield magnetic field

perturbation patterns and their corresponding current patterns that are similar to

the observations, the prediction errors are very high. The main problems of these

models are:

1. The database (1-month) is very short and the prediction is within the same

month, which makes the out of sample prediction to be similar to the whole

database. Thus there is limited generality for wider usages of the model.

2. The relative prediction errors are too high compared with the original data.

3. The prediction result is only shown for a 12 hour interval, which limit its

original day-night variation due to the diurnal variation of Earth.

Considering these and related problems, the difficulties and possible ways for

improving the spatial pattern predictions from multi-station observations are studied

next.

6.2 Database of Solar Wind-Magnetosphere Coupling

The database of the solar wind key parameters, like V , BZ , n, from ACE

spacecraft (through CDAWEB) and the measurements from ground magnetometer

array distributed in high latitude auroral region, like IMAGE and CANOPUS, and

from some WDC stations is compiled. The ground magnetometer stations are iden-
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tified in Figure 6.1. The database spans 01 January to 31 December 2002 with 1

min resolution, giving 1440 ∗ 365 data points for each station. All the raw data

from IMAGE and CANOPUS are provided with 1 min resolution. After removing

the missing and invalid data and replacing them with the interpolated data in the

original data series, the coordinate transformation from the Geographic coordinate

(GEO) to the Solar Magnetic coordinate (SM) system is used to reflect the rotation

of the individual magnetometer stations with Earth. This results in three compo-

nents of the magnetic field perturbation: Hx(λ, ξ), pointing to the geographic north,

Hy(λ, ξ), to the geographic east and Hz(λ, ξ), to the geographic downside, where λ

and ξ are the magnetic latitude and longitude of the magnetometer, respectively. In

this study, we focus on the components of the horizontal magnetic field perturbation,

corresponding the west-east and north-south currents in the polar region.

After the coordinate transformation from geolatitude and geolongitude to SM

latitude and SM longitude, Earth’s rotation and the tilt between the geographic

pole and magnetic pole are taken into account. Now a local magnetometer station

is like a monitor rotating with the ionosphere. Since the database is for the entire

year, the baseline is chosen as the average value of the 15 quietest days in the year

for each component and each magnetometer. This baseline is subtracted from the

original data to get the perturbed geomagnetic field.
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Figure 6.1: The distribution of all available ground magnetometers in
year 2002. IMAGE(∗), CANOPUS(4) and WDC(¦)
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6.3 Spatial Structure from High Latitude Measurements

The IMAGE and CANOPUS magnetometer array clusters are located in the

Europe and Canada, about 180◦ apart. In our studies, we always use IMAGE and

CANOPUS independently, and thus the two datasets and the corresponding model

results can be used to study the similarities and differences.

To analyze the properties of the spatial structure of the auroral region during

quiet and active magnetosphere periods, an intense magnetic storm of April, 2002 is

chosen. During this storm, the interval of April 17-18, 2002 is selected as an intense

storm active period and a pre-storm interval of April 1-10, 2002 is selected as a quiet

period. The spatial structure of the disturbances during both periods are obtained

by averaging the measurements of n days at the same location for each individual

station. Either during the active or quiet periods, the 2D perturbation map over

the entire period, both in magnetic latitude and magnetic local time is given by:

< H(λ, ξ) >=
1

n

n∑

i=1

Hi(λ, ξ). (6.1)

where n is the number of days used in the averaging procedure. The 2D magnetic

perturbation for < Hx > and < Hy > from IMAGE during April 17-18 and April

1-10 are shown on Figure 6.2 and Figure 6.3, respectively. Also the < Hx > and

< Hy > from CANOPUS during the same time are shown on Figure 6.4 and Figure

6.5. In these figures, the top points toward the sun.

During both the active and quiet periods, the maps from IMAGE and CANO-

PUS show the structured magnetic perturbations. The Hx component is related to
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Figure 6.2: The average values of Hx and Hy components measured by
IMAGE in both magnetic latitude and local time over April 17-18, 2002
(Storm Period).

Figure 6.3: The average value of Hx and Hy components measured by
IMAGE in both magnetic latitude and local time over April 1-10, 2002
(Quiet Period).
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Figure 6.4: The average value of Hx and Hy components measured by
CANOPUS in both magnetic latitude and local time over April 17-18,
2002 (Storm Period).

Figure 6.5: The average value of Hx and Hy components measured by
CANOPUS in both magnetic latitude and local time over April 1-10,
2002 (Quiet Period).
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the east-west component of the auroral current system, and the Hy component is

related to the north-south component of the current system. From left left panels of

Figure 6.2, 6.3, 6.4 and 6.5, clear patterns of the westward current, associated with

a negative Hx in the dawn sector and the eastward current, associated with positive

Hx in the dusk sector, are shown.

During the quiet time, as shown in Figure 6.3, the Hx from IMAGE is strongly

disturbed close to the center of the area, and has values in the range [−100nT, 60nT ].

However, during the active time (Figure 6.2), the Hx variations become bigger and

equatorward expanding during April 17-18, which indicate the intensification of the

westward and eastward currents during the storm time. Compared with the quiet

period, Hx of the active period is also highly violent. From the right panels of Figure

6.2-6.5, a small cell of positive Hy values is clear near the dawn sectors, and a region

of negative Hy is shown near the dusk sectors. The counterclockwise movement of

Hy cell from quiet period to active period indicate the motion of the north-south

currents. The same phenomenon also can be seen in the CANOPUS data, shown in

Figure 6.4 and 6.5.

Using the infinite plane approximation, we can compute an equivalent current

pattern of the eastward and westward electrojet current systems from both Hx and

Hy. From 5×B = µ0J, we obtain:

µ0Jx =
∂Bz

∂y
− ∂By

∂z
. (6.2)

µ0Jy =
∂Bx

∂z
− ∂Bz

∂x
. (6.3)
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If only the horizontal components of the magnetic field are considered and the

vertical components are neglected, Hz = 4Bz = 0, we get Jx = −∂By

∂z
and Jy = ∂Bx

∂z
.

Then

Jx

Jy

= −∂By

∂Bx

= −Hy

Hx

. (6.4)

And the equivalent current flow pattern related with Hx and Hy are shown in Figures

6.6 and 6.7 for IMAGE and CANOPUS data, respectively. The westward and

eastward electrojet current patterns are clearly seen in these figures. During the

quiet time, in the left panel of Figure 6.6, the current near the dawn side shows

westward flow and most of the current near the dusk side shows eastward flow.

However the inner most part of the current shows westward direction, which is

opposite to that of the outside currents. These flows constitute a current cell in the

dusk side. During the storm time, as shown on right panel of Figure 6.6, both the

westward and eastward currents become much more intense. The direction of the

current in the inner part is in a direction opposite to that of the outside current

flows and resulting in the two cell convective current patterns. The equatorward

expansion of the current is also apparent because the locations of the current with

opposite direction move equatorward. Meanwhile on the current flow pattern from

CANOPUS in Figure 6.7, we can see the intensification of the westward current.

However, we cannot see the current cells on both dawn and dusk sides because the

location of the innermost station of CANOPUS is not as close to the north polar

region of IMAGE.
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Figure 6.6: Using both Hx and Hy from IMAGE array, the 2D equivalent
current patterns are displayed at (a)April 1-10, 2002 (Quiet Period) and
(b)April 17-18, 2002 (Storm Period). It clearly shows the westward and
eastward electrojet patterns.

135



Quiet Period April 1−10,2002
CANOPUS

TOWARD SUN

 1
20

o W
 

  60 o
W

 

   0o  

  6
0

o E 

 120 o
E

 

 180oW 

Active Period April 17−18,2002
CANOPUS

TOWARD SUN

 1
20

o W
 

  60 o
W

 

   0o  

  6
0

o E 

 120 o
E

 

 180oW 

Figure 6.7: Using both Hx and Hy from CANOPUS array, the 2D equiv-
alent current patterns are displayed at (a)April 1-10, 2002 (Quiet Period)
and (b)April 17-18, 2002 (Storm Period). It clearly shows the westward
and eastward electrojet patterns.
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6.3.1 Partition of Distributed Magnetometer Data

The data from ground magnetometer arrays show that there are two cells

within the auroral oval, one corresponds to positive magnetic perturbations related

with northward enhancement of the magnetic field at dusk, another to negative

perturbations related with southward enhancement of the magnetic field at dawn.

These show that the magnetic field perturbations have diurnal variation which is

positive at dusk and negative at dawn. The measurements of a magnetometer in the

high latitude region show positive and then negative variations, as shown in Figure

6.8(a), with the rotation of Earth. Even during storm time, the magnetic field

perturbations still show clear day-night variation although this kind of variation

is stronger, as shown on Figure 6.8(b). This day-night variation is due to the

existence of local currents over the auroral region, and has different patterns from

measurements of a mid-latitude geomagnetometer as shown in Figure 6.9(a) and

6.9(b). For a mid-latitude station, the amplitudes of the variations are smaller

compared with that at a high latitude station during a quiet period. During a

storm time, the magnetic field perturbations always turn southward and no positive

northward perturbations even the mid-latitude station is at the dayside, where the

magnetic disturbance from a high latitude station always show northward changes

as shown on Figure 6.8(b).

The magnetic field perturbations have clear day-night variations and this leads

to the question whether we still use the nonlinear data derived models to analyze

and predict the magnetic field perturbations at individual stations. Let us con-
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Figure 6.8: The magnetic perturbation Hx at IVA (a high latitude station
of IMAGE chain) during April 4-12, 2002 (Quiet) and April 16-22, 2002
(Storm)

sider a storm case, the response represented by AL index does not have localized

information because AL is the lower envelope of all station’s measurements within

auroral zone, and AL actually is the measurement of the westward current close to

midnight region when ground stations are distributed uniformly. So the response of

the magnetosphere to the solar wind has a one to one correspondence, either linear

or nonlinear.

However, for a system of the multiple station measurements (multiple output)

with a single solar wind input, the outputs of the system have a spatial dependence.

For the same or similar solar wind input, the magnetic field variations at one station

might have similar amplitudes and but with opposite phases. Thus the magnetic

field perturbations can be positive or negative depending on the location of the
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Figure 6.9: The magnetic perturbation Hx at HTY (a middle latitude
station of WDC chain) during April 4-12, 2002 (Quiet) and April 16-22,
2002 (Storm)

magnetometer at a given time. When there is no parameter used to identify the

location of the magnetometer, the average output value can compensate each other

and the prediction results will be close to zero due to the averaging. For example,

for a given solar wind condition, the nearest neighbors in the database can be shown

in Figure 6.10, such that the vectors 1 and 2 are nearest neighbors of the current

state, However the states with opposite phases among the ground stations can lead

to cancelations in the local linear filter, and the averaged predicted output Hx can

be close to zero.

In order to overcome the above difficulty a new representation of the data is

proposed. Hx is measured at discrete magnetic latitude locations, and at discrete

times, and these can be mapped to a 2D grid of magnetic longitude and magnetic
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Nearest Neighbor vector 1

Nearest Neighbor vector 2

Current vector

Figure 6.10: Nearest neighbor search and day-night variations. Due
to the day-night variation, with similar solar wind condition, both the
vectors 1 and 2 are nearest neighbors of the current state. And this can
lead to cancelations in the mean-field filter.
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Figure 6.11: Zone partition on high latitude observation. The ground
magnetometers of either CANOPUS or IMAGE spread over 15 degrees.
The ground magnetometers are within a single zone. Zone 1 is at noon,
and Zone 13 is at midnight

latitude. Such a mapping is possible because the magnetometer arrays sample the

magnetic fluctuations at all local times as Earth rotates. Because the currents in

the ionosphere are always approximately at the fixed locations in the magnetosphere

while Earth rotates, the sector with the same magnetic longitude range should

measure the magnetic perturbations from the same ionospheric currents. So a 2D

mapping provides a feasible way to overcome the effects due to Earth’s rotation.

In this representation, the whole polar region is separated to 24 sectors with

15◦ extension in magnetic longitudes, as shown in Figure 6.11. For each magne-
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tometer array IMAGE or CANOPUS, the magnetometer measurements have been

partitioned in a 2D grid containing 24 bins in magnetic longitude and N (N = 26

for IMAGE and N = 13 for CANOPUS) bins, corresponding to each magnetome-

ter, in magnetic latitude λ. Each bin contains Nt = 60 × 365 = 21900 values for

a dataset with 1 min resolution. The solar wind input, after 1 hour propagation

delay correction, is also partitioned with respect to the time in each bin. So each

local time bin contain Nt measurements Hx(λ, ξi) at the local magnetic longitude

ξi for i = 1, · · · , Nt, with simultaneous solar wind input measurements Ew(ξi). By

following this procedure, the spatial-temporal is reduced to analysis a case similar

as the previous nonlinear global dynamical model.

Unlike the continuous global index AL, the partitioned data set at each mag-

netic longitude bin are discontinuous and do not correspond well with the solar wind

inputs. The magnetic perturbation in the [λ, ξi] bin is continuous only for every 60

minutes. This discontinuity causes some problems on the phase space vector con-

structions if the gap between two adjacent datasets is big. The time delay between

Hx in bin [λ, ξi] and the corresponding solar wind is another important issue.

The time delay among the individual station measurements and the solar wind

variations is important, especially when using narrowly partitioned zones, and cross-

correlation function can be used to determine the proper time delay between two

variables (station measurements Hx and solar wind V Bs). Cross-correlations for

station NAL at midnight and noon for 3 hour segments are calculated in Figure

6.11. Both the midnight and noon sectors are 3 hour wide. The Hx data for

three (1st-3rd day) continuous days at a designated sector and the corresponding
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Midnight Sector

Noon Sector

Figure 6.12: Cross-correlations for station NAL at midnight and noon
for 3 hour segments. There is no clear peak for a specific time delay T.
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Figure 6.13: Cross-correlations for Bargatze dataset and Year 2001
dataset. Peak for a specific time delay T is clear.
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solar wind data (after a correction for the propagation from L1 point) with time

delay (0-60 mins) are used. After computing one cross-correlation curve, the data

for second three (2nd-4th days) continuous days is selected to compute another

cross-correlation curve. A total of thirty 3-day cross correlation curves are shown in

Figure 6.12. There is no clear peak for a specific time delay T . The cross-correlations

between the solar wind variables and AL index are shown in Figure 6.13, and so

clear peaks around T = 30 − 50 mins for most of substorm events. This feature is

important for the global prediction as the relative fixed time delay make the events

in the whole database more uniform and thus suitable for proper predictions. On

the other hand the variable time-delays T make the individual station predictions

much more difficult.

Using the data of Hx at the stations and solar wind V Bs, the corresponding

magnetic field at one IMAGE station MUO at midnight and noon sectors during

April 17-18, 2002 are predicted by using local mean field model, as shown in Figure

6.14. Both predictions are under the similar solar wind conditions during the same

time, and the predictions on midnight sector show negative perturbation and the

predictions on noon sector show positive perturbation. The spatial dependence can

thus be predicted by using nonlinear mean field method after the data partitions

technique described above.
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Midnight

Midnight

Noon

Noon

Figure 6.14: Under same days solar wind conditions, the prediction of
MUO ground magnetometer (one station of IMAGE) at Noon and Mid-
night.

6.4 Discussion

A more complete understanding of the nonlinear behavior of the high latitude

current system could be achieved with a careful analysis of the evolution of its spatial

structure, namely, its spatio-temporal behavior. From the point of view of space

weather the predictions of the spatial structure are crucial, as it is important to

identify the regions of strong disturbances during intense geospace storms. For this

purpose, we have carried out an input-output analysis of the polar region current

system using multiple magnetometer measurements from the ground stations as

outputs. These efforts are directed towards a comprehensive spatio-temporal model

with multiple inputs and outputs.
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Contour maps of the horizontal magnetic field perturbation show clear pat-

terns of two cells, negative perturbations at dawn side and positive perturbations

at dusk side, corresponding to westward and eastward currents, respectively, in the

high latitude region. The corresponding flows of the current systems obtained from

the ratio of Hx and Hy clearly show that there is a two cell pattern of the iono-

spheric current during magnetic disturbances with different directions and different

strengths. This spatial structure makes it hard to predict the geomagnetic distur-

bances at local regions and forecast the spatial structure of geomagnetic disturbances

during geospace storms.

The local-linear weighted mean field model can be used to study the magnetic

longitude dependent local magnetosphere-solar wind coupling under some condi-

tions. A technique that utilizes the daily rotation of Earth as a longitudinal sam-

pling process is used to construct a two dimensional representation of the high

latitude magnetic perturbations both in magnetic latitude and magnetic local time.

The nonlinear model can be used to predict the spatial structure of geomagnetic

disturbances by combining multiple forecasts from many individual stations. The

predictions of the local magnetic perturbation is much more complicated and better

techniques are needed. Several challenging issues need to be considered carefully:

1. The gaps between any adjacent dataset within the same longitude sectors

cannot be too big.

2. The size of the sector with similar longitude should be as large as possible,

which make the continuous data subset large, but in the same time the day-
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night variation need to be excluded.

3. The proper time delay between the magnetic field disturbance in a specific

sector with solar wind need to be carefully selected to maintain the cause-

effect relationship in solar wind-magnetosphere coupling.

To overcome these difficulties, one should choose larger databases which in-

clude data during the storm periods with similar features [Bargatze et al., 1985;

Chen and Sharma, 2006]. The data related with mostly quiet periods should be

excluded from the database, and the gaps between the adjacent databases of the

same storm event should be smaller. Furthermore the time delay might be similar

for most storm periods, thus the time delay between the ground measurements and

solar wind condition in each longitude sector will be similar. However, because the

entire high latitude region is partitioned to 24 or fewer sectors, in order to maintain

the relative large databases for each sector, the one year database is not sufficient

as only parts of the data can be selected in each sector during storm times. So a

dataset for a large periods, e. g., 5-10 years, might yield better description of the

spatio-temporal dynamics.
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Chapter 7

Summary

Recent studies of the nonlinear dynamics of the magnetosphere using observa-

tional time series data have led to new advances in the understanding of its global

dynamics. These studies use the phase space reconstruction techniques developed

in the study of nonlinear dynamical systems to build nonlinear models independent

of modeling assumptions.

This dissertation presents improved data-derived models, forecasting tools and

study the spatial dependence of geomagnetic activity. Two new databases including

the magnetic field data from ground magnetometers, and magnetospheric and solar

wind data from satellites are compiled for these studies and used to develop the

models.

The phase space reconstruction techniques for the spatio-temporal dynamics

are implemented in three overlapping parts. First, an improved global model, a

weighted mean field filter forecasting tool for the global indices, is proposed and

used on the solar wind-magnetosphere coupling during the superstorms of October-

November 2003 and April 2002. Second, the mutual information function analysis

is applied to the data of local magnetic field variations at high latitude magnetome-

ter stations. It is clear that the average mutual information function can resolve

the spatial dependence and time scales, while the commonly used autocorrelation

149



function cannot. Third, the local-linear weighted mean field model is used to study

the spatial dependence of solar wind - magnetosphere coupling. These studies also

necessitated the compilation of new databases for the spatio-temporal studies and

for periods of intense geomagnetic activity.

1. Weighted mean field filter and its application on superstorms

The mean field model of the global dynamics of the magnetosphere was de-

veloped earlier under the assumption that most of the NN nearest neighbor of the

current state are similar. However the nearest neighbors are located at different dis-

tances from their center of mass, and the closer neighbors should contribute more

than those farther away in deciding the predicted state. The new filter, the weighted

mean field filter proposed in this dissertation, takes into account the distance of the

nearest neighbors and the contributions of the nearest neighbors are weighted by

factors inversely proportional to their distance in the reconstructed phase space.

Thus in practise, a relative large NN can be selected because the inclusion of near-

est neighbors farther away should not affect the prediction significantly as these will

have smaller weights, thus making the prediction less sensitive on NN .

This weighted mean field filter can greatly improve the accuracy and efficiency

of predictions, especially under some extreme driving by the solar wind, e. g., the

three well known superstorms of October-November 2003 and April 2002 [Chen and

Sharma, 2006]. Earlier prediction studies [e.g., Vassiliadis et al., 1995; Ukhorskiy

et al., 2002, 2004] used the BBMH [Bargatze et al., 1985] dataset corresponding to

the declining phase of a solar cycle and containing only a few weak storms. A new

database of the whole year 2001, around the peak of solar cycle, is compiled to obtain
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the optimal nonlinear weighted mean field filter for these superstorms. A comparison

of the prediction results by using these two different databases indicates that the

geomagnetic activities during the solar minimum and maximum periods have similar

characteristics, thus the year 2001 and BBMH databases can be considered as a

complementing each other.

The weighted mean filter closely reproduces the large-scale variations of AL for

the three superstorms. Since such storms are uncommon, it is naturally hard to find

many similar events in the available databases. So the nearest neighbor searches in

these cases yield only a small number states close to the states of the superstorms.

Thus using a large number of nearest neighbors with wide variations and with the

averaging, the model output is smoothed over these and cannot capture the peaks

of the substorms. In such cases the weight factors play an important role and yield

improved predictions [Chen and Sharma, 2006].

In this study, the global AL index is used as the magnetospheric variable,

and the southward IMF is the main driver of the geomagnetic storms. In spite of

the improved predictions, the model cannot capture the geomagnetic response due

to the effects from the highly enhanced positive IMF. Thus developing a nonlinear

dynamical system including the multiple solar wind parameters as inputs is expected

to yield better models.

2. Mutual information and its application on spatial dependent

magnetospheric perturbations

Along with the development of the global dynamical models on the complexity

of the magnetosphere, it is important to understand the correlations among the
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different regions of geospace and the mutual information is a suitable function for

such studies. The mutual information function stresses statistical relationships and

emphasizes both linear and nonlinear dependencies. A key feature of the mutual

information function is its ability to yield the linear as well as nonlinear correlations

and such functions are needed to study the inherently nonlinear magnetospheric

dynamics.

A database of the solar wind data from ISEE3 and IMP8 spacecraft, and

ground-based magnetometer data from high latitude stations in 1979 [Kamide et

al., 1998] is used to study the magnetospheric response to solar wind variables

during geospace storms by computing the mutual information functions for two

window lengths of w = 6 hours and 24 hours. The 24-hr window covering the

entire dayside and nightside gives a longer and global scale information and the

6-hr window covering a quarter of the auroral region gives a shorter and localized

representation.

The average mutual information spread, computed from the magnetometer

data for the time windows of 24 hours, show strong correlations with the solar wind

convective electric field, which are not seen in the linear correlation functions. A

westward expansion of the disturbed region is clearly shown in the time evolution of

mutual information computed for the time window of 6 hours near midnight sectors.

The mutual information provides a computationally practical tool for the study

of a nonlinear, spatially extended driven systems. From the space weather perspec-

tive these function, provide the correlations among the different regions, which are

critical elements for enabling forecasts of regional, rather than global, conditions. In
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the studies presented in this dissertation, the data from the magnetometer stations

are used separately. Using the data from any two different stations together will

yield the correlation between them, and these will provide more details of the spatial

structure of the magnetospheric dynamics.

3. Spatial-temporal dynamics of the magnetospheric response

During geomagnetically active periods, the global features of the magneto-

sphere are in general captured by the geomagnetic indices and the regional features

are measured by ground-based instruments. The time series data of the distributed

observations on the ground are used to develop spatio-temporal dynamics of the

magnetosphere using phase space reconstruction techniques. In this approach the

solar wind - magnetosphere coupling is modeled as an input-output system with the

solar wind variables as the input and the 39 ground-based magnetic field variations

in high latitude during year 2002 as the magnetospheric response.

A two dimensional representation of the high latitude magnetic perturbations

both in magnetic latitude and magnetic local time is constructed by utilizing the

daily rotation of Earth as a longitudinal sampling process. The contour maps of

magnetic field horizontal perturbation show clear patterns of two cells, negative

perturbations in the dawn sectors and positive perturbations in the dusk sectors,

which show the westward and eastward currents in the high latitude regions. By

mapping the measurements in the magnetic latitude and longitude, a 2D grid is

generated with local bins 1 hour apart in longitude. The local-linear weighted

mean field model can be used to study the magnetic longitude dependent local

magnetosphere-solar wind coupling in the partitioned regions.
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The spatial variability of the geomagnetic disturbances make it more challeng-

ing to predict them at the individual local regions and forecast the spatial structure

of geospace storms. The predictions of local magnetic perturbations at some stations

are good but deviate significantly at others. Thus the modeling of spatio-temporal

dynamics needs to be studied in more detail and with more extensive databases. A

part of the difficulty is due to the way the different stations are affected by different

current systems. To overcome this, larger amounts of data for similar conditions

are needed. However, in order to maintain the relatively large databases for each

sector, 5-10 years of ground observations might be needed.

An immediate application of these models is the development of space weather

forecasting tools. The ultimate objective of the space weather program is the devel-

opment of a suit of operational models that can reliably predict, as far in advance

as possible, the effect of solar activity on the magnetosphere. The weighted mean

field filter makes the predictions less sensitive on parameters by considering the dis-

tribution of the nearest neighbors, and assigning weights to improve the predictions.

This approach can make the predictions more feasible.

From the nonlinear dynamical systems perspective, the spatial dependence has

strong nonlinear component, since a generalized nonlinear statistic is necessary to

isolate such behavior. The mutual information functions computed from the data

from pairs of stations will contribute to the understanding of spatial correlation.

From the point of view of space weather the predictions of the spatial structure

are crucial, as it is important to identify the regions of strong disturbances during

intense geospace storms.
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In order to yield a more complete understanding of the nonlinear behavior

of the magnetosphere, the modeling of its spatio-temporal dynamics is required.

The results presented here contribute to this objective. Further studies using more

extensive databases and with more refined techniques are directions for future re-

searches.

The future studies of the solar wind-magnetosphere coupling should focus on

making accurate, reliable and timely forecasts on the global and regional scales. The

accuracy and reliability of regional models as space weather forecasting tools need

to be studied in more detail. These models should be compared with the global

MHD simulations and other models in order to complement each other. The use of

multi-point ground based and satellite data will yield multi-variate models of the

dynamical behavior of the different components of geomagnetic activity, identify

the dominant physical processes from the data, and complement the first principle

models.
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