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In this work, we explore the dynamics of two similar types of dense stellar systems

with a central black hole of mass much greater than a typical stellar object. In

particular, we use numerical N-body simulations to examine the effects that the

massive black hole (MBH) has on the surrounding stars and compact objects as

they pertain to indirectly observable signals.

The first systems we consider are the highly uncertain cusps likely comprised of

primarily massive compact objects that surround the MBHs at the center of typi-

cal galaxies. The gradual inspiral of a compact object by emission of gravitational

radiation, called an extreme mass-ratio inspiral (EMRI), will produce a signal that

falls in the peak detection range of the space-bound laser interferometer space an-

tenna (LISA). Despite a veritable gold mine of astrophysical data that could be

gleaned from such a detection, previous investigations in the literature have left the

predicted rate of these events uncertain by several orders of magnitude.

We present direct N-body simulations of the innermost . 100 objects with the

inclusion of the first-order Post-Newtonian correction with the aim of reducing one

of the key uncertainties in the dynamics of these systems - the efficiency of resonant

relaxation. We find that relativistic pericenter precession prevents a significant

enhancement of the EMRI rate; the rate we derive during this work is consistent

with those derived in the literature from less direct methods. We do find, however,



that our EMRI progenitors originate from much closer to the MBH than previous

investigations have suggested was likely.

Our second investigation delves into the possibility of finding intermediate-mass

black holes (IMBHs), with masses ∼ 102−4M�, at the center of dense star clusters.

Because of the substantial investment of telescope time needed to perform the multi-

year proper motion studies that are likely needed to achieve a definitive detection,

careful selection of candidate clusters is prudent. We provide a new observational

signature of the presence of an IMBH in a dense star cluster - a quenching of mass

segregation.

Our ensemble of direct N-body simulations with N ≤ 32768 objects and highly

varied initial conditions show that the existence of an IMBH with mass ∼ 1% of the

total cluster mass limits the mass segregation in visible stars, as measured by the

radial gradient in average stellar mass. This effect is consistently visible in systems

that have had enough time to reach their equilibrium value of mass segregation,

usually about 5 initial half-mass relaxation times. In practical terms, our method

will apply to Galactic globular clusters that are fairly small, and that are unlikely

to have lost a significant portion of their mass to Galactic tidal stripping.

We apply this method to two of the ∼ 30 Galactic globular clusters that fit

our conservative criteria for application of this method, NGC 2298 and NGC 6254

(M10). Thanks to deep observations by the Hubble Space Telescope Advanced

Camera for Surveys, data exist that are sufficient to allow a good comparison to

our simulation data. We find that the degree of mass segregation we observe in

NGC 2298 is clearly inconsistent with simulations harboring an IMBH at about the

3 − σ level. In contrast, application of the method to NGC 6254 reveals a mass

segregation profile that can only be explained by the presence of either an IMBH

or a significant population of primordial binaries (& 5%). Unfortunately, a reliable



measure of the binary fraction of NGC 6254 does not exist; however, NGC 6254 is

a good candidate for follow-up proper motion studies.
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Preface

A significant portion of the work that appears in this thesis was published. Chap-

ter 3 was published in The Astrophysical Journal as Intermediate-Mass Black Hole

Induced Quenching of Mass Segregation in Star Clusters(Gill et al. 2008). The ap-

plications of the method to the Galactic globular clusters NGC 2298 and NGC 6254

that appear in Chapter 4 both originally appeared in The Astrophysical Journal

respectively as Mass Segregation in NGC 2298: Limits on the Presence of an In-

termediate Mass Black Hole(Pasquato et al. 2009) and The Dynamical State of the

Globular Cluster M10 (NGC 6254)(Beccari et al. 2010).
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Chapter 1

Introduction

One of the fascinating aspects of astronomy is the existence of objects and scales

of almost unfathomable mass, speed, size and number. Even our own Solar System

spans a distance scale that is sufficiently greater than our everyday experiences to

boggle the mind. The Universe inspires awe due to its sheer size and curiosity due to

its seemingly never-ending supply of riddles. The drive to understand the Universe

arises from this combination of wonder and interest, and no single object evokes this

combination of reactions more than the massive black hole (MBH, hereafter).

Besides satisfying these criteria many times over, massive black holes are ex-

tremely interesting and important astrophysical objects. They power accretion disks

and jets more luminous than the billions of other stars that inhabit their host galaxy.

Their mass exhibits a puzzlingly tight correlation to the velocity dispersion of the

surrounding galaxy stars, despite the lack of feedback between these two popula-

tions. Even their very existence raises still open questions about hierarchical galaxy

formation, the formation of black holes in the early universe, and the deaths of the

first stars. As we learn more and more about black holes, these and many other

questions still remain to be answered.

Any mysteries regarding black holes remain difficult to unravel due to the shrouded
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nature of these objects. Direct observations are by definition impossible and thus

any information must be inferred from either their influence on the surrounding

environment or from the radiation emitted from an accretion disk, should one ex-

ist. This difficulty has slowed progress in black hole research, and only in the last

decade or so has concrete evidence appeared to even confirm their existence. We

attempt to add a piece to the MBH puzzle by using dynamical N-body simulations

to constrain the impact of a MBH of varying mass on the observable facets of its

immediate environment.

1.1 What We Know About Massive Black Holes

Despite the fact that the notion of a black hole was first postulated in the late

1700’s, the first suggestion of the existence of MBHs was not until the discovery of

quasars in the early 1960’s (e.g., Salpeter (1964)). The high efficiency of converting

gravitational potential energy into radiation suggested the MBH as a mechanism

to produce the astonishingly high powers radiated by these strange objects. Since

then, the gradual improvement of observational techniques at a variety of different

wavelengths has produced increasingly convincing evidence that many if not all

elliptical and spiral galaxies contain a MBH at their centers (Kormendy & Gebhardt

2001; Kormendy & Richstone 1995; Richstone et al. 1998), as was initially suggested

by Lynden-Bell (1969). In fact, the evidence for the existence of a MBH at our own

galactic center is now at least as strong as the evidence for the existence of stellar

mass black holes.

Observations have revealed sources in the centers of as many as 10% of galaxies

with inferred bolometric luminosities of 1046−48 erg/s, depending on whether the

emission is assumed to be isotropic. These sources, called Active Galactic Nuclei
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(AGN) also exhibit X-ray variability on timescales of a few hours, providing a tight

upper bound for the size of the region from which this radiation is emitted. This,

combined with the line emission from gas moving at speeds of thousands of km s−1

strongly suggests that the signal is the result of an extremely deep potential well

rather than a stellar process.

While a deep potential well could a priori be the result of a dense cluster of

smaller objects, several factors argue for a single massive object being responsible:

1. A dense cluster of objects would be highly unstable dynamically and is likely

to undergo core collapse on much less than a Hubble time, even in the presence

of many hard binaries (Miller 2006).

2. AGN are surprisingly similar sources considering the wide variation in lumi-

nosity, whereas we should expect significant variation in the nature of a signals

emitted from a dense cluster of objects depending on the particular details of

the system.

3. Around 10% of AGN are associated with jet structures, in which charged

particles are ejected en masse from the nucleus in a collimated, relativistic

stream. This necessitates both a relativistic potential and a preferred axis for

ejection that is stable for long timescales. A spinning MBH satisfies both of

these criteria (Begelman et al. 1984).

The tightest constraints on the existence of a MBH come from multi-year ESO

VLT observations of stellar orbits around Sgr A∗, the radio point source at the

center of the Milky Way (Eisenhauer et al. 2005). Fig. 1.1 shows the best fit to

these orbital observations from which the dark mass at the center was calculated to

be ∼ 4.0 × 106M� at a distance of 7.62 ± 0.32 kpc. The innermost of these stars,

S2, orbits with a semimajor axis of ∼ 6 × 102 AU and an eccentricity of ∼ 0.87,

3



Figure 1.1: (Figure Credit: Eisenhauer et al. (2005))

The best fit orbits to multi-year proper motion and radial velocity studies done with

the VLT around the dark mass at the center of the Milky Way. The common mass

interior to the orbits is inferred to be around 4× 106M�.
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and thus a pericenter distance of around 80 AU. The proximity of this object at

pericenter to Sgr A∗ all but excludes explanations that do not include a MBH.

While the existence of MBHs is essentially confirmed, much remains to be de-

termined about their population properties, formation, and growth. Interactions

between MBHs and their host galaxies are clearly an important clue in both galaxy

formation and evolution. The most famous of these is the tight correlation that

exists between MBH mass and the velocity dispersion of its host galaxy. This M-σ

relation was first noticed at the beginning of the century (Ferrarese & Merritt 2000;

Gebhardt et al. 2000), and a modernized rendering is shown in Fig. 1.2, leading to

the most recent formulation (Gültekin et al. 2009):

log

(
MBH

M�

)
= (8.12± 0.08) + (4.24± 0.41)× log

(
σ

200km s−1

)
. (1.1)

The velocity dispersion measurements used in the derivation of the M − σ relation

are taken from well outside the radius of influence of the MBH, making a purely

dynamical explanation for this phenomenon impossible. A connection relating the

formation and evolution of the galaxy to the growth of the MBH seems to be the

most likely explanation.

Unfortunately, while the growth of the more massive MBH candidates (& 108M�)

is thought to be due to radiatively efficient gas accretion (Marconi et al. 2004; Soltan

1982), little is known about the growth of the smaller MBHs, including the one re-

siding in our own Milky Way. Many suggestions have been made (see Miller et al.

(2009) for a brief summary), but the increased difficulty involved in observing these

inherently dimmer objects currently stands as a limiting factor in this line of re-

search. Understanding the formation mechanism responsible will require, among

other things, a better understanding of the characteristics of the existing popula-

tion. Unfortunately, even measurements from the next generation telescopes are

unlikely to reduce the uncertainty in MBH mass measurements to below a factor of

5



Figure 1.2: (Figure Credit: Gültekin et al. (2009))

A modern rendering of the M-σ relation, showing the strong correlation between the

inferred mass of the MBH at the center of a galaxy and the 3-dimensional velocity

dispersion of the surrounding stars.
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2 (Miller et al. 2009).

As observations of electromagnetic radiation are proving to be a necessary but

not sufficient tool to solve this and other mysteries surrounding MBHs, a new type

of instrument brings with it the promise of providing an unprecedented look into

the life of these elusive objects.

1.2 Gravitational Waves: The Prospect of Seeing

Massive Black Holes in a ’hole New “Light”

While the proliferation of multi-wavelength astronomy has greatly improved MBH

research, the inherent difficulties involved in directly observing MBH systems has

kept progress relatively slow. With the discovery of binary pulsar PSR B1913+16

(Hulse & Taylor (1975), see Weisberg et al. (2010) for the modern rendering shown

in Fig. 1.3) providing the first concrete evidence for the existence of gravitational

waves (GWs), the prospect emerged of observing MBH systems through the lens of

the gravitational radiation they emit.

To this end, the Laser Interferometer Gravitational-Wave Observatory (LIGO)

was built. LIGO has since completed its science runs, and, unfortunately, has yet

to provide a detection of a GW source. While the next generation of ground-

based GW detectors will offer improved sensitivity over LIGO, the unavoidable

noise that results from the detectors being on the surface of the Earth greatly limits

the available range of frequencies for which an adequate sensitivity can be achieved.

Plans to build the Laser Interferometer Space Antenna (LISA) attempt to cir-

cumvent this issue by moving the detector into space. LISA will probe a range of

GW frequencies unattainable by Advanced LIGO and the other second-generation

terrestrial GW detectors. Provided these detectors are completed and function as

7



Figure 1.3: (Figure Credit: Weisberg et al. (2010))

B1913+16 is a system containing two pulsars in close enough orbit to lose non-

negligible energy and angular momentum to gravitational radiation. This config-

uration allows a precise measurement of the orbital period of the system, which

slowly decays. This plot slows the near perfect agreement between this decay over

more than 30 yr with the predictions of general relativity.

planned, they will provide a truly unique view of astrophysical systems that have

long been invisible in electromagnetic radiation.

While any close encounter between two massive enough objects will emit non-

negligible gravitational radiation, we are only concerned with systems that contain

enough mass to produce GWs that will reach the Earth with detectable ampli-

tude, and whose signal can be extracted from a data stream whose complexity may
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confound even today’s fastest computers. The gradual inspiral of a stellar-mass

compact object onto a MBH of mass ∼ 104−7M� represents one such signal, even

at extragalactic distances (Amaro-Seoane et al. 2007).

This system, called an extreme mass-ratio inspiral (EMRI), represents one of the

most promising sources of astrophysical data to be mined through the LISA mission.

While the coalescence of two MBHs would produce a stronger and more easily

detectable signal, detection of an EMRI would actually provide a more valuable

test of the strong field limit of general relativity. Because the compact object is

essentially a test particle in the field of the MBH, the gravitational waves produced

by this system carry otherwise unobtainable information about the (nearly Kerr)

spacetime around the horizon of the MBH (Ryan 1995), in addition to the mass

of the MBH, its spin, as well as the mass and orbital elements of the inspiraling

compact object.

Fig. 1.4 shows a simulation of the relative signal strengths of the expected sources

of LISA-detectable GWs. Extracting the signal from an extragalactic EMRI from

the much stronger foreground noise generated by Galactic compact binaries will

be difficult, but theoretically possible due to the longevity of the signal (Amaro-

Seoane et al. 2007). The addition of information about the likely rate and orbital

characteristics of EMRIs would enhance the likelihood of obtaining a detection,

as the gravitational waveforms themselves are strong functions of eccentricity (e.g.

Barack & Cutler (2004); Wen & Gair (2005)). In order to provide this information,

we require a detailed understanding of the complex dynamics that occur at the

centers of galaxies where these systems are found.

To produce a LISA-detectable EMRI signal at extragalactic distances, a compact

object must orbit closely enough to radiate continuously in the projected LISA peak

frequency range (0.1-100 mHz, see Larson et al. (2000)), corresponding to an orbital
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Figure 1.4: (Figure Credit: Amaro-Seoane et al. (2007))

A synthetic model of the relative strengths of various LISA-detectable signals. The

stream will likely be dominated by Galactic white-dwarf binaries at the wavelengths

emitted by an EMRI signal. The longevity of the EMRI, which will radiate contin-

uously during the last ∼ month of the inspiral should allow the signal-to-noise ratio

to be built up to where a detection is possible.

period PLISA ≤ 104s. Only during the last ∼ month of the inspiral will the object’s

period fall below this threshold. Thus, it will be undetectable during most of its

inspiral time, which is given by

τmerge ' 6× 1017 (1M�)3

M•m(M• + m)

( a

1AU

)4

(1− e2)7/2yr, (1.2)

where M• is the mass of the MBH, m is the mass of the orbiting object, and a and

e are the semimajor axis and eccentricity of the orbit, respectively.

Because τmerge is a strong function of pericenter distance (rp ≡ a(1 − e)), most

EMRI candidates in the standard capture model are objects on highly eccentric

orbits (we note that other models for EMRI formation exist, e.g., Miller et al. (2005)

- we will focus solely on captures in this work). A high eccentricity will cause these
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objects to shed energy and angular momentum during close pericenter passages,

even when their semimajor axes are still large. During this time, interactions with

other stars can disrupt their progress, either raising their pericenter distance to

where they will no longer lose energy, or lowering it enough to cause a direct plunge

into the MBH. Hopman & Alexander (2005) find that objects with a & .01 pc are

unlikely to be able to shed enough energy to become an EMRI without first being

disrupted to a lower-eccentricity or plunge orbit.

Within the innermost .01 pc, the near-Keplerian potential leads to orbits that

retain their spatial orientation for many periods. In this regime, the traditional

assumption of uncorrelated encounters is no longer valid, and long-lived orbits exert

coherent torques on one another leading to greatly enhanced angular momentum

relaxation in a process called resonant relaxation (Rauch & Tremaine 1996). Reso-

nant relaxation causes linear changes to the magnitude of the angular momenta of

the objects on timescales less than the natural precession timescale of the system.

Close to the MBH the precession is dominated by the effects of general relativity

(GR) . As orbits get farther away from the MBH, orbital precession is caused by

the deviations from a pure Keplerian potential caused by the enclosed mass of other

orbiting objects.

Previous investigations into the rate of EMRIs have presented mostly semi-

analytic and Monte-Carlo simulations of these systems, both with and without the

effects of resonant relaxation (e.g. see Hils & Bender (1995), Sigurdsson & Rees

(1997), Hopman & Alexander (2005), Hopman & Alexander (2006a), among oth-

ers). A fully realistic simulation of the radius of influence of a MBH remains beyond

modern computational capabilities, so the degree to which resonant relaxation af-

fects the dynamics near a MBH remains a key uncertainty that must be conquered

before the EMRI rate can be determined. We do know that the importance of res-
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onant relaxation depends critically on the degree to which it is quenched by GR

pericenter precession. In Chapter 2, we pick up the quest to better constrain the

rate of EMRIs through modern direct N-body simulations both with and without

the first-order Post-Newtonian correction.

1.3 Intermediate-Mass Black Holes

While the evidence for the existence of both stellar-mass black holes and MBHs

mounts, a natural question arises. Is the gap between their masses (∼ 5−25 M� for

stellar mass black holes and ∼ 106−9 M� for MBHs) real and therefore an important

clue as to the formation of these two populations? Or do black holes exist to fill

this gap that we simply have yet to find - so-called intermediate-mass black holes

(IMBHs; with masses ∼ 102−4 M�).

If these objects do exist, extrapolation of the M − σ relation (Eq. 1.1) would

suggest they exist in stellar systems with velocity dispersions of ∼ 7 − 20 km/s.

Globular clusters are a common example of systems with the requisite velocity

dispersion. Indeed, theoretical work has suggested that some globular clusters may

harbor IMBHs in their centers (e.g., Portegies Zwart et al. 2004). If this is the case,

there are significant consequences for ultra-luminous X-ray sources, gravitational

wave emission from dense star clusters, scenarios of hierarchical MBH formation,

and the dynamics of globular clusters (GCs) in general (see Miller & Colbert 2004;

van der Marel 2004 for an overview).

Definitive evidence for the existence of IMBHs has, however, been elusive. For

example, Gebhardt et al. (2002, 2005) argued for an IMBH in G1 based on the

analysis of HST line-of-sight velocity data and Keck spectra, but an alternative

analysis by Baumgardt et al. (2003a) points out that acceptable dynamic models
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without a large central object also fit the observations. Gerssen et al. (2002, 2003)

argued that the kinematics of M15 seem to slightly favor the presence of an IMBH,

but for this cluster alternative interpretations exist (Baumgardt et al. 2003b; Dull

et al. 2003). More recently, the observed line-of-sight kinematics of Omega Cen have

also been used to argue for the presence of an IMBH (Noyola et al. 2008).

A more secure identification of an IMBH in a GC can, in principle, be provided

by also measuring the proper motion of central stars in order to reconstruct their

orbits and thus firmly establish if a central massive point object is present, similar

to the Eisenhauer et al. (2005) work done in the Galactic center. Several HST-GO

programs based on this idea have been approved in past cycles (e.g. GO10474, PI

Drukier; GO10401 & GO10841 PI Chandar; GTO/ACS10335 PI Ford), but to date

they have not yielded any indisputable detections. The limitation for such studies

is the need to carry out multi-year observations, thus progress is slow. To maximize

the chances of success it is thus of primary importance to focus the observations on

the candidates most likely to harbor an IMBH.

Candidate selection is possible if one focuses on the indirect influence of the

IMBH on the dynamics of its host. Direct N-body simulations by Baumgardt et al.

(2004) and Trenti et al. (2007a) found that the presence of an IMBH acts as a central

energy source that is able to prevent gravothermal collapse and thus maintain a

sizable core to half-mass radius ratio throughout the entire life of the GC. The

existence of such a large (& 0.1) core to half-mass radius ratio in a collisionally

relaxed cluster might be due to the presence of an IMBH (see also Heggie et al. 2007).

However, the picture becomes more complicated when this signature is transferred

from the ideal world of N-body simulations, where a complete knowledge of the

system is available, to real observations, where essentially only main sequence and

red giant branch stars define the light profile of the system. In fact, an analysis by
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Hurley (2007) cautioned that the difference between mass and light distributions

can lead to a large observed core to half-light radius ratio for GCs with single stars

and binaries only.

In Chapter 3, we continue the search for indirect IMBH fingerprints by focusing

on the consequences of the presence of an IMBH on mass segregation. Through

direct N-body simulations we show that the presence of a large (of order 1% of the

total mass), central mass significantly inhibits the process of mass segregation, even

among only visible main sequence stars and giants. To the best of our knowledge

this effect was first briefly mentioned in Baumgardt et al. (2004), but left without

further quantitative analysis. Quenching of mass segregation is present in all of

our simulations with an IMBH, independent of the initial conditions of the cluster,

including variations in initial mass function, density profile, strength of the galactic

tidal interaction, number of particles and initial binary fraction.

We find that examining the radial gradient in the average visible stellar mass

radius is effective in separating star clusters with and without an IMBH, provided

that the stellar system is at least 5 initial half-mass relaxation times old. This

measure is observationally feasible with current data (for example, see De Marchi

et al. 2007 and references therein), and in Chapter 4 we apply this method to existing

data for two small Galactic globular clusters, NGC 2298 and M10 to demonstrate

the feasibility of this technique.
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Chapter 2

The Impact of Resonant

Relaxation on the Rate of

Extreme Mass-Ratio Inspirals

2.1 Introduction

In this Chapter, we delve into the dynamics of systems dominated by a MBH with

the purpose of estimating the rate of EMRIs. Throughout, we will assume a spheri-

cally symmetric system of point-mass objects of average mass m and number density

n (which may vary as a function of distance from the center of the system) orbiting

a MBH of mass M•. The mutually exerted gravitational attraction of the bodies in

the system is the only force that will influence its evolution.

Given the fact that we are observing galaxies after they have existed for billions

of years, any compact objects that form on orbits eccentric enough to lose significant

energy to gravitational radiation will have merged long ago. Thus, our concern is

the rate at which a compact object’s orbit at the center of a typical galaxy will be
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perturbed into a highly eccentric orbit in an otherwise steady-state system.

On the traditional assumption of uncorrelated encounters between the objects,

two-body relaxation is the only process by which orbits change. As objects pass one

another, they exchange energy and angular momentum. Because a given encounter

is as likely to increase the energy/angular momentum of an object as it is to decrease

it, both quantities evolve as a random walk in time

∆E

Ei

∼ ∆L

Lmax

∼
(

t

trlx

)0.5

, (2.1)

where Ei is the initial energy of the orbit, Lmax =
√

GM•a is the angular momentum

of a circular orbit at a given energy, and trlx is the characteristic timescale on which

these quantities change. This quantity is called the two-body relaxation time, and

for an object of mass m1 within a dense cluster of objects of average mass m orbiting

a MBH, it is given by (Spitzer 1987)

trlx(r) =
0.339

lnΛ

σ3(r)

G2mm1n(r)
, (2.2)

where σ is the velocity dispersion at a distance r from the center of the system, and

lnΛ is the Coulomb logarithm. Inside the radius of influence of the MBH, where

we will be focusing our attention, Λ ≈ M•/m (Amaro-Seoane et al. 2007), and

σ(r) ∼
√

GM•r−1, reducing Eq. 2.2 to

trlx(r) =
0.339

ln(M•/m)

M1.5
•

(Gr3)0.5mm1n(r)
. (2.3)

In general, the angular momentum relaxation time, tLrlx, of an orbiting object with

arbitrary eccentricity is shorter than trlx since it will have L < Lmax and, thus, will

take less time to change by ϑL. Like with trlx, tLrlx evolves as a random walk in time

∆L

L
=

(
t

tLrlx

)0.5

, (2.4)

and we relate the two by combining Eqs. 2.1 and 2.4 to yield

tLrlx =

(
L

Lmax

)2

trlx =

(√
GM•a(1− e2)√

GM•a

)2

trlx = (1− e2)trlx (2.5)
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To generate an EMRI in this scenario, we require an orbiting object to reach a

critical eccentricity threshold where the timescale to merge due to gravitational ra-

diation is sufficiently less than the local angular momentum relaxation time (making

the approximation that (1− e2) ≈ 2(1− e) when e . 1)

tGW . CEMRI(1− e)trlx, (2.6)

where CEMRI is a constant of order 1 chosen to more or less guarantee the sufficiency

of this condition. Combining this with Eqs. 1.2 and 2.2 and the parameters of our

simulations gives us a critical eccentricity at each semimajor axis where GW emission

dominates: (
a

1pc

)
.

2.3× 10−5C
2/7
EMRI

(1− e)5/7
, (2.7)

which we shall henceforth call the critical eccentricity line. We note that regardless

of the chosen value of CEMRI , there is always a chance that a close encounter with

another passing object in the system could perturb a potential EMRI candidate

onto a either a less eccentric orbit where tGW > (1 − e)trlx, or onto a plunge orbit

where it will be swallowed on an orbital timescale.

The basic picture described above has been explored in the literature in an at-

tempt to determine the EMRI rate, mostly through Monte-Carlo simulations (Fre-

itag 2001; Freitag et al. 2006; Freitag & Benz 2002; Hils & Bender 1995; Hopman

& Alexander 2005) and Fokker-Planck analyses (Hopman & Alexander 2005; Sig-

urdsson & Rees 1997). From these results, the rate of EMRIs is found to be on

the order of 10−6 − 10−8yr−1 for a MBH of mass 106M�. When combined with the

uncertainty in the distribution of dark compact objects near the MBH in galactic

centers, as well as the uncertainty in the number density of MBHs of this particular

mass, the current estimated LISA event rate for EMRIs spans quite a few orders of

magnitude.
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Subsequent to these initial works, modifications to the standard picture have

been presented. Hopman & Alexander (2006a) extended the Fokker-Planck analysis

of Hopman & Alexander (2005) by adding a diffusion term corresponding to the

effects of resonant relaxation (RR; see Sec. 2.2 for a thorough description), finding

that the rate could be enhanced by a factor of ∼ 10 depending on the efficiency of

RR. In particular, the degree to which the addition of the first-order GR correction

to the potential quenches RR will have a significant impact on the event rate. We set

out initially with the intention of quantifying this impact via numerical simulations.

Since then, Merritt et al. (2011) have presented direct N-body simulations with

and without the Post-Newtonian corrections up to order (v/c)5, the radiation re-

action term, as well as deriving a theoretical limit for the maximum eccentricity

obtained by resonant relaxation as a function of the orbital semimajor axis (see

Sec. 2.2.3). In this Chapter, we attempt to further their exploration of this partic-

ular facet of the dynamics of systems with a MBH with the ultimate goal of better

constraining the EMRI rate.

This Chapter is organized as follows. First, we provide a summary of resonant

relaxation and explore our theoretical expectations for the evolution of these sys-

tems. We will then describe the methodology of our numerical simulations. We will

then present our results, a comparison to the results of Merritt et al. (2011), and

the implications of our results for the EMRI rate.
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2.2 Overview of the Dynamics of Systems with a

Massive Central Black Hole

2.2.1 Scalar Resonant Relaxation

Resonant relaxation was first presented in Rauch & Tremaine (1996) and we mainly

follow their derivation below. We consider a system of N � 1 stars of average mass

m orbiting a MBH of mass M• � mN , conditions that are easily met at the center

of a typical galaxy. Deep within the radius of influence of the MBH, the potential is,

to lowest order, Keplerian, resulting in nearly closed orbits that remain essentially

constant for many orbital periods. This fact invalidates the usual assumption of

uncorrelated encounters, as objects will make the same passages by one another

repeatedly as they follow their orbital paths.

Even in a purely Newtonian system, however, the orbits will slowly precess due to

the deviations from a Kepler potential created by the interior mass of other orbiting

objects. The timescale on which a typical star in the system will precess depends

on the degree of dominance of the central mass as

tprec ∼
M•

m∗
torb, (2.8)

where m∗ is the total enclosed mass of other stellar-mass objects, and torb is the

orbital timescale. We will use tprec throughout this Chapter to signify this (New-

tonian) mass precession timescale. GR pericenter precession also causes changes in

the orbits on a timescale given approximately by

tprec,GR '
c2a(1− e2)

6GM•
torb, (2.9)

where a and e are the semimajor axis and eccentricity of the orbit, respectively. As

general relativistic precession is always prograde and mass precession is retrograde,
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the timescale on which an individual object will precess is given by

tprec,tot =

(
1

tprec,GR

− 1

tprec

)−1

. (2.10)

We first consider this system on a timescale, t, such that torb � t � tprec. On

this timescale, orbits are constant enough that they can be thought of as wires with

mass density inversely proportional to the speed of the object at that point in the

orbit. A wire with mass m and semimajor axis a will exert a torque on another wire

of similar semimajor axis with magnitude

τ ∼ Gm

a
. (2.11)

The total torque acting on a particular wire will, on average, sum to zero in a

spherically symmetric system. However, local Poissonian deviations from symmetry

will lead to a torque excess in a random direction with average magnitude

τtot ∼
√

Naτ =
√

Na
Gm

a
, (2.12)

where Na is the number of objects with similar enough semimajor axes to con-

tribute. Objects with semimajor axes greater than twice the apocenter distance of a

given star will have negligible contribution to the torque (Gürkan & Hopman 2007).

Because these torques are coherent, the fractional change in the specific angular

momentum grows linearly as

∆L

Lmax

∼ βs
τt

aV
, (t � tprec,tot) (2.13)

where V is the characteristic orbital speed and βs is a dimensionless constant of

order unity. We now use that GM• ∼ V 2a and torb ∼ a/V to rewrite this as

∆L

Lmax

∼ βs
m
√

Na

M•
t/torb. (t � tprec,tot) (2.14)

On timescales t � tprec,tot we will see random-walk behavior in ∆L/Lmax with each

step being of length tprec and, therefore, magnitude given by

∆L

Lmax

∼ βs
m
√

Na

M•
tprec,tot/torb. (2.15)
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Thus, the overall evolution of the angular momentum is

∆L

Lmax

∼ βs
m
√

Na

M•

(
tprec,tott

t2orb

)1/2

, (t � tprec,tot) (2.16)

and, in the pure Newtonian case we can reduce this further via Eq. 1 to(
∆L

Lmax

)
Newt

∼ βs

√
m

M•
(t/torb)

1/2. (2.17)

This leads to a reduced angular momentum relaxation time, defined by (∆L/Lmax)Newt ∼

(t/trel)
0.5, of

trel ∼
M•

m
torb. (2.18)

2.2.2 Vector Resonant Relaxation

Over timescales t � tprec,tot, objects trace out planar rosettes in space. One can

also consider the mutual torque between two rosettes. These torques effectively act

between disk-like structures, so they cannot affect the shape of the orbits within

the rosettes, only their spatial orientations. These torques will add coherently with

magnitude T ∼ N1/2Gm/a on timescales t � tLprec, where

tLprec ∼
√

Na
M• + m

m
torb (2.19)

is the timescale on which the rosettes precess. In near-Keplerian systems where

M• � m, we expect

tLprec ∼
√

Natprec. (2.20)

Vector resonant relaxation functions despite the presence of rapid apsis preces-

sion, so it will be a factor in the dynamics of systems with a MBH. However, as it

cannot affect the pericenter of orbits, we will mostly focus our attention on scalar

resonant relaxation in this work.
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2.2.3 Derivation of the Maximum Eccentricity From RR

As noted in Rauch & Tremaine (1996) and Hopman & Alexander (2006a), GR peri-

center precession will greatly reduce the efficiency of resonant relaxation by scram-

bling the torques exerted on a particular object’s orbit and limiting the period of

coherent change to its angular momentum. However, Merritt et al. (2011) discov-

ered that it also creates the so-called Schwarzschild Barrier, which is a theoretical

maximum in the eccentricity that can be achieved by resonant relaxation.

We first derive the expression, following the Merritt et al. (2011) derivation, then

provide a qualitative explanation. Going back to Eq. 2.12, we have that the total

torque excess on a given object in the system τ ≈ Gma−1
√

Na. Since the total

(specific) angular momentum of an object is given by L =
√

GM•a(1− e2), the

timescale on which L changes is

tL ≈
L

τ
≈
√

GM•a(1− e2)

Gma−1
√

Na

=
M•

m

√
a3(1− e2)

GM•Na

. (2.21)

In order for resonant relaxation to significantly affect the angular momentum of the

object, this timescale must be less than the precession timescale due to GR, which

is given in Eq. 2.9 as

tL . tprec,GR '
c2a(1− e2)

6GM•
torb =

2πc2a5/2(1− e2)

6(GM•)3/2
=

2πa5/2(1− e2)

3rs(GM•)1/2
, (2.22)

where rs = 2GM•/c
2 is the Schwarzschild radius of the MBH, and we have applied

Kepler’s 3rd Law. Substituting the full form of tL gives

M•

m

√
a3(1− e2)

GM•Na

.
2πa5/2(1− e2)

3rs(GM•)1/2
. (2.23)

Isolating the term with the eccentricity, asserting that π ∼ 3, and squaring both

sides gives us

(1− e2) &
1

4

(rs

a

)2
(

M•

m

)2
1

Na

, (2.24)
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thus providing us with a maximum eccentricity that can be attained through reso-

nant relaxation.

In order to understand this, we postulate the following scenario. Suppose that

the particular details of the system at some time cause a torque excess that rapidly

lowers the angular momentum of an orbiting object to near this barrier. As the

object’s pericenter becomes lower and lower, it will begin precessing rapidly - much

more rapidly than the rest of the system. When the object has precessed by π

radians, symmetry demands that the same torque excess that caused a decrease

in L before will cause the opposite effect now, because the relative constancy of

the other orbits leaves the torque excess essentially unchanged. The object will

“bounce” off of this invisible barrier and return to a higher value of L.

To verify that this effect is indeed the explanation for the Schwarzschild barrier,

we assume that the torque on an orbit varies naturally as a simple function of the

argument of periapse, ω, as

dL

dt
= τ = −τtotcos(ω), (2.25)

where τtot is the typical torque excess given by Eq. 2.12. We then rewrite the

equation for the precession rate of an orbit in a more convenient form

∆ω =
3π

8

(
LLSO

L

)2

(t/torb), (2.26)

where LLSO = 4GM•/c is the angular momentum of the last stable circular orbit.

We now change units so that times are measured in units of torb for the particle

under consideration, and so that L is measured in units of LLSO, yielding L̇ = −
√

NGm
a

cos(ω)

ω̇ = 3π
8L2 ,

(2.27)

which is a coupled set of differential equations that we can integrate numerically. We

start each object at an initial angular momentum of L0 = 100LLSO and a different
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Figure 2.1: Compares the Merritt derivation of the Schwarzschild Barrier (Eq. 2.24;

solid line) to the one obtained by our solution to the set of differential equations

given in Eq. 2.27 for varying values of the semimajor axis (x points). Also shown

as the dashed line is Eq. 2.7 with CEMRI = 0.1 (red), 0.4 (blue) and 0.7 (green)

for the parameters used our second set of simulations (see Sec. 2.3). The fact that

the Schwarzschild Barrier falls above this line for a ≤ .01 pc indicates that resonant

relaxation alone cannot generate an EMRI.
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value of the semimajor axis, then step forward in time until a minimum is reached.

In Fig. 2.1, we plot these minima with the hatched points alongside the prediction

for the Schwarzschild barrier given by Eq. 2.24. We can see that the two are in good

agreement, especially given the approximate nature of the preceding derivation. As

expected, changing L0 up to 150LLSO or down to 50LLSO only makes a tiny change

in the minimum value of L, since nearly all of the accumulation of ∆ω happens after

the pericenter becomes small. Given this agreement, we can be confident that our

assessment of the dynamical picture behind the Schwarzschild Barrier is correct.

2.2.4 Theoretical Implications of the Schwarzschild Barrier

for the EMRI Rate

Also depicted in Fig. 2.1 is Eq. 2.7 for CEMRI = 0.1 (red dashed line), 0.4 (blue

dashed line), and 0.7 (green dashed line). An object that crosses this line is ex-

tremely likely to inspiral and become an EMRI, but as we can see, the line falls

below the Schwarzschild Barrier for our simulation parameters (a ≤ .01 pc). This

means that the barrier will prevent resonant relaxation alone from taking an object

with a mildly eccentric orbit and turn it into an EMRI. Thus, we do not expect a

massive increase in the rate due to RR.

Since this barrier is not an actual physical barrier, it seems possible that an

object near the barrier in the midst of a bounce could be perturbed by an encounter

with another orbiting object into an orbit that crosses the barrier. Any object that’s

near the barrier can experience such a close encounter, but for this to be reasonably

likely, the timescale for orbital change (i.e., 2-body angular momentum relaxation

time) must be smaller than the time it takes the object to complete the bounce,

which is essentially tprec,GR. This criterion is thus expressed as (using Eqs. 2.5 and
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2.9)

tLrlx ≈ .03(1− e2)
M1.5

•√
Ga3m1mn(a)

. tprec,GR =
a(1− e2)c2

6GM•
torb, (2.28)

where we have assumed that ln M•/m ∼ 10 and that the relaxation time at radius

r holds for an orbiting object at semimajor axis r. The eccentricity dependencies

cancel nicely, leaving us with a condition on the semimajor axis. We apply Kepler’s

3rd law, torb = 2π
√

a3/GM•, and make the approximation that 2π ≈ 6, leaving

.03
GM3

•
a4c2m1mn(a)

. 1. (2.29)

Finally we, make the approximation that n(a) ∼ N/a3 and isolate a, leaving

apenetrate & .03
GM3

•
Nc2m1m

, (2.30)

which for the parameters in the Merritt et al. (2011) simulations (and our second

set of numerical simulations) comes out to apenetrate & .01 pc = 2000AU . Below

this threshold, we expect objects crossing the Schwarzschild barrier to be scarce.

We note that this value is likely to be an overestimation of the true threshold for

a two reasons. Firstly, Eq. 2.9 assumes that the angular change per orbit is small,

which means that the approximation will break down near the barrier. Secondly, we

see in our simulations (as do Merritt et al. (2011) in their simulations) that objects

frequently oscillate near the barrier as long as the net background torques remain

roughly constant, i.e., the precession timescale of the other objects in the system.

Since this will, by construction, be longer, we expect a lower value of apenetrate. In

fact, Merritt et al. (2011) derive an equation for the same critical value of a,(
a

mpc

)
penetrate

≈ 15

(
CSB

0.7

)(
M•

106M�

)5/2(
m

10M�

)−3/2(
N

102

)−1/2

, (2.31)

where CSB is a dimensionless constant of order unity that is related to the minimum

value of a for which the Schwarzschild barrier exists. Assuming CSB = 0.7, we obtain

a value of apenetrate & 500 AU for our EMRI rate simulations.
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Given the existence of a barrier preventing orbits from reaching high eccentricity,

we might question whether these findings will lower the EMRI rate even below the

findings in the literature. Hopman & Alexander (2005) found that the majority of

EMRI candidates originate from highly eccentric orbits near the maximum value of

a that could lead to a merger, which they found to be around .01 pc. In this region

of orbital parameter space, tLrlx ∼ 2 × 104yr, meaning that the fractional change in

L during a single orbit is ϑ10−1. These facts suggest that

1. The existence of the Schwarzschild barrier should not decrease previous pre-

dictions for the EMRI rate, as RR is not the dominant dynamical effect when

the orbital evolution in a single orbit is significant. This can also be seen

in Fig. 2.1 from the fact that for large enough semimajor axis, the barrier

actually lies to the left of the critical eccentricity line.

2. RR could still enhance the rate of EMRIs by repeatedly bringing objects with

a < .01 pc near the Schwarzschild barrier, thus giving them many opportuni-

ties to be perturbed across the border onto inspiraling orbits.

2.3 Numerical Simulations

2.3.1 Numerical Methodology

Our original intention in this project was to use PKDGRAV (Stadel 2001), to

perform our simulations. PKDGRAV is a parallel tree code, which would have

allowed it to perform integrations much faster than a direct N-body ever could on a

single processor. This would have allowed exploration of significantly higher numbers

of objects and longer integration times. However, we were ultimately unable to

adapt the code to accurately handle the extremely close encounters that are crucial
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Table 2.1: Orbital Precession in HNBody vs. Expected Values

a e dωpred dωHNBody ∆dω/dωpred

100 0.99 0.0935 0.0965 0.032
100 0.95 0.0191 0.0192 0.006
100 0.90 0.00979 0.00982 0.003

Note. — The integrations were performed with M• = 106M� and m = 50M� as in our second
set of simulations.

to EMRI formation without adopting a prohibitively low timestep. Full details of

our attempt to use PKDGRAV for this problem are described in Appendix B.

We present two sets of simulations in this work. The first set of simulations was

created with the intention of observing the degree of resonant relaxation in the inner

∼ 100 AU, where the gravitational dominance of the MBH is strongest. While this

dominance provides the highest potential for RR, it also the creates the shortest

precession timescales due to GR. This first group of simulations was performed en-

tirely with HNBody, a direct N-body code, with the adaptive fourth-order Runge-

Kutta integrator option (Rauch & Hamilton, AJ, in preparation). While itself a

purely Newtonian code, HNBody allows optional inclusion of the first-order Post-

Newtonian correction as described in Newhall et al. (1983).

As we care about resonant relaxation, it is important that our code replicate the

GR pericenter precession well. Tab. 2.1 compares the small-angle precession formula

given in Eq. 2.9 to the changes observed during integrations with HNBody. We can

see that it closely reproduces the appropriate angular apsis change in the low-angle

precession regime where the Eq. 2.9 is valid. We also note that, as expected, the

approximate formula gives slightly lower values for the precession than integrating

the equations of motion.
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Our choice of a direct N-body code was motivated by the desire to correctly

resolve the effects of resonant relaxation. However, this choice made simulation of

even a significant portion of the radius of influence of the MBH computationally

impossible due to the slow nature of the method. To effectively probe the long-term

effects of resonant relaxation, we require integration to a final time tf & (M•/m∗)torb.

For objects within ∼ 100 AU we require tf & 104 yr to minimally satisfy this

criterion. Because of the computational complexity of integrating objects on close

orbits to the MBH, we were forced to accept N ≤ 100 for this group of simulations,

despite only integrating to a final time of tf = 104 yr.

Even with this short integration time, error accumulation became an issue. While

our Newtonian simulations accumulated miniscule error during these integrations,

those with the first-order Post-Newtonian correction had substantial, but tolerable

error. To some degree, we expect extra accumulation of error when applying this

correction when objects have close passages near the MBH. After all, the Post-

Newtonian expansion is a Taylor series in (v/c), where v is the velocity of the object

and c is the speed of light, and it is common for objects in our simulations to

achieve velocities that are ∼ 0.1c, bordering on a regime where this approximation

is no longer valid.

At the conclusion of our first set of simulations, we concluded that it was neces-

sary to explore orbits with larger semimajor axes, as the inclusion of GR pericenter

precession nullified the effects of RR in all but our largest system. Concurrently

with this realization, the work in Merritt et al. (2011) was initially presented with

simulations of fifty 50M� point masses orbiting a MBH of mass 106M� spanning

a volume out to 10 mpc (2000 AU). In order to facilitate a comparison with these

results, we adopted these basic initial conditions for most of our second set of sim-

ulations. The expansion of the system also allowed us to integrate for substantially
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longer (∼ 105−6 yr) due to the decreased computational complexity of a sparser

system.

We set out intending to use just HNBody for our second set of integrations

as we did for the first. However, our initial integrations with the Post-Newtonian

correction accumulated unacceptably high angular momentum error, in some cases

greater than the total initial value of the angular momentum of the system. Our

investigation into the source of this error revealed that the rapid error accumulations

corresponded to the existence of a single object on a highly eccentric orbit with a

pericenter of only a few gravitational radii (rg = GM/c2) around the MBH.

Tab. 2.2 shows the fractional error in a system similar to those in Merritt et al.

(2011) due to a single pericenter passage of an object with varying eccentricity (and

thus of the pericenter, rp). Obviously, the existence of such an orbit would cause the

accumulation of a prohibitive amount of error in a very short integration time, thus

rendering its simulation useless. Unfortunately, as we see in the final two columns of

Tab. 2.2, increasing the required accuracy of the integration did nothing to assuage

this problem. Due to the fact that the evolution of these highly eccentric orbits are

crucial to the estimation of the EMRI rate, HNBody alone was insufficient to handle

this problem.

In order to address these concerns, we wrote a separate code called HNBDriver

to iteratively call HNBody in many smaller time increments. After each time seg-

ment, the code checks for the existence of objects whose merger time due to grav-

itational radiation is less than the local two-body angular momentum relaxation

time. When such an object exists, it switches over to integrating the system with

a second version of HNBody, HNDrag, which allows the inclusion of user-specified

extra forces. In this case, we include the radiation reaction term (proportional to

(v/c)5) from the Post-Newtonian approximation, which is responsible for the energy
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Table 2.2: Accumulated Errors During a Single High Eccentricity Orbit with the

First Order Post-Newtonian Correction

e rp/(GM/c2) ∆E/Ei |∆~L/~Li| ∆E/E∗
i |∆~L/~Li|∗

0.999987 3.2 9.8e-5 2.6e-3 5.2e-5 5.1e-3
0.999985 3.4 1.1e-4 2.1e-3 2.5e-4 4.2e-3
0.999980 3.6 9.9e-5 1.4e-3 2.2e-4 2.7e-3
0.999975 4.1 5.7e-4 8.9e-4 1.3e-4 1.8e-3
0.999970 4.7 2.5e-5 5.1e-4 6.7e-5 1.0e-3
0.999960 6.3 2.4e-6 8.4e-5 2.1e-5 1.7e-4
0.999950 8.2 -3.1e-6 2.0e-5 2.1e-5 4.6e-5
0.999930 12.2 -5.0e-6 3.8e-5 2.1e-5 8.2e-5
0.999900 18.2 -4.6e-6 2.4e-5 2.1e-5 5.4e-5
0.999500 96.1 2.0e-5 1.1e-5 2.1e-5 1.1e-5
0.999000 191.7 2.1e-5 1.5e-5 2.0e-5 1.5e-5

n/a n/a 2.2e-6 4.3e-7 2.1e-6 2.0e-7

Note. — The two columns with a ∗ indicate a higher integration accuracy threshold (10−13

instead of the usual 10−12). The system used consisted of 50 orbiting objects during a single
pericenter passage of an orbiting object with semimajor axis a ∼ 2000 AU and eccentricity given
in column 1. The last line of the table shows the errors accumulated during the same integration
time for the rest of the system without this particular particle to establish a baseline.

and angular momentum loss. We continue integrating with HNDrag until the object

is either perturbed onto an orbit that is unlikely to continue towards a merger, or

until its merger time is a small fraction of the local two-body relaxation time. In

this case, we remove the offending object on the grounds that it is practically guar-

anteed to become an EMRI. Full details of HNBDriver are provided in Appendix A.

The addition of this code both serves to allow us to provide a reasonable estimation

of the EMRI rate as well as limiting the error due to unnecessary (and unphysical)

integration of close orbits.

Despite the use of HNBDriver to conduct our second set of simulations, accu-

mulation of error remained a limiting factor in our progress. Unfortunately, some

simulations still accumulated prohibitively high angular momentum errors due to
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either

1. Objects that were eventually removed from the system, but caused high errors

prior to their removal, or

2. Objects whose merger time was never low enough to be removed but whose

pericenter passages still resulted in significant error accumulation during the

simulation.

In practice, we terminated simulations when the system-wide fractional error in the

energy or angular momentum reached around 10−2. As such only a few of them

made it all the way to our desired final integration time of 106 yr.

2.3.2 The Likely Source of Error in our Integrations and Its

Implications

As stated in the previous section, despite our best efforts, accumulation of error still

remained a thorn in the side of our progress. After careful investigation, we have

concluded that a significant portion of this error stems from a failure to conserve

the motion of the center of mass in a close pericenter passage between an orbiting

object and the MBH when tne HNBody is applying the first-order Post-Newtonian

correction.

We conducted the following experiment. First, we performed an integration of

just a single body on an orbit with a semimajor axis of 2000 AU and an eccentricity

of 0.9999 around a MBH of mass 106M�. The code passed this test with flying colors

- the fractional error in the angular momentum during this integration was around

10−10. However, because the code outputs in barycentric coordinates, any spurious

motion of the center of mass would be subtracted out before the output. In order

to see this, we added a third object on a nearly circular orbit with a = 2000 AU.
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Table 2.3: Velocity Jump in a Third Object Due to a Close Pericenter Passage

t x/AU y/AU z/AU vx/(AU/yr) vy/(AU/yr) vz/(AU/yr)
24.783 -59.160461 -1984.7842 0.051256249 141.14466 9.9165681 0.011961366
24.784 -59.019316 -1984.7742 0.051268169 141.14500 9.9268896 0.011861988
24.785 -58.878171 -1984.7643 0.051279879 141.14543 9.9387545 0.011406578
24.786 -58.737026 -1984.7543 0.051288449 141.15018 10.012879 -0.0040895004
24.787 -58.595876 -1984.7443 0.051284135 141.15055 10.024314 -0.0044105982
24.788 -58.454725 -1984.7343 0.051279695 141.15086 10.034616 -0.0044601151

The fractional angular momentum error accumulated during this single pericenter

passage jumped to ∼ 10−4 as a result of adding an object that was nowhere near

the interaction of the other two objects.

To investigate further, we examined the actual coordinates of the objects with

high time resolution. Tab. 2.3 shows the output of this third object (in barycentric

coordinates) just before and after the pericenter passage of the other two objects

after t = 24.785 yr. Despite being almost 2000 AU away at the time, we see a

sudden velocity jump in this object during the exact step where the other two

objects experience their close encounter. When we calculate the velocity of the

center of mass of the first two bodies, we do indeed see that it also experiences an

equal and opposite kick (when multiplied by the appropriate mass ratio) at the same

instant.

This explanation also makes sense in light of our experience with the code,

namely that we experience significant error accumulation where there is an object

making repeated pericenter passages. It also explains why the object causing the

problems does not seem to experience any erroneous motion. Because our purely

Newtonian simulations accumulated several orders of magnitude less error, it seems

possible that there is a problem with the implementation of the Post-Newtonian

correction.
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The Newhall et al. (1983) implementation that is used by HNBody is given by
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∑
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where mi is the mass of body i, ~ri, ~̇ri, and ~̈ri are its barycentric position, velocity

and acceleration vectors, µj ≡ Gmj, ~rij = |~rj −~ri|, and β = γ = 1 for our purposes.

We have omitted the last term in the Newhall et al. (1983) equation, which is

unique to solar system applications, and we note that the two terms that contain

~̈rj are specific to the application of the Post-Newtonian correction in a barycentric

coordinate system.

This implementation turns out to be slightly different from a more recent version

given by Blanchet (2006) for two orbiting objects (truncated after the first Post-

Newtonian correction)
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where ai
1 is the acceleration of body 1’s ith coordinate, r12 is the coordinate distance

between the two objects, n12 is the unit vector in the direction from body 1 to body

2, v1 and v2 are the velocities of the two objects, respectively, and (v1v2) denotes

the inner product.

These two expressions look almost nothing alike at first but when put into the
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same notation they are nearly identical. We start with the Newhall et al. (1983)

expression, and recognize that for the purposes of comparison, all of the summation

terms contain only one term, since the Blanchet (2006) expression is only between

two orbiting objects. Thus, the summations with i 6= j and i 6= k can be replaced

by a single term with j as an index, and the terms with j 6= k are replaced by an

index of i. Making this change and substituting β = γ = 1 yields
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We then replace µj with Gmj, ~̇r by ~v, and (~rj − ~ri)/rij by the unit vector, ~nij, and

remove the two terms with r̈j (which are coordinate-system dependent), giving us
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As our final transformation, we multiply the first term through, pull out a factor of

negative one, and then collect all of the terms with a 1/c2 together, yielding
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Except for one term, this is identical to Eq. 2.33 if we change the indices from i, j

to 1, 2 and take the ith component of the vector terms. The only difference is that

the 3rd term in Eq. 2.36 (corresponding to the 2nd term of Eq. 2.33) is missing a
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factor of 5. This discrepancy at least suggests a possible explanation for the error

we see in the HNBody implementation. It is unclear from the equations alone what

effect this factor of 5 would have on the dynamics of the system, or whether it would

specifically cause a non-conservation of the center of mass of the system. Without

the ability to perform more detailed tests, we were unable to further constrain the

source of the problem.

Given this discrepancy and the significant accumulation of error during our simu-

lations, we must carefully consider the validity of the results we are about to present

in light of this error. Because of the specific nature of the information we are intend-

ing to collect, we are confident that our results can still be meaningfully interpreted.

To see why this particular error is not critical to our results, we posit 4 regimes for

the error accumulation of the system and examine each qualitatively.

1. There are no objects on low-pericenter orbits (at or above the Schwarzschild

barrier). In this case, our error accumulation will be minimal and comparable

to or possibly even lower than normal integration error.

2. There is an object across or near the Schwarzschild barrier but that has not

yet crossed the critical eccentricity line (Eq. 2.7). These objects are critical in

the determination of the EMRI rate, but their pericenters are not necessarily

high enough to keep the error from accumulating too rapidly - Tab. 2.2 shows

that the errors imparted to the rest of the system are relatively constant for

10rg ≤ rp ≤ 100rg. Imparting random velocity kicks to the other objects in

the system would certainly affect their orbital evolution, although it is not

clear how this will retroactively affect our object that is creating the kicks.

The importance of these objects combined with the uncertainty in how this

error will affect their orbital evolution are why we have decided to terminate

our simulations when the fractional angular momentum error reaches 10−2.
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3. There is more than one object in the above regime. It seems likely that each of

these objects would deliver unphysical velocity kicks to the other, spuriously

affecting the evolution and probably making it easier to cross the Schwarzschild

barrier. However, this scenario is extremely unlikely given the brief time for

which an object can remain near the barrier (only 6 objects crossed the barrier

in over 107 yr of integration time).

4. There is an object that has crossed the line given by Eq. 2.7 into the zone where

gravitational radiation becomes dominant. Here, the error accumulation will

likely be unacceptably high, as the orbit’s pericenter distance will be very

low; however, we no longer care about the specific details of the other objects

from the perspective of whether or not this object will merge - it is well past

the point where resonant relaxation can affect it, and really only a very close

passage from another object could deflect it onto a different course. The

object’s close pericenter passages will be imparting kicks to the other objects

in the system, but due to its rapid apsis precession, the kicks will be varying

in direction. Randomized kicks are at least as likely to prevent an impending

chance close encounter as they are to create one, so the errors we are making

should not statistically affect the destiny of these objects. The rest of the

system may no longer accurately represent the evolution of a galactic center

after the erroneous kicks, but the fact that an EMRI occurred should not be

in doubt.

In each of these regimes, it seems likely that our results can likely still be in-

terpreted as somewhat representative of the evolution of a real galactic center as it

pertains to the EMRI rate. However, given we cannot predict all of the repercus-

sions of the errors being introduced, we must always view our results in light of this

potential shortcoming.
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2.3.3 Initial conditions

The First Set of Simulations

Our choice of initial conditions for the first simulations was designed to allow us

to effectively probe resonant relaxation. Within this constraint, we attempted to

make the initial conditions agree with the accepted stellar distributions found in the

steady-state Fokker-Planck and Monte-Carlo works mentioned in Sec. 2.1. However,

since the actual distribution of matter is unknown even at our Galactic center, we

made sure to vary the initial conditions to cover as much of the available parameter

space as reasonable. The full details of our first set of simulations are reported in

Table 2.4.

We chose a MBH mass M• = 106M� for these simulations. This is comfortably

within the range of 104−7M� for a MBH likely to produce a detectable EMRI signal.

As we increase the MBH mass, the orbital velocities also increase as vcirc ∝ M0.5,

necessitating a smaller timestep for accurate resolution of all encounters, and thereby

further limiting our ability to explore longer integration times and larger numbers

of objects. In contrast, as we decrease the MBH mass below 107M� we encounter

fewer and fewer galaxies for which the simulations would be representative. We

chose 106M� to balance between these two competing effects.

A typical galactic center with a central mass of 106M� has a two-body relaxation

time of a few Gyr, which is less than the age of these systems when we observe

them. As such, we expect that mass segregation, which takes place on a relaxation

timescale, will have impacted the stellar distribution by populating the center of the

system with massive dark remnants. Our choice of stellar population was designed

to account for the fact that mass segregation is likely to have populated the center

of the system with the most massive stellar remnants.
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Table 2.4: Summary of the First Set of N-body simulations of systems with an

MBH.

Name N α 〈m〉/M� amax tprec/torb tLprec/torb δs,max τ |δs = δs,max

10s2.0 10 2.0 1.0 10AU 105 3× 105 0.70 3.47× 105

10s2.0GR 10 2.0 1.0 10AU 105 3× 105 0.30 3.85× 106

10bh2.0 10 2.0 6.5 10AU 1.5× 104 5× 105 0.77 4.60× 104

10bh2.0GR 10 2.0 6.5 10AU 1.5× 104 5× 105 0.45 2.90× 106

100c2.0 100 2.0 2.5 200AU 4× 103 4× 104 0.86 1.42× 103

100c2.0GR 100 2.0 2.5 200AU 4× 103 4× 104 0.60 1.95× 103

100c1.5 100 1.5 2.5 100AU 4× 103 4× 104 0.81 4.30× 103

100c1.5GR 100 1.5 2.5 100AU 4× 103 4× 104 0.55 1.27× 104

100s1.5 100 1.5 1.0 100AU 104 105 0.87 9.33× 103

100s1.5GR 100 1.5 1.0 100AU 104 105 0.45 1.44× 104

Note. — The name of each run indicates:

• The number of stars in the simulation

• Whether the population contains only black holes (bh), evolved compact objects (c) or equal
mass stars (s)

• The slope of the density distribution function (α = 1.5 or 2.0)

• Whether or not the simulation was run with the first Post-Newtonian correction (GR)

The last two columns indicate the maximum slope of a linear fit to the scalar change in the angular
momentum for the objects in the simulation as a whole (see Eq. 2.39), as well as the number of
orbital times at which this slope was realized.

The masses of the objects in our simulations, if not all equal, were drawn from

a Salpeter (1955) initial mass function

ξ(m) ∝ m−2.35, (2.37)

usually from an initial mass range of 8 − 100M�, then instantaneously evolved

into neutron star or black hole-mass objects prior to the start of the simulation.

Objects in the mass ranges 8 − 25M� and 25 − 100M� were linearly mapped onto

1.3 − 2.0M� and 5 − 20M�, respectively. These simulations are denoted by a “c”

in the simulation name in Tab. 2.4. In some simulations, we used either equal
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masses of 1.0M� (denoted by an “s” in the name) or all black hole-mass objects

created described above (denoted by a “bh” in the name). These different mass

ranges allowed us to observe the effects of changing the Newtonian precession time,

tprec = M•/m∗, without having to deviate from our desired MBH mass.

The orbits of these objects were chosen with semimajor axes drawn randomly

from n(r) ∝ r−α with α = 1.5 or α = 2.0. These values were chosen to be close

to the value of α = 1.75 expected in a Bahcall & Wolf (1976) cusp while allowing

us to observe the effects of varying the density profile. Our mean system densities

were set by either amax = N AU or amax = 2N AU. Eccentricities were drawn from

a thermal distribution (P (e) ∝ 2ede), while the other orbital elements were chosen

to randomize the orientation of the orbits in space to reflect the spherical symmetry

within the radius of influence of the MBH.

The Second Set of Simulations

The primary difference between this set of simulations and the first is an increase in

volume by a factor of ∼ 103. The semimajor axes were drawn from n(r) ∝ r−2, but

this time from a range of 20 − 2000 AU, rather than an order of magnitude lower.

In order to facilitate a direct comparison to the Merritt et al. (2011) results, we

adopted their initial conditions almost exactly for the majority of these simulations.

This consisted of 50 point-mass objects each of 50M� orbiting a MBH with mass

106M�. As before, eccentricities were drawn from a thermal distribution, and the

orbital orientations were chosen randomly.

While 50M� is larger than the traditionally expected values for stellar-mass black

holes (Woosley et al. 2002), Merritt et al. (2011) note that this model approximately

recreates the expected total enclosed mass expected in a volume this size according

to previous simulations (e.g., Hopman & Alexander (2006b), Freitag et al. (2006)).
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Table 2.5: Summary of the Second Set of N-body simulations of systems with an

MBH.

# of Sims N 〈m〉/M� τmerge,i restricted? 〈tfinal〉/yr Merger Rate (yr−1)
5 50 50 No 6.6e5 3.0e-7
41 50 50 No 2.4e5 1.0e-6
4 100 25 Yes 3.2e5 1.3e-6
8 50 50 Yes 6.0e5 2.1e-7
4 100 25 Yes 3.9e5 6.3e-7

Note. — The runs marked with a superscript 1 were started from the end of four of the
simulations in the first line of the table. The line in the middle of the table indicates where a
different merger threshold was used. In the top group, we required the objects merger time to be
a factor of 100 less than the local 2-body angular momentum relaxation time before we remove it.
In the second group we lowered this factor to 25. We note one merger that happened in the group
with a superscript 1 began the simulation on a very eccentric orbit with a > 104AU , and finally
merged with a ∼ 105AU . Since this object would in reality be extremely likely to plunge before
merging, we did not count it when calculating our official EMRI rate.

To investigate the effects of (likely more realistically) spreading this mass over more

objects, we also ran a number of simulations with 100 objects of mass 25M� spread

over the same volume. The full details of the second set of simulations are shown

in Tab. 2.5.

There is only one real difference between the initial conditions found in these

simulations and those of Merritt et al. (2011). In an effort to limit the initial rate

of error accumulation in our simulations, we chose to redraw the orbital elements of

objects with initial merger time due to gravitational radiation tGW,i ≤ 1 Gyr for the

majority of our simulations. Besides the computational convenience of this choice,

we also justify it based on the fact that most of the galaxies from which we could

observe an EMRI signal are significantly older than this. While there are obviously

no guarantees, these objects are substantially more likely than other objects in these

systems to have already become an EMRI prior to our small window of observation.

Still, even provided this is a reasonable approximation, we note that due to this
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choice our estimation will likely be unable to constrain the upper limit of the EMRI

rate.

2.4 Results

2.4.1 First Set of Simulations

We began by performing a similar analysis to that done by Rauch & Tremaine

(1996). To gain a sense of the overall relaxation of the system, we divided the

number of orbital periods elapsed into logarithmic bins. At each system output we

calculated, for each object, the fractional change in the energy (∆E/E0), the scalar

angular momentum (∆|~L|/Lmax), and the vector angular momentum (|∆~L|/Lmax),

where E0 is the initial energy and

Lmax(E) ≡ GM•

(2|E|)1/2
(2.38)

is the angular momentum of a circular orbit with energy E. We put these values into

the bin corresponding to the number of orbital periods experienced by that object

and calculated the mean for each bin. This gives us a sense of what is happening on

average to the objects in the system at any given number of orbital periods. It is

important to note that, because each object in the simulation experiences a variable

number of orbits, the data points towards the rightmost part of these plots are only

representative of the relaxation of the innermost objects.

Fig. 2.2 shows the evolution of these quantities for several of our Newtonian

simulations with varying values of M•/m∗. In each case, we can see the coherent

growth of the changes in both ∆|~L| (red, dashed curve) and |∆~L| (blue, dotted curve)

as compared to the random walk behavior in the growth of the ∆E/E0 (solid, black

curve). This linear growth eventually subsides in all four plots, as the scalar angular
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Figure 2.2: Evolution of the fractional change in energy (black, solid line), the

scalar angular momentum (red, dashed line), and the vector angular momentum

(blue, dotted line) for four of our Newtonian simulations with different values of

tprec. As we go from upper left to lower right, we see the turnover point in the scalar

angular momentum curve (where it stops growing linearly) move to a lower number

of orbital times. See Tab. 2.4 for the value of tprec for each simulation.
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momentum curves turn over and begin behaving much like the energy curve. In each

case the turnover point occurs where t & tprec, as we expect (see Table 2.4 for the

values of tprec for each simulation). We also note that, as predicted by Eq. 2.20,

the vector angular momentum curves maintain their coherence for longer than the

scalar curves, by a factor of
√

N ≈ 3− 10.

We see a much different picture when we include GR pericenter precession.

Fig. 2.3 shows the results of the four simulations corresponding to those depicted

in Fig. 2.2, but with the inclusion of the first-order Post-Newtonian correction to

the potential. While we can still see coherent growth in the change in |∆~L| due

to vector resonant relaxation, the evidence for scalar resonant relaxation is almost

nonexistent. A typical object in the 100-particle simulations, with a semimajor axis

of 50 AU and eccentricity of ∼ 0.7 has, by Eq. 2.9, tprec,GR ∼ 4 × 102torb � tprec.

We expect coherence only on such short timescales that the curve will essentially

behave as a random walk. For objects that are close enough to the MBH to expe-

rience such rapid apsis precession, we see essentially no enhancement in the rate of

scalar angular momentum relaxation.

To better quantify the difference between the Newtonian and Post-Newtonian

simulations, we performed linear fits to our relaxation curves for varying numbers

of orbital periods, all starting from the beginning of the simulations. Once again

following Rauch & Tremaine (1996), we adopted the following fitting forms:

∆E

E0

= ζmN1/2τ ν ;
∆|~L|
Lmax

= γsmN1/2τ δs ;
|∆~L|
Lmax

= γvmN1/2τ δv , (2.39)

where τ ≡ t/torb. We expect to see the changes in angular momentum in the

Newtonian simulations reach slopes substantially greater than the 0.5 that we would

expect from just uncorrelated two-body encounters.

Figs. 2.4 and 2.5 show the evolution of these slopes in simulations 100s1.5/100s1.5GR

and 100c2.0/100c2.0GR, respectively. As t → tprec, we see δs and δv for the pure
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Figure 2.3: The evolution of the energy (black, solid line), scalar angular momentum

(red, dashed line), and the vector angular momentum (blue, dotted line) for an

identical set of four simulations as in Fig. 2.2 except for the addition of the first

Post-Newtonian correction to the potential. Qualitatively, we can clearly see that

the scalar angular momentum now mimics the evolution of the energy, rather than

the vector angular momentum as it did in the purely Newtonian simulations.
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Figure 2.4: Evolution of the slope of the fractional change in energy (ν), scalar

angular momentum (δs), and vector angular momentum (δv) for simulation 100s1.5

and its GR counterpart, 100s1.5GR. Each slope is calculated from the beginning of

the simulation to the value of τfit listed on the bottom axis.

Newtonian runs rise to ∼ 0.85, which is lower than the 1.0 that we might expect

from purely coherent growth, but still clearly distinct from the maximum values

attained by ν, which never rises much above 0.5. After reaching its maximum value,

each scalar or vector angular momentum curve begins to decline for t & tprec or

t & tLprec, respectively. Table 2.4 lists these maximum slope values along with the

value of τ for which each was realized. In the Newtonian simulations, we see good

agreement between these values and tprec, as expected.

Comparing the two plots, we see several differences that can be traced to the
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Figure 2.5: Linear fits to simulations 100c2.0/100c2.0GR as in Fig. 2.4. We note

that the maximum slope of the angular momentum rises to ∼ 0.6, suggesting that

resonant relaxation may still play a role farther from the MBH.

particular initial conditions in each simulation. The peaks in both δs and δv are

shifted to the right (corresponding to a longer period of coherence) in Fig. 2.4

due to the larger ratio of M•/m∗. We also note that the curve depicting δs(τ) for

simulation 100c2.0GR shows some evidence of resonant relaxation as it rises to ∼ 0.6

at τ ∼ 2 × 103, which is ∼ tprec,GR for a typical object in the simulation. Because

this simulation is spread out among a volume 8 times larger than in simulation

100s1.5GR (amax = 200 AU instead of 100 AU), the mean timescale for pericenter

precession is greater by a factor of 2. Longer periods of coherent torques leads to
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Figure 2.6: Relevant mass and GR apsis precession timescales as a function of radial

distance from the MBH, and in the case of tprec, the particular details of the mass

distribution. Too close or far from the MBH one of these sources of precession will

quench resonant relaxation.

more efficient RR, and we anticipate that further increases in the simulation volume

would lead to a continuation of this effect.

Fig. 2.6 plots the both tprec and tprec,GR as a function of semimajor axis for a

variety of the models we used in the first group of simulations. Very far from the

MBH, the accumulation of other enclosed masses will induce significant precession;

similarly, too close to the MBH we see rapid GR pericenter precession. Fig. 2.6

and the results of simulation 100c2.0GR suggest that there may be a middle ground

where tprec ∼ tprec,GR, and neither is low enough to prohibit some enhancement of

48



Table 2.6: Relaxation Properties of Five of Our 50-Object Simulations

Sim tfinal (yr)
(

∆E
Ei

)
pred

〈∆E
Ei
〉 〈 |∆L|

Lmax
〉 Error (E) Error (L)

1 1.5× 105 0.07 0.20 0.24 5.3× 10−4 10−2

2 5.3× 105 0.13 0.30 0.27 5.8× 10−5 10−2

3 7.0× 105 0.15 0.45 0.32 4.2× 10−5 10−2

4 9.2× 105 0.17 0.45 0.26 −1.0× 10−4 10−2

5 1.0× 106 0.18 0.37 0.32 −5.1× 10−6 4× 10−3

scalar angular momentum relaxation. In fact, given Eq. 2.10, it is possible for a

partial cancellation to lead to even less orbital precession than either process alone

in some parts of the system. This realization suggested that exploring larger volumes

would be necessary to determining the full impact of RR on the EMRI rate for our

second set of simulations.

2.4.2 Second Set of Simulations

Our second set of simulations were geared towards making a reasonable estimation

of the EMRI rate, so we will focus on that rather than zeroing in on RR as in the

previous section. As such, we aimed to balance getting maximum integration time

with the error accumulations described in Sec. 2.3.2. Tab. 2.5 lists the average time

for which we were able to integrate before reaching our predetermined fractional

error threshold of 10−2. Although we had hoped to get to around 106 yr for each of

the simulations, we actually terminated them at about half of that value on average.

There was significant variation in the integration time lengths in both the 50 and

100-object simulations - a few of them were cut off at ∼ 1 × 105 yr, while a few

others made it all the way to 106 yr while only accumulating fractional errors of a

few ×10−3. In total, we had just over 107 yr of integration time.

The overall evolution of our systems occurred significantly faster than our ex-
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pectations. The relaxation time of our systems as given by Eq. 2.2 is a few ×107 yr

for our 50-object simulations, and twice as long for our 100-object simulations. We

calculated the average fractional change in E and L as in Eq. 2.1 for the objects in

our simulations and compared them to the expected values; the results are shown

in Tab. 2.6 for the first group of 5 50-object simulations from Tab. 2.5.

In the case of both the angular momentum and the energy, the relaxation is

taking place at a rate that is significantly faster than predicted. Despite the com-

paratively higher errors accumulated in the angular momentum, its evolution more

closely matches our expectations, while the energy relaxation is greater still across

the board. This does, however, seem to confirm our assessment that resonant re-

laxation is not a dominant physical process, as the changes in L are clearly not

dominant over the changes in E.

Since the total energy and angular momentum of our systems are reasonably

well-conserved, it seems likely that the error from Sec. 2.3.2 is artificially enhancing

the relaxation via the small kicks given to the other orbiting objects during a close

pericenter passage. These seem to not have a significant impact on the total energy

conservation, as we can see that it is several orders of magnitude better than the

angular momentum conservation.

We do note that we ran one simulation that was a purely Newtonian analog to

those in Tab. 2.6, and the energy relaxation was also significantly greater than we

would expect from Eq. 2.2. Possibly this is an indication that our initial assessment

of the 2-body relaxation time is an overestimation. Still, we will have to keep this

discrepancy in mind when attempting to estimate the EMRI rate - the spurious

addition of relaxation to the system could have a significant positive effect on the

rate by allowing more objects to change their orbits toward a lower semimajor axis

(and thus a lower value of tmerge). As only one of the five simulations in Tab. 2.6
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Figure 2.7: Evolutionary tracks in a − e space of the 5 objects that crossed the

Schwarzschild barrier (dashed black line), the critical eccentricity line (Eq. 2.7 with

CEMRI = 0.1, dotted black line), and became merger events before hitting the plunge

line (solid black line).

resulted in an EMRI, this also provides further evidence that objects can cause

problems prior to reaching low enough pericenters to merge.

In total, six objects in our simulations crossed the Schwarzschild barrier; the
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Table 2.7: Orbital Properties of the EMRI-event Objects.

m/M� ai/AU ei tLrlx,i/yr tmerge/yr aSB/AU af/AU ef rp,f/(GM/c2)
501 784 0.398 2.56× 107 6.0× 105 519 26.3 0.9981 4.8
50 301 0.387 1.60× 107 7.4× 105 769 257.0 0.9996 10.2
251 736 0.894 1.18× 107 3.1× 105 689 51.5 0.9994 3.1
251 735 0.750 2.57× 107 4.9× 105 342 9.7 0.9930 6.8
25 595 0.970 3.13× 106 4.5× 105 1602 46.5 0.9988 5.6

Note. — The objects with a superscript 1 were integrated relatively longer prior to being
removed from their respective simulations. This came as a result of the changing the threshold in
ratio between merger time and relaxation time to 25 from 100.

orbital evolution of the five that became EMRI events is shown in Fig. 2.7. All six

objects flirted with the Schwarzschild boundary for a while, crossing briefly back

a few times as their orbital parameters were jostled by 2-body relaxation. Further

detail about the 5 objects that became EMRIs is given in Tab. 2.7. Although not

included in the table, each of them crossed the barrier with e & 0.999, as expected.

For comparison’s sake, we have plotted the tracks of six random objects from one

of the 50-object simulations in Fig. 2.8 - we can see that none of them approaches

the barrier.

The barrier penetrations that we see in our simulations occur where we expected

them. The 6th column of Tab. 2.7, aSB, denotes the semimajor axis at which the

object penetrated the Schwarzschild barrier for the final time. We note that all but

one of them crossed at a significantly lower value of a than we originally predicted

in Eq. 2.30, but in good agreement with both the minimum value given in Eq. 2.31

and with the distribution of semimajor axes for barrier penetrations given in Merritt

et al. (2011). After successfully crossing the barrier, each of the five colored lines

made their way across the critical eccentricity line (Eq. 2.7 with CEMRI = 0.1,

dotted black line), and eventually began losing energy and angular momentum and
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Figure 2.8: For comparison with Fig. 2.7, we plot the orbital evolution of six normal

objects from one of our 50-object simulations. As in Fig. 2.7, also depicted are the

Schwarzschild barrier (dashed black line), the critical eccentricity line (dotted line),

and the plunge line (solid black line).
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were removed from the simulations.

The results of our simulations differed from our expectations in one significant

way. Hopman & Alexander (2005) find that the majority of EMRI candidates origi-

nate from the outer edge of our simulation volume (or even outside of it) with highly

eccentric orbits. Instead, we found that all of our eventual mergers originated within

the inner third of our range of a, and only one began its existence with a large ec-

centricity. This provides us with two questions - why we do not see their population

of EMRI candidates, and why they do not see ours.

We can think of a few possible explanations for the first discrepancy. Because

the simulations from Hopman & Alexander (2005) and others were not done using a

direct N-body code, they were able to model the entire radius of influence - the finite

extent of our simulations may be preventing us from including all of the relevant

forces. These objects are on the outer boundary of our simulation and would, in

reality, experience forces due to interactions with objects with a & 2000AU that

we were unable to include. If this is indeed partially responsible, we might expect

mergers from this population in addition to (rather than instead of) those that we

are seeing in our simulations. It is also possible that, being the farthest from the

MBH (and thus having the smallest velocities in the system), our outer objects

are most affected by the unphysical kicks delivered by our code problems. One

could imagine that this is somehow preventing them from attaining high enough

eccentricities to approach the critical eccentricity threshold.

We suspect that the simulations in the literature do not find mergers like those

we see in our simulations because their approximate methods cannot include all of

the relevant physics. While the results of this work and Merritt et al. (2011) both

suggest that the Schwarzschild barrier will prevent resonant relaxation from having

a large impact on the EMRI rate, it may still have a nontrivial impact by allowing
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Figure 2.9: Variation in the eccentricity (black line) of an object near the

Schwarzschild barrier (red line) due to the “bounce” effect of Sec. 2.2.3. While

the background torque remains constant, the changing angle of the orbital eccen-

tricity vector due to apsis precession varies the torque on the orbit in such a way to

alternately lower and raise the angular momentum, causing an oscillation.
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objects to oscillate near the barrier, giving them multiple opportunities to cross and

eventually merge. Given the slow rate at which 2-body relaxation will create highly

eccentric orbits when a < 1000 AU, this could still provide a significant boost.

Fig. 2.9 shows the angular momentum oscillations experienced by one of our

objects (black line) near the predicted Schwarzschild barrier (red line, Eq. 2.24).

The average period time peaks comes out to around 1.3 × 104 yr; this is slightly

greater than the timescale for the object’s precession due to GR at its maximum

value in eccentricity, which is about 9 × 103 yr. We expect it to be somewhat

greater, since the object’s precession will be, on average, slower than its value at the

eccentricity maximum. This agreement provides strong evidence that this “bounce”

effect is responsible for these oscillations.

Even if a barrier crossing is unlikely for each time an object is brought near the

boundary, one could imagine that this would still provide an enhancement to the

rate of EMRIs from objects at fairly low semimajor axis. We suspect this might

explain the difference between our results and those from previous simulations in

the literature. However, again we must note that since we do not know all of the

impacts of spurious energy and angular momentum relaxation described earlier in

this Section, we cannot rule out the possibility that they are responsible for this

discrepancy.

2.4.3 Conclusions About the EMRI Rate and Orbital Pa-

rameters

As our original goal in undertaking this project was to better constrain the EMRI

rate and possibly make a statement about the orbital elements of likely merger

objects, we now endeavor to interpret our results in light of that goal. The overall

rate of mergers derived from our simulations is around 4 × 10−7yr−1 per galactic
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Table 2.8: Final Eccentricities of EMRI Objects At PLISA

af/AU ef time to EMRI (yr) eEMRI

26.3 0.9981 100.7 0.896
257.0 0.9996 664.2 0.795
51.5 0.9994 4.4 0.935
9.7 0.9930 25.3 0.860
46.5 0.9988 32.6 0.885

Note. — All objects finish with a semimajor axis of aLISA = 0.465 AU.

center. Despite the myriad of differences between both the nature of the simulations

we performed, and the nature of the actual mergers we observed in our simulations,

the rate we derive is comfortably within the range derived in the literature (10−6 −

10−8yr−1 per galactic center).

Our initial conditions were designed to reasonably replicate the mass density

distribution that we expect to find at a typical galactic center, although it is quite

likely to be divided among more objects. With the caveat that our numbers are

small and thus subject to random fluctuations, we note that spreading the mass

over twice as many objects in our simulations did not result in a decrease in the rate

(actually, it went up from 2.2×10−7 to 9.7×10−7yr−1). While we surely cannot use

our limited sample to suggest that extrapolation to further spreading of the mass

distribution will continue to increase the EMRI rate, it seems likely that it will not

systematically decrease it.

Due to the fact that our simulations revealed a different class of merging objects

from the literature, we expect significantly different orbital elements for these objects

when they reach the LISA detection threshold (PLISA ∼ 104 sec, corresponding to

an orbital semimajor axis of aLISA = 0.465AU). As we removed our merger objects

from the simulations prior to this level of energy loss (mostly for computational
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convenience), our final values for the semimajor axis and eccentricity of the orbits

are not necessarily representative of those that would be viewed by LISA. In an

attempt to make our results more useful for this purpose, we used the Peters (1964)

equations to integrate our final orbital elements forward in time until the period

of orbit reached PLISA ≈ 104 sec. The results of these integrations are given in

Tab. 2.8. While all of our objects were removed from the code with high orbital

eccentricities, they exhibited a wide range of semimajor axes. This translates to

a fairly large range in eccentricities at the point of the LISA detection threshold

(0.8− 0.93).

Unfortunately, our limited integration time has prevented us from recording more

events, and it is unlikely that we have a enough for a statistically meaningful sample.

However, the fact that we are probing a population of mergers that is significantly

different from the previous results is likely a step in the right direction. As we pointed

out in Sec. 2.4.2, our Schwarzschild barrier crossings were very consistent with those

observed in Merritt et al. (2011), suggesting that our results are reasonable despite

the potential pitfalls created by our code errors.

We also note in passing that our criteria for establishing that an EMRI has

taken place are different from those used by Merritt et al. (2011): an instantaneous

separation of r ≤ 8GM/c2 ≈ 0.08 AU and a semimajor axis of amerger ≤ 2.0 AU.

They record anything with the critical separation but not low enough semimajor

axis as a plunge. By these criteria, it is possible that some of our merger events

would have been recorded as plunges. However, given that we did not use HNDrag

for the entirety of our integrations due to the significant increase in computation

time associated with including the radiation reaction terms, it is unclear exactly

what would have happened if these objects were allowed to shed energy and angular

momentum during the entirety of their time across the Schwarzschild barrier.
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All in all, our results, while limited in nature, do indicate that a significant

population of mergers is possible with semimajor axes well below previously pre-

dicted values. This population of EMRI events continues to exist as the mass in

our simulations is spread amongst twice the number of objects. While we do not

see mergers in our simulations with a ∼ .01 pc, these objects are on the boundary

of our simulation volume and may not be properly handled due to edge effects. As

such, it is possible that this new population of events will add to (rather than take

the place of) previous estimations of the rate when computational advances allow

simulations of a larger number of objects.

After the original draft of this document, further research was done. The problem

causing the spurious accumulation of angular momentum errors was located and

removed, and simulations were performed with the new code. The details of the

changes and new results are given in Appendix C
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Chapter 3

The Impact of an

Intermediate-Mass Black Hole on

Mass Segregation in Star Clusters

3.1 Introduction

In this Chapter, we shift our attention from the MBHs at the center of galaxies

to the possibility of finding intermediate-mass black holes (IMBHs) that are less

massive than MBHs, but still much greater than stellar-mass. While they are not

gravitationally dominant to the extent that a MBH is over the central ∼ 1pc at the

center of a galaxy, IMBHs, with likely masses that are ∼ 1% of the total cluster

mass, still have considerable influence on the dynamics of their host.

Previous work has focused on global properties that are easily observable, such

as the core radius and the surface brightness profile, as a way to distinguish clus-

ters with an IMBH from those without. In this Chapter, we examine a different

influence that an IMBH exerts on its host - limiting the amount of mass segregation
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that occurs, even in visible main sequence stars. We present the results of a host

of modern N-body simulations, and in doing so build a theoretical framework for

applying this technique to Galactic globular clusters.

3.2 Numerical Simulations

The numerical simulations presented in this paper have been carried out with a

state-of-the-art direct N-body code for star cluster dynamics, NBODY6 (Aarseth

2003). NBODY6 has been modified as discussed in Trenti et al. (2007a) to improve

accuracy in the presence of an IMBH, and uses regularization of close gravitational

encounters without any softening. This makes it optimal to follow interactions

within the sphere of influence of the IMBH.

3.2.1 Units and timescales

NBODY6 uses the standard system of units of Heggie (1986) in which G = M =

−4ET = 1, where G is the gravitational constant, M is the total mass and ET is

the total energy of the system. In this system of units, the half-mass relaxation

time, which is the relevant timescale for mass segregation and energy equipartition

is defined as follows (Spitzer 1987):

trh =
0.138Nr

3/2
h

ln (0.11N)
, (3.1)

where N is the number of stars in the system and rh is the half-mass radius. In

physical units, trh can be expressed as (Djorgovski 1993):

trh =
8.9 · 105yr

ln(0.4N)
×
(

1M�

〈m∗〉

)
×
(

M

1M�

)0.5

×
(

rh

1pc

)1.5

, (3.2)

where 〈m∗〉 is the average mass of a star.
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3.2.2 Initial conditions

Galactic GCs are made of some of the oldest stars in our galaxy (e.g., see Krauss

& Chaboyer 2003) and are collisionally relaxed systems. Their two-body half-mass

relaxation times trh are shorter than their age (e.g., see Heggie & Hut 2003), thus

their initial conditions are largely unknown. However, the evolution on a relax-

ation timescale is only weakly dependent on the initial configuration as the system

evolves toward a self-similar configuration where the density and light profiles are

determined primarily by the efficiency of kinetic energy production in the core due

to gravitational encounters (Trenti et al. 2007a,b; Vesperini & Chernoff 1994). In

this paper, we explore a number of different initial configurations, varying the initial

mass function, the initial density profile, the strength of the galactic tidal field, and

the fraction of primordial binaries to verify that the evolution of the system is indeed

independent of the initial configuration. The initial density profile is always that of

a single-mass King (1966) model, but we use a full mass spectrum in the N-body

calculations. The number of particles is varied from N = 8192 to N = 32768 to

quantify the evolution of mass segregation with and without an IMBH. The details

of our runs are reported in Table 3.1.

Initial stellar masses were drawn from either a Salpeter (1955) or Miller & Scalo

(1979) initial mass function (IMF, hereafter), that is:

ξ(m) ∝ mα, (3.3)

with α = −2.35 and m ∈ [0.2 : 100]M� for the Salpeter IMF, while for the Miller

& Scalo IMF the power law slope is the following: α = −1.25 for m ∈ [0.2 : 1]M�,

α = −2.0 for m ∈ [1 : 2]M�, α = −2.3 for m ∈ [2 : 10]M�, α = −3.3 for

m ∈ [10 : 100]M�. In addition, we have also carried out control runs that extend

the IMF down to 0.1M�, as such stars exist in GCs, but are not bright enough to
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be detected in most of the cluster.

We handled stellar evolution by assuming a turnoff mass MT.O. = 0.8M�, and

instantaneously reducing all stars to their final state at the beginning of the sim-

ulation. Stars with masses 0.8M� ≤ m < 8.0M� were assumed to become white

dwarfs and reduced to a final mass as prescribed in Hurley et al. (2000). Stars

in the ranges 8.0-25.0M� and 25.0-100.0M� became neutron stars (unity retention

fraction assumed) and black holes, and were reduced linearly to 1.3-2.0M� and 5-

10M�, respectively. Our model makes the approximation that most of the relevant

stellar evolution occurs on a timescale shorter than a relaxation time. This choice

is appropriate to model the dynamics of an old GC on a relaxation timescale with

only a limited number of particles and is more realistic than using an unevolved

mass spectrum appropriate for young star clusters when N . 30000 (Trenti et al.

2008).

In addition, about half of our runs included primordial binaries, an important

component of many GCs (e.g., see Pulone et al. 2003) that can influence the evolu-

tion of mass segregation. In fact, binaries are on average twice as massive as singles

and thus tend to segregate in the core of the system (e.g., see Heggie et al. 2006).

We define the fraction of binaries to be

fb = nb/(ns + nb) (3.4)

where ns and nb are the initial number of single stars and binaries, respectively.

Thus, a run with N = ns + nb = 8192 and fb = 0.1 actually has 8192 + 819 = 9011

objects. As the dynamical influence of binaries tends to saturate for fb ≈ 0.1 (Heggie

et al. 2006; Vesperini & Chernoff 1994), all our runs with primordial binaries have

fb = 0.1, a number similar to the observed binary fraction of many old GCs (e.g.,

Albrow et al. 2001). Binaries were initialized as in Heggie et al. (2006), i.e. from

a flat distribution in binding energy from εmin to 133εmin, with εmin = 〈m∗〉σc(0).
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Here, σc(0) is the initial central velocity dispersion of the cluster.

To half of the simulations, we added an IMBH with mass MIMBH ≈ 0.01 (≈ 1%

of the entire cluster), the same ratio as a ∼ 103M� black hole would have to a GC

of mass 105M�. In some of the simulations (see Tab. 3.1), we increased the mass of

the IMBH to study the dependence of mass segregation on this parameter.

All objects in our runs were treated as point masses, thus neglecting stellar

evolution and collisions as well as any growth of the IMBH due to accretion of

tidally disrupted stars. These effects have only a minor influence on the late-time

dynamics of the cluster, since actual collisions are rare after massive stars have

evolved, and accretion onto the IMBH is minimal (e.g. see Baumgardt et al. 2004).

The evolution of the clusters includes the tidal force from the parent galaxy,

assuming circular orbits with radii such that the tidal cut-off radius is self-consistent

with the value of the King parameter W0 used. The galactic tidal field is treated as

that due to a point mass, and the tidal force acting on each particle is computed using

a linear approximation of the field. Particles that become unbound are removed from

the system. For full details of the tidal field treatment see Trenti et al. (2007b).

For validation purposes, we also analyzed a few snapshots from three runs with

N = 131072 carried out by Baumgardt & Makino (2003) and by Baumgardt et al.

(2004) with and without a central IMBH, kindly made available by the authors.

These runs include full stellar evolution using the Hurley et al. (2000) tracks, but no

primordial binaries. In addition, accretion of tidally disrupted stars onto the IMBH

is included. The initial star positions and velocities from these runs were also drawn

from a King model with W0 = 7.0, but instead the mass spectrum was drawn from

a Kroupa (2001) IMF, with α = −1.3 for m ∈ [0.1 : 0.5]M� and α = −2.3 for

m > 0.5M�. The upper cut-off mass was 15M� for run 128kk.1, 30M� for run

128kkbh.1a, and 100M� for run 128kkbh.1b. These snapshots provide us with a
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control group against which we can test the validity of our own models, and also

allow us to probe the extrapolation of our results to higher N.

3.3 Results

3.3.1 Overall evolution of the star clusters

A star cluster with single stars only and no central IMBH evolves toward core

collapse within a few relaxation times. The collapse is eventually halted when

the central density is high enough to dynamically form binaries. At this stage

gravothermal oscillations set in and the density profile of the cluster remains self-

similar until the final stages of tidal dissolution of the system. The existence of

either primordial binaries or an IMBH serves as an energy source to counteract the

collapse, resulting in a more significant core (Trenti et al. 2007a). This is confirmed

in all models (for example, see Fig. 3.1 for the evolution of the core and half mass

radius in our 32k simulations). Here, we use the Casertano & Hut (1985) definition

of the core radius, namely

rc =

∑N
i=1 riρimi∑N
i=1 ρimi

, (3.5)

where mi is the mass of the ith star, ri is its from the cluster center of mass, and the

density ρi around each particle is calculated using the distance to the fifth closest

neighbor.

As expected from previous investigations based on equal mass particles (Trenti

et al. 2007b), the density profile of our clusters progresses to a self-similar configu-

ration, which is independent of the initial configuration of the stars and the IMF.

This independence justifies our treatment of stellar evolution at the beginning of the

simulations, and provides further evidence of the erasure of initial conditions after

a few relaxation times. The overall evolution of star clusters with and without an
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Table 3.1: Summary of the initial globular cluster N-body simulations.

Name N MIMBH/Mtot MIMBH/M� fb 〈∆〈m〉〉 ∆〈m〉min ∆〈m〉max

8ks 8192 N/A N/A 0 0.07 0.040 0.112
8km 8192 N/A N/A 0 0.13 0.095 0.167
8kbs5 8192 N/A N/A 0.1 0.09 0.029 0.138
8kbs 8192 N/A N/A 0.1 0.10 0.071 0.143

8kbs11 8192 N/A N/A 0.1 0.09 0.037 0.116
8kbm 8192 N/A N/A 0.1 0.09 0.048 0.130
16ks 16384 N/A N/A 0 0.11 0.071 0.158

16ks.1 16384 N/A N/A 0 0.14 0.112 0.191
16km 16384 N/A N/A 0 0.14 0.112 0.174
16kbs 16384 N/A N/A 0.1 0.09 0.060 0.140
16kbm 16384 N/A N/A 0.1 0.10 0.067 0.127
32km 32768 N/A N/A 0 0.14 0.108 0.161

128kk.1 131072 N/A N/A 0 0.13* N/A N/A
8ksBH 8193 0.03 104.0 0 0.05 0.014 0.091
8kmbh 8193 0.01 42.1 0 0.07 0.036 0.121
8kmBH 8193 0.03 129.3 0 0.06 0.011 0.097
8kbsBH 8193 0.03 114.4 0.1 0.04 -0.014 0.080
8kbmbh 8193 0.015 69.5 0.1 0.04 -0.021 0.079
16ksbh 16385 0.015 103.1 0 0.05 0.023 0.090

16ksbh.1 16385 0.015 60.9 0 0.06 0.013 0.118
16kmbh 16385 0.015 128.2 0 0.08 0.027 0.113
16kbsbh 16385 0.01 113.4 0.1 0.04 0.015 0.078
16kbmbh 16385 0.01 141.0 0.1 0.05 0.015 0.084
32kmbh 32769 0.01 240.0 0 0.07 0.051 0.101

128kkbh.1a 131072 0.013 1000.0 0 0.09* N/A N/A
128kkbh.1b 131072 0.009 1000.0 0 0.06* N/A N/A

Note. — We calculated the average, maximum and minimum values for ∆〈m〉 (in solar mass
units) between 5 and 12 relaxation times for each run. Starred values are not averages, but are
from a single snapshot. The name of each run indicates:

• The number of stars in the simulation (8k, 16k, 32k or 128k)

• The presence of primordial binaries (b if fb > 0)

• The IMF (m for Miller & Scalo, s for Salpeter, and k for Kroupa)

• The presence of an IMBH (absent for none, bh for small BH mass, and BH for larger - see
also fifth column)

• The value of W0 if different from 7.0

• Control run with IMF lower cut-off at 0.1M� (.1 suffix).
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Figure 3.1: Evolution of the three dimensional half mass radius (rh) and of the core

to half mass radius ratio (rc/rh) in NBODY units for our N = 32769 simulations

with (red curves) and without an IMBH (blue curves). The presence of an IMBH

prevents core collapse. We have smoothed the curves by applying a triangular

smoothing window of size 1.0trh(0).

IMBH and/or primordial binaries has been discussed in the literature (Baumgardt

& Makino 2003; Baumgardt et al. 2004; Fregeau & Rasio 2007; Heggie et al. 2006;

Hurley 2007; Trenti et al. 2007a,b). Here we focus instead on a novel aspect that

has a promising observational signature, namely the evolution of mass segregation

for runs with an IMBH.

67



3.3.2 Mass segregation

As our overarching goal is to propose a viable observational test to identify a star

cluster that is likely to harbor an IMBH, we took steps throughout our analysis to

replicate observational data as closely as possible. We limited our analysis to data

projected onto two dimensions, and excluded stellar remnants from our calculations

of observationally accessible quantities. Most of our runs did not have stars with

masses below 0.2M�, because these are generally too dim to detect with a high

completeness. However, we did perform two 16k control runs with masses down to

0.1M� to ensure that the presence of smaller, undetectable stars did not affect the

mass segregation. For a proper comparison to the other runs, we did exclude the

stars with masses between 0.1 and 0.2M� from the calculation of the observationally

accessible quantities for these runs.

Binary systems were handled by only including the brighter member in the anal-

ysis of the observationally accessible quantities. This choice is motivated by the

fact that for real observations, masses will need to be estimated from luminosities.

Since binaries in GCs are typically not resolved (the separations are below a few

astronomical units for the range of binding energies considered), we observe mainly

single sources. Because the luminosity of a main sequence star is highly sensitive to

its mass (L ∼ M3.5 for stars around 1M�), the lighter star contributes very little

to the overall luminosity in many cases, and thus the total luminosity will be very

similar to that of the brighter member.

To quantify the effects of mass segregation, we examined the radial variations

in average stellar mass — or equivalently — in the slope of the mass function (if

the mass function is a power law in the mass range considered, then there is a

one-to-one relation between the average mass and the slope). As a consequence of
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energy equipartition, heavier particles sink to the center of the cluster within a few

relaxation times, increasing the difference in average mass between the center and

the halo of the cluster. As our main diagnostic of mass segregation, we define

∆〈m〉 = 〈m〉 (r = 0)− 〈m〉(r = rhm) (3.6)

where rhm is the projected half-mass radius of the cluster (computed using only

visible stars), and 〈m〉 is the average mass for main sequence stars with m ∈ [0.2 :

0.8]M�. Both of these measurements are taken from projected radial bins each

containing 5% of the cluster’s visible stars. Because nearly all of the deviation in

〈m〉(r) occurs within this radial range, we are maximizing our baseline for measuring

mass segregation while using fields with a reasonable number of stars. This definition

also allows for a straightforward comparison to observational data as only two fields

per cluster are sufficient.

Fig. 3.2 depicts the evolution of ∆〈m〉 for our N = 16384 to N = 32768 runs

without primordial binaries. For each run, we analyze the configuration of the

system every 15 Nbody units (which corresponds to more than 10 measurements

per relaxation time). Runs with an IMBH are represented as red points, while runs

without are blue points. Because they were drawn from single-mass King models,

our clusters begin out of equilibrium. On a relaxation timescale, we see them evolve

towards a new quasi-equilibrium state. After ∼ 5trh(0), most clusters have settled

into this equilibrium, with those harboring an IMBH showing a smaller amount of

mass segregation, i.e. smaller values of ∆〈m〉. The points from the control snapshots

128kk.1, 128kkbh.1a and 128kkbh.1b, as well as the two 16k control runs (16ks.1

and 16ksbh.1) are also plotted in Fig. 3.2, and are in good agreement with those

from our models. The data in Fig. 3.2 come from a variety of initial configurations,

not only in terms of the particle number but also in terms of initial mass function.

The use of a differential indicator for mass segregation allows us to cancel out the
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Figure 3.2: Evolution of mass segregation (via ∆〈m〉, expressed in M�) across

the span of all N-body simulations with N ≥ 16384 and fb = 0. Red points are

from simulations with an IMBH, while blue points represent runs with no massive

central object. The runs have no primordial mass segregation (∆〈m〉 = 0), but on

a relaxation timescale, the systems settle to a quasi-equilibrium configuration with

varying degrees of mass segregation. A central IMBH quenches the mass segregation

and keeps ∆〈m〉 . 0.09M�. See Tab. 3.1 for details on all of the simulations shown.
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dependence on the global value of 〈m〉 (or on the global mass function slope).

Simulations with a Salpeter IMF (16ks, 16ksbh) contain many more massive

remnants than the number allowed by a Miller & Scalo IMF (16km, 16kmbh, 32km,

32kmbh). For example, a 16k simulation with a Salpeter IMF and m ∈ [0.2 : 100]M�

initially contains ∼ 20 stellar mass black holes, whereas a Miller & Scalo IMF will

only have ∼ 1. This difference causes us to observe a slower growth of ∆〈m〉 in

the Salpeter IMF runs, as a central cluster of stellar mass black holes partially

quenches mass segregation of visible stars, much like an IMBH. However, stellar

mass black holes eject each other from the system within a few relaxation times (see

also Merritt et al. 2004), so eventually these systems fully develop the amount of

mass segregation observed in runs starting from a Miller & Scalo IMF.

The control runs also reflect this trend. The 128k run without an IMBH (128kk.1)

has a maximum allowed IMF mass of 15M�, meaning there are essentially no mas-

sive remnants. After 5 relaxation times, it is in good agreement with our simulations

drawn from a Miller & Scalo IMF, which also produces very few massive remnants.

The runs with an IMBH (128kkbh.1a and 128kkbh.1b), which have maximum initial

masses of 30M�, and 100M�, respectively, are both consistent with our other runs

with an IMBH. However, 128kkbh.1a’s lower maximum mass results in fewer mas-

sive remnants, and thus a value for ∆〈m〉 closer to 16kmbh, which also contains few

stellar mass black holes. 128kkbh.1b has more massive remnants and behaves simi-

larly to 16ksbh, as we would expect. Finally, we see that our 16k control runs with

a lower IMF cut-off at 0.1M� fall somewhere between the Miller & Scalo runs and

the Salpeter runs as far as mass segregation is concerned. Although we draw from a

Salpeter IMF in the control runs, the lower minimum IMF mass in these simulations

results in fewer massive remnants than the other Salpeter runs (∼ 8 stellar mass

black holes instead of ∼ 20), but more than a Miller & Scalo IMF would produce.
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We also note the increased scatter in these two runs as a result of excluding the large

number of main sequence stars with masses 0.1M� < m < 0.2M� in the calculation

of the observationally accessible quantities.

The situation is very similar when primordial binaries are included (see Fig. 3.3):

runs with and without an IMBH again become well separated after ∼ 5trh(0). As

expected, primordial binaries carry lighter particles toward the center of the cluster

(e.g., a 0.6 + 0.2M� binary will sink to the center like a 0.8M� single star, but

will be observed as a single unresolved source with the approximate luminosity of

a 0.6M� star). Hence, mass segregation is partially suppressed when compared to

the runs where fb = 0. This difference in ∆〈m〉 is more significant in the runs

with a Miller & Scalo IMF as compared to runs with a Salpeter IMF. Because the

runs drawn from a Miller & Scalo IMF lack massive remnants, binary stars become

more gravitationally dominant, and therefore have a more significant impact on the

dynamics. Fortunately, the binary-driven quenching of mass segregation is weak

when compared to IMBH-driven quenching and thus it is possible to discriminate

between systems with and without an IMBH on the basis of ∆〈m〉, without the need

of assuming a binary fraction.

Combining the data from all our simulations with and without binaries, we can

identify three regions for the value of ∆〈m〉 in a collisionally relaxed GC, irrespective

of its binary fraction:

• ∆〈m〉 & 0.1M�. The system is unlikely to contain a central IMBH.

• ∆〈m〉 . 0.07M�. The system is a good candidate to harbor an IMBH.

• 0.07M� . ∆〈m〉 . 0.1M�. The system may or may not contain an IMBH,

depending on its binary fraction and on the global IMF (and in particular on

the number of massive dark remnants).
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Figure 3.3: Evolution of mass segregation as in Fig. 1, but for our N ≥ 16384

simulations with primordial binaries. Qualitatively, we see that the results are sim-

ilar to those of the runs with single stars, but the equilibrium values of ∆〈m〉 are

marginally lower at later times when compared to those where fb = 0.

In addition, an estimate of the binary fraction based on the presence of a parallel

main sequence in the color-magnitude diagram is possible for many observed clusters

(Milone et al. 2008). Application of the mass segregation diagnostic therefore can

account for the actual number of binaries, resulting in a further reduction in the

size of the region of uncertainty.

Including the set of runs with N = 8192, not shown in the plots but whose
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∆〈m〉 is reported in Tab. 3.1, we see no trends in ∆〈m〉 caused by an increase in

the number of objects in a cluster up to N = 32768. In addition, the N = 131072

control snapshots are consistent with our results, strengthening the independence in

the evolution of ∆〈m〉. An increase in the number of particles reduces the deviation

from snapshot to snapshot. This actually improves the application of this indicator

to actual GCs, where the number of stars is significantly larger than in our runs.

Similarly, we see no significant trends in ∆〈m〉 caused by increasing the IMBH

mass up to MIMBH = 0.03, that is 3% of the entire cluster (see Tab. 3.1). This

suggests that reducing MIMBH below 0.01 would still result in a quenching of mass

segregation.

3.3.3 The origin of IMBH-induced quenching of mass seg-

regation

The onset of mass segregation along with the initial contraction of the cluster brings

the most massive stars and remnants into a dense environment. Even in clusters

with only single stars, the dynamical formation of binaries is inevitable. Because

MIMBH is much larger than the typical stellar mass, the IMBH has an extremely

high probability of exchanging into a binary in a close 3-body encounter. It there-

fore spends much of its lifetime in a binary or stable higher-N system (in more than

90% of our snapshots, the IMBH is a member of a multiple system). As a result,

when massive main sequence stars in our simulations sink to the core after energy

exchanges with other stars, they are efficiently “heated up” and scattered away

from the core in encounters with the IMBH and any companions it has. The IMBH

stochastically moves around the core as a result of these encounters and this further

enhances the interaction rate because the scatter cone is continuously replenished.

This mechanism for quenching mass segregation naturally explains the lack of de-
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pendence of ∆〈m〉 on the number of particles used and the minimal dependence on

MIMBH , as well as suggesting an additional explanation as to why the presence of

primordial binaries further reduces mass segregation.

3.4 Discussion and Conclusions

We have carried out a large set of direct N-body simulations of star clusters with

and without an IMBH including a realistic mass spectrum and primordial binaries.

While previous research has focused its attention mainly on the effects of an IMBH

on the surface brightness and velocity dispersion profiles of the clusters — signatures

that are difficult to observe — we searched instead for a different fingerprint of the

presence of an IMBH. The existence of a massive, central object quenches mass

segregation and this effect manifests itself in collisionally relaxed clusters through

decreased radial variation in the average mass of main sequence stars. This effect

does not depend on the mass of the black hole (as long as it is dominant over the

typical mass of a star), nor does it depend on the details of the initial configuration

of the system such as initial mass function, density profile and tidal field strength.

The amount of mass segregation is only weakly dependent on the binary fraction

of the cluster. This result allows us to use the amount of mass segregation to

separate collisionally relaxed clusters with and without an IMBH without the need

of additional modeling assumptions.

A critical requirement for the proposed signature is that the system be well-

relaxed, so that it has already attained equilibrium with respect to mass segregation.

From our simulations it turns out that this takes about 5trh(0). However we can

only observe the current half-mass relaxation time and this might be shorter than its

initial value if the system has lost a large fraction of its original mass. To compare
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our simulations to observations, we must thus conservatively restrict ourselves to

GCs that:

1. Are not too influenced by the galactic tidal field (that is, with a tidal to half-

light radius rt/rhl & 10, which corresponds to tidal fields weaker than the

weakest field in our simulations).

2. Have half-mass (3D) relaxation times below ≈ 1.5 Gyr, i.e. an age above 8trh.

This leaves room for a mass loss of about 50% of the initial mass while still

giving an integrated age of about 5trh. In terms of observable quantities this

translates into a half-light relaxation time below ≈ 1 Gyr.

Based on the Harris (1996) catalog, 31 galactic GCs satisfy these stringent require-

ments in terms of relaxation time and rt/rhl. The proposed diagnostic could prob-

ably be applied to more clusters after properly evaluating a dynamical model for

their configuration and eventually accepting some uncertainty in the selection of

likely candidates to harbor an IMBH. In addition, we note that this method can be

applied to any cluster in an attempt to rule out the presence of a massive central

object - a cluster with a low dynamical age but still a high (∆〈m〉 ≥ 0.1M�) degree

of mass segregation actually provides a stronger null result.

Thanks to the HST treasury survey of galactic GCs, data exist for the cores of

many clusters that explore deep enough to see main sequence stars down to around

0.2M�. Along the same lines, De Marchi et al. (2007), among others, have also

acquired images of clusters around the half-light radius, in order to calculate the

global mass function of the system. The existing data from De Marchi et al. (2007)

are sufficient to apply this diagnostic to a few actual clusters. In Chapter 4, we

demonstrate the feasibility of this method by applying it to previously existing HST

ACS data for two clusters.
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Chapter 4

The Application of the Mass

Segregation Method to NGC 2298

and NGC 6254

4.1 Introduction

In the previous chapter, we demonstrated the theoretical feasibility of using mass

segregation in well-relaxed Galactic GCs as an indication of the presence or absence

of an IMBH. Fortunately, data sufficient for this exercise exist for a number of clus-

ters due to previous HST observations. In this Chapter, we present the application

of the previous Chapter’s mass segregation method to NGC 2298 (Sec. 4.2), and

NGC 6254, also known as M10 (Sec. 4.3).

For each cluster, we make a thorough description of the observations and obser-

vational data analysis, as well as the further steps we took on the simulation end

to make our comparison as thorough and realistic as possible. Sec. 4.2 appeared

as its own paper in The Astrophysical Journal as Mass Segregation in NGC 2298:
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Limits on the Presence of an Intermediate Mass Black Hole (Pasquato et al. 2009),

and Sec. 4.3 in the same publication as The Dynamical State of the Globular Clus-

ter M10 (Beccari et al. 2010). My contributions to these projects were mostly on

the simulation end - performing the majority of the simulations and writing most

of the code used to initialize them and analyze their results. While I assisted in

the preparation of both texts for publication, I was not a primary author on either

paper. As such, I have summarized both papers for inclusion in this thesis.

4.2 NGC 2298

4.2.1 Observations and Cluster Properties

For our analysis of NGC 2298, we were fortunate to use already existing high-quality

deep HST observations taken with the Advanced Camera for Survey (ACS) in the

F606W and F814W bands (de Marchi & Pulone 2007). The ACS field covers an

area on the sky of 3.4 × 3.4 arcmin2 about the center of the cluster, and has 10σ

detection limits of mF606W ≈ 26.5 and mF814W ≈ 25 with a completeness over 50%

at the detection threshold. de Marchi & Pulone (2007) find that the contamination

from background sources for NGC 2298 is negligible, simplifying the identification

of cluster stars.

Fig. 4.1 shows the negative image of NGC 2298 viewed in the F606W band. Due

to the small size of the cluster, the observations naturally extend to more than twice

the cluster’s half-light radius, rhl, which is found to be around 45−47 arcsec (Harris

1996; McLaughlin & van der Marel 2005). de Marchi & Pulone (2007) describe the

data reduction methodology used and derive a color-magnitude diagram for NGC

2298 used throughout this analysis, which assumes a distance modulus of 15.15 mag

(thus a distance of 12.6 kpc) and a color excess E(B−V ) = 0.14 as in Harris (1996).
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Figure 4.1: (Figure Credit: de Marchi & Pulone (2007)) Negative image of

NGC 2298 in the F606W band. The field of the camera is 3’.4 on a side, and we

also show the 6 concentric annuli into which the data were divided for photometric

analysis.

Individual masses are then inferred from the luminosity of each point source, given

an assumed metallicity [Fe/H] = −1.85 (Harris 1996) using the fitting functions of

Baraffe et al. (1997). The fitting covers a range of 0.2 - 0.8M�, where the upper limit

is set by the turnoff mass of the cluster, and the lower limit by the completeness

threshold of the observations.

NGC 2298 is one of the smallest Galactic GCs; McLaughlin & van der Marel
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(2005) find a mass of 3.09×104M� through fitting a single-mass King (1966) model

to the surface brightness profile, while de Marchi & Pulone (2007) use a multimass

dynamical model to derive a mass of 5 × 104M� and a half-mass radius rhm = 72

arcsec. Using these various measurements we can use Eq. 3.2 (Djorgovski 1993) to

derive the value of the half-light relaxation time of the cluster. The McLaughlin &

van der Marel (2005) parameters lead to a current value of trh = 108.41yr, while those

derived by de Marchi & Pulone (2007) yield trh = 108.76yr, both assuming an average

stellar mass of 0.5M�. Despite the evidence for significant mass loss, the cluster is

still dynamically old enough to serve as a candidate for the mass segregation method,

even if it was originally twice as large and four times as massive (Baumgardt et al.

2008).

Furthering the evidence for the dynamical age of NGC 2298 is the depletion

of low-mass stars. This phenomenon is expected in well-relaxed systems; mass

segregation drives lighter objects away from the center of the cluster where they

are either ejected entirely or tidally stripped by the Galaxy’s gravitational field.

The degree of depletion is indicative of a system that is likely to have undergone

core collapse provided it lacks an energy source, such as a population of primordial

binaries or an IMBH, to prevent the collapse (Trenti et al. 2007a,b).

4.2.2 Comparing the Observational Data With Simulations

The Observational End

Our comparison begins with a calculation of the projected half-mass radius of the

cluster, rhm, from the main sequence stars in the ACS field of view. We bin the

objects by clustercentric radius and sum, applying the appropriate completeness

correction for the given stellar magnitude and distance from the center. Given this
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surface mass density profile, we then apply a nonparametric spline smoothing tech-

nique as described in Pasquato & Bertin (2008) to get the total mass of the system

in main-sequence stars. Rather than attempt to extrapolate the mass distribution

beyond the ACS field of view, we account for the finite size of the image in our

simulations (see The Simulation End). From this technique, we calculate a value

of rhm = 49 arcsec, somewhat greater than the values for the half-light radius in the

literature (Harris 1996; McLaughlin & van der Marel 2005). We expect this effect

due to the domination of the light profile by red giant stars, whose large mass causes

them to segregate to the center of the system (see, e.g., Hurley (2007)).

We then construct the mass segregation profile of NGC 2298 by constructing

〈m〉MS as a function of clustercentric radius as in Chapter 3. Given the existence

of continuous data from the center of the cluster through more than twice the half-

light radius, we construct a continuous 〈m〉MS(r) at given (projected) radial distance

from the cluster center by

〈m〉MS(r) =

∑
i Mi/f(mi, ri)∑
i 1/f(mi, ri)

, (4.1)

where Mi is the star’s inferred mass, and f(mi, ri) is the completeness correction

for a star of magnitude mi at a projected clustercentric radius ri. We defined

this continuous completeness correction function by bilinear interpolation from the

discrete values for f given in de Marchi & Pulone (2007). The value for 〈m〉MS at

a given radius is obtained by summing over a projected annulus around that radial

value. In accordance with the analysis of Chapter 3, we chose to sum over 20 such

annuli, each containing 5% of the stars by number. This choice nicely balances

minimizing the random fluctuations in a given bin while still allowing reasonable

resolution of the radial changes in the value of 〈m〉MS.

We use the bootstrap method (Efron 1979) to calculate the errors in each radial

annulus. For each bin of N objects, we create 100 new synthetic samples by uni-
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formly sampling the existing mass values N times, with replacement. We then apply

Eq. 4.1 to each of the 100 samples to obtain 〈m〉MS for each sample, and define the

1σ error bars for each radial annulus as the standard deviation of these 100 values.

The radial variation in 〈m〉MS(r) is normalized to the value of the average stellar

mass around rhm, and is shown in Fig. 4.2 as the red points along with the 1σ error

bars.

The Simulation End

We compare our observational data to simulation data from a subset of the simula-

tions detailed in Chapter 3, the details of which are shown in Tab. 4.1. We restrict

our attention to those simulations with 16k or 32k objects, and to those simulation

snapshots between 7 and 9 trh, giving us a total of 324 simulations snapshots with

which to compare the observational data. At this point, the clusters have certainly

achieved equilibrium with respect to mass segregation, but have not yet lost more

than half of their objects to tidal stripping. As described in Chapter 3, we remove all

compact objects and main sequence stars below 0.2M�, and use only data projected

onto a 2-dimensional plane. In order to reduce noise and to increase the number of

objects, we sum three independent projections of each simulation.

Once we have our catalog of objects, we identify the center of the cluster’s visible

mass, and make a preliminary estimation of rhm. Then, to reflect the limited field

of view of the ACS camera, we restrict our analysis to only stars within 2 rhm of the

cluster center, then recalculate the center of visible mass and rhm taking into account

only those stars that would actually fall within the observational data. Given this

information, we bin into 20 concentric radial bins, and calculate the average stellar

mass of the objects in that radial bin. Fig. 4.2 shows the 1 and 2-σ contours of the

radial variation in mass segregation of the 324 simulation snapshots, also normalized

82



Figure 4.2: Comparison of mass segregation between numerical simulations with

(blue hatched region with 1 and 2-σ error bars) and without (green hatched region

with 1 and 2-σ error bars) an IMBH with our observations of NGC 2298 (red points

with 1-σ error bars). The inset shows the upper envelope of the innermost points of

all our simulations with an IMBH, suggesting that the degree of mass segregation

is normal for a cluster without a central MBH.
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Table 4.1: Summary of the N-body simulations used in the NGC 2298 analysis

ID IMF MBH/Mtot MBH/M� fb 〈∆m〉Ch.3 〈∆m〉Ch.4 σCh.4 ∆mmin
Ch.4 ∆mmax

Ch.4

16ks Sal N/A N/A 0 0.11 0.101 0.008 0.083 0.113
16ks.1 Sal N/A N/A 0 0.14 0.130 0.010 0.112 0.158
16km M&S N/A N/A 0 0.14 0.137 0.009 0.112 0.151
16kbs Sal N/A N/A 0.1 0.09 0.074 0.008 0.056 0.090
16kbm M&S N/A N/A 0.1 0.10 0.102 0.009 0.085 0.124
32km M&S N/A N/A 0 0.14 0.142 0.007 0.128 0.154

16ksbh Sal 0.015 103.1 0 0.05 0.048 0.006 0.037 0.060
16ksbh.1 Sal 0.015 60.9 0 0.06 0.060 0.010 0.041 0.078
16kmbh M&S 0.015 128.2 0 0.08 0.071 0.009 0.048 0.091
16kbsbh Sal 0.01 113.4 0.1 0.04 0.042 0.005 0.033 0.052
16kbmbh M&S 0.01 141.0 0.1 0.05 0.050 0.008 0.038 0.072
32kmbh M&S 0.01 240.0 0 0.07 0.069 0.005 0.058 0.083
16kmbhI M&S 0.015 128.2 0 N/A 0.069 0.008 0.055 0.083
16kmbhII M&S 0.015 128.2 0 N/A 0.063 0.010 0.040 0.079
16kmbhIII M&S 0.015 128.2 0 N/A 0.055 0.009 0.042 0.074
16kmbhIV M&S 0.015 128.2 0 N/A 0.074 0.009 0.060 0.093

Note. — Contains information about the numerical simulations used in our comparison with
NGC 2298 observational data. The first two groups of these are a subset of the simulations used
in Chapter 3 (see Tab. 3.1), and their first 6 columns are recorded directly from there. The eighth
column, 〈∆m〉Ch.3 reports the time-averaged value of our mass segregation measure from Chapter
3 from all of the snapshots between 5trh and 12trh in each simulation. 〈∆m〉Ch.4 denotes this
quantity as per the normalization and analysis of Sec. 4.2.2, along with its standard deviation,
minimum and maximum values for each simulation. In addition, we have added four runs drawn
from the same initial conditions as run 16kmbh, detailed in the 3rd group.

to the value of the average stellar mass at rhm.

Putting the Two Together

In Fig. 4.2, we see that the observed data points corresponding to the mass seg-

regation profile of NGC 2298 fall entirely within the region encompassed by our

simulations without a central MBH, and fall outside the 2-σ contours of our sim-

ulations with an IMBH for the innermost few data points. The inset of Fig. 4.2

shows that the observations of the innermost data points are inconsistent with the
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upper envelope of all of our simulations with a central MBH. For this to be the

result of a random fluctuation in a system with an IMBH would require two 2-σ

events simultaneously - one in the simulations and another in the data. Thus, we

can conclude that such a scenario is unlikely at around the 3-σ confidence level.

As a second test of our method we performed a slightly different analysis. Instead

of treating the variations in initial conditions of our simulations as a source of random

error, we instead derive the 2-σ contours of each simulation separately and plot the

envelope of these individual confidence regions in Fig. 4.3. Despite the fact that we

will naturally get larger contours from this method of analysis, we can see that there

is still a distinct difference between the simulations with and without an IMBH.

In addition to changing our methodology, we also added four more simulations

to the analysis with identical initial conditions (but different random number seed)

to run 16kmbh, the simulation from Chapter 3 with the highest degree of mass

segregation with an IMBH (see Tab. 3.1). This simulation notably had a higher

degree of mass segregation than the 8k and 32k runs with otherwise identical initial

conditions, suggesting that this may have been the result of a random fluctuation.

In fact, we see in Tab. 4.1 that none of the four identical simulations contained such

a high degree of mass segregation, although they all produced qualitatively similar

results.

Adding these simulations to our analysis provides us with a better feel for the

run to run variation in the upper envelope of the degree of mass segregation in

our simulations with an IMBH. Combined with the change in the error analysis

methodology, this provides us with an even more strict test of the presence of a

MBH in a cluster. Yet, as we can see in the inset to Fig. 4.3, the data from NGC

2298 are still inconsistent with the upper envelope of any of these simulations at the

∼3-σ level (see the second data point from the center in Fig. 4.3).
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Figure 4.3: Identical plot to Fig. 4.2 except for two key differences. Firstly, in the

analysis we treat the differences in initial conditions as systemic rather than random

and take the global envelope of the 2-σ contours of each individual run rather than

taking the 2- envelope of all of the snapshots together. Secondly, this plot contains

four extra N-body simulations drawn from identical initial conditions as simulations

16kmbh (see Tab. 4.1).
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As a final test, we note that the shape of the mass function in NGC 2298 closely

resembles that of our 32k simulation without an IMBH when it has lost around 75%

of its mass, as is thought to have happened in NGC 2298 (Baumgardt et al. 2008).

Both systems are depleted in low-mass stars, likely as a result of the combination of

mass segregation and tidal stripping. The left panel of Fig. 4.4 shows a comparison

of the mass functions of our 32km and 32kmbh simulations after 16 initial half-

mass relaxation times have elapsed. We can see that the system with the IMBH

is far less depleted in low-mass stars due to the quenching of mass segregation,

resulting in a flat rather than an inverted mass function. This agreement between

the simulations and data also provides us with an after-the-fact confirmation that

NGC 2298 has likely reached equilibrium with respect to mass segregation, and

therefore is a dynamically old system.

We repeat our previous analysis of Figs. 4.2 and 4.3 in the right-hand panel

of Fig. 4.4 using only snapshots from our 32k Miller & Scalo (1979) simulations,

restricted to times such that t ∈ [15.5 : 16.5]trh. We take care to project our

snapshots along random lines of sight and “observe” the simulations by rejecting

with probability 1 − f(m, r) the individual stars in the simulation with inferred

magnitude m and distance from the cluster center r. The much smaller contours

of the simulations lead to our strongest rejection of the IMBH hypothesis, at about

the 5-σ level.

Our simulations had central MBHs of mass ∼ 1% of the cluster mass, thus given

our analysis we can likely exclude the presence of a black hole of mass greater than

or equal to 3−5×102M�, depending on whether we use the De Marchi et al. (2007)

or McLaughlin & van der Marel (2005) value for the total mass of NGC 2298.
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Figure 4.4: The left hand panel compares the mass functions of NGC 2298 to

our 32k simulations with and without an IMBH (32km and 32kmbh in Tab. 4.1)

at a time of 16trh after both systems have lost around 75% of their initial mass.

The simulation without an IMBH has been depleted of lower-mass stars due to tidal

stripping of the halo stars which are preferentially low-mass due to mass segregation.

The presence of an IMBH impedes this process and thus a more even mix of stars

are stripped, leading to a flatter mass function. In the right panel, we compare the

observed mass segregation profile of NGC 2298 to the snapshots taken between 15.5

and 16.5trh in the two 32k simulations. The observed data are inconsistent with our

simulations with an IMBH.
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4.2.3 Sources of Systematic Uncertainty in Our Results

Most the possible systematic uncertainty in our analysis comes from the observa-

tions, as in our numerical simulations we have the ability to exactly observe the

system without error. In order to make a realistic comparison between these two

data sets, we had to choose a way to fix the scaling between them. This was accom-

plished by normalizing both the radial position within the cluster and the change

in average stellar mass to their respective values at the half-mass radius. However,

this choices means that any error we make in determining ∆m(rhm), either by a

random local fluctuation in the data, or by a misdetermination of rhm could shift

our entire data set up or down in Figs. 4.2, 4.3, and 4.4.

The former error is mitigated by our choice to calculate 〈m〉(rhm) by averag-

ing over all main sequence stars with r ∈ [0.8, 1.2]rhm, rather than trying to de-

termine the value at exactly rhm. This choice smoothes out small-scale Poisso-

nian fluctuations that might occur. When we replicated our analysis while using

r ∈ [0.9, 1.1]rhm, we reproduced our essential results but with more noise, as one

might expect.

An error in our determination of rhm = 49 arcsec could potentially have a serious

impact on our analysis. To test this, we repeated our analysis twice after shifting

our value of rhm by ±4 arcsec. While the results were slightly different, they fell

comfortably within our previous 1-σ error bars. As the plots show that the average

stellar mass increases with decreasing radius, it is not surprising that the degree

of measured mass segregation decreases as we decrease rhm (and thus increase the

measured average stellar mass at rhm). However, to significantly alter our basic null

result requires rhm ≤ 40 arcsec.

A final possible source of error in our observational measurements is our deter-
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mination of the center of the cluster. As Noyola & Gebhardt (2006) note, this can,

in principle, be a difficult problem. However, this is unlikely to be a significant issue

for this work because of the high quality of our data, and because analyzing mass

rather than light tends to be more reliable because it is less prone to the small-scale

fluctuations of a few very bright giant stars.

In principle, though, a misdetermination of the center of the cluster would cause

the mass segregation profile to be artificially shallower. While this would actually

strengthen our result, in the interest of being thorough we performed a Monte Carlo

bootstrap analysis to assess the impact of this error on our results. We created 100

synthetic samples of our data by uniformly resampling the observed main sequence

stars with replacement, and then calculated the center of mass in each new data set.

The standard deviation of the differences was ≤ 0.4 arcsec, suggesting this to be a

very minor effect.

4.2.4 Discussion and Conclusions

As we noted at the end of Chapter 3, the applicability of the mass segregation

method to a particular star cluster is dependent on having undergone at least 5 initial

half-mass relaxation times to ensure that it has reached a reasonable equilibrium

with respect to mass segregation. We proposed that having a current half-light

relaxation time trh ≤ 1Gyr and a ratio of tidal radius to half-mass radius rt/rhm ≥10

would virtually guarantee that this criterion was met for a Galactic globular. NGC

2298 easily meets the first of these requirements with either the De Marchi et al.

(2007) or McLaughlin & van der Marel (2005) modeling, but strictly speaking, it

fails the second criterion, with a rt/rhm ' 7 (De Marchi et al. 2007; Harris 1996).

However, several factors mitigate this.

Firstly, the criteria were chosen conservatively to allow an across-the-board es-
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timation of whether each cluster would likely be a candidate for this analysis - it

was intended to be a sufficient criterion, but not a necessary one. In addition, the

inverted mass function of NGC 2298 strongly suggests that it is a dynamically old

cluster, as does the analysis provided by Baumgardt et al. (2008) that was mentioned

in Sec. 4.2.1. Finally, our analysis found a high enough degree of mass segregation to

strongly suggest that NGC 2298 does not harbor an IMBH; if NGC 2298 had not un-

dergone at least 5 initial half-mass relaxation times that would actually strengthen

our conclusions. Conclusive proof of the dynamical age of a cluster would, however,

be necessary to argue for the presence of an IMBH, as a low degree of mass segre-

gation due to an IMBH would be indistinguishable from that due to the cluster not

having yet attained equilibrium with respect to mass segregation.

4.3 M10 (NGC 6254)

4.3.1 Observations and Cluster Properties

Our data, as in Sec. 4.2.1, comes from deep HST observations, and is shown in

Fig. 4.5. The primary observations of the cluster center were taken with the ACS in

the F606W and F816W bands. As resolving smaller main sequence stars near the

detection threshold (around 0.25 M� in this sample) with a completeness greater

than 50% is important for our analysis, we limited our observations to those with

long exposure times (≥ 90s). Our data also includes a second set of observations in

the F606W and F814W bands from the Wide-Field Planetary Camera 2 (WFPC2)

during Cycle 5 in 1995 located around 3’ Southwest of the center of the cluster,

extending out to around twice the Harris (1996) value for the half-mass radius. The

full details of the observations taken are shown in Tab. 4.2.

Our identification of stars between the various images was done with various data
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Figure 4.5: Photometry of NGC 6254 as seen through long HST exposures. Data

around the cluster center are taken from 90s exposures through the ACS camera,

while the data to the Southwest of cluster center were from the various (labeled)

chips of WFPC2. Also shown are the Harris (1996) values for the core radius (dotted

circle), and half-light radius (dashed circle) as well as the 6 regions into which we

divided our data for photometric analysis.
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Table 4.2: Summary of the observations of NGC 6254.

Camera Band Exp. Exp. Time
ACS F606W 4 90s

- F814W 4 90s
WFPC2 F606W 1 1100s

- F606W 3 1200s
- F814W 1 1100s
- F814W 3 1200s

reduction software. The Stetson (1987) DAOPHOTII/ALLSTAR routines were used

to find stars, and then DAOMATCH/DAOMASTER to align the frames and match

up the individual stars in the different images. After using DAOPHOT/FIND to

obtain a full star list, ALLFRAME (Stetson 1994) was used to catalog the individual

stellar luminosities. In order to eliminate artifacts due to saturated stars in the

images, we used the Cool et al. (1996) method of eliminating object with values of

the ALLFRAME sharpness parameter, sh, that fall outside the range −0.15 < sh <

0.15.

The resulting data set from the WFPC2 camera contains 4995 objects; this data

has already been examined by De Marchi & Paresce (1996); Piotto & Zoccali (1999),

and comparisons between the color-magnitude diagrams and luminosity functions

reveal no apparent inconsistencies. The ACS data set contains substantially more

objects, 56812, given both its wider field of view and image of the densest part of the

cluster. In order to further clean the data and eliminate spurious objects, we followed

the procedure of de Marchi & Pulone (2007) and calculated the main sequence mean

ridge lines for each data set by fitting a 2nd order polynomial after removing those

objects more than 2σ from the linear best fit, where σ is the combined photometric

error in the V and I bands derived from the application of the ALLFRAME routine.

We then removed those objects that fell outside 2.5σ of the mean ridge line before
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further calculation, reducing our data sets to 46407 and 4390 stars, respectively.

In Fig. 4.6, our derived MS mean ridge line is in very good agreement with

the models of (Baraffe et al. 1997); this confirmation justifies our choice to use the

fitting functions in that work to infer masses from luminosities as we did in Sec. 4.2.

The best fit to the cluster parameters gives [M/H] = −1.0, (m −M) = 14.21 and

color excess E(B − V ) = 0.26, shown by the solid line in Fig. 4.6. These values

are in good agreement with those of Piotto & Zoccali (1999) - (m −M) = 14.20;

E(B − V ) = 0.29 - and with [Fe/H] = −1.41 from Carretta & Gratton (1997),

providing us with another consistency check for our data.

Unlike NGC 2298, NGC 6254 displays a large ratio of core to half-mass radius

(McLaughlin & van der Marel 2005), which previous numerical simulations have

found is an indication of the presence of an energy source capable of halting core

collapse (Trenti et al. 2007a; Vesperini & Chernoff 1994). Its mass of 1.5× 105M�

makes it large enough to support most IMBH formation scenarios (e.g., see Miller &

Hamilton (2002), Portegies Zwart et al. (2004)), yet small enough to be dynamically

well-relaxed with a current relaxation time trh = 108.86yr, and far enough away from

the Galaxy to have avoided significant tidal stripping (rt/rhm = 11.86 Harris (1996)).

This combination of factors ensures that NGC 6254 has undergone at least 5 initial

half-mass relaxation times, making it an ideal candidate for the mass segregation

method.

4.3.2 The Mass Segregation Profile of NGC 6254

We replicate our analysis performed in Sec. 4.2.2 for our NGC 6254 data. We

calculate the (projected) half-mass radius of the main sequence stars in our catalog

(with masses 0.26 − 0.8M�) to be rhm = 124′′. As was the case in NGC 2298, this

value slightly exceeds that in the literature (Harris (1996) finds a value of 108.6′′),
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Figure 4.6: Color magnitude diagram of NGC 6254 for both the WFPC2 (left)

and ACS (right) data. Also shown is our derived main sequence mean ridge line,

along with 1σ error bars, as well as the fits from the Baraffe et al. (1997) models

for [M/H] = −1.3 (dashed line) and [M/H] = −1.0 (solid line).
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which is expected due to the disproportionate light emitted by giant stars that

preferentially end up in the cluster core. We normalize our mass segregation profile

to this value, as was done in Sec. 4.2.2, then compare with the identical set of

simulations used there (see Tab. 4.1).

In the left panel of Fig. 4.7, we can see that the amount of mass segregation

in NGC 6254 is significantly less than that found in NGC 2298 in Sec. 4.2. The

inset to the left panel shows that the observational data clearly fall within the 2−σ

envelope of our simulations that harbor an IMBH, meaning we certainly cannot rule

out the possibility of finding an IMBH with any real confidence. However, the data

are also fall comfortably within the envelope of our many simulations without an

IMBH - our choice to explore all parts of the parameter space with a variety of

initial conditions has made it more difficult to distinguish between models. In order

to make a more conclusive statement about the dynamical state of the cluster, we

were forced to consider subsets of our simulation data.

The right panel of Fig. 4.7 shows a comparison of the observational data to just

those simulations with 32k objects, a Miller & Scalo (1979) IMF, and no primordial

binaries - arguably the most realistic among our simulations both in number of

objects and IMF. The data are inconsistent at 3− σ or better with either group of

simulations, suggesting that neither model is a good representation of the cluster

dynamics. However, since both envelopes are due to a single simulation each, it is

possible that the small sample size affected the results to some degree.

The large envelopes in the left panel of Fig. 4.7 are partially due to the fact that

simulations with and without primordial binaries are included together. Our initial

simulations with binaries all had a fraction of fb = 10%, motivated somewhat by

the existence of clusters with similar estimated binary fractions (e.g., see Albrow

et al. (2001)), and also by the fact that higher choices of fb produce nearly identical
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Figure 4.7: As in the plots of Sec. 4.2, compares the mass segregation profile of

NGC 6254 (red dots with 1σ error bars) to the envelope of all of our numerical

simulations (left panel) and to our 32k simulations with a (Miller & Scalo 1979)

IMF and no primordial binaries (right panel). The inset in the left panel shows the

consistency of the data with the (2σ) upper envelope of the all simulations with an

IMBH present.

dynamical evolution (Heggie et al. 2006; Vesperini & Chernoff 1994). In order to

better resolve the effects of our initial conditions on the mass segregation profile

of our simulated clusters, we ran 3 additional simulations. The three simulations

contained 32k objects, had masses drawn from a (Miller & Scalo 1979) IMF, and

had binary fractions of 1%, 3%, and 5% respectively.

Fig. 4.8 compares our observational data to the envelopes of the new simulations

with fb = 3% and fb = 5% for the left and right hand panels, respectively. In each

case the IMBH envelope shown is identical to the one in the right panel of Fig. 4.7.

In order to comfortably explain the low degree of mass segregation in NGC 6254,
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Figure 4.8: Identical to the right panel of Fig. 4.7 except the simulations with no

IMBH contain initial binary fractions of 3% (left panel) and 5% (right panel).

we can see that a binary fraction of around 5% would be needed as an alternative

explanation to the presence of an IMBH.

4.3.3 Discussion and Conclusions

As discussed in Chapter 3, as well as in the literature (e.g., Trenti et al. (2007a)),

either binaries or an IMBH can act as an energy source in the core of a star cluster,

although our simulations have shown that an IMBH does a more efficient job of

“reheating” the cluster stars, leading to a larger core and qualitatively less mass

segregation. In this case, it is clear that the data are inconsistent with our most

realistic simulations without primordial binaries or an IMBH. Given that NGC 6254

is clearly dynamically old enough to have achieved equilibrium with respect to mass
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segregation, the low amount observed is indicative that some force is ejecting massive

stars from the core of the cluster and limiting the central average mass.

Unfortunately, given that the binary fraction of NGC 6254 is as of yet unde-

termined, we cannot make a comprehensive statement about the presence or lack

of an IMBH. An estimation of the binary fraction could conceivably allow a more

definitive statement to be made. In either event, this cluster is certainly a viable

candidate for follow-up proper motion studies in the search for an undisputed IMBH

detection, as some source of energy is halting core collapse and suppressing mass

segregation.
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Chapter 5

Conclusions

5.1 What We Have Accomplished

We set out in writing this dissertation with the goal of making a contribution to

MBH research, a particularly crucial and fascinating aspect of modern astrophysics.

The gravitational dominance of MBHs exerts vast influence on their host galaxy

or cluster, shaping the evolution of up to billions of other bodies. Their ability to

produce massive electromagnetic signals that outshine those same billions of other

stars gives an indication of their importance in creating the universe we observe

today. They can produce jets of particles accelerated to nearly the speed of light

that burst out into the surrounding medium, perhaps affecting the fate of entire

clusters of galaxies.

Despite the many ways in which MBHs appear to be critical to astrophysics as we

know it today, there remain many unanswered questions. Much about the existing

populations of these objects still eludes detection. What fraction of MBHs exist

below 107M�? 106M�? Do even lesser black holes form in star clusters? Knowledge

of just these few pieces of information would help answer many open questions

pertaining to galaxy formation and evolution, and a host of other cosmological
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questions.

As time progresses, our observational methods and capabilities will continue to

improve, increasing the accuracy of current measurements. However, because of the

inherent difficulties associated with making direct observations of these important

astrophysical objects, we are forced to pursue alternative means of gathering infor-

mation in the mean time. While the massive gravity exerted by these objects does

not produce an electromagnetic signature itself, its influence can be viewed both

by the gravitational radiation released during its encounters with other objects in

its host system, or via signatures in the distributions of stars whose radiation can

be observed. We have used numerical simulations in this work to predict these

signatures, and, in the case of our simulations of globular clusters, compared these

predictions to observational data.

In Chapter 2, we investigated dense stellar systems surrounding a MBH at the

center of a typical galaxy. The particular details of the dynamics of these systems

determine the rate at which compact objects will be perturbed onto high-eccentricity

orbits. Such objects will shed energy and angular momentum through the emission

of gravitational radiation during close passages by the MBH and, provided they

remain undisturbed, will eventually reach a low enough period to emit at a frequency

detectable by the future space-bound detector, LISA.

Complicating the computational nightmare associated with trying to coax a

detection out of the complex LISA data stream are the vast uncertainties in the

rate and orbital characteristics of these events. We performed a variety of direct

N-body simulations with the goal of reducing these uncertainties that pushed the

existing envelope of knowledge. Our inclusion of the first-order Post-Newtonian

correction allowed us to correctly resolve the effects of resonant relaxation. Our

simulation of up to N = 100 objects, while still well below the number needed
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for a fully realistic model, represents a doubling of the previous maximum number

included in a direct N-body simulation of this nature.

Our results provided a contrast to one of the prevailing wisdoms gleaned from

previous approximate methods of simulating the dynamics of galactic centers. While

the rate of EMRI objects found in our simulations (∼ 4 × 10−7yr−1 per galaxy) is

in good agreement with the literature, (∼ 10−6 − 10−8yr−1 per galaxy), the specific

details of our merging objects differed considerably from the expected distribution.

We expected to find that most EMRIs form on highly eccentric orbits with semimajor

axes ∼ 2000 AU. Our simulations showed otherwise; four of our five mergers had

a . 750AU when they began appreciably emitting gravitational radiation, and

all five were initially formed on orbits with ai . 750AU . Our findings affect the

distribution of orbital eccentricities EMRI objects will have when they are detectable

by LISA.

In Chapter 3, we joined the search for the first definitive detection of an IMBH

in a Galactic globular cluster. While multi-year proper motion studies are likely

needed to achieve this goal, the expensive nature of these observations necessitates

careful selection of candidate clusters to increase the likelihood of detection. We

presented a new method for suggesting the presence of an IMBH in a well-relaxed

star cluster as a precursor to these studies.

Through N-body simulations, we found that by measuring the degree of mass

segregation via the radial variation in average stellar mass, we were able to effectively

separate clusters with and without a central black hole of mass ∼ 1% of the total

cluster mass. In particular, those clusters with an IMBH experienced a greatly

reduced degree of mass segregation when compared with a similar cluster without an

IMBH. This effect manifests itself in systems with a wide variety of initial conditions,

spanning changes in the initial mass function, number of objects, and initial binary
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fraction, as well as when we take care to replicate the realities of actually observing

our simulations as if they were star clusters on the sky. We also found that a

quick estimation of the degree of mass segregation can be obtained by measuring

the average stellar mass at only two locations - the center of the cluster, and the

half-mass radius.

The energy equipartition that leads to mass segregation still functions effectively

despite the existence of an IMBH at the core of the cluster. However, as massive

objects sink towards the center, they will encounter the IMBH, which spends the

majority of its lifetime as a member of a binary or higher-order hierarchical system.

These encounters will tend to impart energy to the sunken object, ejecting it from

the core and remixing the stellar population. As they will also sink to the center

and impart energy to massive segregated stars, a significant population of hard

primordial binaries will also tend to limit mass segregation.

Because this effect is only visible in well-relaxed star clusters (those that have

experienced & 5 initial half-mass relaxation times), our method cannot be applied

to all Galactic globular clusters to indicate the presence of an IMBH. Those that

are (initially) too large may not have reached their equilibrium amount of mass

segregation, thus providing an alternative explanation for a low degree of mass

segregation.

Around 1/4 of the Galactic globular clusters meet our conservative requirements,

and thanks to deep HST-ACS observations, data exist for many of them that are

deep enough to allow our analysis. Chapter 4 details our application of this method

to two of these clusters, NGC 2298 and NGC 6254 (M10).

As one of the smallest Galactic globular clusters, NGC 2298 is old enough dy-

namically to make it a good candidate for our analysis despite likely losing much

of its mass to Galactic tidal stripping. It is also small enough that the observations
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naturally extended to more than twice the half-mass radius, making it possible to

examine the full radial mass segregation profile.

Taking care to replicate the observational realities as closely as possible while

“observing” our simulations, we computed the average stellar mass at various clus-

tercentric radii for each data set and compared them. The observations of NGC

2298 fell comfortably within the envelope of the subset of our simulations without

an IMBH, and were inconsistent at around the 3 − σ level with our simulations

with an IMBH. Thus, we concluded that NGC 2298 was very unlikely to harbor an

IMBH, a result further strengthened by restricting our comparison to simulations

that mimicked the NGC 2298 mass function.

In contrast to NGC 2298, NGC 6254 is significantly larger but far enough from

the Galaxy to have retained nearly all of its initial mass. As such, it is still a

good candidate for our analysis. Applying our method reveals a low degree of mass

segregation that is inconsistent with our simulations without an IMBH or significant

population of primordial binaries. Further observations that constrain the binary

fraction could make a more definitive statement about the presence of an IMBH, but

even lacking this information, NGC 6254 would be a good candidate for follow-up

proper motion studies.

5.2 Potential Continuations of This Work

While we feel that we have made a contribution to MBH research, there is always

more that can be done. Our results from Chapter 2 could be improved and expanded

by resolving the errors described in Sec. 2.3.2. Unfortunately, we discovered the

specific details of this problem late enough in the process of this work to prohibit a

solution other than limiting the integration time, and thus the accumulated errors.
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Provided our assessment of the nature of the error is correct, its elimination would

immediately allow integration for significantly longer timescales, providing much

better statistical data on the rate of EMRIs. This would also assuage concerns that

this problem, which creates integration errors that are, to some degree, non-random,

affects the validity of our results.

The results of Chapter 3 can be applied as in Chapter 4 to many other Galactic

globular clusters. The requirements that we set out for selecting qualifying clusters

were conservatively set; individual modeling of clusters that are reasonably close to

our standards is likely to reveal that they qualify. Furthermore, the method can

be applied to any cluster in an attempt to rule out the presence of an IMBH or

large binary fraction. A high degree of observed mass segregation in a dynamically

young cluster provides an even stronger null result. Application of this method to

even a moderate fraction of Galactic globular clusters could help to constrain IMBH

formation scenarios, as well as rates of IMBH-MBH merger events.
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Appendix A

HNBDriver

We provide a full pseudocode of the HNBDriver code used to complete our second

set of simulations including the particular details of the implementation. A few of

the more important functions are given in all caps and then detailed below the main

code.

SCANINPUTFILE

IF (restarting)

- scan previous error accumulations from errors.dat

- create an input file from the last HNBODY input and user input file

- set t = restart time

ELSE

- scan the initial conditions file

- create an input file from the initial conditions file and user input

- set t = 0

ENDIF

WHILE (t < finaltime)

- call HNBODY
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- copy body%.dat onto end of bodies/body%.dat

- get error from HNBODY output, add to current values

- print to log file and error file

- t += timestep

IF (CHECKFORPOSSIBLEEMRI)

WHILE(1)

- print input file to use HNDRAG with 1/10 original timestep

- call HNDRAG

- get error and print to log file and error file

- t += timestep/10

IF (MERGECHECK)

- DELETEPARTICLE

- create input file to run rest of original timestep

- call HNBODY

- get error and print to log file and error file

- t += (appropriate fraction) * timestep

BREAK

ENDIF

IF (mergetime > 1.25 * relaxtime)

BREAK

ENDIF

ENDWHILE

ELSE

print normal input file

ENDIF
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ENDWHILE

SCANINPUTFILE - scans from the input file, driver.in. User specifies initial con-

ditions input file, the initial number of objects, the mass of the MBH, the timestep

and final integration time, the accuracy parameter of the HNBody integrations, the

average mass of an object and the maximum semimajor axis (for calculating the

local relaxation time), as well as whether or not we are restarting and if so from

what time.

CHECKFORPOSSIBLEEMRI - checks each particle by comparing the local 2-

body angular momentum relaxation time (Eq. 2.5 with the orbital semimajor axis

replacing r), to its merge time due to gravitational radiation (Eq. 1.2). Returns 1

if any object has a merger time that’s less, otherwise returns 0.

MERGECHECK - checks the particle for which we began integration with HN-

Drag to see if it merits removal from the system. Our condition for removal is that

its merger time be a small fraction of the local two-body angular momentum relax-

ation time - this fraction is specified by the used in driver.in, and was set at 25 for

most of our simulations. While the object may still have thousands of years until the

actual merger, this high ratio implies that it will be essentially dynamically isolated

from the rest of the system and is extremely likely to inspiral and merge in peace.

DELETEPARTICLE - If the particle is to be deleted, we have to take care of

merging the object, and giving the MBH a kick as it would get from an actual

merger. In reality, the object would continue losing energy and angular momentum

due to gravitational radiation until it reached the innermost stable circular orbit

(6GM/c2 for a non-spinning black hole), and then, to lowest order, plunge directly

from there. We give our MBH a kick in a “random” direction (we actually choose the

vector direction to the object at that exact moment for convenience) by calculating
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the results of a perfectly inelastic collision between the MBH at that moment and

the object if it were moving directly towards the MBH with velocity it would have

as it crosses the innermost stable circular orbit. We increment the mass of the MBH

by the mass of the merging object, decrement the number of objects in the system,

and move the file containing the removed object’s log to the folder /rmbodies. The

files of each object with a particle number greater than the removed object’s particle

number are then decremented by one, as HNBody will always output the N small

objects as body1.dat to bodyN.dat without skipping.
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Appendix B

Our Experience with PKDGRAV

PKDGRAV was originally designed for cosmological simulations, but has since been

adapted to a number of other applications due to its versatility. Several of the

features of PKDGRAV suggested it would be well-suited to our purposes.

The code uses a leapfrog integration scheme to advance the positions and veloc-

ities of the objects in the system. It follows the following steps

1. Calculate the force of gravity ~F on each object at time t from the positions of

the other objects.

2. Calculate the velocity at the midpoint of the time step, ∆, as ~v(t + 0.5∆) =

~v(t) + 0.5(~F/m)∆, where m is the mass of the object.

3. Advance the position of the object with this new velocity: ~x(t + ∆) = ~x0 +

~v(t + 0.5∆)∆

4. Recalculate gravity between the objects

5. Use the new forces to update the velocities: ~v(t + ∆) = ~v(t + 0.5∆) +

0.5(~F1/m)∆

6. Repeat steps 2-5.
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While this integration scheme is fairly simplistic by comparison to other integration

schemes, it has the nice feature of being time-reversible. The symplectic nature

of the scheme implies that orbits that are well-resolved will return exactly to their

original position and velocity (to machine precision). This means that the total

energy deviation of the system is bounded, which would allow us to ensure limited

error when integrating for long times as our application requires.

In addition to having nice energy conservation properties, PKDGRAV has two

features that make it significantly faster than HNBody. The calculation of inter-

particle forces consumes the vast majority of the computation time in direct N-body

applications, resulting in the time of integration scaling as tint ∝ N2 for a system

of N objects. Tree codes calculate the force of gravity between close objects exactly

but gain by calculating the force for distant particles using moments of the mass

distribution (the full details of PKDGRAV’s force calculations can be found in

Stadel (2001)). This change changes the computation time scaling to tint ∝ N logN .

Besides this first enhancement, PKDGRAV also is a parallelized code, allowing

the use of multiple processors simultaneously. This facet is especially efficient at

decreasing computation time for higher numbers of objects.

While the potential to explore more objects for longer integration times made

PKDGRAV an ideal base for our simulations, it began life as a purely Newtonian

code. In order to fully resolve the effects of resonant relaxation, we needed to modify

it to include the first-order Post-Newtonian correction to the potential. As a first

attempt, we replaced the standard gravitational potential between our MBH and

each other object by a modified potential:

Φ(r) =
GM

r − 3GM
c2

, (B.1)

where M is the mass of the MBH. This potential approximately reproduces the pre-

cession of objects around the MBH, despite introducing a slight error into the mean
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motion. While this solution proved to be reasonably accurate (usually well-within

∼ 10% of the correct precession angle per orbit), accurately resolving encounters

with pericenters low enough to be interesting for EMRI formation required reducing

the timestep to prohibitively low values.

This general problem pervades nearly all N-body codes, as the difference between

timescales of physical phenomena and desired integration time are frequently many

orders of magnitude apart. Several common solutions to this problem exist, but are

unsuited to our purposes. Artificial softening of the potential for close encounters

between smaller objects and the MBH would succeed in eliminating unresolved en-

counters. However, it would also prevent the formation of any orbits close enough

to form an EMRI, and thus would render the code useless. Many codes solve this

problem by using variable timesteps, allowing for more accurate integration when

it is needed. Unfortunately, this breaks the symplectic nature of the leapfrog inte-

gration, leading to unbounded (and rapid!) energy drift and neutralizing one of the

advantages of PKDGRAV.

In an attempt to reconcile the vastly different time scales involved without in-

troducing energy drift or softening, we created an adaptive, 4th-order Runge-Kutta

(RK4) integrator to calculate the orbit of a test particle in the Schwarzschild met-

ric. Objects that would venture within a user-specified radial threshold of the MBH

during their next timestep are removed from the normal integration and calculated

with the RK4 integrator. During this specialized integration, the object feels the

full effects of both pericenter precession and radiation reaction, but is unaffected by

forces from other objects in the system until it exits the threshold radius. Given

the required proximity to the MBH before we invoke the RK4 integrator, this is

an extremely close approximation to reality. Outside this critical radius, we simply

apply the modified potential of Eq. B.1.
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Figure B.1: Time-dependence of the negative specific Newtonian energy of a 10

M� particle orbiting a 1.0× 105M� MBH with a semimajor axis of 5.0 AU and an

eccentricity of 0.95 in normal PKDGRAV. The spikes in the energy are occurring

once an orbit, centered around the pericenter of the orbit. While other integrators

will see a spurious drift in the energy over time, PKDGRAV will return to the same

value each orbit (to machine precision).

Because of the nature of the leapfrog integrator that PKDGRAV uses, the in-

corporation of this RK4 subcode caused significant problems. Fig. B.1 shows the

progression of the specific Newtonian energy of a particle in orbit around a MBH

over a few orbital times. While the symplectic nature of the leapfrog integration

ensures that there is no spurious energy drift over time in the orbit, we can see that

the energy varies greatly throughout the orbit. In particular, it experiences a large
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spike near pericenter, where we are focusing our attention. Because of this steep

radial energy gradient, removing the particle from normal integration and returning

it at approximately the same radius some number of timesteps later is insufficient.

Despite the near-perfect energy conservation of the RK4 integrator, the particle will

experience significant energy changes over only a few orbits as we put the particle

back at a different place in the leapfrog’s artificial potential well each orbit.

We tried several solutions to this problem, including fitting various functional

forms to the radial variation in the particle’s energy, then attempting to interpolate

the energy at the exit radius on the assumption that the energy variation was sym-

metric about pericenter. As our final attempt to solve this energy problem, we tried

reinserting the particle at precisely the radius at which it entered the RK4 integra-

tor. Since this will occur between timesteps, we were introducing an error into the

mean motion of the particle by artificially moving it forward or backward in time

to sync it up with the rest of the system. This error will grow as a random walk in

time, but given that the mean motion does not affect any of the physical quantities

related to resonant or 2-body relaxation, nor the pericenter of the particle’s orbit,

it should not have a significant statistical effect on the rate of EMRI formation.

However, even with this final modification, we still encountered a monotonic drift

in the orbital energy of a particle that was removed and later replaced.

In addition to the problems with replacing the removed objects back into the

system, we encountered another problem with the setup. In PKDGRAV, our MBH

is actually not a particle in the system at all, but simply the potential well that is

associated with a MBH fixed at the origin. In order to simulate the motion of the

MBH, each step we calculate (assuming the modified potential)

~a• =
n∑

i=1

mi(
ri − 3Gmi

c2

)2 r̂i, (B.2)

where mi is the mass of the particle, ri is its radial distance from the origin, and r̂i

114



is the unit vector from the origin to the particle. The sum components are simply

the first derivatives of the modified potential from Eq. B.1 applied to each particle

instead of the MBH. This acceleration is subtracted from the accelerations of all of

the particles in the system, thus replicating the effective motion of the MBH.

The problem occurs because the presence of the RK4 integrator allows particles

to repeatedly come very close to the origin - before this modification, such a particle

would likely be ejected because the encounter was unresolved, or, if using softening,

it would be sent on a different orbit. In either case it would not return for another

close pericenter passage. A particle whose position is very nearly at the origin can

deliver an unphysically large contribution to ~a• when the timestep is fixed, and

thus an unphysically large acceleration to all of the other particles in the system.

Repeated kicks of this nature will rapidly cause the outer particles in the system to

become unbound. In order to prevent this, for all particles that are close enough

to the origin to use the RK4 integrator, we replace that particle’s contribution to

the sum from Eq. B.2 with the actual average acceleration experienced by the MBH

during that step:

~areal = − m

M•

~vf − ~vi

∆
, (B.3)

where m is the mass of the small particle, and ~vi and ~vf are the velocities of the par-

ticle before and after integration with the RK4 code for a timestep ∆. Because the

calculation of ~areal and the normal calculation of ~aMBH happen at different points

during a normal PKDGRAV step, significant modification was needed to implement

this change. Below is a pseudocode of a normal PKDGRAV step after these modi-

fications:

• Each step begins with the positions, velocities and accelerations of each par-

ticle synced. If a particle was integrated using the RK4 integrator on the last

115



step, its structure will have the previous ~areal saved as well, which we will call

~aprev

• Call the function that drives the RK4 integrator:

a) Check each particle to see if it needs to be integrated separately. If not,

ignore it

b) If so, flag it to be removed from normal integration and calculate its new

position and velocity

c) Calculate ~areal for that particle, and save it in the particle structure

d) Calculate ~acorrection for that particle - if we were outside the RK4 integrator

the last time, then

~acorrection = ~areal −
m(

r − 3Gm
c2

)2 r̂, (B.4)

where m is the mass of the particle, r is its distance from the origin, and r̂ is the

unit vector to the particle from the origin. If the particle did use the RK4 integrator

the last step, then

~acorrection = ~areal − ~aprev (B.5)

e) Sum the ~acorrection values for each particle (if there happens to be more than one)

• Call a function that subtracts ~acorrection from each particle’s acceleration - thus

eliminating the old acceleration components that were previously added and

replacing them with updated values.

• Now we resume normal leapfrog integration - first calculate the new velocities:

~vi(t + 0.5∆) = ~vi(t) + 1
2
~ai(t)∆
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• Use the updated velocities to advance each particle to its new position:

~ri(t + ∆) = ~ri(t) + ~vi(t + 0.5∆)∆

• Recalculate gravity, and thus each particle’s acceleration. If the particle was

integrated using the RK4 integrator during the step, we use the saved value

of ~areal instead of the contribution from Eq. B.2.

• Update the velocities to sync with the positions/accelerations:

~vi(t + ∆) = ~vi(t + 0.5∆) + 1
2
~ai(t + ∆)∆

Despite these modifications, the problem of successfully applying the force on

the center of mass of the system retroactively while using the RK4 subintegrator

was never entirely solved. The integrated motion of the “MBH” (and thus the

negative of the accelerations that were applied to other objects in the system) never

remained near the origin of the system, resulting in the spurious ejection of loosely

bound objects.

Due to these two complications never being adequately resolved, we were forced

to abandon PKDGRAV despite the numerous potential advantages it provided.
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Appendix C

Post-Defense Work

Due to uncertainties introduced by the code error described in Sec. 2.3.2, the results

of Chapter 2 were limited in nature. In an attempt to rectify this uncertainty, we

located and fixed the main source of angular momentum error in the code and per-

formed numerous new simulations without a spurious and unavoidable accumulation

of error. This Appendix details the results of these new runs.

C.1 Modifications to HNBody and HNDrag

The source of the error in the previous version was due to the omission of the two

terms in the original Newhall et al. (1983) implementation of the first-order Post-

Newtonian correction (Eq. 2.32). The two terms omitted were those containing

the barycentric acceleration of the other objects in the system, which are ∝ ~̈rj in

Eq. 2.32. They were initially omitted because the original authors did not intend

for the code to be used with the Post-Newtonian correction in a system with many

massive particles. However, they are necessary for proper integration in barycentric

coordinates.

With the inclusion of these terms, the error accumulation is slow enough that
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we were able to integrate for more than twice as long, while incurring a factor of

> 103 less error in the angular momentum. This not only increases our statistical

significance by enlarging the sample size, but also greatly enhances our confidence

in the robustness of the results.

While the integrations with HNBody went off without a hitch, the new changes

caused a problem during the HNDrag integrations that prevented us from resolving

the final state of our EMRI candidates. Shortly after beginning their integrations

with HNDrag, which happens when their time to merge due to gravitational ra-

diation is lower than the local 2-body relaxation time (see Appendix A for more

details on HNBDriver), all objects with a low enough pericenter were ejected from

their host system with a velocity greater than the speed of light. Obviously, this

is unphysical and prevents us from following these objects as they lose energy and

angular momentum to see if they do indeed end as EMRI events.

We were unable to ascertain the cause of these ejections (other than the very low

pericenters of the orbiting objects involved), and were forced to simply remove the

objects from the simulations after their ejection and document their orbital elements.

Due to conservation of momentum, the central mass also received a large kick during

these events, resulting in the ejection of a few of the loosely bound objects in the

simulations. After experiencing such an event, the systems soon settled down to a

new equilibrium, so we allowed the simulations to proceed from this point despite

the large energy and angular momentum errors introduced by the ejection.

Due to the inability to further follow the systems with the effects of the general

relativistic radiation reaction terms, we are once again forced to speculate to some

degree about the final state of these objects. Given that in our previous set of

simulations, all but one of the objects that began integration with HNDrag ended

as EMRI events, it seems likely that many of them would also experience that fate.
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Table C.1: Summary of the Third Set of N-body simulations of systems with an

MBH.

# of Sims N 〈m〉/M� τmerge,i restricted? 〈tfinal〉/yr Merger Rate (yr−1)
8 50 50 Yes 3.4e6 2.6e-7
4 100 25 Yes 9.6e5 2.6e-7

Note. — The simulations in this group were started from identical initial conditions to those
from the 2nd group of those detailed in Tab. 2.5, and with the same required factor of 25 between
the merger time and local relaxation time before we merged the objects.

C.2 Simulation Results

We reran a subset of the simulations found in Tab. 2.5 with identical initial condi-

tions, but using the new software detailed above. The HNBDriver code remained

essentially unchanged except for the addition of a subroutine to eliminate ejected

objects from the simulation. The details of the 12 simulations we performed for this

Appendix are given in Tab. C.1, and correspond to the 12 simulations below the

middle line in Tab. 2.5.

Also detailed in Tab. C.1 are the simulation-averaged rates of merger events.

We can see that the data from these new simulations are consistent across the two

values of N , as well as being consistent with the rates that we found in Chapter 2

and the results frequently found in the literature. This agreement suggests that the

repeated kicks caused by low-pericenter orbits in our previous simulations were not

systematically influencing the formation of EMRI-event objects as we feared they

might be.

Fig. C.1 shows the evolution of the orbital elements of the objects in our 50-

object simulations whose merger time due to gravitational radiation was less than

the local 2-body relaxation time and began integration with HNDrag. We can
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Figure C.1: Orbital evolution of the objects in the new 50-object simulations that

ended up as merger events. Also plotted, as in Fig. 2.7 are the Schwarzschild barrier,

the plunge line, and the critical eccentricity line with CEMRI = 0.1. We can see

that the object with the solid black color actually crosses the plunge line before

its integration with HNDrag begins - in reality this object would have been losing

energy and angular momentum during its time across the Schwarzschild barrier and

may have not plunged.
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see that, due to the fact that the HNBDriver code only checks for this condition

periodically, that one of the objects actually drifts across the plunge line and back

before actually being caught. In a totally realistic system, all of these objects would

have begun losing energy and angular momentum long before the HNBDriver code

identifies that they are on close enough orbits to warrant use of HNDrag. Since

running the entire simulation with HNDrag would be computationally prohibitive

due to the increased complexity of the equations of motion, this could be partially

assuaged by using a lower threshold for changing over and by decreasing the length

of each individual time segment in HNBDriver.

Due to the fact that all but one of our potential EMRI objects were ejected from

their respective systems prior to losing significant energy and angular momentum

due to gravitational radiation, we cannot be certain they would end as EMRIs rather

than plunging or being kicked back to a lower eccentricity. Given that nearly all such

objects ended as EMRIs in Chapter 2, we suspect that this population is also likely

to meet a similar fate. However, due to this uncertainly, we choose not to speculate

about the final orbital elements they would have given they must still interact with

their host cluster for a significant time prior to inspiral. We do note that, like the

population in Chapter 2, the semimajor axes remain smaller than those predicted

in the literature.

Overall, the results of these new simulations increase our confidence in there

results of Chapter 2. We have replicated the EMRI rates found in that Chapter,

with about a factor of 4 more total integration time reducing the statistical noise.

Once again, there was not a large difference between the results of our simulations

with N = 100 and N = 50 objects, suggesting that further spreading the mass in

the simulation among a larger number of objects should not significantly affect our

conclusions.
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Future work could further still refine the results by somehow preventing the

ejections discussed earlier in this Appendix - this could be accomplished either by

beginning the integrations with HNDrag earlier in the evolution of these objects

before they reach a low enough pericenter to be ejected, or conceivably by figuring

out and eliminating the specific problem in the equations of motion. This would

allow a more comprehensive statement to be made about the final distribution of

these objects when they reach the EMRI phase.
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