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The main goal of this thesis research is developing a theory to describe the early
stages of star formation within magnetized, turbulent molecular clouds, which is a
fundamental problem in astrophysics. In giant molecular clouds, supersonic turbu-
lence creates shocks and compresses material to generate overdense structures that
can later collapse gravitationally, while the intrinsic magnetic fields in the clouds
limit the compression in turbulent shocks and provide support to prestellar cores
against self-gravity. Previous numerical simulations had shown promising results
that prestellar cores with realistic physical properties can form in shocked regions
with the presence of magnetic fields and ambipolar diffusion, but left a big gap in
understanding the fundamental mechanism driving prestellar core formation in tur-
bulent, magnetized environments, especially the longstanding puzzle of how these
dense, self-gravitating cores form in the diffuse, thermally-supported, and highly
magnetized clouds. In this thesis, we firstly adopted both analytic and numeri-

cal methods to investigate a one-dimensional C-type shock created by turbulence-



accelerated ambipolar diffusion, and we discovered a transient stage that can the-
oretically generate overdense regions with relatively low magnetic pressure. We
then turned to fully three-dimensional MHD simulations with supersonic conver-
gent flows, and quantitatively studied the physical properties of cores formed in the
shock-compressed regions, together with the detailed flows leading to core formation.
These cores have similar masses and sizes as the observed ones, and form within a
timescale comparable to the observed core lifetime. However, we found that am-
bipolar diffusion may not be a crucial mechanism for cores to lose magnetic support,
because gas in overdense regions preferably flows along the magnetic field lines. We
therefore extended the parameter space of our simulations to further examine the
anisotropic core formation model. Our results suggest that while prestellar cores
are seeded by perturbations from local turbulence, they are built up by collecting
surrounding materials anisotropically along the magnetic field lines. To conclude,
though turbulence-enhanced ambipolar diffusion can highly reduce the level of mag-
netization within shock-compressed dense regions, anisotropic contraction may be
the key mechanism driving prestellar core formation within turbulent, magnetized
giant molecular clouds. This mechanism leads to cores with masses and sizes that

are in good agreement with observed prestellar cores.
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ter 4 entitled “Anisotropic Formation of Magnetized Cores in Turbulent Cloud” has
been submitted to the Astrophysical Journal (Chen, C.-Y. & Ostriker, E. C. 2015).
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sity. This work was supported by grant NNX10AF60G from NASA ATP, and by
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Chapter 1: Introduction

Human society has always been fascinated by the night sky. The eagerness to
study astronomy begins with the observed stars, which are the birthplace of heavier
elements like helium, carbon, and oxygen that build up life on the Earth. The
formation process of individual stars is therefore one of the most important topics
in astronomy and astrophysics.

Stars form from cold, condensed molecular gas in the interstellar medium
(ISM), within which the extensive, coherent volumes with the highest column den-
sity and extinction are considered giant molecular clouds (GMCs; see Figure .
In GMCs, supersonic flows randomly compress material to initiate creation of a fil-
amentary network that can be observed in both gas and dust emission (André et al.
2014)). Gravity also plays a role in creating filaments with high mass per unit length.
Some of the overdense regions will then shrink to form prestellar cores, which can
collapse gravitationally to create protostellar systems and later become stars (Shu
et al.[1987).

During the star forming process, magnetic fields within GMCs may play crucial
roles at all physical scales, and throughout different evolutionary stages. At earlier

stages and larger scales, the magnetic field can limit compression in turbulence-



Figure 1.1: A composite 3-color images of the Aquila molecular cloud
taken by the ESA Herschel Space Observatory with the Spectral and
Photometric Imaging Receiver (SPIRE, red at 500 pum) and the Pho-
todetector Array Camera and Spectrometer (PASC, green at 160 pm
and blue at 70 pum) (André et al.[2010, also see the ESA’s Online Show-
case of Herschel Images: http://oshi.esa.int /).


http://oshi.esa.int/

generated interstellar shocks that create dense clumps and filaments (Mestel &
Spitzer| [1956)). On the other hand, the local magnetic field within collapsing cores
can help to remove angular momentum during the disk formation process (Gillis et
al.||1979; Mouschovias |1991)). Therefore, magnetic effects are considered one of the
key dynamical mechanisms affecting star forming process in GMCs, in combination

with turbulence and gas gravity (McKee & Ostriker |2007)).

1.1 Giant Molecular Clouds and Star-forming Regions

The ISM fills the space between stars within galaxies. GMCs, the colder,
denser components of the ISM, contain mostly molecular hydrogen (Hs) because of
the low penetration ability of dissociating ultraviolet (UV) radiation in high column
density regions, although the molecular gas is lightly ionized by cosmic rays. Stars
form exclusively within molecular clouds because of the dense, cool environment.
It has also been shown in observations that the molecular gas is tightly correlated
with star formation, in the form of a power-law between the surface density of star
formation rate (SFR) and the total gas content, Ygpr o EgasN (Kennicutt| | 1998;
Bigiel et al.|2008; Heiderman et al.[2010). The slight ionization of GMCs (ionization
fractions ~ 1077 —10~*, Draine et al.| (1983)), in fact is sufficient for magnetic effects
to be important (see Section [1.4)).

Spatially, GMCs can spread over tens of parsecs in the interstellar space

(Roman-Duval et al.[2010)). These clouds have masses ~ 10%> — 10" M, with typical

3 2

particle number density ~ 10? — 10% cm ™2 and column density ~ 10 — 100 Mgpc™



(see review in [Dobbs et al.|2014). Most observations of the physical properties of

GMCs have been conducted using carbon monoxide (CO) molecular lines (Lada

11976 Solomon et al.|[1987; [Fukui et al.[1999; Dame et al.2001), especially the mil-

limeter rotational line J = 1 — 0 because the required minimum local density for
excitation is similar to the densities of GMCs. At least on large scales, for whole

GMCs, theoretical and observational investigations have indicated that CO can be

considered to trace Hy using a roughly constant conversion factor (Dickman| |1978;

Frerking et al.|1982; |Shetty et al[2011}; Bolatto et al.2013). Since Hy, the predom-

inant component in GMCs, is not a preferred tracer for ground-based observations

because of its lack of a radio spectrum, CO is commonly considered as an indicator

of the Hy distribution and other GMC properties (Scoville & Solomon|1975; |Sanders|

et al][1984; |Combes 1991} [Heyer et al|[1998)). Within individual GMCs, the *CO

isotope traces detailed structure better than 'CO (e.g. Bally et al.[1987).

Observations have also revealed that the physical environment in GMCs is

highly turbulent with large velocity dispersion, o, ~ 1—5 km/s (Larson|1981; Heyer|

2009, and references therein), and it has been commonly agreed that these

random, supersonic gas motions crucially contribute to star formation within GMCs

(Mac Low & Klessen|2004; McKee & Ostriker|2007). Theoretical and observational

analysis show that turbulent flows are self-similar and follow specific power spectra

P,(k) o< k¢ (Brunt & Heyer|2002; Padoan et al.[2006), which have dominant influence

on density structures within GMCs that later provide seeds for overdense prestellar

clumps to form (Elmegreen|[1993} [Klessen et al.[2000; [Padoan et al|[2001). More

detailed connections between supersonic turbulence and star formation are discussed

4



in Section
In addition to ?CO J =1 — 0, high-density tracers (e.g. *CO, C'¥0, NH3,

CS, and dust continuum) have revealed internal structures within GMCs at smaller

scales, including elongated structures and dense clumps (Myers & Benson||1983;

Snell et al.|[1984} Bally et al.|[1987; [Chini et al|1997; Johnstone & Bally|[1999; [Hacar]

2013). The filamentary network shown in Figure is commonly seen in

multiple GMCs, and has been considered as a universal feature within star-forming

molecular gas (see reviews in |André et al.|2014 [Molinari et al.|2014). Observations

suggest that prestellar cores are preferably distributed along dense filaments (André

et al|2010; Konyves et al.2010; [Hacar & Tafalla/2011)), but the evolutionary rela-

tionship between filamentary structures and prestellar core formation is yet not well
understood.

Physically, the balance between different energy components within GMCs can
be estimated using typically observed values. If &g, Einy Eayn, and Egray represent

the magnetic, thermal, dynamic, and gravitational energy densities, respectively,

then for a GMC (Solomon et al.|1987; Blitz|1993; Dobbs et al.||2014):

B? (10 uG)”

Emag = i R 107" erg em™, (1.1)
1 1

En = §pcs2 5 (10° em ™ my) (0.2 km/s)* ~ 1072 erg cm ™, (1.2)

1 1
Eayn = §pvturb2 ~ g (10* em™ my) (5 km/s)® ~ 107 erg em™, (1.3)

3GMp 3G -4m (10 pe)® /3 - (10° cm™ my)’ 0 L

5 rav — = ~ — ~ 10 . 14
s =57 R 75 10 pe erg am ™. (14)

This suggests that the turbulent energy and magnetic pressure are the main com-
ponents supporting GMCs from gravitational collapse.

5



1.2 Prestellar Core Properties in Observations

A local minimum in the cloud’s gravitational potential may be considered a
prestellar core if it is gravitationally bound but does not yet contain a protostar.

Because of their overdensity (n ~ 10*—10° em™3) and coldness (T ~ 10 K; see review

in |Andre et al.[2000), prestellar cores can be identified in GMC observations using

optical /infrared absorption, far infrared or sub-millimeter dust continuum emission,

or line emission of dense-gas tracers like NHy and NoH™ (Myers et al.||1983} | Jijina|

let al. [1999; |[Lee & Myers 1999; [Bacmann et al.| 2000 (Caselli et al.|2002; Ward-

Thompson et al][2002} also see Figure [1.2)). Surveys in nearby clouds have provided

constraints on physical properties of prestellar cores; in general, core mass and size

are in the ranges ~ 0.1 — 10 My, and ~ 0.01 — 1 pc (Motte et al.|2001} Tkeda et al.|

2009; Rathborne et al.[2009; Kirk et al.[2013)). Multiple studies have also shown that

the density profile of prestellar cores is very similar to that of a Bonnor-Ebert sphere

(Alves et al|2001; Kandori et al.|2005; Kirk et al.[2005), and the internal motion

seems to be subsonic (Lee et al.|[1999, or see review in |di Francesco et al.2007).

In addition, prestellar cores tend to be magnetically supercritical, with normalized

mass-to-flux ratios ~ 2 (Falgarone et al.2008; Troland & Crutcher|2008).

One intriguing feature of prestellar cores is the core mass function (CMF),
which shows the statistical distribution of the core counts over a range of masses

(Figure [L.3). There have been numerous measurements of the CMF in different

GMCs (e.g. |Onishi et al.|2002 [Enoch et al.|2006; Alves et al.[|2007; Nutter & Ward-|

Thompson|2007)), which all show similar shape to the one in Figure[L.3|and the initial
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Figure 1.2: The integrated intensity contours of NoH' (1 — 0) of the
Serpens Main molecular cloud observed by the Combined Array for Re-
search in Millimeter-wave Astronomy (CARMA), overlaid on a Herschel
250 pm continuum image (Lee et al.|[2014]). Candidates of prestellar
cores can be easily picked by eye from the NoH™ line emission map.
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Figure 1.3: The core mass function (CMF) from prestellar cores observed
by Herschel in the Aquila molecular cloud (Konyves et al.|2010).

stellar mass function (IMF; see e.g. Kroupa 2001; Chabrier|2005). Because of the
similarity between stellar IMFs/CMFs across different star-forming regions, it has
been suggested that there are universal star formation mechanisms that happen early
during the star-forming process leading to this shape (see review in [Kroupa et al.
2013)). Theoretical efforts have been conducted to study the origin of the IMF/CMF
(see reviews McKee & Ostriker| 2007 and Offner et al.|2014). Density fluctuation
generated by the power spectrum of the multi-scale turbulence within GMCs are
believed to play a key role (Federrath et al.|2008; Hennebelle & Chabrier| |[2008;
Hopkins| 2012; Krumholz et al.|2012), but later accretion onto individual forming
stars may also be important (Bonnell & Bate[2006)). However, there still are many

uncertainties in understanding of the earliest stage of star formation.



1.3 The Importance of Supersonic Turbulence and Conver-

gent Flows

The observed supersonic linewidth in GMCs is a strong indication that the
GMCs are highly turbulent (Williams et al.|2000). A power-law relation between
the velocity dispersion o, (measured by the linewidth of molecular emission lines)
and the size of the measured region L have been reported in many studies, typically
o,(L) oc L% (Larson| 1981} [Myers [1983; Solomon et al.|[1987; [Passot et al. [1988;
Heyer & Brunt |2004). The nearly universal size-line relationship across different
GMCs in the Milky Way indicates that molecular clouds are gravitationally bound
systems with a characteristic surface density; generally, we have GM/r ~ o* for
gravitationally bound systems, and since M ~ Yr? where ¥ is the surface density,
simple theoretical scaling gives 02 ~ GXr, or o oc ¥1/271/2 (see review in [Dobbs et
al.[2014)).

Overdense fragments within GMCs may have formed due to in-cloud shocks
and colliding gas flows from cloud-scale turbulence (see reviews in [Scalo||1985 and
Ballesteros-Paredes et al. 2007)). Supersonic turbulence can generate density en-
hancement, and thus many numerical simulations have been conducted to study the
density structure and gravitational instability induced by the supersonic turbulence
inside GMCs, with or without magnetic effects (e.g. [Vazquez-Semadeni et al.|[1995;
Klessen|2000; Klessen et al.|[2000; |Li et al.|2004; Ostriker et al.|2001), which may be

directly related to the observed IMF/CMF (e.g. Klessen 2001} Padoan & Nordlund



2002; |Jappsen et al.[2005; also see Section above).

Supersonic turbulence within GMCs creates a combination of shearing, di-
verging, and converging effects at all physical scales, but it is those regions with
large-scale convergent flows that will compress gas and strongly alter the gravita-
tional stability in the cloud (Mac Low & Klessen|2004). (Gong & Ostriker| (2011)
therefore adopted an idealized model of a local region inside a GMC containing
multi-scale turbulence where two large-scale supersonic flows collide. These simula-
tions showed that the convergent flow creates a planar, dense layer bordered by two
shock fronts, which provides favorable conditions for the birth of prestellar cores.
These simulations had a range of convergent inflow Mach number M = 1.1 — 9,
and found cores with masses 0.05 — 50 M. However, Gong & Ostriker| (2011) only
considered hydrodynamic flows, and therefore could not predict the level of magne-
tization within prestellar cores, which is an important factor determining the ability

of the core to collapse and form a protostellar disk (see review in |Li et al.[2014).

1.4 The Magnetic Field and Ambipolar Diffusion

The existence of magnetic fields in the ISM has been inferred since the dis-
covery of polarized light from distant stars (Hiltner (1949 |1951; (Chandrasekhar &
Fermi |1953)), which reveals the two-dimensional field morphologies within atomic
clouds and GMCs (Vrba et al.|[1976; [Moneti et al.|[1984; Heyer et al.|[1987; Tamura
et al||1987; (Goodman et al.[1990). Though it is hard to detect, the magnetic field

strength can be directly measured via Zeeman splitting of molecular lines (Good-

10



man et al[[1989; [Heiles et al.|[1993}; [Crutcher|[1999; [Bourke et al.[2001). Observations

indicate the cloud-scale magnetic field strength is ~ 10 uG, while it can be slightly

stronger (~ 20 —50 uG) in the filament/core regions (e.g. Troland & Crutcher|2008;

\Chapman et al.[2011}; or see review in |Crutcher|2012).

The role played by magnetic fields during star formation within GMCs is
a complicated but important topic. At the cloud scale, magnetized shocks have
less compression than hydrodynamic shocks (see e.g. , so that turbulence
creates less dense structures. Also, because magnetic and gravitational energies
both increase as R~! for a fixed mass and magnetic flux, sufficiently strong magnetic

fields may prohibit the formation or collapse of gravitationally bound cores (Mestel

& Spitzer| |1956; |Strittmatter| 1966; Mouschovias & Spitzer||1976). Locally within

prestellar cores, magnetic braking can be catastrophic and entirely remove the core

angular momentum so that no disks will form (Mestel|1985; Mouschovias|1991; |Allen|

2003} also see review in [Li et al|[2014).

To make things even more complicated, the GMCs are lightly ionized, and

only the charged particles (ions) are affected by magnetic fields. This suggests that
for theoretical modeling, it is necessary to consider non-ideal effects in magneto-
hydrodynamics (MHD), which means the material is not perfectly coupled to the
magnetic field.

In astrophysics, ambipolar diffusion is “a slip between neutrals and the charged

plasma,” 1992) and is the dominant non-ideal MHD process at the density

" cm™3). In partially ionized systems, ambipo-

in clouds and cores (n ~ 10% — 10
lar diffusion allows neutral particles to decouple from the magnetic fields, because
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the neutrals experience electromagnetic forces only through collisions with charged
species (Shu(1992)). Magnetized shocks with active ambipolar diffusion therefore
show smooth transition between upstream and downstream conditions as continu-
ous (C-type) shocks (Draine 1980). Because ambipolar drift modifies the dynamical
effect of magnetic fields on the material, it has been considered in classical theory as
the main mechanism for overdense clumps to lose magnetic support within GMCs.
However, more recent simulations have suggested models of prestellar core forma-
tion that more realistically take into account the supersonic motions observed in
star-forming GMCs (see Section [L.5| below).

The ability of magnetic fields to affect the neutrals in GMCs depends on the
drag force and the collision rate between neutrals and ions (Spitzer|[1956). The

timescale for magnetic diffusion can be estimated from the drift velocity

(VxB)xB B? 1

R 1.5
Amap;py L Amapip,’ (1-5)

Udrift =

with the collision coefficient o = 3.7 x 10'® ecm3s~'g™! (see Equations (27.8) in [Shu

1992). The corresponding timescale is therefore

L2
~ ATO; P — .
Vdrift Pifnpe

tavity = (1.6)

In GMCs, p, ~ 103> em™ my, L ~ 20 pc, B ~ 10 puG, and p; ~ p; - 107 p, /i,
with u; ~ 30 myg, pu, ~ 2.3 myg (see Chapter 2 for detailed discussions); thus
tasite ~ 10° yr. The dynamical timescale across the same system is tayn ~ L/v; for
a typical GMC v ~ 5 km/s, which gives tqy, ~ 10° yr. Since it takes longer than
a crossing time (tqyn) for the magnetic field to drift relative to the neutrals, the
effect of ambipolar diffusion in GMCs most likely to happen in local regions. At
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prestellar core scale, peore ~ 10% panc, Beore ~ 10 Bamc, and Lege ~ 0.001 Layc
(see Section above); also, the ionization fraction is dependent on density, as
ni /N, o< n, 2 (see Equation [2.28). Therefore tait|core ~ 10¢ yr, which is longer
than the typical observed core lifetime (a few 10 yr; see Chapter 2). This suggests
that prestellar cores become supercritical not through quasi-static ambipolar diffu-
sion. This leads to the idea of turbulence-accelerated ambipolar diffusion and its
application to core formation, or the anisotropic core formation model that material
flows along magnetic field lines into cores. We investigate both processes in this

thesis work.

1.5 Theories of Prestellar Cores

The classical theory of star formation can be summarized in the four-stage
picture described in [Shu et al.| (1987), illustrated in Figure The sites of star
formation are overdense prestellar cores within GMCs. When these cores are able to
overcome both the thermal and magnetic pressure, they will collapse gravitationally,
forming a protostellar system. The central protostar will continue accreting from
the gaseous envelope and the protostellar disk until a stable state is reached and
a new star is born. These stages are interconnected, with one setting the initial
conditions for the next one. Therefore, understanding the forming mechanism of
prestellar cores within GMCs is a fundamental problem in astrophysics, especially
in how do these cores lose magnetic support within the strongly-magnetized ISM to

become magnetically supercritical (Mouschovias||1978; [Lizano & Shu//1989).
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Figure 1.4: The various stages of star formation within GMCs (Shu
et al.|1987): (a) Cores form from overdense regions in GMCs, (b) if
gravitationally bound, a core will collapse to become a protostar with
a disk, (c) the protostar continues to accrete from the disk and ejects
material via bipolar winds, and (d) a new born star with a circumstellar
disk.
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Classical theory of core formation only applies to the scenario in which a dense,
magnetized clump has already formed within the cloud, and considers quasi-static
ambipolar diffusion as the main mechanism for the cores to lose magnetic support
(Nakano|1979; Mouschovias| | 1979; Mouschovias & Ciolek 1999; (Ciolek & Basu/[2001)).
The main difficulty with the classical picture (in addition to the lack of explanation
for how dense clumps form within GMCs) is that the timescale for quasi-static
ambipolar drift under typical dense core conditions is much longer than the observed
prestellar core lifetime (Ward-Thompson et al.|2007; Evans et al.2009)). In contrast
to the magnetic-dominated regime, there are alternative models that consider the
magnetic effects to play a minor role during the core forming process, as compared
to the supersonic turbulence (Mac Low & Klessen| 2004; |Vazquez-Semadeni et al.
2005)).

Similar to the discussion in Section 1.1, we can estimate the balance between
the magnetic, thermal, dynamic, and gravitational energy densities within a prestel-

lar core using typically observed values:

B? (50 uG)

Emag = T 10719 erg em™®, (1.7)
Ein = %pcs2 ~ % (10° ecm™ my) (0.2 km/s)® ~ 1072 erg em ™, (1.8)
Eayn = %pvinternal2 S P, (1.9)
Epres — EG%P ~ gG -4 (0.05 PC)O?"SE ;}05 cm™3 my)® ~ 107" erg cm 2.

(1.10)

The magnetic pressure can easily become the key support against gravity, because

though both &y, and &4y increase with the core density, gy has a stronger depen-
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dence on p.

In fact, it is now generally recognized that turbulence and magnetic fields
both play a crucial role during prestellar core formation (McKee & Ostriker|[2007)).
Theoretical studies have shown that large-scale supersonic turbulence can acceler-
ate ambipolar diffusion process within GMCs (Fatuzzo & Adams 2002; Heitsch et
al. 2004; Li & Nakamura 2004; Nakamura & Li [2005)), and recent MHD simula-
tions including both turbulence and ambipolar diffusion have successfully created
prestellar cores with realistic masses, sizes, mass-to-flux ratios, and lifetimes (Kudoh
& Basul 2008, 2011; [Nakamura & Li [2008)). Though the fundamental physics has
not been fully explained, turbulence-accelerated, magnetically-regulated processes
are considered necessary for understanding prestellar core formation (André et al.
2009; (Crutcher| 2012)). This thesis work aims to investigate the detailed physical
mechanism driving turbulence-enhanced ambipolar diffusion, and more generally to

characterize the role played by magnetic effects during prestellar core formation.

1.6 Thesis Outline

This thesis focuses on the early stages of star formation in magnetized clouds.
Chapter 2 presents a combined numerical and analytic investigation of one-dimensional
C-type shocks, which allows us to characterize the physics of turbulence-enhanced
ambipolar diffusion. In Chapter 3 we demonstrate that solar-mass prestellar cores
are able to form in shock-compressed dense regions in GMCs, based on our MHD

simulations with supersonic converging flows. The MHD simulations presented here
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show that anisotropic gas flow along the magnetic field lines may be the main mech-
anism driving core formation within post-shock dense layers, and in fact ambipolar
diffusion is not a required factor during this process. In Chapter 4, the parameter
space of Chapter 3 is extended, to determine how varying magnetic field strength
and converging flow velocity affect core properties. This also includes a compari-
son with observed core properties. I summarize my thesis work in Chapter 5 and

describe possible research plans in the future.
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Chapter 2: Ambipolar Diffusion in Action: Tran-
sient C shock Structure and Prestel-

lar Core Formation

Abstract

We analyze the properties of steady and time-dependent C shocks under condi-
tions prevailing in giant molecular clouds. For steady C shocks, we show that ioniza-
tion equilibrium holds and use numerical integrations to obtain a fitting formula for
the shock thickness mediated by ambipolar diffusion, Lgmoa o< 19~ 0o/ 2301/ 2yio L.
Our formula also agrees with an analytic estimate based on ion-neutral momentum
exchange. Using time-dependent numerical simulations, we show that C shocks have
a transient stage when the neutrals are compressed much more strongly than the
magnetic field. The transient stage has a duration set by the neutral-ion collision
time, tAp ~ Lshock/Varic ~ 0.1 — 1 Myr. This transient creates a strong enhance-
ment in the mass-to-magnetic flux ratio. Under favorable conditions, supercritical
prestellar cores may form and collapse promptly as a result of magnetic flux loss

during the transient stage of C shocks.
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2.1 Introduction

Within giant molecular clouds (GMCs), dense gravitationally bound cores form
and collapse to create protostars (Shu et al.|1987; McKee & Ostriker|2007; |André et
al.[[2009). Supersonic turbulence is believed to strongly affect the core formation and
evolution processes, with post-shock dense regions the most susceptible to collapse
(see|Gong & Ostriker| 2011 and references therein). These processes can be modified
significantly by the interstellar magnetic field. Sufficiently strong magnetic fields,
if they are well-coupled to the gas, can entirely prevent collapse (Mestel & Spitzer
1956); this can be expressed in terms of a minimum ratio of mass to magnetic
flux, or ¥/B (Nakano & Nakamura|1978). However, in a partially-ionized medium,
magnetic fields are coupled to the neutrals only through ion-neutral collisions. This
ambipolar drift modifies the dynamical effect of magnetic fields on the neutral gas
(Mouschovias|[1979), in particular altering the character of shocks (Draine & McKee
1993).

In ideal MHD, the fluid and magnetic fields are perfectly coupled by assump-
tion. When flow velocities exceed the relevant signal propagation speeds for a mag-
netized medium, discontinuities representing shock fronts (jump shock or J-type
shock) can form. The compression ratio is parametrized by the particle density,
inflow velocity, and magnetic field (e.g. Shu/[1992). However, in lightly ionized
clouds, velocity differences that would produce a J shock in ideal MHD are small
compared to the magnetic signal speed (“Alfvén speed”) in the ionized medium,

va; = B/v/4mp;. lons and magnetic fields therefore smoothy transition between
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upstream and downstream conditions without discontinuities. As a result of the
ion-neutral drag forces, the transition in the neutrals is also modified and all phys-
ical quantities vary smoothly in the shock region, forming a continuous (C-type)
shock (Draine||1980). In a steady C shock, upstream and downstream values of the
neutral density, velocity, and magnetic field are the same as for a J shock. Thus,
upstream and downstream values of the mass-to-magnetic flux ratio (per unit length
parallel to the shock) are the same. Many studies of C shocks have investigated their
formation (e.g. Smith & Mac Low|[1997), structure (e.g. Mac Low et al.|1995)), and
stability (e.g. [Wardle||[1990; [Stone|[1997)), as well as detailed chemical and emission
properties (e.g. Draine et al.|1983; Pineau des Forets et al.|[1997).

Ambipolar diffusion may play a key role in the star-forming process. In the tra-
ditional picture, quasi-static prestellar cores form by gravitationally-driven ambipo-
lar diffusion in magnetically-supported clouds (see review by |André et al.| (2009)).
For a star to form out of gas that is initially strongly magnetized, dense cores must
lose magnetic support so that gravitational collapse can take place (Mouschovias
1978; Lizano & Shu [1989). If the magnetic pressure in a gravitationally-confined
core exceeds that in its surroundings, the gradient in magnetic pressure makes the
magnetic field (and ions) tend to expand. The neutrals will be left behind as a
supercritical core as the magnetic field diffuses outward (Nakano|[1979). More real-
istically, Mouschovias (1979) argued that a cloud does not need to lose magnetic flux
as a whole to collapse. Rather, ambipolar diffusion redistributes the mass within
dense clumps, with the neutrals diffusing inward while the magnetic field threading

the outer region is left behind. The duration of the ambipolar diffusion process
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can be considerably longer (up to a factor of 10) than the gravitational free-fall
timescale tg, although the evolution is more rapid if cores are initially closer to
critical (e.g. Mouschovias & Ciolek|[1999; (Ciolek & Basul[2001)).

Observationally, the prestellar core lifetime can be estimated by calculating
the ratio of the number of cores with embedded young stellar objects (YSOs) to the
number of prestellar cores, which should be comparable to the ratio of protostar
lifetime to the prestellar core lifetime (Lee & Myers||1999). Several studies have
suggested a prestellar core lifetime of ~ 10° yr, or (2 — 5)tg (Ward-Thompson et
al. 2007; Evans et al|[2009). This value is much lower than expected from the
magnetic-dominated model. In addition, in the turbulence-controlled regime where
magnetic field and ambipolar diffusion play minor roles (Mac Low & Klessen|2004]),
ideal MHD simulations have shown that cores only live for (1 — 2)tg (e.g. [Vazquez-
Semadeni et al. |2005), after which they either collapse or re-expand. This would
not permit an extended period of ambipolar diffusion.

Several studies have suggested that turbulence in GMCs can accelerate am-
bipolar diffusion and star formation, by introducing large local gradients and non-
linearities. Considering small-scale fluctuations in a background field, Fatuzzo &
Adams (2002) analytically showed that turbulence can enhance the ambipolar dif-
fusion rate by a factor of 2 — 3 for typical conditions in GMCs. |Heitsch et al.| (2004))
investigated this problem numerically in a 2.5-dimensional geometry and concluded
that the enhanced diffusion rate must be balanced against large-scale compressive
flows. Independently, Li & Nakamura, (2004) and Nakamura & Li (2005) noted that
the failure of the standard theory to predict core formation timescales indicates
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that dense clumps may not have formed quasi-statically through ambipolar diffu-
sion. By performing two-dimensional simulations of magnetized sheetlike clouds,
they found that with sufficiently strong turbulence, dense filaments can form from
magnetic-field-dominated clouds in one turbulence crossing time (t ~ 10¢ yr).

Turbulence-accelerated, magnetically-regulated star formation was studied by
Kudoh & Basu (2008) using three-dimensional simulations, including self-gravity
and adopting hydrostatic equilibrium in the vertical direction as an initial condition.
More recently, Kudoh & Basul (2011)) conducted a parameter study of fragmentation
in magnetically subcritical clouds regulated by ambipolar diffusion and nonlinear
turbulent flows. They concluded that the core formation time is strongly affected by
the turbulence speed and the density in compressed region. These and other recent
simulations with both strong turbulence and ambipolar diffusion (e.g. Nakamura
& L [2008) are consistent with observations in terms of the core evolution time,
the relatively low efficiency of star formation (~ 3 — 6%, see Evans et al.| (2009)),
and the core structure (subsonic infall motions, see |Lee et al| (1999)). However,
the fundamental physical process driving core formation via turbulence-enhanced
ambipolar diffusion, as well as its dependence on environmental parameters, still
remain unclear.

To investigate this problem, we consider the simplest possible time-dependent
problem with large spatial gradients: a one-dimensional high-speed converging flow
that shocks. In order to clearly distinguish the effect of ambipolar diffusion from
other dynamics, we neglect the self-gravity of the gas. We also focus on the simplified
case in which the inflow velocity is perpendicular to the magnetic field lines; more
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general geometry (i.e., oblique shocks) is discussed in the Appendix

When gas is compressed by converging flow, the neutrals are pushed to accu-
mulate downstream. The ion density and magnetic field strength, however, will be
only moderately enhanced since the magnetic pressure resists strong compression.
These lagging ions exert a drag force on neutrals, reducing the streaming of neutrals
into the post-shock region. The momentum exchange between neutrals and ions
speeds up ions, increases the compression of the magnetic field, and reduces the
post-shock density of the neutrals. Over time, a steady C shock develops. However,
at early stages, for an interval comparable to the neutral-ion collision time, the neu-
trals do not experience drag forces from the ions (Roberge & Ciolek|2007; ivan Loo et
al. [2009; |Ashmore et al.|2010)). As a consequence, the initial shock for the neutrals
is essentially unmagnetized, and the neutrals can be very strongly compressed. If
the gravitational collapse timescale is sufficiently short, and a dense enough layer of
gas builds up, the magnetically supercritical region may be able to collapse gravita-
tionally before a steady C shock structure forms. The transient ambipolar diffusion
process in shocks may help to explain the physics of turbulence-accelerated, mag-
netically regulated star formation.

In this chapter, we first revisit the steady-state structure of C-type shocks
in conditions appropriate for GMCs, in particular allowing for varying ionization
fraction. By fitting the results of steady one-dimensional solutions, we obtain an
expression for the C shock thickness as a function of the upstream density, the ve-
locity, the magnetic field, and the ionization fraction. These C shock thicknesses

are comparable to, or exceed, the size of observed cores. We then consider time-
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dependent shocks, which we follow by implementing ambipolar diffusion in the MHD
code, Athena. Our simulations suggest that under some circumstances, transient C
shocks make it possible for a magnetically subcritical cloud to form supercritical
dense cores, which would then be able to collapse promptly. We show more gen-
erally that the mass-to-flux ratio is significantly increased by ambipolar diffusion
in transient post-shock regions, compared to the value that would hold under ideal
MHD or in a steady C shock.

This chapter is organized as follows. The model and the governing equations
are described in Section 2.2} In Section we investigate the structure of steady
C shocks, and obtain (analytically and numerically) an explicit formula for the
dependence of shock thickness on environmental parameters. In Section the
time-dependent numerical method is described, and we show that in the transient
early development of C shocks, the post-shock ratio of density to magnetic field is
very large. In Section [2.5] we discuss mass-to-flux ratios of shocked gas, which we
use to quantify the effect of ambipolar diffusion. A parameter study of the duration
and effect of transient C shocks is presented in Section [2.6, We summarize our

conclusions in Section 2.7
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2.2 Dynamical Equations and Model Parameters

2.2.1 Basic Equations

For a partially ionized medium with a drag force f; between ions and neutrals,

the neutral fluid equations are

Opn, B
W +V- (ann> = O, (21)
Pn 85;” + (v V) V| + VP, = £, (2.2)

which represent conservation laws of mass and momentum, respectively. The corre-

sponding momentum equation for the ionized fluid and magnetic induction equation

are
‘avi—l—(‘-V) : +VP‘—i(V><B)><B——f (2.3)
Pi ot Vi \Y i Art - ds .
aa—]?Jer(vai):O. (2.4)

We discuss the ion density evolution below; this must take into account ionization
and recombination.

The ion-neutral drag force per unit volume is
fo = apnpi (vi —va), (2.5)

where |v; — v, is the slip speed, and a = (ovye1)/ (ptn, + 11;) is the collision coefficient
with the collisional cross-section o. The mean neutral and ion molecular weight pu,
and pu; are applied here so the number density is n, = p,/pn, n; = pi/pi. For
simplicity, we shall assume an isothermal equation of state, P, = ¢ p,, P; = % p;,
and ¢ = P/p = kT/p.
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2.2.2 Steady State One-dimensional Shock Equations

We now consider one-dimensional solutions that are steady, 0/0t = 0, in the
shock frame. We assume the magnetic field is parallel to the shock front. The x
coordinate is taken to be perpendicular to B and the shock front. We define the

compression ratio of neutral density induced by the shock:

Pn = pn,OTna (26)

where r,, — 1 upstream, and r, — const. downstream. Since p,v,, = const. from
Equation , Up, = Up0/Tn, Where v, o is the neutral speed far upstream.

Since magnetic flux is conserved, v;B = const. in the gas. Far upstream,
B — By = const, v; — v;9 = const.. We define the compression ratio for magnetic
field such that

B = T’BB(), (27)

and v; = v;9/rp with rg — 1 upstream and rp — const. downstream.

For regions far from the shock there is no structure in the fluid, dv/dx — 0,
Op/0x — 0, 0B/0x — 0. For Equations and (2.3)), this means v; = v, far
upstream and downstream. Therefore v, o = v; o = vy far upstream, and r, = rp =
ry far downstream. The velocities of neutrals and ions are therefore given in terms

of the upstream shock-frame speed vy and the compression ratios at any = as

Vo
Yy = — 2.8
v = (2.8)
and
Vo
;= —. 2.9
b= (2.9)



To simplify the equations, we define an ion compression ratio

Pi = PioTi; (2.10)

where p; o is the upstream ion density, and r; — 1 upstream, r; — const. (not
necessarily equal to r¢) downstream, similar to r,, and rp.

The momentum equations can now be expressed in dimensionless form as

e (1) 4 2 = g, (L 1) o1

or \ry, ox Vo rg Ty

0 2 0 (1N pomd 10 : 11
Q/\/ﬁ ! ( ) + Pig fin 9 (7‘1) + B% (7“129) = —%M%“nri (_ - _) )

Po rp0r \rp po i Ox Vo ' Th

(2.12)

in which M and [ are two dimensionless parameters defined as

2 2 2
2 Vo 1 . BO 1 VA0
M <cs) ’ B 8mpec: 2 ( Cs ) ’ ( )

that is, upstream values of the square of Mach number and (half of) the square

of the Alfvén Mach number of neutrals, respectively. In Equations —
and subsequently, we use the shorthand notation ¢, — ¢5, pno — po = pnno, and
Vano — Vapo. The drag force terms on the right-hand sides of Equations
and have equal magnitudes and opposite signs. Note that although Equa-
tions and represent the case with magnetic field parallel to the shock

front, the results for the case with more general geometry are qualitatively similar

(see Appendix |A| for detailed discussion).
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2.2.3 Governing Ordinary Differential Equation

Typically, we have yu;/p, =~ 30/2.3 =~ 13, and

_ {ova) 2% 1077 em®s™!
T 32.3my

=3.7x 10" em®s~'g™! (2.14)

(Draine et al.|[1983). The Mach number M is generally at least ~ 10, the plasma
parameter is uncertain, but presumably 3 ~ 0.01 — 1, and since we are considering
lightly ionized fluid, x;9 = n;0/ng is a very small number, ~ 1075 (here, ng =
po/ (2.3my)). The compression ratios r,, rg, and r; are dimensionless and are
maximal downstream, with typical values ~ 10. Therefore, the last term on the
left-hand side in Equation dominates over the other two terms.

Retaining only the largest terms in the ion momentum equation yields

dr? : 11
B = 3O N (— - —) : (2.15)

dx Vo re  Tn

Using this result, the neutral momentum equation can be written as

d (M2 d 1d
F(E5) o= (3. (2.16)
or
S4B = M 142 (2.17)
T + — = const. = —, )
Tn B B

an expression of conservation of momentum of the magnetized medium. On the
right-hand side of Equation (2.17), we have used r, = 1 = rp upstream. Equa-
tions and represent the “strong coupling” approximation, in which the
full magnetic force on the ions is conveyed to the neutrals, i.e.,

(VxB)xB

£ = apipn (Vi —v,) = — (2.18)
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(Shu/[1992, Equation (27.8)).

We can solve Equation (2.17) to obtain

= [1450a -1 (M2 - 1)}”2; (2.19)

T'n

once r,(x) is known, this gives rp(z). The compression ratio r; for both neutrals
and magnetic field lines in the post-shock region is obtained by setting rg = r; =1,
in Equation (2.19)), yielding

_ 268M?
1+ 8+ [(148) +48M2]

ry T (2.20)

Note that if 3M?2 > 1, for a strong shock,

rpa /BM = V22, (2.21)

VA0

In dimensional form, this is

-~ Un 1/2 Vo BO !
793 (f550m75) <W> (,TG) - (2.22)

Note that for oblique C shocks, rp # 7, in the post-shock region, and they
both depend on the angle 6 between B and v. Appendix [A] provides expressions for
generalized r(#) with Equation and rp () with Equation (A.19).

Combining Equations and , we obtain an ODE for r,. The gov-

erning equation is

dr —Dr,r; | 1 1
2n _ _Tinte f 2 2.23
dx — My, e ’ ( )
" L+ G —1) (32 -1)
where
D= MMQ = Oéluil'i,ono’l)g. (224)




If we use ¢, = 0.2 km/s (T/10K)"/?,

—1
_ no Vo Zi0 T
D = 150 1( ) ( ’ ) . 2.25
PE {100 em-3 (km/s) 10-¢/ \ 10K (2.25)

2.2.4 Jonization Fraction

To solve the ODE in Equation ([2.23)), we need a relation between r,, and r;. In
the dense interstellar medium, the main source of neutral ionization is cosmic rays,
while ions may recombine in the gas phase, or on dust grains. The evolution of ion

number density can be written as

dni
dt

= CCRnn - Oégasn@2 — QlgrainTiTp - (226)

Comparing the orders of magnitude of the three coefficients, (cg ~ 10717 =106 s~¢
for cosmic ray ionization (Shu/[1992} [Draine et al.|1983)), agas ~ 1077 — 107> cm3s™*
(Tielens||2005, Table 4.11), and agrain ~ 1071 cm®s™! when T ~ 10 K (Weingartner,
& Draine |2001)). In moderate-density clouds n;/n, ~ 10> — 107" and n,, ~ 10* —

10® em ™3, so we can drop the grain surface recombination term. The ion balance

equation becomes

8TZZ‘
ot

+ V- (nivl) ~ CCRnn - O‘gasn?- (227)

2.2.4.1 Recombination-Ionization Equilibrium

In solving Equation (2.27)), one possible approximation is to assume ionization-

recombination equilibrium everywhere. In this case, (crn, =~ agasn?, so that

n; = | /Q)—Rn}/? = 10 %y;on/?, (2.28)
agas
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for

Xio = 10° x CC—R, (2.29)

Ugas

where the coefficient y;0 ~ 1 — 20 (McKee et al.[2010).

If we adopt Equation 1) then r; = re/ 2, and the governing ODE becomes

dr, —Dr* (1 1 (2.30)
de —%2 rm T/’ '

n

where rg is given in terms of r,, by Equation ([2.19).

2.2.4.2  Frozen-in Magnetic Field

Another approach to Equation is the so-called frozen-in condition (e.g. War-
dle [1990)), which has been applied widely. In this approximation, ionizations and
recombinations are neglected, so that for a steady flow, n;v; = const., which implies
r; = rg. This corresponds to a “frozen-in field”: the compression ratio of the mag-

netic field is the same as the ion flow. The governing ODE then becomes (using

Equation (2.19))

dry, - —Dr, \/1 + 0 (Tn - 1) </1\ﬂ’l_: _ 1)

dx — M Tn

n

—1]. (2.31)

One thing worth noting here is that in the frozen-in approximation, the ion-
ization fraction in the post-shock region will be the same as in the upstream region.
Since Equation (2.28) must hold far upstream and far downstream, we must choose

whether to set x; based on ny or r¢ng.
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2.2.4.8 Ezplicit Solution

We can also retain all terms in the ionization-recombination equation in our
numerical integration. Using n; = nor,z;, Equation (2.27)) in steady state, for one

dimension, yields

dx; = CCRTB — agasnox?ran + a:zi {ln (T—B>} , (2.32)

dx Vo Vo dx T

Here, rp is given in terms of r,, by Equation (2.19). By integrating Equations ([2.32))
and (2.23)) together, we can calculate the explicit solution for the steady C shock

system.

2.2.4.4  Comparison of lonization Treatments

To compare ionization-recombination equilibrium and the explicit solution,
we choose just an upstream value y;o. For the frozen-in field case, we must also
choose whether our solution will have the same upstream ionization fraction as the
equilibrium case, or the same downstream value as the equilibrium case. Therefore
there are four different cases for us to compare.

An example comparing the shock solutions for the four different ionization
choices is shown in Fig.|2.1. Evidently, the approximation of ionization-recombination
equilibrium yields a solution very close to the explicit solution. We have found that

3,’UON1

this is true for the full range of parameters of interest, ng ~ 10% to 10% cm™
to 10 km/s, By ~ 1 to 15 uG, xi0 ~ 1 to 10. Henceforth, we shall adopt ionization-

recombination equilibrium and use n; n}/ % 5o that r; = 7"71/ 2, and Equation ([2.30))
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Figure 2.1: Comparison of C shock solution with different approaches
to ionization. Adopted parameters are ng = 500 cm™3, vy = 5 km/s,
By = 10 pG, and y;0 = 10. “Frozen-in(1)” means upstream ionization
is in equilibrium, and “Frozen-in(2)” means downstream ionization is
in equilibrium. Evidently, recombination-ionization equilibrium (open
circles) is an excellent approximation to the exact solution (solid curve).

33



governs steady C shocks.

2.3 Steady C Shock Thickness

For any given set of parameters ng, vy, By, and x;o, Equation can be
integrated to obtain a steady C shock solution. However, it is also useful to obtain
estimates of the dependence of the C shock thickness on the basic flow parameters.
This parameterization is potentially useful in diagnosing magnetic field strengths
from observations. In addition, it provides a helpful guide to assessing the scales at
which ambipolar diffusion becomes important in GMCs dominated by strong tur-
bulence. If, by appropriate simplifications we can integrate the governing ODE of
Equation analytically, we can obtain an approximate expression for the shock
thickness as a function of ng, vy, By, and y;9. Note that, since the governing equa-
tions for oblique shocks are qualitatively similar to the simplified case applied here,
the oblique shock thickness can be approached using the same methods discussed

in this section (see Appendix [Al).

2.3.1 Exact Solution

From numerical integrations of Equation (2.30) with a range of parameters,
we have found that r,/rp drops very quickly at the beginning, becomes flat in the
central region, then increases rapidly near the other edge of the shock (see bottom

panels of Fig. and . This behavior can be used to define the thickness

of C-type shocks. Since the minimum of r,/rp depends on the parameters (see
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Equation (2.42)) below), we should ensure that our thickness definition is insensitive
to this value. Based on these considerations, we adopt the following definition of

shock thickness for exact numerical solutions:

Ty =X o /005" Tp= o /005" x5 > x5, = shock thickness Lexact = ‘xf—xs‘.

(2.33)
Note that for some weak shocks, r,/rg is always larger than 0.95. Therefore this
definition also provides limitations in the parameter space to exclude shocks which
are not strong and thus do not satisfy our strong shock analysis.

We have integrated the shock ODE for a range of parameters, and computed
the shock thickness according to the definition in Equation . This is the dataset
of exact solutions of C shock thickness over a parameter grid with 10 values of ng
equally spaced between 10% and 10% cm ™3, 14 values of vy equally spaced between 2
and 15 km/s, 14 values of By equally spaced between 2 and 15 uG, and 11 values
of xio equally spaced between 1 and 21. The range of C shock thickness is 0.1 to
20 pc in this parameter range. Note that all parts of this parameter space are not
necessarily astronomically realistic. For example, low ng and high vy is unlikely to
have low y;o, so very large C shock thickness is not likely to be found.

Also note that even for C shock thickness ~ 1 pc, in a real molecular cloud all
the parameters are likely to vary within this length scale, instead of staying constant

as in our models. However, our solutions still provide a useful guide to approximate

shock thicknesses for parameters within a given range.
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2.3.2 Zeroeth-order Approximation

We consider the relative magnitudes of the terms in Equations and
(2.30). First, since ¢, ~ 0.2 km/s whereas vy = 1 km/s, in general M? is a very
large number, and typically M? > r2 (see Equation ) Also, from Fig. m,
the ratio r,, /rp is small in much of the shock region. If we let r,,/rp < 1, a “zeroeth-

order” approximation to Equation ([2.30) is

dr,, N Drf’/ 2

% ~~ W. (2.34)

This can be integrated analytically to yield

ro(z) = (1 - g%)w . (2.35)

This “zeroeth-order” approximation to the shock structure using Equation ([2.35))
is shown in Fig. and for two parameter sets, in comparison to the exact
solution. The zeroeth-order shock thickness L,cyocth is defined as x such that r,, — 7

in Equation (2.35)), giving

2 M? _ 2 M?
Lzeroeth = & (1 - rf 3/2> ~ g%a

5D (2.36)

where the second approximation assumes a strong shock, ry > 1.
Substituting Equation (2.24)) for D in Equation ([2.36]), we obtain a thickness

estimate in terms of physical parameters

2
Lzeroeth = 3 bl X 001/2’ (237)
3 ap;0 XioMg
or in dimensional form,
no “12 (g Xio)
Loeroetn /= 0.12 (—) 0 (—) . 2.38
th P\ 100cm—2 (km/s) 10 (2.38)
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Figure 2.2: Exact C shock solution (solid) compared to the “zeroeth-
order” estimate of Equation (circles) and an improved approxima-
tion given by Equation (triangles), for parameters ng = 500 cm ™2,
vo =5 km/s, By =5 uG, and y;o = 10.
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Thus, the shock thickness increases with higher upstream velocity, and decreases
with higher upstream neutral density and ionization fraction. In this “zeroeth-order”
approximation the shock thickness does not depend on the upstream magnetic field
strength. From the examples shown in Fig. [2.2]and [2.3] we can see that although the
zeroeth-order solution follows the general behavior of C shocks, it is not accurate for
strongly-magnetized cases (Fig. . Compared with the dataset of exact solutions
discussed in previous section, the RMS value of (Lexact — Lueroeth)/ Lexact 18 0.355,
and the range of (Lexact — Lyeroeth)/ Lexact 18 —0.8 to 0.28.

The dependence on the velocity, ion density, and collision coefficient in Equa-
tion ([2.37)) can be understood in terms of the drag force between ions and neutrals.
The total momentum flux in neutrals entering the shock is povg?. The mean drag
force per volume is ~ apgp; ovo. The ratio of these quantities, which is the charac-

teristic distance over which momentum exchange takes place, is

2
Povo Vo
~Y
A PoP;,0V0 ap;0

L~

x vonalmxi_ol. (2.39)

This dependence is similar to Equation (3.12) in Draine & McKee| (1993) if the
Alfvén speed in the fluid is similar to the upstream velocity, va ~ vg. Although they
obtained an estimate using different assumptions and approximations, the basic idea

that the momentum transfer rate determines the shock thickness is similar.

2.3.3 Magnetic Field Influence

To obtain a more accurate estimate of the C shock thickness, we return to

the differential equation (2.11)) for neutral momentum flux, making use of Equa-
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tion ([2.24) and the ionization equilibrium condition r; = r/ 2,

d 2 11 .
i (rn M > — _Dr3? (— - —) — _Drli2 (1 - T—) . (2.40)
da Tn n TB B

We integrate this equation, using constant values on the right-hand-side

1/2

/2y — AN \/T_f7 <1_7"_n>_> (1_(TH/TB)min>7 (2.41)

2 2 rB 2

where the minimum value of r,/rp can be derived explicitly from Equation ({2.19))

as
Tl _ 3V3 (2.42)
"B | min 2\/6/\/1
This yields a quadratic for r,, as a function of x:
r2 — <M2+1—D<r}l/2><1—r—”>x) rn + M = 0. (2.43)
B

Solving Equation for r,(x) gives us another analytical approximation of the
shock structure. When compared with the explicit solution and the zeroth-order
approximation in Fig. and [2.3] we can see that this correction is necessary only
when the background magnetic field is strong (Fig. [2.3)).

For Equation the magnetically-corrected estimate of the shock thickness
(x = Leg such that 7, = ry) can be written as

(M2 —rp)(rp=1)
D<r11/2> (1—r,/rg)ry

Assuming M? > r; > 1 and (r,,/75)min < 1, and using Equation (2.24)), we have

Lest - (2 44)

4M2 41}0
Loy ~ — - (2.45)

Note that a similar result can be obtained for the generalized case with an oblique

C shock (Equation (A.23)). See Appendix [Alfor detailed discussion.
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Taking the strong-compression limit r; ~ V2w, Jvao of Equation 1) we
have
27/41}(1]/21}1/2

Lest = —A,O 0.8 n63/4/0(1)/233/2x1‘_017 (246)
aPi0

or in dimensional form

no 07 we \"(Bo\"" /xi0)!
b =022 o () BY" (x0)
v =022 pex 100cm—3 (km/s) nG 10 (2.47)

Compared with Equation (2.37)), the shock thickness still depends positively on

inflow velocity and negatively on upstream density and ionization fraction, but now
a dependence on the magnetic field enters as well. Compared with the dataset of
exact solutions discussed above, the RMS value of (Lexact — Lest)/ Lexact i 0.13, and
the range of (Lexact — Lest ) / Lexact 18 —0.21 to 0.26. [Wardle, (1990) and |Li et al.| (2006))

find Lgpock ~ \/§UA,0 / (ap;io) in the case where ions are frozen in; this is smaller than

Equation (2.46) by a factor 275/4 (UA,O/UQ)I/%

2.3.4 Numerical Approach

Using the dataset of exact solutions discussed in Section [2.3.1] we construct a

simultaneous linear fit for log Leyacy to logng, log By, log vy, and log x,;0. We find

. no 073 v 0.54 B, 0.46 i\~
e =021 pex (g (km/s) (,TG) (35) - e®

Over the parameter grid, the RMS value of (Lexact — Lft)/ Lexact 18 0.08, and the

range of (Lexact — Lfit)/ Lexact 15 —0.29 to 0.22.
The result in Equation ([2.48)) agrees with our expectation that the shock thick-

ness depends on the magnetic field. Also, the dependences on all parameters are
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Table 2.1: Steady C shock Thickness Comparison

Model no Vo By xio Lghock (pC)
exact est. fit

(em™)  (km/s) (uG) eq. (2.30) eq. (2.45) eq. (2.48
NO1 100 5 10 5 3.03 3.15 2.89
NO3 300 5 10 5 1.20 1.38 1.30
NO5 500 5 10 5 0.82 0.94 0.89
NO8 800 5 10 5 0.58 0.66 0.63
N10 1000 5 10 5 0.50 0.56 0.54
V04 200 4 10 5 1.41 1.68 1.54
V06 200 6 10 5 1.55 2.05 1.92
V08 200 8 10 5! 1.79 2.37 2.24
V10 200 10 10 5 2.08 2.65 2.53
V12 200 12 10 5! 2.38 2.90 2.79
B02 200 5 2 5 0.92 0.84 0.83
B04 200 ) 4 5 1.08 1.18 1.14
BO6 200 5 6 5 1.26 1.45 1.38
BOS8 200 5 8 5 1.46 1.68 1.57
B10 200 5 10 5 1.66 1.87 1.74
B12 200 5 12 5 1.89 2.05 1.89
B14 200 5 14 5 2.12 2.22 2.03
X01 200 5 10 1 8.32 9.37 8.71
X06 200 9 10 6 1.39 1.56 1.45
X10 200 5 10 10 0.83 0.94 0.87
X15 200 5 10 15 0.55 0.62 0.58
X20 200 5 10 20 0.42 0.47 0.44

extremely close to Equation . Table lists a set of model parameters (to
be used in time-dependent simulations) and the C shock thickness based on the
analytic estimate in Equation and the multivariate fit in Equation , in
comparison with the results from explicit integration of the ODE (Equation (2.30])).

Both approaches are useful to estimate the shock thickness.
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2.4 C Shock Formation

2.4.1 Numerical Algorithm for Ambipolar Diffusion

To investigate how C shocks develop in time, we use a modified version of the
numerical MHD code, Athena (Stone et al. 2008). Athena employs a single-step,
directionally unsplit Godunov scheme to obtain conservative, second-order accurate
solutions of the ideal MHD equations (Gardiner & Stone|2005)).

In the strong coupling limit, the drag force f; = ap;p, (vi — v,) is equal to
the Lorentz force f, = [(V x B) x B/ (47). The momentum equation for neutrals
is thus identical to that in the ideal MHD limit. The mass conservation equation
for neutrals is also the same as for ideal MHD. In this approximation, v; = v,, +

[(V x B) x B]/ (4rapipn), so that the induction equation (2.4)) becomes

6)—B—Vx(van):Vx (VxB)xB) xB :

5 (2.49)

477Pipn04

With v; = v; — v,, the drift velocity between ions and neutrals, we can write the

correction term in Equation (2.49)) in terms of a “drift” EMF,

(VxB)xB]xB

gd = Vg X B =
47Tpipna

(2.50)

In our simplified 1-D problem, B = B,y, v = v,X, and the discretized mag-
netic field corrected by ambipolar diffusion before each step, at interface position

1Az and time nAt, is

At

S v CEREL R}

y’z

B
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and

n

e " = 1 By‘?ﬂ _By‘? Bg
“2lity T Ara Ax PiPn

This term is implemented in Athena as an operator-split update to the magnetic

s 1
i+5

field. The mesh resolution is set to be 0.01 pc.
In setting the timestep, we implement the super-timestepping approach as de-
scribed by |Choi et al.| (2009), choosing the factor ¥ = 0.2, and taking the ambipolar

diffusion timestep

By

Atap = 2ra (CFL number) (Az)? - min [an} : (2.51)

where the CFL number is set to be 0.8 in all simulations.

For figures presenting numerical results, n,, — n and v,, — v.

2.4.2 Convergent Flow Test

2.4.2.1 Simple Convergent Flow Test

One way to produce shocks in a numerical simulation is to use a simple con-

vergent flow, in which the initial conditions are

Uinflow,  left half

—Vinflow rlght half. <252)

n = const., By, =const., v, = {

This will evolve to a dense post-shock region in the center, with outward-propagating
reverse C-type structures at the left and right (Fig. [2.4)).

The C shock structures seen at x ~ 1.5 and = ~ 3.5 in Fig. are the same
as the steady solutions obtained by integration of Equation , as confirmed by
comparing the detailed profiles (not shown). Note that the mass-to-flux ratio n/B,
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Figure 2.4: Transient C shock structure (squares) compared with ideal
MHD shock (thin lines), generated from convergent flow, for parameters
no = 200 em ™3, vy = 1 km/s, By = 2 uG, and y; = 10. The central
peak in density n and mass-to-flux ratio n/B, is a signature of early C
shock structure.
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is analogous to r,/rp (except not normalized by upstream values). The dips in
n/B, at the C shock locations correspond to the “well” in r,/rp seen in Fig.
and [2.3] However, the central peaks in both neutral density n and the mass-to-flux
ratio n/B, in Fig. are not a feature of steady C shocks. As the solution shown
in Fig. evolves further in time, these peaks disappear. Thus, these peaks are a

signature of transient C shock development, as we discuss further below.

2.4.2.2  Colliding Clouds

The initial conditions for the simple converging flow are somewhat artificial, in
that only the velocity is discontinuous. Thus, we would like to test whether shocks
formed under more realistic conditions also show the transient peaks in n and n/B,
described above.

We consider the collision of two idealized clumps inside a large molecular cloud.
We suppose that the two clumps are both denser than their surrounding, but the
mass-to-flux ratios are the same throughout the whole cloud. We imagine that the
large-scale turbulence in the molecular cloud imposes velocities such that the two
dense clumps collide with each other, producing a shock. We simulate the scenario
described, setting the background density to be 5% of the value in the dense clumps,
and the initial velocity of this gas to be zero. We focus just on the collision region,
so that the right and left sides of the domain are set to “clump” conditions, as in
Equation ([2.52)).

When the two dense clumps meet each other, a strong shock forms (Fig. [2.5).
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Figure 2.5: Two dense clumps collide with each other and produce a
shock (squares). Conditions at a time 0.88 Myr prior to the collision
are shown as thin lines for comparison. Parameters are ng = 500 cm 3,
vo =1 km/s, By =4 pG, and x,0 = 10.

47



4000 20 ‘ ‘

B .Y

3000 F ] 15F

v )
§ 2000F ] 2 jof

= N o o

- 5 % aa] B B

1000 £ g B E 5L g o

J=I-=
0 0
1 2 3 4 1 2 3 4

X (pc) X (pc)
1.0[ ' ' j j 200F[
i B r
0.5F g ] 150
> [ g ,
. r = i
é 0.0f . < 100}
o [ B [
-0.5¢ = q 501
1.0t 0

1 2 3 4 1 2 3 4
X (pc) X (pc)
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Figure 2.7: P (solid), Py (dashed), and Py, (dotted) in the colliding
clump simulation, corresponding to the earlier (left) and later (right)
stages in Fig. Note that the magnetic pressure dominates the post-
shock region, with the central peak in thermal pressure compensated for
by a reduction in the magnetic pressure. Over time, the thermal pres-
sure peak and magnetic pressure valley decline due to diffusion within
the post-shock region. In the frame of the (right- or left-ward) expand-
ing shock fronts (not shown), the total pressure in the post-shock re-
gion is the same as the total pressure upstream. Units for pressure are
[2.3my cm™] [1 km 571}2.

Since all fluid variables (n, By, v,) are smooth and continuous prior to shock forma-
tion, the features produced are not a consequence of discontinuous initial conditions.
This test case eventually evolves to profile similar to that in the simple convergent
flow test (Fig. . The central peaks in density and mass-to-flux ratio show up

as well. Subsequent evolution leads to a decline in the central peak in n and n/B,

(Fig. 2.6).

2.4.2.83 Transient C shock Development

Peaks in density above the “steady” shock solution have also been observed
in other ambipolar diffusion simulations using different MHD codes (e.g. |Choi et

al.[2009). In addition, similar transient behavior of C shocks has been noted in
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models with more complex chemistry implemented (e.g. Chieze et al. [1998; van
Loo et al.| 2009; |Ashmore et al. 2010)). Physically, we believe these peaks arise
because the neutrals are effectively “unmagnetized” when the shock first forms. As
a consequence, the neutrals can be very strongly compressed, forming what is seen
as a central density peak in Figs. 2.42.6

The magnetic field, however, does not follow the initial strong compression
of the neutrals. Instead, the overly-compressed neutrals generate higher pressure
in the central regions, inhibiting the magnetic flux from getting in. Fig. shows
the total pressure Py = pnvn® 4+ Peas + Pp of the system, where Py = p,cs
and Pp = B?/8m, with v, measured in the “laboratory” frame. These three terms
correspond to M?/r,,, r,,, and r5? /3 respectively, in Equation . Since Athena
uses the conservative form of the momentum equation (9 (pv) /0t + 0P /0x = 0),
P, must become constant in the post-shock region at late times. For strong shocks,
the magnetic pressure term dominates at late times in the post-shock region. At
early times, there is a slight depression of the magnetic field strength at the center of
the shock, in order to balance the extremely high neutral gas pressure in the density
peak.

Combining the strong neutral compression and slight magnetic exclusion, the
mass-to-flux ratio is elevated in the center when a shock forms. The collisions be-
tween neutrals and ions will gradually slow down the incoming neutrals and compress
ions and magnetic field to the center. Meanwhile, the neutrals in the central peak
diffuse outward in order to balance the increasing magnetic pressure and keep the

total pressure constant. Eventually, the ions and neutrals interact sufficiently that
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a steady-state C shock structure develops. The post-shock n/B, is the same as the
upstream value. However, the ambipolar diffusion process takes time, and during
the transient stage, a region of very strongly compressed neutrals will be present.
Our finding that there is a transient stage of very strong density compression,
with an enhanced ratio of n/B, or mass-to-magnetic flux, suggests that the very
early stage of shock development in GMCs may be particularly important to star

formation. The following sections examine this idea further.

2.5 Criticality of Clouds

2.5.1 Mass-to-flux Ratio

The mass-to-flux ratio is a crucial parameter defining whether the magnetic
field can support a cloud against its own self-gravity. The critical value of M/®pg
for an uniform, spherical cloud has been derived to be M/® B’Cm = ¢/VG =
0.126/+/G (Mouschovias & Spitzer|[1976). The numerical coefficient cg differs with
the geometry of the cloud: an infinite sheet-like cloud has ¢ = 1/27 ~ 0.16 (Nakano
& Nakamura/[1978), while |[Tomisaka et al.| (1988)) found cp = 0.17 — 0.18 for clouds
with various M/®pg distributions (see review by McKee & Ostriker|2007). Since
the value of ¢ varies only ~ 10% with geometry, we choose the commonly-used
ce = 1/2m (Kudoh & Basul 2011} Vazquez-Semadeni et al. 2011) as a reference
value, while keeping in mind that core geometry is not explicitly defined for our slab

system.
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Practically, for magnetic field in the y-direction the ratio can be written as

%_fpdx-LyLz_Lyfpdx )y
® [Bydr-L, [Bydx (B,)’

(2.53)

where we assume that if a core formed in the post-shock region, its effective length
in the y-direction, L,, would be comparable to that in the z-direction, L,, so that
(By) = [ Bydz/ [dx ~ [ Bydx/L,. The mass-to-flux ratio, in units of the critical

value M/@B‘Crit = <27T\/§> 71, is

21VG -8 3.8 (1 N(H) ) (<By>)_1 (2.54)

r
(By) 0%2lcm—2 uG

To convert the column of neutrals in our simulation to N (H), we use n = ny, +npge =
0.6ng. Note that the true value of the normalized mass-to-flux ratio would differ
from Equation by a factor L,/L,, which could be up to ~ 2.

If the mass-to-flux ratio of a prestellar core is larger than the critical value (I" >
1), i.e., the gravitational force exceeds the magnetic support, the core is supercritical
and is eligible for collapse (subject to support by thermal pressure). In contrast, a
subcritical core has a mass-to-flux ratio smaller than the critical value (I' < 1), and
cannot collapse unless it loses magnetic energy in either the strong-gravity mode
(the field lines diffuse outward through ambipolar diffusion while gravity holds the
gas material together) in which T" ~ 1 is required, or the magnetic-dominated mode
(neutral mass moves toward the center under the gravitational pull while ambipolar
diffusion allows the magnetic field lines to remain stationary) so the mass-to-flux

ratio increases.
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2.5.2 Bonnor-Ebert Sphere

A typical low-mass prestellar core has Xcore ~ 1 Mg/ [(0.1 pc)2 7r] ~ 0.007 g - cm ™2,
so that a core with Binitial 2 21V G - Yeore ~ 10.7 uG may be subcritical.
More precisely, we consider the Bonnor-Ebert sphere radius for a core whose

mean density is equal to the post-shock density py,
(2.55)

(e.g. \Gong & Ostriker|2009), which is the largest sphere that can be supported by
its own internal thermal pressure.
We note that, from Equation (2.45)), the ratio of the shock thickness to the

diameter of a Bonnor-Ebert sphere at the post-shock density is

Lew _ 0.7(47Gpo)"” (@) ~ Vo (2.56)

2Rpg Qap; o Cs Xi0Cs

A converging flow bounded by C shocks has breadth at least twice the shock thick-

ness. Under conditions in GMCs where vg/cs 2 10, and x;0 < 10, this implies that

shocks are sufficiently broad that Bonnor-Ebert spheres can fit within the post-shock

region. Thus, if magnetic fields are weak enough, cores could grow and collapse in
post-shock gas.

The mass-to-flux ratio for a sphere of radius Rgg in a post-shock magnetized

region, without ambipolar diffusion, is

M 4rR3p;/3 4 Py
—| == "Ryt 2.57
Op|y,  7R?B; 3 UPBy (2:57)
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with corresponding

M/®p|,.  87VG  pr  1.8c, 18
_ - ppd = = = (2.58)
M/(I)B‘ 3 Bf UAJ Tf

crit

I'pr 5
VA0

where
2 2 2
Uaf = Bf/ (4mpy) = TfVa0
using the shock jump conditions. Note that for a strong shock, ry ~ V2uy/ VA0, SO

that T'gg =~ 1.5¢,/ (vovA@)lm, or

no 0.25 v —0.5 BO —0.5 T —0.5
Tpp ~ 0.8 <—) 20 L . 2.59
bE 100cm—3 (km /s) nG 10K (2.59)

If I'gg is larger than 1, a post-shock region of radius ~ Rpg is dense enough to

gravitationally collapse whether or not there is ambipolar diffusion. Otherwise, am-
bipolar diffusion would be needed for a region of size ~ Rpg to become supercritical.
For the set of shock models we are studying (see Table for inflow parameters),
calculated radii and mass-to-flux ratios for Bonnor-Ebert spheres under post-shock
conditions without ambipolar diffusion are listed in Table In all cases, I'gg is
much smaller than 1, which means no collapse at the BE scale could happen in
the post-shock region without significant ambipolar diffusion. More generally, since
Ipg ~ ¢/ (’UOUA’O)I/ ? < 1 under GMC conditions, most post-shock regions are suffi-
ciently magnetized that gravitational collapse of low-mass cores would be prevented
unless ambipolar diffusion occurs. Note that if p > r¢pp, as is true in the candidate

core material for transient C shocks, Rgg will be lower than the value in the table.

o4



2.6 Core Forming Process

Current theoretical and observational work suggests that shocks produced by
supersonic turbulence play a role in compressing gas to form prestellar cores. Our
findings that the neutrals are compressed more than the magnetic field during the
early stages of shock formation raise an interesting question: Is it possible for a
subcritical cloud to form supercritical cores in shocks, which can then gravitationally

collapse promptly?

2.6.1 Evolution of Overdense Regions

For a prestellar core to collapse, the region must be dense enough so that
self-gravity overcomes the magnetic support. Although self-gravity is not included
in the present models, we can make an initial assessment of whether transient C
shocks are likely to affect the ability of cores to collapse promptly after they form.

In the context of our converging flow test, we shall define “candidate core”

material to be regions where

S 19 (ﬂ (2.60)

)
BZI By ) background

the background has uniform n/B,, so the time evolution of this candidate core
material is easily calculated. Physically, this candidate core material corresponds to
that in the central peak of n/B, as shown in e.g. Fig. 2.4 or Fig. 2.6]

For steady shocks with compression factor r¢ produced by a two-sided con-

verging flow with inflow speed vjug0 from both sides, the upstream speed in the
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Figure 2.8: Dependence of “candidate core” material column density on
the ion-neutral collisional coefficient, for & = ag = 3.7 x 10'3 cm3s~tg~!,
a = 0.509, and a = 2. Also shown (straight dotted line) is the “kine-
matic” growth rate dN(H)/dt = 2ngviaew for a steady shock. Parame-
ters for this model are ny = 100 cm™3, vy = 5 km/s, By = 10 uG, and

Xio = 9.
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shock frame is vg = Vinfiow? s/ (rf — 1), and Ushock = Vinfiow/ (rf — 1). The rate at

which the column density grows for a steady shock is therefore

AN (H)
At

= 2 inflow — 105 ].021 _2M -1 ( "o ) Vinflow 26]_
NHVinfl X em My 1o5em=3) Is ) (2.61)

where n = ny, + nyge = 0.6ny is assumed.

For a steady shock, the growth rate of the post-shock column is independent
of a, the collision coefficient between neutrals and ions. Fig. shows evolution
of the “candidate core” column density with different values of «, for a model with
no = 100 cm ™3, vingow = 3.87 km/s, By = 10 uG, and y;0 = 5. In the very beginning,
all of the post-shock material has n/B, greater than the background value, because
the core grows by unimpeded motion of the neutrals which do not “see” the ions.
Thus the column of “candidate core” material initially follows Equation (2.61]), with
slope AN (H)/At ~ 4 x 10! cm™2Myr~ (also shown in Fig. [2.§), independent of a.

It is evident that at some point the growth rate of the “candidate core” column
decreases. Physically, the growth rate decreases as ions are pushed into the column
by inflowing neutrals, which causes the magnetic flux in the “candidate core” region
to increase more rapidly than the neutral column, and the mass-to-flux ratio to
decrease. Therefore, we might expect the growth of the demagnetized column to
slow down on a timescale tap ~ Lghock/Varifs, the time for neutrals to travel across
the shock front under the influence of ions. In timescales short compared to tap,
neutrals which have arrived at the center were moving fully or partly free from
collisions with ions. These neutrals thus contribute to the column with high mass-

to-flux ratio. After tAp, neutrals which have interacted strongly with ions dominate,
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and the growth rate of the low-magnetization column starts to decrease.

This also corresponds to the timescale for steady C shock structure to develop,
and for the fronts surrounding the shocked layer to expand. After this time, neutrals
must then travel a greater distance through the condensed magnetic field and ions to
stream into the “candidate core” area. From Fig. [2.8] the “saturation” time varies,
roughly inversely with the collision coefficient a. With Equation or we

have Lgpoek (and hence tap) o< 1/c, consistent with our numerical results.

2.6.2 Time Scale and the Mass-to-flux Ratio

As discussed earlier, our simulation results indicate that during an initial tran-
sient period, the neutrals are compressed much more strongly than the magnetic
field. Up to a certain time, corresponding to the ambipolar diffusion time scale,
the column density of gas with elevated n/B grows. After this time, the profile
transitions to that of a steady C shock, with n/B equal to the upstream value.

The ambipolar diffusion time scale should be comparable to the time it takes

for neutrals to travel through the thickness of a C-type shock under the influence of

_1> : (2.62)

where we have used va,ig, = |v; — v,| = g ‘r; T r;l} (see Equations || and )

ion drag. Therefore we have

1 1

Tn B

_ Lshock Lshock
tap = =
( ) Vo

Assuming that r,, > rp over the shock region because a steady-state C shock has
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not yet formed, and using (rp) ~ r7/2 as an average value, we obtain

Lshock Ty Lshock
tAD ~ ~ — 2.63
AD & (rp) ” 2 o (2.63)
9p1/2 95/4 1/2
~ 2~ ( hl ) . (2.64)
ap;0 ap; o0 \ VA0

In the second line, we use the estimate of Equation for the shock thickness,
and Equation for r; in a strong shock. Note that a similar formula for more
general cases with oblique shocks is given in Equation . In dimensional terms,
using the analytical approximation Equation to the C shock thickness Lgock,

Equation (2.63)) gives

o 025 vy \** / Bo\ " rxi0) !
tap A 1 x 10° (—) 20 ( ) 2.65
AD x Y\ 100cm—3 (km/s) uG 10 (2.65)
0.36 x 10° mo 70000 )™ oy 2.66
=0.36 % 10° yr (7500055 (—) (15) (2.66)

The time top can be compared to the gravitational free fall time

31\ Y2 n —1/2
te (p) = — 3.4 % 10° <—) 2.67
i (p) (32Gp) YT 100em 1 (2.67)
to give

tAD P 12 Vo 2
~ —_ —_— i _1. 268
te(p) <Po) (UA,0> o (2.68)

The post-shock gas has density p; = rppo with r; ~ /2 (vo/va) (see Equa-
tion (??)), which means that tap/tg(ps) ~ (vo/vao)Xjo'- During the transient
stage, pr > py, so tg (pr) < tg (py), implying tap/tg (p:) > (vo/va) Xio - Thus, for
strong shocks (vg/va o 2 10) and low ionization conditions (x;o < 10), the transient
duration typ will exceed the time tg (p;) for post-shock perturbations to develop
into collapsing cores.
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If the growth rate of the neutral column density is dNy/dt ~ 2npvy (see

Equation ([2.61))), the final (maximum) value of the mass-to-flux ratio should be

M - 14deNH/dt X tAD - 2p0U0 X Lshockrf/ (21}0) _ pOLshock

- ~ 2.69
D5 | anal Binal 7t Bo By (2.69)

This estimate of the mass-to-flux ratio inside the pre-collapsing core depends only
on the upstream density and magnetic field, and the steady-state C shock thickness.

This can be evaluated (using Equation (2.47)) to give Dgna = 27V G (M/® B)final’

- 025 uy \"® [ Bo\ " /yioy -1
Cat 01 (") B) My
fnal A 0 100cm—3 (km/s) (uG) 10 (2.70)

0.5
- Vo Xio\ !
= 0.14 (—UM) <_10> . (2.71)

Note that true I" would differ by a factor L,/L, from Equations (2.70) and (2.71);

i.e. up to factor ~ 2 larger.

Combining Equations (2.64)), (2.67), and (2.69)), we have

32\
tAD:(@) Pinattt (90) = 0.74 Tgnattis (p0) (2.72)

Thus, shocks that are able to reach I'gna ~ 1 through transient ambipolar diffusion
will do so on a timescale comparable to the gravitational time g (pg) of the large-
scale cloud. Since the large-scale dynamical timescale (~ tg(pg) for a self-gravitating
cloud) determines the correlation time of the flows that create shocks, this means
that shocks will be sustained long enough for diffusion to occur.

If vg 2 vap and ;0 ~ 1, from Equation the candidate core will have
[gnar exceeding unity. In this situation, a core would be able to collapse promptly,

without an extended period of ambipolar diffusion, since

taD Vo 12
Z ( ) Fﬁnal > Fﬁnal- (273)
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In GMCs, the ionization fraction is dependent on chemical processes, with y;o ~
1—-20 (McKee et al.|2010). The turbulent flow speed will not exceed ~ 10 km/s under
realistic conditions, and ng ~ 102 —10% cm ™3, typically} Therefore, [y will exceed
1 (see Equation (2.70)) only if the upstream magnetic field in the direction parallel
to the shock front is moderate, probably < 10 uG. The line-of-sight magnetic field
strengths in molecular clouds with density < 103 em™, however, can vary over
~ 5 — 25 puG (Crutcher 1999; |Crutcher et al|[2010). If the total magnetic field
strength (which is always > Bprog) exceeds ~ 20uG, then in order to reach I,
close to 1 so that pre-collapse cores can develop efficiently, converging flows with v
aligned < 30° to Bouq are favored.

In addition, we note that for o3p, cioua and va, cioua the 3D turbulent veloc-
ity dispersion and mean-field Alfvén speed in a cloud, a gravitationally-bound (or

virialized) cloud has

Fcloud ~ 73D, Cloud, (274)
VA, cloud
so that
1 Vo 12 Beloud 12 1/2
Pt ~ - (_) (_) rie 2.75
l Xi0 \ 03D, cloud By loud ( )

The strongest shocks will have vy ~ o3p, cloua. These regions will be able to reach
[inal ~ 1 if the cloud is sufficiently supercritical (I'¢ouq => 1), the ionization fraction
is sufficiently low (x;0 ~ 1), and/or the magnetic field parallel to the shock front
is weaker than the mean field threading the cloud (Beoua/Bo > 1). Again, with

realistic x;o and I'¢ouq, the most favorable circumstance for ambipolar diffusion to

I Keep in mind that some combinations of parameters are not astronomically realistic; e.g. high
vp is unlikely to have low x;o, and high ng is unlikely to have low Bj.
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yield T'gpa; > 1is if the inflow vy is aligned locally towards Bejoug 80 that Beoua/Bo >
17

Even if post-shock regions are subcritical, transient ambipolar diffusion signif-
icantly increases the mass-to-flux ratio compared to the value that would hold in

ideal MHD. A measure of the importance of this effect is the ratio between I'gya

and ['gg in the post-shock region. From Equations (2.70]) and (2.59)),

1—‘ﬁnal Vo T ~1/2 -1 M
FBE (km/s) <1OK> XZO Xi0 ( )

is predicted. The turbulent motions in clouds can achieve M ~ 50. With y;g ~

1 — 20, a significant enhancement in the mass-to-flux ratio can be expected due to

transient ambipolar diffusion.

2.6.3 Simulation Results

The estimates of Equations and can be compared to the ambipo-
lar diffusion time and mass-to-flux ratio as measured directly from time-dependent
numerical simulations. Examples showing evolution of the measured I' for several
different parameter values are shown in Fig. [2.9

To read the ambipolar diffusion time scale from simulations, recall that the
growth rate of the mass-to-flux ratio inside the core decreases at time ~ tpp. We
adopt a definition of t5p as the time when the slope of the I' vs. time curve drops to

25% of its maximum value. For each simulation, we measure the mass-to-flux ratio

2We have investigated oblique shocks with nonzero B;o = Bcoudcos = Bycotf in Ap-
pendix @ where By = By o = Bcloud sinf is the magnetic component parallel to the shock front.
Equation gives an approximation of I'g,, as a function of 6 (the angle between Bjouq and
vp). Since there is no strong dependence of 'y, on 0, our 1-D results (Equations , ,
and ) are applicable in most cases with nonzero B o.
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Figure 2.9: Time evolution of the normalized central mass-to-flux ratio
I" in the shocked gas. The parameters are ng = 200 cm ™3, vy = 5 km/s,
By =10 uG, and x;0 = 5 (solid line), with modifications as noted in the
key.
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Table 2.2: Results for Transient Mass-to-flux Enhancement

tAD Ffinal Lcore BE Sphere]L

eq. 2_63!) result® at 2tap T Rpeg TI'pg Tatap/
Model (10° years) eq. (]ﬁ[) Tt ap (pe) (pc) I'sg
NO1 1.42 1.12 0.55 0.37 0.58 0.46 0.12 3.08
NO03 1.10 1.11 0.74 0.64 0.34 0.20 0.15 4.27
NO05 0.98 1.09 0.85 0.78 0.27 0.13 0.17 4.59
NO8 0.88 1.07 0.96 0.95 0.23 0.09 0.19 5.00
N10 0.83 0.90 1.02 1.07 0.21 0.08 0.20 5.35
V04 1.07 0.94 0.59 0.44 0.40 0.31 0.16 2.75
V06 1.33 1.42 0.73 0.60 0.42 0.25 0.13 4.62
V08 1.56 1.86 0.86 0.76 0.42 0.21 0.11 6.91
V10 1.75 1.88 0.96 0.91 0.43 0.19 0.10 9.10
V12 1.94 2.13 1.06 1.06 0.43 0.17  0.09 11.78
B02 2.88 4.93 1.58 2.83 0.51 0.12 0.31 9.13
B04 1.98 2.64 1.09 1.35 0.44 0.17 0.22 6.14
BO06 1.59 2.15 0.87 0.89 0.43 0.21 0.18 4.94
B08 1.36 1.58 0.75 0.66 0.42 0.24 0.15 4.40
B10 1.21 1.08 0.66 0.52 0.42 0.27 0.14 3.71
B12 1.09 0.90 0.60 0.43 0.42 0.30 0.13 3.31
B14 1.01 0.79 0.55 0.37 0.40 0.33 0.12 3.08
X01 6.03 5.78 3.32 2.63 2.03 0.27 0.14 18.79
X06 1.01 0.89 0.55 0.43 0.34 0.27 0.14 3.07
X10 0.60 0.57 0.33 0.25 0.20 0.27 0.14 2.78
X15 0.40 0.48 0.22 0.16 0.14 0.27 0.14 1.79
X20 0.30 0.45 0.17 0.12 0.12 0.27 0.14 0.86

T Computed for post-shock conditions without ambipolar diffusion (see Equations and

2].)551)1.ed as when the slope of the T' vs. time curve drops to 20% of its maximum value.

¥ Leore = N/(n) in “candidate core” region with enhanced n/B.
¥ /(B,) at time t = 2tap, and define this mass-to-flux ratio inside the central peak
(multiplied by 27r\/@) as final.

Table shows the predicted values of tpp and I'4,, from Section [2.6.2)

as well as the simulation results for these quantities. The measured ambipolar
diffusion time scale is ~ 0.3 — 3 Myr. Our model predicts the ambipolar diffu-

sion time scale very well: the RMS value of (£ap, pred — tAD, sim) /tAD, sim is 0.19,

and the range of (fap, pred — tAD, sim) /tAD, sim 1S —0.42 to 0.28. The measured
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mass-to-flux ratios deviate from predicted values somewhat more, with a range of
(Cinal, pred — L'final, sim) /I'final, sim —0.44 to 0.49, and RMS value 0.28. The typical
size Leore = N/(n) of the region with enhanced mass-to-flux ratio at time 2top is
~ 0.2 — 0.6 pc (Table column 6).

In most of our simulations, the mass-to-flux ratios are higher than 0.6 (see
column 5 of Table , with some cases (N10, V12, B02, B04, and X01) reaching
Iy, > 1. Recall that we assumed the effective length of the system is comparable
in all directions when we define I" in the candidate core material (see Section .
This means that the real mass-to-flux ratio would differ from our measured I'y;,, by
a factor L,/L,. Since cores may have axis ratios ~ 2 : 1, the measured I'y;, , may
be underestimated by a factor up to ~ 2. Therefore the fact that almost all models
have I'y,, close to 1 shows that C shock transients may lead to supercritical cores
quite frequently.

The models with I'y;,; > 1 confirm our prediction that small values of By
are crucial for forming supercritical cores (otherwise uncommonly high neutral den-
sity /inflow speed or extremely low ionization fraction may become necessary). Given
the limits on physical conditions in clumps within GMCs (see discussion in Sec-
tion , prompt supercritical core formation would preferentially occur if the
inflow direction is aligned relatively close to the magnetic field. A study of oblique
shocks using similar analysis to that in the previous section is performed in Ap-
pendix [A] where we show that the transient behavior of C shocks is insensitive to
the component of magnetic field parallel to inflow velocity, so that our 1-D model

is qualitatively applicable in cases with more general geometry.
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We also list the value of I'y,, /T'gg in Table for all our numerical models.
In most cases, this ratio is greater than 2, and the average value is ~ 5.4. This means
that for essentially all reasonable parameters, transient ambipolar diffusion will be
important in enhancing the mass-to-flux ratio for forming cores. Since I'y,, is close
to 1 in many situations, and 'y, /I'pg is large, transient ambipolar diffusion during
core formation clearly plays an important role in setting the stage for subsequent

core evolution.

2.7 Summary

Ambipolar diffusion is an important phenomenon in interstellar clouds, which
are strongly magnetized in the sense va ~ vy > ¢, but are poorly ionized. Super-
sonic turbulence creates shocks, but ambipolar diffusion between ions and neutrals
spreads these shocks out. The thickness of C-type shocks depends on the inflow
velocity, density, the magnetic field strength, and the ionization fraction. Although
C shocks are normally studied in the steady-state limit, their early transient de-
velopment is quite interesting. During this transient stage, the central compression
of neutrals is strongly enhanced because they are effectively “unmagnetized.” The
time and space scales of these transients make them important to the structure and
dynamics within GMCs. The transient duration is comparable to the drift time
across the C shock thickness (~ 0.1 — 1 pc), typically ~ 0.1 — 1 Myr for GMC
conditions.

For star formation, ambipolar diffusion is usually analyzed in the context of
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slow evolution leading to gravitational collapse in magnetically-supported clouds.
However, our results show that since neutrals can stream through field lines in
shocks because of ambipolar diffusion, magnetically-supercritical cores may form due
to C shock transients. During the transient, strong central compression of neutrals
enhances n/B compared to steady-state values. If the compression and duration of
the transient are sufficient, the central post-shock region may become supercritical
and collapse gravitationally to make a prestellar core before it re-expands.

For both the traditional picture of supercritical core formation and the scenario
we propose, the magnetic field remains relatively stationary while the neutrals move
inward, within the high density regions. For the traditional picture, the inward neu-
tral motions are due to small-scale self-gravity within the core. For shock-induced
core formation, the inward motions of neutrals owes to large-scale converging super-
sonic flows within GMCs (which may ultimately be driven by large-scale self-gravity
within the cloud).

Transient ambipolar diffusion is particularly important because without it,
post-shock regions in GMCs typically have very small mass-to-magnetic flux ratios.
Thus, the regions with the shortest gravitational timescales (at high density, due to
shocks) would be prevented from collapsing by magnetic fields, which are also en-
hanced by shocks. Our numerical simulations show a peak in the mass-to-flux ratio,
produced by transient ambipolar diffusion. For strong shocks (vg/va o sufficient)
and low enough ionization fraction, our results suggest that supercritical cores can
be produced.

Based on our simulation results and analyses, our main conclusions are as
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follows:

1. The dominant factors determining the ionization fraction in molecular clouds
are ionizing cosmic rays and gas-phase recombination. We derive steady-
state equations for C shocks including ionization and recombination (Equa-
tions and ) Analyzing the solutions of these equations (Fig. [2.1]),
we find that ionization-recombination equilibrium is generally an excellent
approximation, and for this regime is much better than the widely-applied
frozen-in condition. For equilibrium ionization, p; o p}/ 2 (Nakano| 1976/ |1979)
so that r; = 7,2 in our notation, and Equation governs steady C

shocks.

2. We have solved the steady C shock ODE over a parameter range of upstream
neutral density no = 102 — 103 em ™3, inflow speed vy = 2 — 15 km /s, upstream
magnetic field strength By = 2 —15 uG, and ionization parameter y;o = 1 —21
(Xio0 is defined in Equations —). Using a multilinear fit, we obtain
an expression for the C shock thickness (Equation (2.48))), in terms of these
parameters. We also obtain an analytic expression for the C shock thickness
(Equation (2.46)), which is in excellent agreement with the numerical result.
The dependence Lg,oqc o< (’U()UA,O)l/Q / (apio) can be understood based on the
requirement for momentum transfer mediated by ion-neutral collisions. Our re-
sult for the C shock thickness is comparable to previous estimates (e.g. [Draine
& McKee|[1993), although the parameter dependence differs from the case of

“frozen-in” ions (Wardle||[1990; Li et al.|2006]).
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3. During the transient stage of C shocks, the central column density of gas with
enhanced mass-to-flux ratio initially grows kinematically (Equation ),
but this slows after a time comparable to the ion-neutral drift time txp =~
Lghock /Varire across the C shock (Fig. and Equation ) The duration
of the transient from our numerical models (see Table is similar to our
analytic estimate, 0.1 — 1 Myr for the regime we have studied (see Equa-
tions —). Although the present models do not include self-gravity,
the duration of the transient C shock is comparable to the time needed for
prestellar cores to collapse, from both observations (e.g. [Ward-Thompson et
al.[2007; |[Evans et al. 2009) and numerical simulations (e.g. |(Gong & Ostriker

2011

4. Our finding of rapid initial enhancement in density and mass-to-flux ratio is
consistent with the results of Kudoh & Basu| (2008]), for somewhat different pa-
rameter regime. Their simulations included self-gravity, and they also pointed
out that with appropriate parameters, collapsing cores may form due to the
initial compression. Our work helps to explain the physics behind the rapid
collapse they identified, and more generally provides insight into other numer-
ical studies of turbulence-accelerated, magnetically-regulated star formation

(e.g. [Li & Nakamura [2004).

5. Over the transient time f5p, a column ~ 2ngvgtap of “candidate core” material
accumulates. By taking the ratio with the post-shock magnetic field strength,

we can estimate the mass-to-flux ratio of this dense material. Equation ([2.70))
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gives an estimate of the final dimensionless mass-to-flux estimate, I', which
is similar to numerical measures of g, (Table . The relatively high
mass-to-flux ratios we find may explain the weak magnetic fields observed in
dense cores (Troland & Crutcher| 2008). Without ambipolar diffusion, the
post-shock mass-to-flux ratio on the scale of a Bonnor-Ebert sphere (I'gg &~
1.5¢,/ (vgvao)*’?) would be much smaller than the critical value. In contrast,
the mass-to-flux ratio in the candidate core material produced within transient
C shocks is several times larger than I'gg (Table and Equation (2.76])).
This large enhancement shows the significance of ambipolar diffusion during

shock-induced core formation.

. In transient shocks that can produce 'z, = 1, magnetically supercritical
cores can form and collapse rapidly. Shocks that can reach I'g,, 2= 1 have
tap comparable to the gravitational free-fall time of the larger-scale cloud

(Equation (2.72))). Thus, shock-induced ambipolar diffusion is rapid, wherever

it occurs.

. The most favorable conditions for forming gravitationally bound cores in cold,
turbulent, magnetized clouds are strong shocks (vy > va) in regions with
low ionization fraction (x;0 ~ 1). Equation in the Appendix gives the
final mass-to-flux ratio for the case of oblique shocks; the result is similar to
that with the same component of the magnetic field parallel to the shock front
(Equation (2.70))). Considering realistic conditions in molecular clouds, con-

verging flows with viygow L Beoua Will have relatively low post-shock density
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and post-shock mass-to-flux ratio, and the post-shock gas layers formed will be
unfavorable for star formation. Cases where viygow and Beouq are more aligned
are more favorable for reaching g > 1 (Equation (2.75). Further obser-
vations of the directions of magnetic fields relative to observed gas filaments
with or without embedded cores will test whether these orientation effects are
indeed important. If orientation of shocks is in fact important in producing
cores that can collapse, this may help explain the observed inefficiency of star

formation in GMCs.

While the present models are extremely useful for explaining the phenomenon
of transient ambipolar diffusion, simulations of more generalized cases are required
to support the scenario of prompt supercritical core formation in shocks. Three-
dimensional simulations of systems with oblique shocks, including self-gravity of
the gas, would be immediately helpful. In addition, a more realistic core-forming
environment can be examined by adding nonlinear turbulence to the inflow velocity
field. Further simulations along these lines, together with observations probing
density and magnetic structure in filaments and cores at different stages, will improve

understanding of what precipitates star formation.
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Chapter 3: Formation of Magnetized Prestellar Cores
with Ambipolar Diffusion and Turbu-

lence

Abstract

We investigate the roles of magnetic fields and ambipolar diffusion during
prestellar core formation in turbulent giant molecular clouds (GMCs), using three-
dimensional numerical simulations. Our simulations focus on the shocked layer
produced by a converging large-scale flow, and survey varying ionization and an-
gle between the upstream flow and magnetic field. We also include ideal mag-
netohydrodynamic (MHD) and hydrodynamic models. From our simulations, we
identify hundreds of self-gravitating cores that form within 1 Myr, with masses
M ~ 0.04 — 2.5 My and sizes L ~ 0.015 — 0.07 pc, consistent with observations
of the peak of the core mass function (CMF). Median values are M = 0.47 Mg
and L = 0.03 pc. Core masses and sizes do not depend on either the ionization
or upstream magnetic field direction. In contrast, the mass-to-flux ratio does in-
crease with lower ionization, from twice to four times the critical value. The higher
mass-to-flux ratio for low ionization is the result of enhanced transient ambipolar
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diffusion when the shocked layer first forms. However, ambipolar diffusion is not
necessary to form low-mass supercritical cores. For ideal MHD, we find similar
masses to other cases. These masses are 1 — 2 orders of magnitude lower than the
value Myagspn = 0.007 B3/(G3/?p?) that defines a magnetically supercritical sphere
under post-shock ambient conditions. This discrepancy is the result of anisotropic
contraction along field lines, which is clearly evident in both ideal MHD and diffusive
simulations. We interpret our numerical findings using a simple scaling argument
which suggests that gravitationally critical core masses will depend on the sound

speed and mean turbulent pressure in a cloud, regardless of magnetic effects.

3.1 Introduction

The formation of stars begins with dense molecular cores (McKee & Ostriker
2007; |André et al.[2009). These cores form through the concentration of overdense
regions within turbulent, filamentary GMCs; subsequent core collapse leads to pro-
tostellar (or protobinary)/disk systems. Magnetic fields are important at all scales
during this process (McKee & Ostriker||2007; |Crutcher||2012): the cloud-scale mag-
netic field can limit compression in interstellar shocks that create dense clumps
and filaments in which cores form, while the local magnetic field within individual
cores can prevent collapse if it is large enough (Mestel & Spitzer[1956; [Strittmatter
1966; [Mouschovias & Spitzer||1976|), and can help to remove angular momentum
during the disk formation process if cores are successful in collapsing (Mestel [1985;

Mouschovias||1991; |Allen et al. 2003 |Li et al.|2014). The significance of magnetic
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fields in self-gravitating cores can be quantified by the ratio of mass to magnetic flux;
only if the mass-to-flux ratio exceeds a critical value is gravitational collapse possi-
ble. How the mass-to-flux ratio increases from the strongly-magnetized interstellar
medium to weakly-magnetized stars is a fundamental problem of star formation (Shu
et al.||[1987; McKee & Ostriker|2007). Here, as suggested in (Chen & Ostriker| (2012,
hereafter Chapter 2), we consider core formation in GMCs with highly supersonic
turbulence and non-ideal MHD.

Magnetic fields are coupled only to charged particles, while the gas in GMCs
and their substructures is mostly neutral. The ability of magnetic fields to affect core
and star formation thus depends on the collisional coupling between neutrals and
ions. Ambipolar diffusion is the non-ideal MHD process that allows charged particles
to drift relative to the neutrals, with a drag force proportional to the collision rate
(Spitzer|[1956)). Ambipolar drift modifies the dynamical effect of magnetic fields on
the gas, and may play a key role in the star formation.

In classical theory, quasi-static ambipolar diffusion is the main mechanism for
prestellar cores to lose magnetic support and reach supercritical mass-to-flux ra-
tios. Through ambipolar drift, the mass within dense cores can be redistributed,
with the neutrals diffusing inward while the magnetic field threading the outer re-
gion is left behind (Mouschovias [1979). However, the quasi-static evolution model
(e.g. Mouschovias & Ciolek(1999; |Ciolek & Basul[2001]) gives a prestellar core lifetime
considerably longer (up to a factor of 10) than the gravitational free-fall timescale,
tg, while several observational studies have shown that cores only live for (2 —5) tg

(e.g. \Ward-Thompson et al.|2007; Evans et al.[[2009).
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The failure of the traditional picture to predict core lifetimes indicates that
supercritical cores may not have formed quasi-statically through ambipolar diffusion.
Indeed, it is now generally recognized that, due to pervasive supersonic flows in
GMCs, core formation is not likely to be quasi-static. Realistic star formation
models should take both ambipolar diffusion and large-scale supersonic turbulence
into consideration. This turbulence may accelerate the ambipolar diffusion process
(Heitsch et al.[2004; Li & Nakamura|2004), with an analytic estimate of the enhanced
diffusion rate by a factor of 2—3 for typical conditions in GMCs (Fatuzzo & Adams
2002).

In our previous work (Chapter 2; or see|Chen & Ostriker|2012), we investigated
the physical mechanism driving enhanced ambipolar diffusion in one-dimensional
C-type shocks. These shocks pervade GMCs, and are responsible for the initial
compression of gas above ambient densities. We obtained a formula for the C-
shock thickness as a function of density, magnetic field, shock velocity, and ioniza-
tion fraction, and explored the dependence of shock-enhanced ambipolar diffusion
on environment through a parameter study. Most importantly, we identified and
characterized a transient stage of rapid ambipolar diffusion at the onset of shock
compression, for one-dimensional converging flows. For an interval comparable to
the neutral-ion collision time and before the neutral-ion drift reaches equilibrium,
the neutrals do not experience drag forces from the ions. As a consequence, the
initial shock in the neutrals is essentially unmagnetized, and the neutrals can be
very strongly compressed. This transient stage, with timescale tiansient ~ 1 Myr
(but depending on ionization), can create dense structures with much higher p/B
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than upstream gas. Chapter 2 suggested this could help enable supercritical core
formation. In Chapter 2, we also found that (1) the perpendicular component of the
magnetic field is the main determinant of the shock compression, and (2) the per-
pendicular component of the magnetic field B, must be weak (< 5 uG) for transient
ambipolar diffusion in shocks to significantly enhance p/B, .

Observations of nearby clouds provide direct constraints on the role of mag-
netic fields, as well as other properties of prestellar cores. The typical mean mass-to-

flux ratio of dark cloud cores is I" ~ 2 (in units of critical value; see Equation (3.16]))

from Zeeman studies (Falgarone et al|2008; Troland & Crutcher|2008). Due to

the instrumental limitations, magnetic field observations in solar-mass and smaller

scale regions are relatively lacking compared with observations of larger scales (see

review in Crutcher|2012)), however. Surveys in nearby clouds have found that prestel-

lar cores have masses between ~ 0.1 — 10 My and sizes ~ 0.01 — 1 pc (Motte et

al][2001} [Ikeda et al|2009; Rathborne et al|2009; Kirk et al|2013). In addition, a

mass-size relation has been proposed as a power law M oc RF, with k = 1.2 — 2.4

dependent on various molecule tracers (e.g. Elmegreen & Falgarone| 1996; Curtis &|

Richer|2010; Roman-Duval et al.||[2010; Kirk et al.|[2013)).

The magnetic field strength within prestellar cores is important for late evo-

lution during core collapse, since disk formation may be suppressed by magnetic

braking (for recent simulations see |Allen et al.2003; [Hennebelle & Fromang|2008;

Mellon & Li|2008; Hennebelle et al. 2011} or see review in 2014). However,

many circumstellar disks and planetary systems have been detected (e.g.

et al|2001; Maury et al|[2010]), suggesting that the magnetic braking “catastro-
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phe” seen in many simulations does not occur in nature. The proposed solutions

include the misalignment between the magnetic and rotation axes (Hennebelle &

(Ciardi| 2009; |Ciardi & Hennebelle 2010; Joos et al|2012; [Krumholz et al. 2013,

turbulent reconnection and other turbulent processes during the rotating collapse

(e.g. Santos-Lima et al.|2012} [Seifried et al.[|2012, 2013), and non-ideal MHD effects

including ambipolar diffusion, Hall effect, and Ohmic dissipation (e.g. [Krasnopolsky

et al.|[2010; [Li et al.|[2011; [Machida et al.|[2011; [Dapp et al|[2012; [Tomida et al.|

2013)). If prestellar cores have sufficiently weak magnetic fields, however, braking

would not be a problem during disk formation (e.g. Mellon & Li|2008; |Li et al.|2013|

2014). Therefore, the magnetic field (and mass-to-flux ratio) within a prestellar core
is important not just for the ability of the core to collapse, but also of a disk to form.
Fragmentation of sheetlike magnetized clouds induced by small-amplitude per-

turbation and regulated by ambipolar diffusion has been widely studied (e.g.

debetouw & Zweibel| 2000; Basu & Ciolek| 2004; Boss [2005} |Ciolek & Basu| [2006;

Basu et al.|[2009a)). Analogous fully three-dimensional simulations have also been

conducted (e.g. Kudoh et al|[2007). Supercritical cores formed in the flattened

layer have masses ~ 0.1 — 10 Mg (e.g. Indebetouw & Zweibel 2000; Basu et al.

2009a), at timescales ~ 1 — 10 Myr dependent on the initial mass-to-flux ratio of

the cloud (e.g. Indebetouw & Zweibel 2000; [Kudoh et al.|2007; Basu et al. 2009a)).

The above cited simulations start from relatively high densities (~ 10* cm™3; e.g.

Kudoh et al.|2007) and included only the low-amplitude perturbations. Alterna-

tively, |ILi & Nakamura) (2004) and Nakamura & Li (2005) took the formation of

these overdense regions into consideration by including a direct treatment of the
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large-scale supersonic turbulence. They demonstrated that ambipolar diffusion
can be sped up locally by the supersonic turbulence, forming cores with masses
~ 0.5 My and sizes ~ 0.1 pc within ~ 2 Myr, while the strong magnetic field keeps
the star formation efficiency low (1 — 10%). Similarly, Basu et al.| (2009b]) found
that turbulence-accelerated, magnetically-regulated core formation timescales are
~ 1 Myr in two-dimensional simulations of magnetized sheet-like clouds, with corre-
sponding three-dimensional simulations showing comparable results (Kudoh & Basu
2008, [2011). In addition, [Nakamura & Li (2008|) measured the core properties in
their three-dimensional simulations to find Lege ~ 0.04 — 0.14 pc, I'eore ~ 0.3 — 1.5,
and Mcoe ~ 0.15 — 12.5 My, while Basu et al.| (2009b) found a broader core mass
distribution Mo ~ 0.04 —25 Mg, in their parameter study using thin-sheet approx-
imation.

Supersonic turbulence within GMCs extends over a wide range of spatial scales
(Mac Low & Klessen| 2004} Ballesteros-Paredes et al. 2007). Although turbulence
contains sheared, diverging, and converging regions in all combinations, regions in
which there is a large-scale convergence in the velocity field will strongly compress
gas, creating favorable conditions for the birth of prestellar cores. |(Gong & Ostriker
(2011)) investigated core formation in an idealized model containing both a large-
scale converging flow and multi-scale turbulence. These simulations showed that the
time until the first core collapses depends on inflow Mach number M as tconapse
M2 With a parameter range M = 1.1 to 9, cores formed in the Gong &
Ostriker| (2011) simulations had masses 0.05 — 50 M. Following similar velocity

power spectrum but including ideal MHD effects, Myers et al.| (2014]) performed
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simulations with sink particle, radiative transfer, and protostellar outflows to follow
the protostar formation in turbulent massive clump. They demonstrated that the
median stellar mass in the simulated star cluster can be doubled by the magnetic
field, from 0.05 My, (unmagnetized case) to 0.12 Mg, (star cluster with initial mass-
to-flux ratio I' = 2). This is qualitatively consistent with the conclusion in Inoue &
Fukui (2013)), that the mass of the cores formed in the post-shock regions created by
cloud-cloud collision is positively related to (and dominated by) the strong magnetic
field in the shocked layer. Note that, though the main focus of Inoue & Fukui| (2013])
is the cloud’s ability to form massive cores (~ 20 —200 M, in their simulations), the
idea of cloud-cloud collision is very similar to the converging flows setup adopted in
Gong & Ostriker| (2011) and this study.

In this chapter, we combine the methods of Chapter 2 for modeling ambipolar
diffusion with the methods of |(Gong & Ostriker| (2011) for studying self-gravitating
structure formation in turbulent converging flows. Our numerical parameter study
focuses on the level of ambipolar diffusion (controlled by the ionization fraction of
the cloud) and the obliquity of the shock (controlled by the angle between the mag-
netic field and the upstream flow). We show that filamentary structures similar to
those seen in observations (see review in |André et al.[2014) develop within shocked
gas layers, and that cores form within these filaments. We measure core properties
to test their dependence on these parameters. As we shall show, our models demon-
strate that low-mass supercritical cores can form for all magnetic obliquities and
all levels of ionization, including ideal MHD. However, our models also show that

ambipolar diffusion affects the magnetization of dynamically-formed cores.
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The outline of this chapter is as follows. We provide a theoretical analysis
of oblique MHD shocks in Section [3.2] pointing out that a quasi-hydrodynamic
compression ratio (which is ~ 5 times stronger than in fast MHD shocks for the
parameters we study) can exist when the converging flow is nearly parallel to the
magnetic field. We also show that shock compression cannot increase the mass-to-
flux ratio except in the nearly-parallel case or with ambipolar diffusion. Section (3.3
describes methods used in our numerical simulations and data analysis, including
our model parameter set and method for measuring magnetic flux within cores.
The evolution of gas structure (including development of filaments) and magnetic
fields for varying parameters is compared in Section [3.4] In Section [3.5] we provide
quantitative results for masses, sizes, magnetizations, and other physical properties
of the bound cores identified from our simulations. Implications of these results for
core formation is discussed in Section |3.6] where we argue that the similarity of core
masses and sizes among models with different magnetizations and ionizations can
be explained by anisotropic condensation preferentially along the magnetic field.

Section summarizes our conclusions.

3.2 Theoretical Analysis

3.2.1 Oblique MHD Shock

Chapter 2 describes a one-dimensional simplified MHD shock system with
velocity and magnetic field perpendicular to each other, including a short discussion

of oblique shocks. Here we review the oblique shock equations and write them in a
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Figure 3.1: Multiple solutions for Equation (3.3)) at varying cosf = B-v
with the following parameters: M = 10, By = 10 uG, py = jir,-1000 cm 3
where p, = 2.3 myg. Top: Compression ratio for neutrals. Equa-
tion works as a good analytical approximation to 7 ex,(6), 1. Mid-
dle: Compression ratio for the perpendicular component (with respect
to the inflow direction) of the magnetic field. The analytical approxima-
tion 7p app(0) is calculated from Equation (3.4), using Equation for
r7(6). Bottom: The corresponding post-shock magnetic field component
that is perpendicular to the inflow (parallel to the shock front).
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more general form to give detailed jump conditions.

We shall consider a plane-parallel shock with uniform pre-shock neutral density
po and ionization-recombination equilibrium everywhere. The shock front is in the
x-y plane, the upstream flow is along the z-direction (vo = v9z), and the upstream
magnetic field is in the z-z plane, at an angle 6 to the inflow (By = Bysinfx +
By cos 0z) such that B, = Bysinf is the upstream component perpendicular to the
flow. The parameters M and [ (upstream value of the Mach number and plasma

parameter) defined in Chapter 2 therefore become

B? 1 1

Vo
8mpoc2  [psin®6’

1
MEMZ__7 a
Cs ﬁO

(3.1)

The jump conditions of MHD shocks are described by compression ratios of density

and magnetic field:

_ Pn, downstream BJ_, downstream
rTfr=—T""—", B, —B . (32)
pn, upstream 1, upstream

From Equations (A.14) and (A.18]) in Appendix |A] we have

s 2 2 2 2 2 2 9 2
sin® Ory (1_2(:089 :(M2+1+sm Q_ﬂ_rf 1_27’fcos 9) 7
Bo BoM? Bo Ty BoM?

(3.3)
which can be solved numerically to obtain explicit solution(s) 7 exp(#). The com-

pression ratio for the magnetic field perpendicular to the inflow is

1 — 2cos? 6

rp, (0) = rf(e)l—%f%' (3.4)

BoM?

Equation (A.21]) of Appendix |A] gives an analytical approximation to r;(6):

VBoM 2sin 6 VB -
= — + — +1 .
sin | \/ByMtan?0  2Msinf

7 f.app(0)
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Since Equation is a quartic function of @, there are four possible roots of 7
for each angle, and rf(f) = const. = 1 (no-shock solution) is always a solution.
When @ is large, Equation has one simple root (ry = 1) and a multiple root
with multiplicity = 3. When 6 drops below a critical value, 6., Equation
has four simple roots, which give us four different values of rp . Figure shows
the three explicit solutions for ry and rp, (7fexp(€) and rpexp(0)) as well as the
approximations (rfapp(0) and 75 .pp(0)) that employ Equation (3.5).

The fact that there are multiple solutions for post-shock properties is the
consequence of the non-unique Riemann problem in ideal MHD (see discussions in
e.g. 'Torrilhon 2003; |Delmont & Keppens|2011; Takahashi & Yamada|2013)), and
whether all solutions are physically real is still controversial. The first set of so-
lutions 7 exp(6), 1 and 75 exp(6), 1 shown in Figure gives positive 7y and 75, ,
classified as fast MHD shocks (Shu/[1992; |[Draine & McKee [1993), and is the princi-
pal oblique shock solution referred to in this contributiorﬂ The other two solutions
for post-shock magnetic field, 7gexp(6),2 and 75 exp(6), 3, both become negative
when 6 < 0., indicating that the tangential component of the magnetic field to
the shock plane is reversed in the post-shock region. These two solutions are com-
monly specified as intermediate shocks (e.g. Wu||1987; [Karimabadi 1995} |Inoue &
Inutsukal2007). Among these two field-reversal solutions, we notice that 7 ex,(6), 2
approaches the hydrodynamic jump condition (rfpyare = M?) when 6§ — 0, and
TBexp(P), 2 is smaller in magnitude than other solutions when 6 < 6. Thus, we

classify this set of solutions 7 exp(6),2 and 7pexp(6),2 as the quasi-hydrodynamic

3We use Equation 1) as analytical approximation for r,(6), if necessary.
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shock. This quasi-hydrodynamic solution can create gas compression much stronger
than the regularly-applied fast shock condition, and may be the reason that when
0 < 0., even ideal MHD simulations can generate shocked layers with relatively
high mass-to-flux ratio (see Sections [3.4] and [3.5| for more details).

The definition of 6,5 can be derived from Equation (3.4]), which turns negative

when 1 — 22020 5 () and 1 — 2u@cos?0 .

BoM? BoM?
2 2 BoM?
cos” 0 > cos” Oy = ————. 3.6
' 2Tf (chit) ( )
Using Equation (3.5)) and considering only the terms ~ M, this becomes
6982 Oriv \/ﬁoM7 (37)
sin 0.4t 2
or
sin? 0. + \/ﬁ_gM sin @i — 1 = 0. (3.8)
Assuming 0. < 1, this gives
2 VA0
Ocrit ~ —=— = 2—, 3.9
' VoM Vo (3.9

where va g = By/v/4mpy is the Alfvén speed in the cloud. Therefore, the criterion

to have multiple solutions, 6 < 0., is approximately equivalent to

v, =vpsinh < g - ﬁm ~ VA0 (3.10)
Vo

where v, is the component of the inflow perpendicular to the magnetic field. Though
Equation (3.9) only provides a qualitative approximationﬁ for 0., Equation (3.10))
suggests that when v, /va o is sufficiently small, high-compression quasi-hydrodynamic

shocks are possible.

4For parameters used in Figure Equation (3.9) gives 6.5 = 18°, approximately 2 times
larger than the exact solution.
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3.2.2 Gravitational Critical Scales in Spherical Symmetry

For a core to collapse gravitationally, its self-gravity must overcome both the
thermal and magnetic energy. For a given ambient density p = pu,n and assuming
spherical symmetry, the mass necessary for gravity to exceed the thermal pressure
support (with edge pressure pcy?) is the mass of the critical Bonnor-Ebert sphere

(see e.g. \Gong & Ostriker|[2009):

c;? T \** noo\2
Mo = 4.18—2— — 44 M, [ —— (—) 3.11
theph =G © (10 K) 1000 cm—3 (3.11)

(see Section for discussion about the value of p,). The corresponding length

scale at the original ambient density is

3Min sph 1/3 Cs T \? n —1/2
Rineon = | —2 —923 = 0.26 L ( > ’
th,sph ( Amp ) JAnGp PPAI0K 1000 cm—2

(3.12)

although the radius of a Bonnor-Ebert sphere with mass given by Equation (3.11))
would be smaller than Equation by 25%, due to internal stratification.

In a magnetized medium with magnetic field B, the ratio of mass to magnetic

flux for a region to be magnetically supercritica]ﬂ can be written as

M
dp

1
mag,crit 27(\/@ '

(3.13)

With M = 47R3p/3 and &5 = 7R%B for a spherical volume at ambient density p,

this gives

9 B3 B \° n -2
Mooy = ——— 2 14 M ( ) . 3.14
gsPh = 108232 2 © (10 uG) 1000 cm-—3 (3.14)

®See Section for more detailed discussion about the critical value of M/®p.
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and

3 B B n -1
R = ——2 — 04 ( ) , 3.15
PR VG p pe (10 MG) 1000 cm—3 (3.15)

A spherical region must have M > My, oon as well as M > Myaespn to be able
to collapse. In the cloud environment (the pre-shock region), B ~ 10 uG and
n ~ 1000 cm™ are typical. Comparing Equation and , the magnetic
condition is more strict than the thermal condition; if cores formed from a spherical
volume, the mass would have to exceed ~ 10 Mg, in order to collapse. This value
is much larger than the typical core mass (~ 1 M) identified in observations. This
discrepancy is the reason why traditionally ambipolar diffusion is invoked to explain
how low-mass cores become supercritical.

We can examine the ability for magnetically supercritical cores to form isotrop-

ically in a post-shock layer. The normalized mass-to-flux ratio

r

M
— 2mV/G (3.16)
Op

of a spherical volume with density p, magnetic field B, and mass M is

8TV G 3 3 MY3 R3B!
3 4m

M3 n 23/ B \ !
—04 . 3.17
(M®> (1000 cm—3) (10 MG) (3.17)

Or, with ¥ = 4Rp/3 = u, N, for a sphere, we have

) N, B \!
Ton = 27VG - = = 0.6 n . 3.18
ph = STVET R (1021 cm—2> <10 uG) (3.18)

Fsph =

Considering the cloud parameters from Figure (M =10, By = 10 puG, ng =

1000 cm™?), the post-shock density and magnetic field are approximately nps ~
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10* cm™2 and By ~ 50 uG when 6 > 0. A solar-mass spherical region in this
shocked layer will have I',sspn ~ 0.37; spherical contraction induced by gravity
would be suppressed by magnetic fields. Thus, typical post-shock conditions are
unfavorable for forming low-mass cores by spherical contraction in ideal MHD.
Furthermore, using 7y and rp, defined in Section , we can compare ' sph

and the pre-shock value I'je spn for spherical post-shock and pre-shock regions:

1/3 2/3 -1 1/3
I sph _ ( M ) / ( Pps ) / ( By ) ~ ( M ) / 7’f2/37’B -1 (3.19>
Fpre,sph Mpre Ppre Bpre Mpre -

Considering volumes containing similar mass, Mps ~ My, the ratio between the

post-shock and pre-shock D'y, is smaller than unity when 6 > 6., because Equa-
tion shows that rp, is larger than r;. Thus, provided 6 > 0., the post-shock
layer will actually have stronger magnetic support than the pre-shock region for a
given spherical mass.

Based on the above considerations, formation of low-mass supercritical cores
appears difficult in ideal MHD. Adapting classical ideas, one might imagine that
low-mass subcritical cores form quasi-statically within the post-shock layer, then
gradually lose magnetic support via ambipolar diffusion to become magnetically
supercritical in a timescale ~ 1 — 10 Myr. A process of this kind would, however,
give prestellar core lifetimes longer than observed, and most cores would have I' < 1
(inconsistent with observations).

Two alternative scenarios could lead to supercritical core formation in a tur-
bulent magnetized medium. First, the dynamic effects during a turbulence-induced

shock (including rapid, transient ambipolar diffusion and the quasi-hydrodynamic
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compression when 6 < 0.) may increase the compression ratio of neutrals, cre-
ating ry > rp, and I'ysgn > 1, enabling low-mass supercritical cores to form.
Second, even if the post-shock region is strongly magnetized, mass can accumulate
through anisotropic condensation along the magnetic field until both the thermal
and magnetic criteria are simultaneously satisfied. In this study, we carefully inves-
tigate these two scenarios, showing that both effects contribute to the formation of
low-mass supercritical cores within timescale < 0.6 Myr, regardless of ionization or

magnetic obliquity.

3.3 Numerical Methods and Models

3.3.1 Simulation Setup and Equations

To examine core formation in shocked layers of partially-ionized gas, we employ
a three-dimensional convergent flow model with ambipolar diffusion, self-gravity,
and a perturbed turbulent velocity field. We conducted our numerical simulations
using the Athena MHD code (Stone et al. |2008) with Roe’s Riemann solver. To
avoid negative densities if the second-order solution fails, we instead use first-order
fluxes for bad zones. The self-gravity of the domain, with an open boundary in
one direction and periodic boundaries in the other two, is calculated using the fast
Fourier transformation (FFT) method developed by Koyama & Ostriker| (2009).
Ambipolar diffusion is treated in the strong coupling approximation, as described
in Bai & Stone, (2011)), with super time-stepping (Choi et al.|2009) to accelerate the

evolution.
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The equations we solve are:

0pn

OpnV BB
. - P* = 21
T +V <pnvv ym ) +V 0, (3.21)
0B B (VxB)xB)xB
E + V x (B X V) =V X |: 47T,inn(1/ s (322)

where P* = P + B?/(87). For simplicity, we adopt an isothermal equation of state
P = pc,?. The numerical setup for inflow and turbulence is similar to that adopted
by |Gong & Ostriker| (2011). For both the whole simulation box initially and the
inflowing gas subsequently, we apply perturbations following a Gaussian random
distribution with a Fourier power spectrum as described in |Gong & Ostriker| (2011)).

The scaling law for supersonic turbulence in GMCs obeys the relation

5le(£):( ¢ )1/2’ (3.23)

Oy,cloud 2Rcloud

where dvip(¢) represents the one-dimensional velocity dispersion at scale ¢, and
Ou.cloud 15 the cloud-scale one-dimensional velocity dispersion. In terms of the virial
parameter awi; = 5042 Reioud /(G Meoua) With Mowd = 47poReioua” /3, and for the in-
flow Mach number M comparable to o, /¢, of the whole cloud, the three-dimensional

velocity dispersion dv = V3 - duip at the scale of the simulation box would be

G vir 1/
50(Lbox) = V3 <%) M2 pg AL M2, (3.24)

To emphasize the influence of the cloud magnetization instead of the perturba-
tion field, our simulations are conducted with 10% of the value dv(Lpox), or dv =

0.14 km/s with oy, = 2. With larger 0v(Lyox), simulations can still form cores,
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Figure 3.2: The schematic configuration for our simulations.

but because non-self-gravitating clumps can easily be destroyed by strong velocity
perturbations and no core can form before the turbulent energy dissipates, it takes

much longer, with corresponding higher computational expense.

3.3.2 Model Parameters

A schematic showing our model set-up is shown in Figure[3.2] Our simulation
box is 1 pc on each side and represents a region within a GMC where a large-
scale supersonic converging flow with velocity vy and —vq (i.e. in the center-of-
momentum frame) collides. The z-direction is the large-scale inflow direction, and
we adopt periodic boundary conditions in the z- and y-directions. We initialize the
background magnetic field in the cloud, By, in the x-z plane, with an angle 6 with
respect to the convergent flow. For simplicity, we treat the gas as isothermal at
temperature 7' = 10 K, such that the sound speed is ¢ = 0.2 km/s. The neutral

density within the cloud, pg, is set to be uniform in the initial conditions and in the
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upstream converging flow.

It has been shown that ionization-recombination equilibrium generally pro-
vides a good approximation to the ionization fraction within GMCs for the regime
under investigation (Chapter 2). Thus, the number density of ions in our model can

be written as

‘ 1/2
n; = % =10"%x0 <P_n) ) (3.25)
with
Xio = 10° x o (3.26)
Ugas

determined by the cosmic-ray ionization rate ((cr) and the gas-phase recombination
rate (ogas). The ionization coefficient, y;o, has values ~ 1 — 20 (McKee et al.
2010), and is the model parameter that controls ambipolar diffusion effects in our
simulations, following Chapter 2. We use typical values of the mean neutral and ion
molecular weight u,, and u; of 2.3my and 30my, respectively, which give the collision
coefficient (see Equation (3.22))) between neutrals and ions o = 3.7x 10" em3s~ g™,

The physical parameters defining each model are pg, vo = |vo|, By = |Bo|, 0,
and y;0. We set the upstream neutral number density to be ng = po/p, = 1000 cm=3
in all simulations, consistent with typical mean molecular densities within GMCEH
(e.g. [Larson|[1981; Williams et al. 2000; Bot et al. [2007; Bolatto et al. [2008)). We
choose the upstream By = 10 uG as typical of GMC values (Goodman et al./{1989;

Crutcher et al.|[1993; |[Heiles & Crutcher |2005; Heiles & Troland|2005) for all our

simulations. To keep the total number of simulations practical, we set the large-

SNote that the upstream neutral number density we adopted here is ng = Npeutralo = 1, +
nge = 0.6ng = 1.2ngy,, with GMC observations giving ny, ~ 102 — 103 cm—3. Also note that
tn = pn/nn = (pr, +p1e) /(PH, +11e) = (0.5n17 X 2mp +0.1ng X 4my) /(0.5ng +0.1ng) = 2.3my.
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scale inflow Mach number to M = 10 for all models. Exploration of the dependence
on Mach number of ambipolar diffusion and of core formation has been studied in
previous simulations (Chapter 2 and |Gong & Ostriker| (2011)), respectively). For our
parameter survey, we choose 6 = 5, 20, and 45 degrees to represent small (6 < O.;),
intermediate (6 > 6.it), and large (6 > 0.) angles between the inflow velocity and
cloud magnetic field. For each 6, we conduct simulations with x;o = 3, 10, and ideal
MHD to cover situations with strong, weak, and no ambipolar diffusion. We also
run corresponding hydrodynamic simulations with same pg and vy for comparison.

A full list of models is contained in Table |3.1} Table also lists the steady-
state post-shock properties, as described in Section Solutions for all three
types of shocks are listed for the § = 5° (A5) case. For the § = 20° and 0 =
45° cases, there is only one shock solution. Also included in Table [3.1] are the
nominal values of critical mass and radius for spherically symmetric volumes to

be self-gravitating under these steady-state post-shock condition, as discussed in

Section [3.2.2] (see Equations (3.11), (3.12), (3.14) and (3.15)). Both “thermal”

and “magnetic” critical masses are listed. In most models, Myagsph > Minsph
and Myagsph > Mg, indicating the post-shock regions are dominated by magnetic
support, and either ambipolar diffusion or anisotropic condensation would be needed
to form low-mass supercritical cores, as discussed in Section [3.2.2] On the other
hand, the quasi-hydrodynamic shock solution for models with 6 < 6. (i.e. A5
cases) has Muyagsph < Minsph < Mg downstream. If this shock solution could be
sustained, then in principle low-mass supercritical cores could form by spherical
condensation of post-shock gas.
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In order to collect sufficient statistical information on the core properties from
simulations, we repeat each parameter set 6 times with different random realizations
of the same perturbation power spectrum for the turbulence. The resolution is
2562 for all simulations such that Az ~ 0.004 pc, or ~ 800 AU. We tested this
setup with two times of this resolution (Az =~ 0.002 pc), and the resulting dense
structures are highly similar. Though the individual core properties vary around
+50%, the median values (which are more important in our statistical study) only
change within 10 — 30%. Thus, our simulations with Ax ~ 0.004 pc are well-

resolved for investigations of core properties.

3.3.3 Analysis of Core Properties

To measure the physical properties of the cores formed in our simulations,
we apply the GRID core-finding method developed by |Gong & Ostriker| (2011)),
which uses gravitational potential isosurfaces to identify cores. In this approach, the
largest closed potential contour around a single local minimum of the gravitational
potential defines the material eligible to be part of a core. We define the bound
core region as all the material within the largest closed contour that has the sum
of gravitational, magnetic, and thermal energy negativeﬂ All of our cores are, by
definition, self-gravitating.

The essential quantity to measure the significance of magnetic fields in self-

"The gravitational, thermal, and magnetic energy density in each zone are ug = —pAd,,
ugh = 3nkT /2, and ug = B? /87, respectively, where A®, is the difference in gravitational potential
relative to the largest closed contour, and n is the neutral number density defined as n = p/ .
The self-gravitating core consists of all zones with ug + usn +up < 0.
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gravitating cores is the ratio of mass to magnetic flux (Mestel & Spitzer [1956;
Mouschovias & Spitzer|[1976). From Gauss’s law the net flux of the magnetic field
through a closed surface is always zero. As a result, to measure the magnetic flux
within a core, we need firstly to define a cross-section of the core, and then measure
the net magnetic flux through the surface of the core defined by this cross-section
(which is the same as the flux through the cross-section itself).

To define the cross-section through a core, we use the plane perpendicular to
the average magnetic field that also includes the minimum of the core’s gravitational
potential. This choice ensures that we measure the magnetic flux through the part
of the core with strongest gravity. After defining this plane, we separate the core
into an upper half and a lower half, and measure the magnetic flux &z through
one of the halves. In practice, we compute this by firstly finding all zones that
contain at least one face which is on the core surface, and assign normal vectors n
(pointing outwards) to those faces. From these, we select only those in the upper
“hemisphere” of the core. After we have a complete set of those grid-faces that are
on the upper half of the core surface, we sum up their B - i to get the net magnetic
flux of the core. This method is tested in spherical and rectangular ‘cores’ with
magnetic fields in arbitrary directions. Note that this method works best when the
core is approximately spherical (without corners).

After we have the measurement of magnetic flux ® 5, we can calculate the mass-
to-flux ratio of the core, M/®p. This determines whether the magnetic field can
support a cloud against its own self-gravity. The critical value of M /®p differs with

the geometry of the cloud, but the value varies only within ~ 10% (e.g. Mouschovias
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& Spitzer||1976; Nakano & Nakamural 1978} Tomisaka et al.|1988, or see review in
McKee & Ostriker|[2007). We therefore choose the commonly used value (27v/G)~!
(e.g. Kudoh & Basu/2011} |Vazquez-Semadeni et al[2011; Chapter 2) as a reference
value, and define the normalized mass-to-flux ratio as I' = 27v/G - M/®p (see
Equation (3.16])). For a prestellar core with I' > 1, the gravitational force exceeds
the magnetic support and the core is magnetically supercritical. A subcritical core

has I' < 1 and is ineligible for wholesale collapse unless magnetic fields diffuse out.

3.4 Sample Evolution of Structure

Figure shows typical evolution of column density and magnetic ﬁeldﬁ in
our numerical simulations. The simulations start with uniform density and constant
magnetic field. When compressed by the supersonic converging flows, the magnetic
fields perpendicular to the converging flows are amplified in the post-shock dense
region. Seeded by turbulent velocity perturbations, dense structures form within
the compressed layer.

The post-shock structure can be very different for different model parameters.
Figure|3.4|and [3.5| provide examples with weak (small # and /or small y;o) and strong
(large 0 and/or large x;0) magnetic effects in the shocked gas. The thickness of the

post-shock layer is very different for these two extreme cases. Especially at early

8The magnetic field lines shown in left panels of Figure and are contours of the
absolute value of the magnetic vector potential ¥ in the direction perpendicular to the plane

plotted. By definition, B = V x ®, and therefore B, = d¥,/dy, B —d¥V,/dz. If we start
with ¥, = O in the lower- left corner (z =y = 0), we can compute ¥ ( fo 2 (0,y)dy’, and
U, (z,y) = fo y (2, y)dx’. After we have U, everywhere we make contours to show

the magnetlc ﬁeld structures with fixed spacing so 0¥ =constant.
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Figure 3.3: An example of the evolution of the column density (col-
ormap) and magnetic field structures (pink lines on left and segments on
right) projected to the z-z plane (left panel) and z-y plane (right panel),
for model A20X10. Magnetic fields (integrated over the whole box) bend
through the shocked gas layer, as seen on left. Right panel shows z-y
projections (with segment lengths indicating strength) of the magnetic
field, which points primarily from left to right. The box size is (1pc)3.
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Figure 3.4: Similar to Figure but for model A5X3 with upstream

magnetic field nearly parallel to the inflow (§ = 5°), and low ionization
fraction (x;0 = 3).
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Figure 3.5: Similar to Figure but for model A45ID, with 45° angle
between upstream v and B, and ideal MHD.
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time (0.3 Myr), structure is also different in these two cases, with stronger magnetic
effects producing filaments perpendicular to the magnetic field. The timescale at
which compressed layers become gravitationally unstable and start to form cores
also differ. Note that in the cases with ambipolar diffusion (Figure and , a
highly-compressed layer forms in the center of the post-shock region. Quantitatively,
we measured the average density within the z = 0.5 pc & Ax layer at ¢t = 0.3 Myr
for model A5X3, and found this overdense layer has m ~ 1.4 x 10> cm~3, which
exceeds the steady-MHD shock jump condition predicted in Table even for the
quasi-hydrodynamic solution. This is a direct evidence of the existence of transient
stage of ambipolar diffusion (Chapter 2).
Table lists the physical properties of the post-shock layers measured at
= 0.2 Myr as well as the corresponding values of the critical mass and size of a
spherical region under these ambient conditions. Generally, models with upstream
magnetic field almost parallel to the inflow (A5 models) have weaker post-shock
magnetic field than that for a fast shock (see Table even with ideal MHD
(A5ID), indicating that the quasi-hydrodynamic shock mode discussed in Section
plays a role. Also, models with stronger transient ambipolar diffusion effect (smaller
Xi0) have higher density and weaker magnetic field in the post-shock layer, and thus
it would be easier to form self-gravitating cores promptly (small My, sph and Mg sph
values).
The difference in post-shock magnetic field among models with same upstream
magnetic obliquity but various ionization levels can be explained by varying transient
ambipolar diffusion. From Equation in Chapter 2, the timescale before the
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shock profile transitions to that of a steady C-shock is

1/2

o TINY2 (X0 ! no ~1/2
s~ 22 e (T (S0Y 7 (0 Y
wansiens % " = 034 Myr {75 10/ \1000 cm? (3.27)

Therefore, while the late-time (ideal MHD) value of 7 is the same for models with
same 6 value, it will take 3.33 times longer for the X3 models to reach steady-state
post-shock values than the X10 models. Correspondingly, the compression rate of
the magnetic field in X3 models is 0.3 times slower than in X10 models, and thus
the magnetic field within the post-shock layer is weaker in X3 models than in X10
or ideal MHD models at a given time. This tendency is clearly shown in Table [3.2}
note that since 7y might be larger because of the transient ambipolar diffusion effect,
the difference in post-shock magnetic field is further enhanced (smaller x;o causes
higher 7, resulting in longer ti;ansient and weaker By).

Figure [3.6| compares the density structures formed under different physical

3 in each simulation. With low

conditions, at the timescale when . > 107 cm™
ionization (strong ambipolar diffusion), the clumps are relatively more isolated and
randomly distributed, following the initial perturbation pattern. Models with high
ionization (weak or no ambipolar diffusion) show well-ordered large-scale filament
structures. Structures are also at larger scales for models with larger magnetic field
parallel to the shock front (large ). The filaments are around 0.05 pc wide, con-
sistent with the observed characteristic width of filaments (~ 0.1 pc, Arzoumanian
et al. 2011} or see review in |André et al.|2014). Note that the filaments are not

necessary perpendicular to the magnetic field as indicated in Inoue & Fukui| (2013))

because the initial velocity field in our simulations is not homogeneous.
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Figure 3.6: The “spectrum” of column density (color map) and magnetic
field (pink segments) structure in the shocked gas layer for varying mag-
netic field parallel to the shock and ionization, at the time that maximum
density reaches 107 cm™3. Model parameters are given in Table
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Table 3.2: Summary of the post-shock properties measured from simulations.

post-shock properties? gravitational critical scales
Model ﬁps Eps — Mth,sph Rth,sph Mmag,sph Rmag,sph

(10 em™) (pG) s | (Mo)  (pc) (M) (po)
HD 5.5 - — 0.60 0.04 — —
AbX3 5.3 26 3.0 0.61 0.04 0.09 0.02
A5X10 5.3 40 1.3 0.60 0.04 0.31 0.03
ABID 2.4 47 043 | 0.90 0.05 2.4 0.08
A20X3 5.3 45 1.02| 0.61 0.04 0.45 0.03
A20X10 3.6 68 0.30| 0.74 0.04 3.4 0.07
A20ID 1.4 78  0.09 1.2 0.07 33 0.22
A45X3 4.2 60 0.45| 0.69 0.04 1.7 0.06
A45X10 2.7 8 0.14 | 0.85 0.05 12 0.13
A45ID 0.91 96 0.04 1.5 0.09 151 0.41

§Post-shock properties are measured at ¢t = 0.2 Myr in each model, averaged over
the whole post-shock layer. The timescale is chosen so the downstream properties are
measured before the post-shock layer becomes strongly self-gravitating.

In addition, models with moderately strong magnetization have a network of
small sub-filaments aligned parallel to the magnetic field (A20X10, A20ID, A45X10,
and A45ID models in Figure . These features are very similar to the striations
identified in "?CO emission map of the Taurus molecular cloud (Goldsmith et al.
2008)), subsequently observed in other clouds (Sugitani et al.[[2011; Hennemann et
al. 2012; |Palmeirim et al. 2013} or see review in |André et al.[[2014)). This filament
pattern is likely due to the anisotropy of turbulence at small scales in a magnetized
medium (Goldreich & Sridhar|1995)), which tends to have more power for wavenum-
bers k L B. This leads to the formation of threads/striations/sub-filaments with

small separations aligned parallel to the magnetic field in molecular clouds if the

magnetic field is sufficiently strong. Vestuto et al.| (2003) and Heyer et al. (2008
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found that in order to have significant turbulent anisotropy, the plasma 3 must sat-

isfy 0 < 0.2, which agrees with our results for when these striations are seen (see

Bps values listed in Table .

3.5 Survey of Core Properties

We define the timescale used in Figure (at which nyay > 107 cm_3) as
the moment Z.onapse When the most evolved core starts to collapse, and measure
the physical properties of all cores formed at this time. We identified hundreds of
gravitationally bound cores from our 60 simulations (6 runs for each parameter set),
with examples illustrated in Figure [3.7 The simulation results are summarized in
Table [3.3] including the following core properties: mean density 7, size L, mass M,
mean magnetic field B, and normalized mass-to-flux ratio I'. To ensure the measured
core properties are only for resolved structures, we omit cores with less than 27 zones,
or Leore smaller than ~ 0.015 pc. Table |3.3| also shows for each parameter set the
mean value of time t¢onapse (2t which the core properties are measured). These cores
have masses, sizes, and mass-to-flux ratios similar to observed values (e.g. |Falgarone
et al.[2008; Troland & Crutcher|2008; Rathborne et al.[2009; Kirk et al.|2013).

Our results show that low-mass supercritical cores form at ¢ < 1 Myr in
all models: with converging velocity either nearly aligned with the magnetic field
(small @) or highly oblique (large €), and for all levels of ambipolar diffusion. We

also calculated the core formation efficiency (CFE) from our simulations:

Z Mcore,i
)

mass of the shocked layer - 2poVotcollapse * Laly

mass in cores
CFE =

~ 3.1%. (3.28)
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Figure 3.7: An illustration, using one simulation for each set of model
parameters, of the cores identified at the time ¢coapse When the max-
imum density reaches 107 ecm~3. Candidate core regions are identified
using the modified GRID core-finding method (yellow contours), and we
only consider the gravitationally bound sub-regions (red contours). The
white dashed-line box in A20ID model is the zoomed-in region shown
in Figure m (note that the simulation box is periodic in z- and y-

directions).
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Figure 3.8: The statistical distribution of core mass (left) and size (right)
from all models combined.

This is similar to the observed star formation efficiency (SFE), which is around

1 —10% (e.g. Myers et al.||[1986; Evans et al.[2009; Lada et al.2010). Note that,

though the core formation timescale is slightly different from model to model (see
Figure , the CFE does not vary significantly between models; the variance in

CFE among all models is only ~ 10%.

3.5.1 Mass and Size

Figure [3.8 shows the distribution of mass and size of cores for all model pa-
rameters. The masses range between 0.04 to 2.5 M., with peak around ~ 0.6 Mg;

the core sizes are between 0.015 — 0.07 pc, with peak around ~ 0.03 pc. These
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Figure 3.9: Median (diamond) and £25% values (vertical bars) of core
mass, size, average magnetic field, and normalized mass-to-flux ratio for
different model parameters. In each figure from left to right, higher X
corresponds to increasing ionization, and larger A corresponds to larger
angle 6, or increasing pre-shock (upstream) magnetic field B, = Bysin6
parallel to the shock front. The dashed line in the core size plot (bottom
left) indicates the lower limit (0.015 pc) of resolved core size; for our
simulations, 0.015 pc ~ 3Ax.
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are consistent with observational results (e.g. Motte et al.|2001; lkeda et al.|2009;
Rathborne et al.|2009; [Kirk et al|2013)). Also, the distribution of the core mass
shows a similar shape to the observed core mass function (CMF) (e.g. Simpson et
al.[2008; Rathborne et al.|2009; Konyves et al.[2010)). Interestingly, the peak in the
distribution is close to value given by Equation (7) from |Gong & Ostriker| (2011):

4 Cs3 1

Cs
12—=12——
\% G3Pps vV 3po M

This mass is characteristic of what is expected for collapse of a thermally-supported

Mg, ps = — 0.45 Mo, (3.29)

core that is confined by an ambient medium with pressure equal to the post-shock
Valueﬂ, where the numerical figure uses values for the mean cloud density and large-
scale Mach number equal to those of the converging flow in our simulations, ny =
1000 cm™ and M = 10. Correspondingly, since the critical ratio of mass and
radius is Mpg/Rpg = 2.4¢,%/G (Bonnor|[1956)), the characteristic size expected for a
collapsing core formed in a post-shock region when the Mach number of the large-

scale converging flow is M and the mean cloud density is py, is

Lig = 2Rpg = — 0.04 pe. (3.30)

|
VGpo M
This is again comparable to the peak value of the core size distribution in Figure[3.8|
We also separately explore the dependence of core mass, size, magnetic field
strength, and mass-to-flux ratio on model parameters, as shown in Figure [3.9) Our

results show that the core mass is relatively insensitive to both the ionization (i.e.

ambipolar diffusion effect) and obliquity of the upstream magnetic field (Figure ,

9The post-shock total pressure (whether for an unmagnetized medium, as considered by |Gong
& Ostriker| (2011)), or for a magnetized medium as considered here) will be comparable to the
momentum flux of the converging flow, Py ~ povo? = pociM?2.
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top left). The median masses are within a factor 2.4 of the mean of the whole
distribution, 0.68 Mg, or a factor 2 of the median of all core masses (0.47 Mg).
Similarly, median core sizes vary only between 0.022 pc and 0.034 pc for the various
parameter sets, with a median of 0.03 pc. Note that we chose to compare median
values between different parameter sets in Figure |3.9| instead of mean values used
in Table [3.3] because an average can be affected by any single value being high or
low relative to the other samples. The median value, on the other hand, repre-
sents the central tendency better, and with the £25% values we can have a better
understanding of the sample distribution.

We note in particular that for the § = 20° and 6 = 45° ideal MHD cases, the
masses in Figure 3.8 and are more than an order of magnitude lower than the
limits for a spherical region at post-shock conditions to be magnetically supercritical,
as listed in Table and This implies that the low-mass bound cores found in
the simulations did not form isotropically. We discuss this further in Section |3.6

To further investigate the relationship between core masses and sizes, we
binned the data set by log L., and calculate the average core mass and mean
density for different model parameters. The results are shown in Figure [3.10 where
we chose four models with different magnetization and ionization levels to compare:
HD (hydrodynamics; no magnetization), A5X3 (low ionization, weak upstream mag-
netic field parallel to the shock), A20X10 (moderate ionization and magnetic field),
and A45ID (ideal MHD, strong magnetic field). In both the mass-size and density-
size plots, the differences among models are small, and all four curves have similar

shape. In fact, from all resolved cores identified in our simulations, we found a

110



Mass—Size

| =<--% HD .3
O & ABX3 AKX
- -¥- A20X10 A ;/% o
“A-A A45ID )K/ﬁ
1.0 X .
- [ ke 4 ]
= A &//
o P NG
A //%
sy
R
x /7
,'/
/
0.1 Zg
0.01 0.10
Size (pc)
Mean Density—Size
. Do A
?
S
S qock Ko—ye i
:;\ v i N - \\’X\
ol Eep
5 N i
() ‘&\ b
: “ﬁtés
> X 3.
X
10°
0.01 0.10
Size (pc)

Figure 3.10: The mass-size plot (fop) and density-size plot (bottom)
for cores identified in selected models with different magnetization and
ionization levels: HD (cross), A5X3 (diamonds), A20X10 (asterisks),
and A45ID (triangles).

power-law relationship between the core mass and size, M oc L, with best-fitted
value k = 2.28. This is consistent with many core-property surveys towards different
molecular clouds (e.g. [Elmegreen & Falgarone|1996; Curtis & Richer/[2010; Roman-
Duval et al.|[2010; Kirk et al.2013), in which k£ = 1.2 — 2.4 with various molecule
tracers (for more details, see Figure 7 and corresponding discussions in Kirk et al.

2013).
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Figure 3.11: The statistical distribution of normalized core mass-to-flux
ratio I" from all simulations combined. Models with low ionization (blue)
preferentially have higher I', whereas models with ideal MHD (red) have
lower I'.

3.5.2  Magnetization

Figure[3.11| shows the distribution of core mass-to-flux ratio, a roughly normal

distribution with peak at I' ~ 3. This range of I' is quite similar to observational

results (I' ~ 1 — 4; [Falgarone et al. 2008 Troland & Crutcher|[2008). In addition,

the color-coded histogram in Figure [3.11{ shows how the mass-to-flux ratio depends
on magnetization: the high-end region (I' 2 5) is comprised of blue-green pieces
(which represent models with lower ionization), while the low-end tail is mostly red
and orange (highly ionized models). Note that essentially all of the cores in our

simulations are magnetically supercritical (I > 1), which is self-consistent with our
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Figure 3.12: Core mass-to-flux ratio versus core mass for sample sets of
parameters. The value of I" tends to increase with ionization, and to a
lesser extent also increases with mass.

core-finding criterion (gravitationally bound; E, + Ey, + Ep < 0).

The tendency of models with lower ionization to form cores with higher mass-
to-flux ratio is very clearly seen in Figure (bottom right). The median value of the
core mass-to-flux ratio also decreases with increasing 6 as the value of the upstream
B, = Bysinf increases. Also from Figure (top Tight), the average core magnetic
fields show a similar tendency as in post-shock magnetic field (see Table , which
decrease at lower ionization fractions for models with same pre-shock magnetic field
structure (same 6). The larger and more systematic variation of B than M with
model parameters suggests that the core mass-to-flux ratio is not decided by the
core mass, but by the core magnetic field. This is also shown in Figure [3.12] where

we binned the data by M. and calculated the average core mass-to-flux ratio in
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each bin for different models. For cores with similar mass, the mass-to-flux ratios
of cores formed in environments with low ionization and magnetization are much
higher than those with stronger and better coupled magnetic fields.

The fact that the median value of magnetic field strength within the core
depends on pre-shock magnetic obliquity and ionization is consistent with our dis-
cussions in Section that magnetic fields are lower in shocked regions that have
longer transient timescales. Since lower ionization fraction leads to stronger ambipo-
lar diffusion and a longer transient stageEL it is logical to expect the cores formed
in weakly-ionized clouds have lower magnetic field than those formed with higher
ionization fraction (or strongly-coupled ions and neutrals).

In addition, Figure (top right) shows that cores formed in models with
small # (A5 cases) have weaker magnetic fields inside even with higher ionization
fraction or ideal MHD, which indicates that the magnetic field is less compressed
by the shock when the inflow is almost parallel to the upstream magnetic field.
This is consistent with the discussion in Section when 6 < 6.4, the MHD
shock becomes a composite compounded of the regular (fast) mode and the quasi-
hydrodynamic mode, which has relatively small magnetic field compression ratio.
Thus, the magnetic obliquity relative to the shock has a similar effect to the cloud

ionization fraction in determining field strengths in prestellar cores.

Based on the results shown in Section |3.5.1| and |3.5.2] we conclude that mag-

netic effects do not appear to control core mass and size. This suggests that once a

From Chapter 2 and Equation (3.27), the predicted duration of the transient stage is 0.3 —
1.4 Myr for x;o = 3 to 10 and our range of model parameters, assuming 7y = 7, ideal MHD-
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core becomes strongly gravitationally bound, magnetic effects are relatively unim-
portant to its internal structure. However, the formation process of gravitationally
bound cores is highly dependent on magnetic effects. As noted above, Figure |3.6
shows clear differences in the large-scale structures from which cores condense; we
discuss core formation further in Section Also, cores are born with either lower
or higher magnetic field, depending on the magnetic field structure and the ambipo-

lar diffusion in their surrounding environment.

3.6 Anisotropic Core Formation

3.6.1 Examples of Simulation Evolution

The fact that gravitationally supercritical low-mass cores (with M < Myag sph)
can form in the highly magnetized post-shock medium even without ambipolar dif-
fusion suggests that these cores did not contract isotropically. Figure [3.13| provides
a close-up view of the core forming process in highly magnetized environment with
ideal MHD, from model A20ID. At stages earlier than shown, the directions of the
perturbed magnetic field and gas velocity are determined randomly by the local tur-
bulence. The magnetic field is compressed by the shock (similar to Figures —,
such that in the post-shock layer it is nearly parallel to the shock front (along x).
When the magnetic field strength increases, the velocity is forced to become increas-
ingly aligned parallel to the flow, as shown in Figure|3.13] By the time ¢ = 0.65 Myr,
a very dense core has formed by gathering material preferentially along the magnetic

field lines. After the core becomes sufficiently massive, its self-gravity will distort
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the magnetic field and drag material inward even in the direction perpendicular to
the magnetic field lines (¢t = 0.77 Myr, Figure . This collapsing process with
a preferential direction is similar to the post-shock focusing flows found in previous
studies (e.g. Inoue & Fukui2013; [Vaidya et al.|2013) where the gas is confined by
the strong magnetic field in the shock-compressed region.

In fact, anisotropic condensation is key to core formation not only with ideal
MHD, but for all cases. Figure shows space-time diagrams of all three velocity
components (v, vy, v,) around collapsing cores in different parameter sets. Though
models with stronger post-shock magnetic fields (larger 0, larger y;o, or ideal MHD)
have more dominant v, (bluer/redder in the colormap), there is a general preference
to condense preferentially along the magnetic field lines (in the z-direction) among
all models, regardless of upstream magnetic obliquity and the ambipolar diffusion
level. Figure[3.14]also shows that there are flows perpendicular to the mean magnetic
field (along ¥ or z) in the final ~ 0.1 Myr of the simulations, indicating the stage
of core collapse. The prominent gas movement along X long before each core starts
to collapse shows that cores acquire masses anisotropically along the magnetic field

lines, and thus anisotropic condensation is important for all models.

3.6.2 Theoretical Scalings

We have shown in Section [3.2.2] quantitatively that isotropic formation of low-
mass supercritical cores is not possible for oblique shocks with ideal MHD, because

the minimum mass for a spherical volume to become magnetically supercritical is
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Figure 3.13: A close-up view of magnetic field (pink lines) and gas veloc-
ity (black arrows) over column density (color map) projected to the z-z
plane (left panel) and z-y plane (right panel) around a forming core
at different times, from model A20ID. The region shown here is in-
dicated by the white dashed box in Figure [3.7 The size of the box
Ny X Ny x N, i Liagcyl X 4Rthsph X 4Rihsph, Where Liag oy and Ry sph
are calculated using Equation (3.33) and , respectively. The ve-
locity vectors are density-weighted averages over the box; i.e. vop (i, j) =
> (vsp(i, 7, k)p(i,3,k))/ > p(i, j, k). We used the same method as in the
k

l](;ft panel in Figure to draw the magnetic field lines. The magnetic
field line spacing and the length of the velocity vectors both indicate
strength. Note that the vector scale in the right panel is 2 times larger
than in the left panel in order to better show the gas movement. The
pre-shock supersonic inflows along the z-direction in the earlier stages
(first two plots in left panel) are omitted here to focus on the post-shock
dynamics.
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Figure 3.14: The space-time diagrams for varying magnetic obliquity and
ionization, showing the x- (left panels), y- (middle panels), and z- (right
panels) compressive components of the gas velocity averaged around a
collapsing core in each model, normalized by the total velocity v,y =

\/ U2 + v,2 + v,2. The definition of box size is the same as in Figure
It is evident that anisotropic condensation along the magnetic field

direction) initiates core formation in all cases.
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> 10 Mg, (see Equation and the M,q sph entries in Table and for cases
A20ID and A45ID), much larger than the typical core mass (~ 1 Mg). However,
non-spherical regions may have smaller critical mass. Consider, for example, a core
that originates as a prolate spheroid with semi-major axis R; along the magnetic

field and semi-minor axis Ry perpendicular. The mass-to-flux ratio is then

M _ ATRiRy°p/3 4 Rip
Dy - TR’B 3 B’

(3.31)

prolate

The critical value for Ry would be the same as given in Equation , but the
critical mass would be lower than that in Equation by a factor (Ry/R;)*. For
Ry/Ry ~ 3 — 4, the critical mass will be similar to that found in the simulations.
Here we provide a physical picture for core formation via initial low along the
magnetic field, as illustrated in Figure [3.13 and [3.14 Consider a post-shock layer
with density p,s and magnetic field Bys. For a cylinder with length L along the

magnetic field and radius R, the normalized mass-to-flux ratio is

TR?Lp
Lo = ———2 .21V (@ 3.32
yl ﬂ_Rngs W\/_a ( )

and the critical length along the magnetic field for it to be supercritical is

;B 1
mag,cyl pps 271-\/6

(3.33)

(note that up to a factor 3/4, this is the same as Equation (3.15])). The critical mass

M agcy1 = WRZLmag’Cylpps can then be written as

R’B R \°(/ B
Miagoyt = —2 =12 Mg | ——— o) 3.34
Wl © (0.05 pc> <50 uG) (3:34)

This cylinder is gravitationally stable to transverse contraction unless L < 2R (Mes-

tel & Spitzer|1956)). However, contraction along the length of the cylinder is unim-
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peded by the magnetic field, and will be able to overcome pressure forces provided
Linag.cyl €xceeds the thermal Jeans length, which is true in general for oblique shocks
in typical conditions under consideration. The longitudinal contraction will produce
an approximately isotropic core of radius R when the density has increased by a fac-

tor

Pl Lmag cyl
—_—= 3.35
pps 2R ) ( )

and at this point transverse contraction would no longer be magnetically impeded.
For the core to have sufficient self-gravity to overcome thermal pressure at this point,
the radius would have to be comparable to R spn (see Equation ([3.12)):

Cs
R ~ Rth,sph == 23@ (336)

Combining Equations (3.33)), (3.35)), and (3.36)) yields

B 2
'=0.19—2 )
p=0 947r082’ (3.37)
and
g2 B -t T
R=53—— =0.05 P — . 3.38
VGBy be <50 MG) (10 K> (338)

Substituting Equation (3.38) in Equation (3.34)), the minimum mass that will be
both magnetically and thermally supercritical, allowing for anisotropic condensation
along B, will be

cs

B \ '/ T \°
Myge = 14——2—— =13 M ps — ) . 3.39
’ G3/2B,, © (50;@) (10 K) (3:39)

Thus, anisotropic contraction can lead to low-mass supercritical cores, with values

comparable to those formed in our simulationsﬂ

"Note that up to factors of order unity, Equations (3.37) to (3.39) can equivalently be ob-
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In addition, anisotropic condensation also helps explain why the core masses
are quite similar for HD and MHD models, and independent of the angle between up-
stream magnetic field and converging flow. Note that Equation only depends
on the post-shock magnetic field strength. For a magnetized shock, the post-shock
magnetic pressure must balance the pre-shock momentum flux: Bps2 /8T ~ povo?.

Therefore, Equation (3.39) can be expressed as

et o -1/2 g ! T \?
Mg = 28— —21M (—) . (34
' 8,/7(;3,00@02 ©\1000 cm=3 (1 km/s) <10 K) (3.40)

This is equivalent to Equation (24) of \Gong & Ostriker| (2011)) with ¢ = 2.8. |Gong

& Ostriker| (2011) also pointed out that pyuy? will be proportional to GEqyc? for
a gravitationally-bound turbulence-supported GMC. Thus, using Equation (28) of
Gong & Ostriker| (2011) in a cloud with virial parameter o, Equation (3.40]) would

become

M = 2.8 My, ( I )2 ( e >_1 g2, (3.41)
10 K 100 Mg pc—2

Equations and suggest that M is not just independent of magnetic
field direction upstream, it is also independent of magnetic field strength upstream.
That is, when cores form in post-shock regions (assuming the GMC is magnetically
supercritical at large scales), the critical mass is determined by the dynamical pres-
sure in the cloud, independent of the cloud’s magnetization. The models studied
here all have the same dynamical pressure povy?, and same upstream By. It will be
very interesting to test whether for varying By the core masses remain the same,

and whether the scaling proposed in Equation (3.40|) holds for varying total dynamic

tained by taking B = B and requiring that the density p — p’ in Equations (3.11)—(3.12)) and
" " is such that Rth,sph ~ Rmag,sph and Mth,sph ~ Mmag,sph~
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pressure.

3.7 Summary

In this work, we have used numerical simulations to study core formation in
magnetized, highly dynamic environments, including the effect of ambipolar diffu-
sion. Our simulations are fully three-dimensional, including a large-scale convergent
flow, local turbulence, and self-gravity, and allow for varying ambipolar diffusion
levels (parameterized by the ionization fraction coefficient x;o) and shock obliquity
(parameterized by the angle 6 between the converging inflow and the global mag-
netic field). Filaments and then cores form in post-shock dense layers, with dense
structures very similar to those found in observations.

In all of our models (with or without ambipolar diffusion), magnetically su-
percritical cores form with physical properties similar to those found in observa-
tions. However, our parameter survey suggests that the transient ambipolar diffusion
timescale and quasi-hydrodynamic shocks are crucial in setting the magnetization of
cores formed in post-shock regions. In addition, we demonstrate and quantitatively
explain how low-mass supercritical cores form in strongly-magnetized regions, via
anisotropic condensation along the magnetic field.

Our main conclusions are as follows:

1. Under typical GMC conditions, isotropic formation of low-mass supercritical
cores is forbidden under ideal MHD by the relatively strong magnetic support

(Equation (3.14])). This is true even downstream from strong MHD shocks
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where gas density is enhanced, because the magnetic field is compressed as well.
In fact, for a spherical volume of given mass, the mass-to-flux ratio is generally
larger for pre-shock conditions than post-shock conditions (Equation (3.19));
except for the special case described in #2 below). For typical conditions,
the minimum post-shock critical mass for a spherical volume exceeds 10 Mg,
when ideal MHD applies (Tables , . This suggests that either transient
ambipolar diffusion in shocks must be taken into consideration, or that core

formation is not spherically symmetric.

. When the incoming flows are almost parallel to the background magnetic
field, MHD shocks will have compound post-shock conditions, including the
regular fast mode (Shu//1992) and the quasi-hydrodynamic mode in which gas
is compressed more strongly (Figure . This happens when the angle 0
between the inflow and the magnetic field is smaller than a critical value,
Ocriv (Equation (3.8). For small 6, the post-shock layer will have relatively

high gas density and weak magnetic field compared to fast-mode MHD shocks

(Table 3.2).

. Our three-dimensional simulations demonstrate the effect of transient ambipo-
lar diffusion, as earlier identified and explained in Chapter 2. During the ear-
liest stage of shock formation (¢ < 0.3 Myr), a thin but extremely dense layer
appears in the middle of the shocked region in models with ambipolar diffusion
(Figure and , just like the central dense peak in the one-dimensional

shocks analyzed in Chapter 2. Consequently, post-shock densities are gener-

123



ally higher in models with lower ionizations (smaller x;o; see Table , which

correspond to stronger ambipolar diffusion as predicted in Chapter 2.

. The ionization fraction is the main parameter controlling the transient am-
bipolar diffusion timescale needed for the gas to reach steady post-shock con-
ditions (firansient). Models with smaller x;o have longer transient timescales
(Equation (3.27))), indicating lower growth rate of the post-shock magnetic
field and more weakly magnetized post-shock layers (Table . Therefore,
transient ambipolar diffusion is crucial in reducing the magnetic support in

the post-shock regions (see Myagsph and Ruagspn in Table [3.2)).

. The filament network in more strongly magnetized post-shock cases is similar
to those found in observations: in addition to large-scale main filaments, there
are many thinner, less-prominent sub-filaments parallel to the magnetic field
(Goldsmith et al.| 2008} [Sugitani et al.|2011; Hennemann et al.[2012; Palmeirim
et al.[[2013; André et al.2014). Dense cores form within the large-scale main

filaments for all models.

. In our simulations, magnetically supercritical cores are able to form in the
shock-compressed dense layers in all models, and the first collapse occurs at
t < 0.6 Myr in most cases. Cores formed in our simulations have masses
~ 0.04 — 2.5 My and sizes ~ 0.015 — 0.07 pc (Table and Figure .§),
similar to the values obtained in observations (e.g. Motte et al. 2001; Ikeda
et al.[[2009; Rathborne et al|2009; Kirk et al.[[2013). The medians from the
distributions are 0.47 Mg and 0.03 pc. The mass-size relationship derived
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from our cores, M oc L*3, also agrees with observations (e.g. Elmegreen &
Falgarone| [1996; |Curtis & Richer|2010; |[Roman-Duval et al. 2010} Kirk et al.

2013).

7. Our results show that the core mass and size are relatively independent of both
the ambipolar diffusion and the upstream magnetic obliquity (Figure .
Hydrodynamic and ideal MHD models also have very similar core masses and
sizes. The core masses for ideal MHD cases with oblique shocks are more than
an order of magnitude lower than the magnetic critical mass for a spherical
region in the post-shock environment. Thus, simple estimates of the form in
Equation should not be used in predicting magnetically supercritical

core masses from ambient environmental conditions in a GMC.

8. The magnetic field of cores follows the same trends as the post-shock mag-
netization, in terms of variation with the upstream magnetic obliquity and
ionization (Tables 3.3). This indicates that further ambipolar diffusion is
limited during the core building phase, and instead cores form by anisotropic
self-gravitating contraction as described in Section [3.6] The mass-to-flux ratio
in cores secularly increases with decreasing ionization (Figure [3.9)), ranging
from T' ~ 0.5 to 7.5 (Figure [3.11)). From all models combined, the median
mass-to-flux ratio within cores is I' ~ 3 (Figure , agreeing with the ob-
served range of I' (I' ~ 1 — 4; |Falgarone et al|[2008; Troland & Crutcher

2008).

9. Anisotropic self-gravitating condensation is likely the dominant mechanism
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for supercritical core formation in magnetized environments, regardless the
magnetization strength and ionization fraction. Figures and clearly
show how gas preferentially flows along the magnetic field lines in all models,
creating dense cores that are both magnetically and thermally supercritical.
The theoretical analysis of Section shows that the characteristic mass
expected from anisotropic contraction (Equation (3.39)) is similar to the me-
dian core mass obtained from our simulations (Figure [3.8). For anisotropic
core formation in a post-shock region, the critical mass is expected to depend
only on the momentum flux entering the shock. We believe this explains why
core masses in our simulations are similar regardless of the ionization level,
whether the converging flow is nearly parallel to or highly oblique to the up-
stream magnetic field, or indeed whether the medium is even magnetized at

all.
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Chapter 4: Anisotropic Formation of Magnetized

Cores in Turbulent Clouds

Abstract

In giant molecular clouds (GMCs), shocks driven by turbulent flows create
high-density, strongly-magnetized regions that are locally sheetlike. In previous
work, we showed that within these layers, dense filaments and embedded self-
gravitating cores form by gathering material along the magnetic field lines. Here,
we extend the parameter space of our three-dimensional, turbulent MHD core for-
mation simulations. We confirm the anisotropic core formation model we previously
proposed, and quantify the dependence of median core properties on the pre-shock
inflow velocity and upstream magnetic field strength. Our results suggest that
bound core properties are set by the total dynamic pressure (dominated by large-
scale turbulence) and thermal sound speed in GMCs, independent of magnetic field
strength. For models with Mach number between 5 and 20, the median core masses
and radii are comparable to the critical Bonnor-Ebert mass and radius defined using
the dynamic pressure for P..;. We find cores and filaments form simultaneously, and

filament column densities are a factor ~ 2 greater than the surrounding cloud when
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cores first collapse. We also show that cores identified in our simulations have phys-
ical properties comparable to those observed in the Perseus cloud. Superthermal
cores in our models are generally also magnetically supercritical, suggesting that the

same may be true in observed clouds.

4.1 Introduction

Prestellar core formation in giant molecular clouds (GMCs) is an important

issue in theoretical studies of star formation, because these cores are the immediate

precursors of protostars (Shu et al.|1987; McKee & Ostriker|2007; |André et al.[2014)).

It is believed that the magnetic field and supersonic turbulence may both play
important roles in core formation and subsequent evolution. In GMCs, simulations
show that overdense structures generated by supersonic turbulence may collapse

gravitationally to form protostellar systems, while also attracting material from

their surroundings (e.g. Ballesteros-Paredes et al.|1999; Ostriker et al.|1999; Klessen|

et al.|2000; Padoan et al.[2001; Bate et al.2003)). Magnetic fields limit compression

in large-scale turbulence-induced shocks, channel material toward forming filaments,

provide support for cores as they grow, and remove angular momentum in collapsing

cores (Mestel & Spitzer|1956; [Strittmatter|1966; Mouschovias & Spitzer|1976; | Mestel

11985; Mouschoviasg| 1991}, |Allen et al.[2003; [Basu et al.|[2009b; [Li et al.[2010, [2014)).

Because GMCs are only lightly ionized, and magnetic fields are only coupled to
charged particles, magnetic stresses are mediated by ion-neutral collisions, and are

affected by the level of ambipolar diffusion. Analytic studies and numerical simu-
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lations have shown that supersonic motions accelerate ambipolar diffusion (Fatuzzo
& Adams 2002} Heitsch et al.|2004; Li & Nakamura/2004)). Similar simulations with
both strong turbulence and ambipolar diffusion have also demonstrated core evolu-
tion times, efficiency of star formation, and core structure similar to observations
(Nakamura & Li 2005, 2008; Kudoh & Basu/[2008, |2011}; |[Basu et al.[[2009b)). More
recently, (Chen & Ostriker| (2012, also see Chapter 2) studied the one-dimensional
C-type shocks and identified a transient stage of turbulence-accelerated ambipolar
diffusion. This transient stage, with timescale i ansiens ~ 0.1 —1 Myr (depending on
ionization), can explain the enhanced diffusion rate and affect the magnetization of
cores that form.

In Chapter 3 (also see Chen & Ostriker||2014)), we applied three-dimensional
numerical simulations to study the roles of magnetic fields and ambipolar diffusion
during prestellar core formation in turbulent cloud environments. Our simulations
adopted the model framework of Gong & Ostriker| (2011) to focus on the shocked
layer produced by turbulent converging flows, and surveyed varying ionization and
angle between the upstream flow and magnetic field. In simulations, we found
hundreds of self-gravitating cores with masses M ~ 0.04 — 2.5 My, and sizes L ~
0.015 — 0.07 pc, all formed within 1 Myr.

In Chapter 3, we also found that core masses and sizes do not depend on either
the ionization or upstream magnetic field direction, and ambipolar diffusion is in
fact not necessary to form low-mass supercritical cores. Our analysis showed that
this is the result of anisotropic contraction along field lines, which can be clearly

seen in our simulations, with or without ambipolar diffusion. In the anisotropic core
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formation model, low-mass magnetically supercritical cores form rapidly even in a
strongly magnetized medium with high ionization. This explains the prevalence of
magnetically supercritical cores in observations (Crutcher|2012]).

Using a simple scaling argument, we suggested in Chapter 3 that the charac-
teristic core mass may be set by the mean turbulent pressure in a GMC, regardless
of magnetic effects. The predicted core mass is a factor ~ M ™! lower than the ther-
mal Bonnor-Ebert mass at the mean density in the cloud, where M is the turbulent
Mach number. Previously, Gong & Ostriker| (2011]) proposed a similar formula based
on the preferred scale for gravitational fragmentation of post-shock layers, for the
purely hydrodynamic case. Padoan et al.| (1997)) also argued for a similar character-
istic mass, based on statistics of turbulent flows. Although the analyses of |(Gong &
Ostriker| (2011)) and Padoan et al|(1997)) neglect magnetic fields, the end result is
similar to the prediction of Chapter 3 that incorporates magnetic effects, with the
turbulent pressure in a cloud setting the characteristic core mass.

Here, following Chapter 3, we continue our study of anisotropic core formation
in turbulent molecular clouds. We extend our previous numerical study to explore
how the turbulent and magnetic pressures of the pre-shock gas can affect core for-
mation in the compressed region. We demonstrate that the dependence of core
properties on pre-shock parameters are similar to those predicted by the anisotropic
core formation model of Chapter 3. We also compare our results with observations,
showing that the mass-size relationship and ratio of mass to critical value of our
simulations is comparable to that seen in Perseus and other star-forming regions

(Sadavoy et al.|2010a; Kirk et al.[2013).
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The outline of this chapter is as follows. We review the anisotropic core forma-
tion model in Section outlining the successive dynamical stages and associated
parameter dependence expected. Section describes the equations solved in our
numerical simulations, and specifies the model parameter set we shall consider. The
post-shock gas structure for varying parameters is analyzed in Section [4.4] includ-
ing physical properties of the compressed layer (Section , and development of
filaments within it (Section . In Section we provide quantitative results
for masses, sizes, magnetizations, and other physical properties of the bound cores
identified from our simulations, and compare to predictions from Chapter 3. We
also compare these results with observations (Section , focusing on interpreting
the physical state of super-Jeans mass cores and mass-size relationships. Section

summarizes our conclusions.

4.2 Anisotropic Core Formation: Review

Here we briefly review the anisotropic condensation model of core formation
proposed in Chapter 3. We consider a strongly-magnetized post-shock region created
by a large-scale converging turbulent flow within a cloud. As shown in Figure 4.1
(top left), the magnetic field will lie primarily parallel to the shock front in the layer,
with density p,s and magnetic field strength Bs. For a cylinder with radius R and
length L along the magnetic field (Figure top right), if 2R < L S Linag.ait (See

Equation ({3.33)) of Chapter 3) for

. By 1
mag,crit pps 271’\/5,

(4.1)
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Figure 4.1: The anisotropic condensation process of a magnetically-
critical cylinder, initiated by longitudinal contraction along the magnetic
field. When the length of the cylinder has shrunk to satisfy L' ~ 2R, it
can be treated as an isotropic sphere with radius R, which will collapse
if the self-gravity overcomes thermal pressure.

it is gravitationally stable to transverse contraction across the magnetic field (Mestel

& Spitzer|1956). However, the magnetic field does not prohibit contraction along

the length of the cylinder, and gravity will be able to overcome pressure forces if
L exceeds the thermal Jeans length within the post-shock layer, L;op = cs?/ GYps
or Lysp = cs(m/ Gpps)l/ 2. Here, X, is the total surface density of the post-shock
layer. In this situation, longitudinal contraction can reduce the length until an

approximately isotropic core with L' ~ 2R is produced (Figure , bottom), with
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density

L
~ Rl

/

p (4.2)

At this point, transverse contraction is no longer impeded by the magnetic field
provided the original L ~ Lyaecrit SO the core is magnetically supercritical (note
that the mass-to-magnetic flux ratio remains the same during the longitudinal con-
traction). The core will also have sufficient gravity to overcome thermal pressure
support provided its mass is comparable to that of a critical Bonnor-Ebert sphere

at ambient density p’, which corresponds to radius (prior to central concentration)

Cs
R ~ Rth,sph - 23@ (43)

Combining L ~ Lyag erit With Equations (4.1))-(4.3)), this yields

2

B povo2
= 0.19—2_ ~0.38 .
P 47eg? cg2

(4.4)

In Equation (4.4)), we have assumed a strong magnetized isothermal shock with
downstream magnetic pressure balanced by upstream ram pressure (Bs>/ (87) ~

povo?) so that

Vo o 1/2
B.. — 31.04 ( ) , 1.
ps = 3104 G <1 km/s> 103cm=—3 (4:5)

where pg, vg are the density and inflow velocity of the shock, respectively, and
ng = po/pn for p, = 2.3my the mean molecular weight. We can then solve for
the critical radius and mass that allows an anisotropically formed core to be both

magnetically and thermally supercritical:

cs? cg?
Ryt =53— =1.06—
! V GBps \/ Gpovoz
0.00 pe (—"0 )t (e Y 46
- pc(lOOO cm—3> (1 km/s) (0.2 km/s) ’ (4.6)
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and

C 4 C 4
Mg = 14——"—— =28—>
' G3/QBPS vV G pov?
M no —-1/2 Vo -1 c 4 A7
o () (e ) (e )
©\1000 cm—3 (1 km/s) (0.2 km/s) (4.7)

Equation uses My = ﬂ-RcritQLmag,critpps = Rcrit2Bps / (2\/@) Equations
and suggest that the characteristic mass of prestellar cores formed in post-
shock regions in magnetized GMCs is determined by the dynamical pressure in
the cloud, independent of the cloud’s magnetization, when anisotropic condensation
along the magnetic field is taken into account. We already showed in Chapter 3
that models with varying upstream magnetic field directions have similar values of
the median core mass and radius. Here, we extend our previous investigation to

consider variation in the inflow velocities and background magnetic field strength.

4.3 Numerical Methods and Models

The simulation setup is similar to the one discussed in Chapter 3, and is
summarized here. We employ a three-dimensional ideal MHD model with convergent
flow, self-gravity, and a perturbed turbulent velocity field (Gong & Ostriker|[2011)).
These numerical simulations are conducted using the Athena MHD code (Stone et
al.[[2008) with the Roe Riemann solver. As we found in Chapter 3 that ambipolar

diffusion plays a secondary role in core formation, here we consider ideal MHD. The
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equations we solve are:

dp

E + V- (pv) = 0, (48)
Opv BB .

aa—]?+Vx(va):O, (4.10)

where P* = P + B?/(8w). For simplicity, we adopt an isothermal equation of state
P = pc,? with ¢, = 0.2 km/s. For both the whole simulation box initially and the
inflowing gas subsequently, we apply perturbations following a Gaussian random

distribution with a Fourier power spectrum v? (k) oc k™% (Gong & Ostriker| 2011}

or see Equations (3.23) and (3.24) in Chapter 3). We use H-correction (Sanders et

al.[|1998)) to suppress the carbuncle instability, and, when needed, first order flux
correction (Lemaster & Stone|2009).

Our simulation box is 1 pc on each side, representing a region within a GMC
where a large-scale supersonic converging flow with velocity vy = vy z and —vyq (i.e.
in the center-of-momentum frame) collides. The z-direction is the large-scale inflow
direction, and we adopt periodic boundary conditions in the z- and y-directions.
We initialize the background magnetic field in the cloud, By, in the x-z plane, with
an angle § = 20° with respect to the convergent flow. The number density of the
neutrals, defined as n = p/pu,, is set to ng = 1000 cm ™ in the initial conditions and
in the upstream converging flow. The physical parameters defining each model are
then the inflow Mach number and upstream magnetic field strength M = vy/cs and
By. We choose M = 5, 10, and 20 to look at the dependence of core mass/size on the
inflow velocity, and By = 5, 10, and 20 uG to test whether the initial magnetization
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of the cloud can affect the core properties (see Table .

Similar to our previous work, we repeat each model 6 times with different ran-
dom realizations of the same turbulent power spectrum to collect sufficient statistical
information. Note that the resolution adopted in Chapter 3 (Az = 1/256 pc) is not
high enough to resolve strong shocks generated by high inflow velocity, especially
M = 20 cases. Therefore, we increased our resolution to 5123 for all models in this
work, such that Az ~ 0.002 pc.

From each simulation, we apply the GRID core-finding method (Gong & Os-
triker 2011), which uses the largest closed gravitational potential contours around
single local minimums as core boundaries. We then select the gravitationally bound
cores as those with negative total energy (sum of gravitational, magnetic, and ther-
mal energy). It is then straightforward to measure the mass and size for each
identified core. For the magnetic flux within a core, we first find the plane that in-
cludes the minimum of the core’s gravitational potential and is perpendicular to the
average magnetic field direction within the core. This plane separates the core into
an upper half and a lower half, and we can measure the magnetic flux & through
the core by summing up B - i in either the upper or lower half of the core surface

(see Chapter 3). The normalized mass-to-magnetic flux ratio of the core is therefore

I'=M/®p 21VG.
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4.4 Post-shock Environment and Structure Formation

4.4.1 Post-shock Layer

The post-shock results from our simulations are summarized in Table [£.1]
Similar to our work in Chapter 3, we measured the post-shock properties at ¢ =
0.2 Myr, a timescale that is short enough that no cores have formed, yet long
enough for the post-shock region to reach a steady-state solution. In fact, the
timescale tg; necessary for the post-shock layer to become self-gravitating can be

derived by considering when the gravitational weight,

WGEPSQ G (QpOUOtsg)2

= 4.11
: orolee) (1)
exceeds the post-shock pressure Bps2 /87 & povg?. The result is
P ( "o )1/2 (4.12)
= nGpe V1000 cm3/) ‘

This justifies our choice of measuring post-shock properties at t = 0.2 Myr.

As explained in Chapter 3, there are two different length scales (and cor-
responding characteristic masses) for spherical cores in the post-shock region at
a given ambient density p: one that is supported by thermal pressure (a critical

Bonnor-Ebert sphere)

Cs
Rihsoh = 2.3———, 4.13
et TS ARGy (413)

ced

VArGBp

M spn = 4.18 (4.14)
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Figure 4.2: The post-shock layer thickness Hs in different models mea-
sured from simulations (solid), compared to possible mass-gathering
scales, R spn from Equation (dashed) and Ryagspn from Equa-
tion (4.15)) (dotted) within the post-shock layer. Since the post-shock
layer is strongly magnetized with Rp,ae spn much larger than H,s during
the core building phase (~ 0.5 Myr), cores cannot collect mass along the
direction perpendicular to the layer.
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and one that is supported by magnetic stresses (defined from 4R/3 = Lyag crit)

3 B
R soh = ———— 4.15
g,sph 8%\/@/) ( )
9 B3
Mmag,SPh - —1287'['26'3/2? (416)

(see Equations (3.11))—(3.12) and (3.14)—(3.15) in Chapter 3). Figure shows

the measured post-shock layer thickness in each model, compared with these two
possible mass-gathering scales in the post-shock environment, Ry, spn and Rimag sph-
It is obvious from Figure that Riagspn is much larger than the post-shock thick-
ness during the entire core-building phase, and thus magnetically supercritical cores
cannot form spherical symmetrically within the post-shock layer. Quantitatively,

since the post-shock layer thickness is Hps = s/ (QEPS), we have

Rmag,Sph o 3 BPS ~ 3 V 87TPOU02

H,. 471'\/@2_1)8 - 41V G 2pouot

~1/2 -1
#f)ot —1.2 <ﬁ) <Miyr> . (4.17)
Since the core formation timescales in our models all satisfy ¢t < 1 Myr, Equa-
tion suggests Rmagsph > Hps when cores formed. This means that gravity-
induced mass collection in the direction perpendicular to the shocked layer is pre-
vented by magnetic forces, and in-plane mass collection is required for core formation

in post-shock regions.

4.4.2 Structure Formation

Figure [4.3| shows examples of structures formed within the post-shock layers,
at the time that the most evolved core collapses (f.; see Section 4.5). We have
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Increasing Mach number >

150 uG

Figure 4.3: The structure formed in the post-shock layer (in column
density; color map) for models with different inflow Mach numbers and
background magnetic fields. Magnetic field directions in the post-shock
layer are also shown (pink segments).
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Figure 4.4: The space-time diagrams of v,, vy, v, around the most
evolved core in each model, normalized by the total velocity vy =

)1/2

(0.2 + v,2 + v,2 at each zone.

around the forming core.

In all models, v, dominates in the
beginning of the simulation because of the convergent flow setup, but v,
(along the magnetic field lines) soon becomes the strongest component
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selected models with identical initial turbulence realization, which is responsible for
seeding the structures that subsequently grow. Filamentary structures are obviously
seen in all models with width ~ 0.05 pc, similar to those found in observations
(see review in |André et al.[2014). Also, note that the filaments are not necessary
perpendicular to the magnetic field, because the locations of nulls in the velocity
field are independent of each other on each magnetic field line.

In addition, we see networks of small sub-filaments or striations parallel to
the magnetic field in some models. Similar features have been observed in multiple
molecular clouds (Goldsmith et al. [2008; [Sugitani et al. 2011; Hennemann et al.
2012; |André et al.2014), and are consistent with the theoretical expectation of
anisotropy of magnetized turbulence (Goldreich & Sridhar|1995)). Quantitatively,
computational studies suggest § < 0.2 is required to have significant anisotropy
at Mach number = 5 (Vestuto et al. 2003; Heyer et al. 2008]), and the critical
value of 3 may become smaller for higher Mach numbers (Heyer et al.|2008). This
roughly agrees with our results in Figure 4.3} striations parallel to the magnetic field
direction (not necessarily perpendicular to the main filaments) are evident in models
with low Mach numbers or strong magnetic fields (M5, M10/B10, B20). Otherwise,
the high velocity turbulence (M20) or the weak magnetization (B5, see Table
may have destroyed the anisotropy.

Similar to our work in Chapter 3, we use space-time diagrams of different
velocity components to demonstrate the anisotropic process of core formation (Fig-
ure . We consider the region with size L, X Ly X L, = Lag crit X 2Rth sph X 2 Rih sph
centered around the most-evolved core at ., of each model, and plot the averaged
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Table 4.2: Results from filaments measured at t = t..), averaged over all 6 runs
for each parameter set.

Model tcoll§ I-:ﬂl:ﬂEl.O]L FFE1.5T Aﬁla,l.O Aﬁla,l.S Lmag,crit Lacci /\mi
(Myr) (pc®)  (pe?) | (pe)  (pc) (pc)

M5B10 0.83 0.65 0.31 0.34 0.11 0.19 0.51 0.39
M10B10 | 0.53 0.57 0.27 0.34 0.11 0.18 0.49 0.28
M20B10 | 0.43 0.59 0.31 0.35 0.13 0.19 0.51 0.20

M10B5 0.58 0.61 0.33 0.34 0.13 0.10 0.27 0.28
M10B10 | 0.53 0.57 0.27 0.34 0.11 0.18 0.49 0.28
M10B20 | 0.63 0.53 0.36 0.30 0.15 0.37 1.00 0.28

8Collapse is defined as the time when npmayx = 107 cm ™2 in each simulation.

'FFE (filament formation efficiency) is the ratio of the total mass in filamentary structures
to the total mass in the shocked layer at tcou, as defined in Equation (4.19)).
tSee Section M5

Uy, Uy, U, along -, y-, z-directions in the unit of the total velocity vi;. Anisotropic
gas flows along the z-direction are obvious in all models, and appear much earlier
than the core collapse (when all three velocity components show convergent flow).
Note that, from Figure [4.4] we can see that Model B5 has less prominent convergent
flow along the z-direction than the other models, indicating that anisotropy is not
as strong in this model (see Section [4.5).

Quantitatively, if we define overdense (filamentary) structures as those with
surface density contrast higher than a certain value, say, ¥ > X - X, then we can
measure the mean surface density of filaments, Yg,, as the ratio of total mass inside

filamentary structures,

Mo = / Sou(e.y) - da - dy, (4.18)

to total area (Ag,) of the same structures. The filament formation efficiency (FFE)

is defined by:

Mg — Mpa

FFE = = .
Mps 2p0U0t

(4.19)
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0.1 1.0 1.0 10.0
surface density ratio (X) surface density ratio (X)

Figure 4.5: Comparison between filamentary structures above different
cut-off X values in the criterion ¥ > X - X4 (top), and the fraction
of filament mass (bottom left) and the fraction of filament area (bottom
right) as functions of X, from model M10B10.

Table lists the measured FFE and total area of filaments using X = 1.0 and
X = 1.5, as well as three mass-accreting scales Lyag it (See Equation ), Ly,
and A, (see discussion in Section [4.5). Though the core collapse timescale varies
with inflow Mach number, the filament formation efficiency and the total area of
filaments do not seem to have strong dependence on either the inflow Mach number
or the pre-shock magnetic field. This is in contrast to the core formation efficiency
(CFE), which varies with ¢., (see Table and discussion in Section .

Note that there is some arbitrariness in the choice of X. Figure [4.5| compares
the post-shock structures under different cutoff values in surface density, and shows
the differential PDF's of filament mass and area as functions of the surface density

ratio X = X/3. Since there is no “break” in the differential PDF at any particular
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Figure 4.6: The average column density of the overdense “filament”
structures (solid), post-shock layer (dashed), and theoretical value for
the post-shock layer (dash-dotted) defined as Nps = 2ngugt. The core
collapse time is labeled with dotted lines, with corresponding N, =
Niia (teon)-
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value of X, there is not an obvious value of X to use as a lower limit for filament gas.
Using X = 1.0, Figure shows the average column density of the post-shock layer,
Nps = fps /tin, and Ng, for each model, as functions of time. We also measured
the filament column density at t.n; in all models, Neoy = Ngia(feon) ~ 10%2 cm™2,
comparable to the observed “critical column density” for filaments with active core
formation (see review in [André et al|2014). In detail, we find that for X = 1,
Neot/ Nps = 1.8 (see Figure .

As we shall show below (see Equation (4.27))), the expected post-shock column
density at the collapse time is N o (nove)?. When Y)Y > X =1 is used to

define filaments, N /Nps ~ 1.8 for all models (see Figure , implying the same

dependence of filament column density on vy as mean post-shock column density.

4.5 Statistical Core Properties

Similar to Chapter 3, we define the timescale at which 7, > 107 cm™ as

the moment t.,; when the most evolved core collapses, then identify cores formed
at this time and investigate their physical properties (see Section . Figures
and show the statistical distributions of core mass, size, mean magnetic field,
and mass-to-flux ratio measured from our simulations, normalized by total number
of cores identified for each parameter set. The normalized mass-to-magnetic flux
ratio is defined as

r

M
— 21V G. (4.20)
Pp
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Cores with I' > 1 are magnetically supercritical, and have self-gravity strong enough
to overcome the magnetic support and collapse.

Cores identified in our simulations have masses M. ~ 0.002 — 10 My, sizes
Reore ~ 0.004 — 0.05 pc, and normalized mass-to-flux ratio I' ~ 0.4 — 4.5, consistent
with observations (e.g. [Troland & Crutcher||[2008; Sadavoy et al.|2010a; Kirk et
al.[2013). We also included the normalized mass distribution of starless cores in
the Perseus molecular cloud (adopted from Sadavoy et al.|2010a)) in Figure as
a comparison (see Section for more discussion). The median values of core
properties are summarized in Table as well as the averaged core formation
efficiency (CFE) and core collapse time t.,. In Figure we show that the CFE is
positively related to the core collapse time, t.,;. This is because more structures in
the post-shock region have become nonlinear at later t.q.

Note that though the mean core density, Ticore, is ~ 10 times larger than the
ambient density in the post-shock layer, the magnetic field within cores (Ecore) is not
significantly different from the post-shock region (see 7,5 and Eps in Table . This
is additional evidence of anisotropic core formation: cores gather material along the
magnetic field and become more massive without significantly compressing the field
and enhancing the magnetic support.

In the anisotropic condensation model (Section , core properties are ex-
pected to depend on the inflow Mach number. In particular, Equations and
suggest that Reore and Mqre should decrease with increasing M, while varying
By should not have significant effect on these core properties. Furthermore, the core

field is expected to be comparable to the post-shock value given in Equation (4.5)),
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Figure 4.7: Statistical distribution of core mass (left panel) and size

(right panel) for models with different inflow Mach numbers (top row)
and cloud magnetic fields (bottom row).

so that it increases with M and is insensitive to By. Our results in Table and

Figures [4.7 and [4.§ generally agree with these theoretical predictions.

Quantitatively, we plot the median values of core mass, size, and mean mag-

netic field as well as the average core collapse time in Figure [4.10] as functions of

initial Mach number (top row) and pre-shock cloud magnetic field (bottom row).

We also include theoretical models (dotted lines) with Moo o M1 (according to

Equation (4.7), Reore ¢ M™! (according to Equation (4.6))), Beore < M (according
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Figure 4.8: Statistical distribution of core mean magnetic field (left
panel) and mass-to-flux ratio (right panel) for models with different in-
flow Mach numbers (top row) and cloud magnetic fields (bottom row).

to Equation (4.5))), and ten oc M™Y2 (see Equation below). For each theo-
retical comparison, we adopt the predicted scaling and obtain a best-fit coefficient.
All simulated results fit the theoretical predictions very well, providing quantitative
support for the anisotropic core formation model. The fit coefficients we find for
radius and mass are Meye = 4.4 Mo M and Regre = 0.14 pc M™!; these are
shown in Figure 4.10]

The Bonnor-Ebert critical radius and mass for an external pressure P.. are
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timescale. Each point represents one model parameter set (M5, M10B10,

etc.).

given by Rpp = 0.485 c,? (GPext)_l/2 and Mpg = 1.2 ¢,* (G3Pext)_1/2. If we take

P... — povo? and normalize to ng = 1000 cm™3

the result is

o —1/2 Cs 1
2= 0.196 pe (o) (o ,
Fmp.ay 0-196 pe 1000 cm—3 (0.2 km/s) M

1000 cm—3

Un —-1/2 Cg 3 1
Mpg gy = 443 Mo (- ) (—) ML

0.2 km/s

Comparing to our fitted core radius and mass expressions, we have

Rcore =0.71 RBE,dym Mcore =0.99 MBE7dyn‘

, ¢s = 0.2 km/s as in our simulations,

(4.22)

Therefore, our results suggest that bound core properties are well described by

critical Bonnor-Ebert spheres defined by the dynamical pressure of the environ-

ment. This supports the key conclusion predicted in our anisotropic core formation
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model [

Equations and were derived assuming that the accumulation length
along the magnetic field is Lyag et (Equation (4.1). If, however, we instead assume
an accumulation length L,.. and follow the same steps as before, Equations

and (4.7) would have an additional factor (Lace/Lmagcrit) ' 1-€.

Reone = 043 pe (1o >_1/2 I VR (R
core — Y- pc 1000 cm—3 0.2 km/s Lmag,crit '

and

", M no —1/2 c 3./\/1 ( L -
core — 10. ( '> —_— B e . 4.24
05 Mo \ 1600 em— <o.2 km/s> (me) (424)

Comparing to our fits, this implies Lacc/Lmag,crit = 2.4 or 3.2 for the mass or radius
fit, respectively. This suggests that cores actually need to gather material along the
magnetic field lines from a length scale Lacc > Limagcrit- SiNCe Liag erit T€Presents
the critical (minimum) length scale for cores to be magnetically supercritical, our
finding of Lacc > Lmageit 15 consistent with the anisotropic core formation model.
Table includes the value (in pc) of Lyce = 2.7 Liagerit i each model that would
be required for the median core mass and radius to match Equations and
(4.23)).

We also use the best-fit coefficients found in M-models (Figure , top
row) to derive the predicted values (dotted lines) of core mass, size, magnetic field
strength, and collapse time for B-models (Figure [4.10] bottom row). Most of the

theoretical predictions are in good agreement with the simulation results, except the

12Note that Rgpg,dyn and Mpg ayn are respectively factors 0.46 and 0.43 smaller than the radius

and mass given in Equations (4.6 and (4.7).
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Figure 4.10: Summary of simulated core statistical properties for models
with different inflow Mach numbers (top row) and cloud magnetic fields
(bottom row), with theoretical predictions (dotted lines). The dashed
lines in the core size plots (second column) indicate the resolution of our
simulations; Az ~ 0.002 pc.

core mass in the B5 model. This is because the B5 model has very strong post-shock
density compression but only moderate post-shock magnetic field (see Table ,
and supercritical cores may form isotropically. This tendency can also be seen in
Figures [4.3] and [4.4] that the structures formed in the B5 model are more randomly
distributed compared to other models, the anisotropic gas flow is less prominent,

and there is less large-scale structure in the B5 model.

154



Figure 4.10| shows that the core collapse time follows the relationship ., o<
M2 very well, as predicted in Equation (29) of |Gong & Ostriker| (2011). The
best-fit coefficient gives

teon = 1.82 Myr M™1/2 (4.25)

If we compare with Equation (29) of |(Gong & Ostriker (2011) (with ny = 1000 cm™3
and ¢; = 0.2 km/s), this would imply a maximum amplification in the post-shock re-
gion of In(d%/0%0)max = 2.29. The corresponding length scale of the most-amplified

mode (see Equation (30) of Gong & Ostriker| (2011))) is then

1/2
A, = (2\/§7r) ( Cs 1

2.29 Gpo)/* M2

Un —-1/2 Vo —1/2 A
=0.39 (—) . 26
P“\1000 cm-3 (1 km/s) (4.26)

In most of our models, A, > Luyagait (See Table , which means the most-

amplified mode would be able to form gravitationally bound cores and collapse. In
fact, the amplification is similar for a range of modes with similar wavelengths (see
Equation (26) of |Gong & Ostriker| (2011)), so it is not surprising that L,.. differs
from A, (see Table 4.2)).

Using the fitted coefficient of Equation combined with the expectation
teon ¢ 1o~ /2, the predicted post-shock surface density at the time of collapse is

Yps (teoll) = 2poVotcon, corresponding to column density

1/2
Nps (teon) = 5.4 x 10*! cm ™2 (L)”Q Yo / . (4.27)
P 1000 ¢cm—3 1 km/s

This is in good agreement with measured values, as shown in Figure[4.6] Considering
Equation 1} and the fact that Ngp, (tcon) /Nps ~ 1.8 in all models (see Figure,
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this suggests that the filament column density at the core collapse time may have the
same dependence on inflow density and velocity as the post-shock column density,

ie. Nﬁla (tcoll) X (77,0?]0)1/2-

4.6 Comparison to the Perseus Molecular Cloud

4.6.1 Cloud Environment

The dark cloud in Perseus is an active star forming region approximately 250 pc
away, with a total mass of about 10* Mg, over a region about 8 x 25 pc (see review
in Bally et al.[|2008). Dense gas tracers and dust emission have revealed filamentary
structures and a wealth of dense cores in this region (e.g. Enoch et al.[[2006; Kirk
et al|2006). In addition, since the Perseus molecular cloud has been observed in
12C0 and ¥CO emission lines (e.g. Ridge et al.[2006)), the cloud density should be
> 103 cm ™2, similar to the value adopted in our simulations. The Perseus molecular
cloud thus represents a good case to compare with our simulation results.

However, the Perseus molecular cloud shows large velocity differences across
the region (Bally et al.[2008)). The observed CO linewidth is about 5 km/s over
the whole cloud (Ridge et al.[2006)). Though numerical simulations with rms Mach
number M = 6 — 8 have shown agreement with observational data on linewidth and
cloud structures (Padoan et al.[[1999, [2006), there is still uncertainty in the actual
value of o, in the Perseus molecular cloud because of the possibility of superposition
of multiple clouds (Bally et al.|2008).

For our comparisons, we adopted the observed properties of starless cores in
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the Perseus molecular cloud from Sadavoy et al. (2010a). The core mass distribution
of Perseus is included in Figure [{.7 as a comparison to simulations. As discussed in
Section the Gaussian-fit peaks of the core mass functions from our simulations
shift with the inflow Mach number, or equivalently, the velocity dispersion in the
cloud. From Figure [1.7, the CMF of Perseus has a peak core mass similar to that of
the M5 model, suggesting that Perseus may be a relatively quiescent star-forming

environment with converging flow velocities only of order ~ 1 km/s.

4.6.2 Bonnor-Ebert Mass

One interesting feature of the Perseus cloud is the existence of “super-Jeans
mass cores” (Sadavoy et al.[2010b)). These massive cores have relatively strong self-
gravity compared to their internal thermal pressure, but still remain starless. An
interesting possibility is that these and similar cores may be partially magnetically
supported. Our models are useful for addressing this question, because we can
measure the fraction of super-Jeans mass cores under different environments in our
simulations, and we also can measure magnetic support.

For consistency with theoretical work, we will consider the critical Bonnor-
Ebert mass instead of the Jeans mass. We thus convert from the M /M ratios in
Sadavoy et al. (2010b) to M /Mpgg, making use of the core mass and effective radius

published in [Sadavoy et al.| (2010a)), and using Equation (19) in \Gong & Ostriker
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(2009):

cst et
Mpp =1.18———= = 1.85——
o V GBPedge \% G3Pmean
3 3 R3/2
— 185 - (4.28)

—\/m = 3.8WW.
For a core at mass M, radius R, and density ppean that is pressure confined at
its surface, the thermal pressure is insufficient to prevent gravitational collapse if
M > Mgg. For each core identified in our simulations, we calculated the value of
the Bonnor-Ebert mass using the core’s mass and radius.

Figure shows the statistical distribution of M y./Mpg from both our
simulations and Perseus; in addition to the binned counts, we also show best fit log-
normal functions for each model. The distributions for all models and for Perseus
are similar. Figure shows that although the median core mass is close to Mpgg,
the majority of our gravitationally-bound cores have Mc,../Mpg > 1, naively con-
sistent with the fact that these cores are magnetized. However, these super-BE
mass cores do not in fact seem to be supported primarily by the magnetic field.
Figure m shows the mass-to-flux ratio I" versus M/Mpg for all cores from our
simulations. Evidently, most cores with high M /Mgg (Z 3) are also strongly mag-
netically supercritical (I" 2 2). This suggests that the super-BE mass cores observed
in Perseus may be strongly self-gravitating and on their way to collapse, rather than
being magnetically supported. In fact, in our model, cores with Moo/ Mpg 2 7 all
have Npmax = 107 cm ™3, which means they are the most-evolved collapsing cores in

~

individual simulation runs.
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Figure 4.12: Scatter plot of core mass-to-flux ratio vs. M/Mpg in differ-
ent models. Each point represents one core formed in the corresponding
model.

4.6.3 Mass-radius Relation

Several observations have found that there is a power-law relationship between
the core mass and its size, M oc R¥, with k ~ 2 (Kirk et al|2013). Figure m
is the binned mass-size plot from all identified cores in our simulations, compared
to the observed cores found in the Perseus molecular cloud (reported in [Sadavoy et
al.[2010a). Similar to the observations, the binned data from our simulations show
k ~ 2 for the power-law relationship between core mass and radius. At a given
radius, our cores have slightly higher mass than those in Perseus.

A relationship Mepre X Reore> would suggest that the core surface density
Yeore = Meore/ (WRCOYQQ) is constant for cores regardless of their masses and sizes.
Figure shows the scatter plot of the core column density (Neore = Lcore/ fin)

versus core mass for all cores formed in our simulations. Although core mass varies
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Figure 4.13: The mass-radius relationship measured from our simula-
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simulations and observations, the vertical bars represent the £25% val-
ues in each bin. The best-fit power laws (dotted lines) are M o< R for
Perseus, and M oc R*'6 for our simulations.
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Figure 4.14: Scatter plot of Negre VS. Mo in different models. Each
point represents one core formed in the corresponding model.

over nearly three orders of magnitude (~ 0.01—10 M), Neore is within a factor of 10.
The mean value is Neoro = 3.7 x 10?2 cm~2. By comparison, we found in Section [4.4.2)

2 at

that the overdense filamentary structures have column density Ng., ~ 10?2 cm™
the time of collapse. Thus, the typical core column density Neore ~ 4 Niia-
However, any k > 2 value indicates that N, increases with M.oe O Reore,
and this trend is evident in Figure for different models. Figure shows the
mass-radius relations for individual models in our simulations as well as the fitted
Meore X Reore” power-law (the complete fitting coefficients are listed in Table .
We found that the fitted k values are generally higher than 2, implying that N

is not a constant over cores with different masses and sizes™] This means that

it is possible that there is no “universal” core column density, but simply a weak

BComposite distribution of cores from different models show a smaller value of k, and more
dispersion, than individual models.
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Table 4.4: The fitted Mass-size relation-
ship from our simulations, M y./Ms =

A(Rcore/pc)k'
Model | A (x10%) k  R-square*
Mb 33.97 2.83 0.94
M10 10.28 2.40 0.82
M20 36.14 2.58 0.86
B5 4.31 2.17 0.64
B20 17.66 2.47 0.88
All 4.45 2.17 0.81

*R-square is the coefficient of determina-

tion that indicates the goodness of fit. R-

square = 1 means the regression line per-

fectly fits the data.
dependence of Ny, on parameters, which is difficult to identify from the present
models. For example, the post-shock column density at the time of core collapse

/2 (see Equation (4.27))), and filament column densities appear

varies as Nps X (novo)l
to follow a similar trend. If the mean core column density is also a multiple of this,
then it would vary by only a factor two for our models, which all have ng = 1000 cm ™3
and have vy varying by a factor four. We do indeed find a higher mean N . for
vo = 4 km/s (4.8 x 10?2 cm™2) compared to vy = 1 km/s (3.0 x 10*2 cm~2). Further

investigations, both observational and computational, are needed to reach a clearer

conclusion.

4.7 Summary

In this chapter, we extended the investigation of Chapter 3 to further exam-

ine the anisotropic core formation model and test the theoretical scalings of core
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properties over a larger parameter space. We carried out fully three-dimensional
ideal MHD simulations with self-gravitating gas, including supersonic convergent
flows with local turbulence. Our models allow for varying inflow Mach number and
magnetic field strength of the background cloud. Our simulation results demon-
strate that the ram pressure of the converging flow (pouo?) is the dominant factor
controlling the physical properties of cores formed in the shocked layer. These
core properties are consistent with the predictions of the anisotropic core formation
theory. Although the post-shock layer is strongly magnetized in all cases, core prop-
erties are insensitive to the pre-shock magnetic field strength. We also compared
cores formed in our simulations with those observed in the Perseus molecular cloud,
and found very similar core mass distribution, super-Bonnor-Ebert mass ratio, and
mass-size relation.

Our main conclusions are as follows:

1. Considering typical GMC conditions, spherically symmetric core formation is
impossible in the magnetized post-shock region, because the required mass
gathering scales are much larger than the thickness of the shocked layer (Ta-
ble and Figure . Quantitatively, it takes = 1 Myr for the post-shock
layer thickness to be comparable with the magnetic critical length under post-
shock conditions (Equation (4.17))), much longer than typical core formation

timescale in our simulations.

2. Filamentary structures formed in the post-shock regions are similar to those

found in observations, with dense cores embedded within filaments (Figure[4.3).
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We measured the filament formation efficiency (FFE) to be around 50% (de-
pendent on the choice of column density threshold of filament; Table ,
independent of the pre-shock conditions. We also found that the filament col-

umn density at the time when cores start to collapse is proportional to the

mean post-shock column density; Ngia (teon) ~ 1.8NIDS (Figure .

. Our velocity space-time diagrams (Figure show clear evidence that the
mass-gathering flows that create cores and filaments are highly anisotropic.
Until late times, flow along the magnetic field is much stronger than in the
two perpendicular directions. However, our simulations also show that the
“seeds” of cores are present even at early times. This suggests that core and
filament formation is simultaneous, instead of the commonly-assumed picture

that cores form only after filaments do.

. Magnetically supercritical cores form within the post-shock layers in all of
our simulations, with masses ~ 0.002 — 10 M, sizes ~ 0.004 — 0.05 pc, and
normalized mass-to-flux ratio ~ 0.4 — 4.5 (Table . The core formation
timescale is t.o; ~ 0.4—0.9 Myr, and the core formation efficiency is positively-

related to the core collapse time (Figure .

. The statistical distributions of core mass, size, mean magnetic field, and mass-
to-flux ratio clearly show that median core properties depend on the pre-shock
inflow Mach number M = vg/c, but not the upstream magnetic field strength
By (Figures and . The theoretical scalings predicted in the anisotropic
core formation model are Mgore ¢ M™, Regre ¢ M™L, and Bgope ~ Bps o< M

166



(Equations ([4.5)-(4.7))), which agree with our simulation results very well (Fig-
ure . Furthermore, the core collapse timescale in our MHD simulations
generally follow the relationship teon oc M~Y/2. The t. scaling is consistent
with the prediction of |Gong & Ostriker| (2011) based on hydrodynamic anal-
ysis, because the flows in the post-shock layer are primarily parallel to the

magnetic field. This also gives the post-shock column density at t.,; to be

Nps (teon) o< MY? (Equation (4.27)).

. Quantitatively, the median core mass and radius depend on inflow velocity
as Moore = 0.88 My, (vo/ (km/s)) ™" and Reore = 0.028 pe (vo/ (km/s)) ™. This
suggests that the core mass and radius will be, respectively, a factor 0.99 and
0.71 lower than the Bonnor-Ebert critical mass and radius computed using
the sound speed and total dynamical pressure (pyvo?) in the cloud (Equa-
tions and (4.22)). This result is similar to the scaling for characteristic
mass proposed by Padoan et al.| (1997)), but our coefficient is higher by a factor

~ 2.

. Cores identified in our simulations have physical properties very similar to
those observed in Perseus (Sadavoy et al.[2010a)). In addition, we found simi-
lar statistical distributions of M.q../MpE in simulations and observations (Fig-
ure . We suggest that the “super-Bonnor-Ebert mass cores” identified in
Sadavoy et al. (2010b) are probably not supported by magnetic pressure and
will collapse gravitationally, since most cores with high M. /Mpg in our sim-

ulations also have high I' values, indicating that these cores are magnetically
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supercritical (Figure [4.12)).

8. We find (Figure a composite mass-radius relation for our simulated
prestellar cores comparable to that seen in observations, More ¢ Reore (e.g. Kirk
et al.|2013)). Although the observed relation is sometimes interpreted as im-
plying a “universal” core surface density, our results suggest that there might
be a weak dependence of the core surface density Ycore = Meore/ (WRcore2)
on core mass or radius (Figure . We also find that the exponent k in
the mass-size relation M oc R¥ is larger for individual models with consis-

tent shock conditions than the composite from heterogeneous environments

(Figure [4.15)).

To conclude, the success of the anisotropic core formation model for explaining
idealized converging turbulent magnetized flows is very encouraging, and provides
strong motivation for testing these ideas in global MHD simulations of star-forming
molecular clouds. Further investigations considering more extreme conditions of
GMCs would also be interesting to examine the properties of core-forming filaments,
and potential variations in the core mass-size relationship.

We are grateful to Sarah Sadavoy for providing a table of core properties in

Perseus.
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Chapter 5: Summary and Future Work

Understanding prestellar core formation is an important step in developing
a complete theory of stellar evolution, as needed to explain the lives of stars, the
building blocks of the universe seen by human eyes. The process for dense cores to
form within diffuse ISM involves physics, chemistry, and dynamics over a large range
of spatial scales. The complexity makes the overall problem challenging, but we have

made considerable progress by breaking it down to several focused investigations.

5.1 Summary of Thesis Study

Before 1 started my thesis research, it had been generally recognized that
magnetic fields and supersonic turbulence are the two keys of core formation within
GMC s, but it was not well understood exactly how these interact or the role played
by ion-neutral drift. We therefore began our study with a combined analytic and
numerical investigation of MHD shocks, focusing on the behavior of turbulence-
accelerated ambipolar diffusion (Chapter 2). We found an analytic estimate of
the C-type shock thickness as a function of the pre-shock density, inflow veloc-
ity, background magnetic field, and gas ionization fraction (Equation ) We

also derived an expression for the ambipolar diffusion timescale, tap & Lgnock/Varifs
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(Equation (2.65)), which can be applied to determine the duration of the transient
stage in GMCs, before neutrals and ions are well coupled.

The transient stage of turbulence-enhanced ambipolar diffusion is the most im-
portant discovery in our one-dimensional study, during which the post-shock gas is
strongly compressed as in pure hydrodynamic shocks (Figures and . The ex-
istence of this transient diffusion effect increases the mass-to-flux ratio downstream
(Equation ([2.76])), creating a favorable circumstance for prestellar cores to form.
Our results help to explain why ambipolar diffusion that drives core formation can
be accelerated by turbulence, because the transient behavior happens promptly at
the beginning of the shock compression.

In addition, in our analysis of one-dimensional oblique C-type shocks (Ap-
pendix |A]), we concluded that regions with large-scale velocity more aligned to the
cloud magnetic field are more favorable for magnetically supercritical cores to form
(Equation (A.25)).

To study how transient ambipolar diffusion and shock obliquity can affect core
formation within real turbulent clouds, we conducted fully three-dimensional simu-
lations to follow structure (filaments, clumps, and cores) formation with converging
flows and magnetic effects, ideal and non-ideal (Chapter 3). We used the ionization
fraction coefficient (see Equation or ) as the main parameter controlling
ambipolar diffusion, and varied the angle between the inflow and the cloud magnetic
field to achieve different shock obliquity (see Equations and )

To provide context for our simulations, we analyzed MHD shock compression

with varying obliquity. We found that shocks that have inflows almost parallel to
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the magnetic field can create post-shock compression in neutrals as strong as in hy-
drodynamic shocks, making the magnetization level relatively weak (see Table .
This effect is in addition to transient ambipolar diffusion. We showed that, except
for these quasi-hydrodynamic cases, without non-ideal MHD effects, the formation
of low-mass, magnetically-supercritical cores by spherical contraction is forbidden
under typical GMC conditions, because the minimum scale for a spherical region to
be magnetically supercritical corresponds to a large mass (see Section .

From our three-dimensional, self-gravitating, turbulent converging flow simu-
lations, we identified gravitationally bound cores within the post-shock dense layer
using the gravitational potential of the neutral gas (Figure . These cores are
physically similar to those observed in GMCs in terms of mass, size, magnetiza-
tion, and formation timescale (Table . However, though the magnetization level

within cores (or the core mass-to-flux ratio) depends on transient ambipolar diffu-

sion and the upstream magnetic obliquity (Figures [3.11] and [3.12)), the core mass

and size are relatively independent of both effects (Figures and .

Close-up views of the gas dynamics around forming cores suggest that ma-
terial flows primarily along the magnetic field lines into the forming core regions
(Figures and , which explains why the magnetic field of cores follows the
same trends as the post-shock magnetization (Tables and . Motivated by
this evidence, we proposed that anisotropic self-gravitating condensation may be the
dominant mechanism for low-mass, magnetically-supercritical cores to form within
GMCs, regardless of the ambipolar diffusion strength or magnetization level in the
ambient environment. Anisotropy would explain how low-mass cores are able to
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form even with ideal MHD, given that the strong magnetic fields forbid spherical
contraction of low-mass condensations.

To further test the anisotropic core formation model, we extended our numer-
ical study to a larger parameter survey, allowing for varying inflow velocities and
cloud magnetic fields (Chapter 4). Our simulation results strengthened the idea
that it is impossible for cores to form isotropically in the magnetized post-shock
layer under reasonable cloud conditions (Figure and Table . In addition, we
demonstrated that the momentum flux (or ram pressure) of the converging flow is
the dominant parameter controlling the physical properties of cores formed in the
post-shock region, while the primary role played by the magnetic field is to enforce
anisotropic core formation (Figure .

In addition, we compared our results with the observed properties of starless
cores in the Perseus molecular cloud, using data published in Sadavoy et al.| (2010a)).
We found very similar core mass distributions (Figure and mass-size relationship
(Figure between cores formed in our simulations and identified in Perseus.
More importantly, the range of Mc.../Mpg values in our simulations agrees with
that derived from Sadavoy et al.| (2010a)) and Sadavoy et al.| (2010b]), approximately
~ 0.01 — 100 (Figure [1.11)). For both our simulations and in Perseus, most cores
have Moo/ Mpg > 1 (i.e. they are “super-BE” in mass), indicating that their internal
thermal pressure is relatively weak compared to the self-gravity. However, we also
showed that most cores in our simulations with high M.../Mgg values are also
magnetically supercritical (Figure . This suggests that the observed super-BE

mass cores may not be supported by the magnetic field, and will in fact collapse
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gravitationally.

To conclude, this thesis work provides answers to some longstanding and fun-
damental problems in star formation, including how dense cores form from more
diffuse gas and what role cloud magnetic fields play during this process. We now
know that ambipolar diffusion is important at the very beginning of core forma-
tion, because the shock-induced transient ambipolar diffusion sets the magnetization
level of the post-shock region and of the cores that form within that region. How-
ever, ambipolar diffusion is not necessary in order to form low-mass, magnetically-
supercritical cores. Through anisotropic mass collection along the magnetic field
lines, candidate cores can gather enough material to overcome magnetic support
and collapse gravitationally to form protostellar systems. Cores formed via this
anisotropic mechanism in our simulations strongly resemble observed cores in their

masses, sizes, and magnetizations.

5.2 Future Work

5.2.1 From Local to Global Simulations

Our core-forming simulations with converging flows showed great success in
explaining the magnetohydrodynamics of prestellar core formation, characterizing
their physical properties, and connecting them to the GMC environment. However,
this idealized setup has limitations. For example, our simulations did not include
turbulence corresponding to the scales between the size of the simulation box (1 pc)

and the size of the cloud (~ 10 pc). In addition, we applied somewhat reduced tur-
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bulent amplitudes compared to observations, due to constraints of the local model.
Also, the real converging flows in GMCs may not be perfectly aligned up to 1 pc
wide as assumed in our model, and thus the pc-size post-shock dense layer formed
in our simulations may be too artificial as a core-forming site.

Therefore, it is necessary to test under what circumstances the conditions
in the local model actually apply within realistic turbulent clouds, and how the
less idealized converging-flow conditions within a global simulation may affect core
formation. By running larger-scale adaptive mesh refinement (AMR) simulations
with box size covering the whole cloud (e.g. Lpox = 20 — 30 pc) and including multi-
scale turbulence following the observed power spectrum (|o, (k)| o< k72), one can
investigate the shocked regions as they form within a more natural environment. The
shape, kinematic structure, and lifetime of these dense post-shock “layers,” together
with the user-controlled cloud parameters like density and turbulence amplitude,
will reveal under what circumstances our idealized converging flow model can be

considered to represent local regions in the real GMCs.

5.2.2 Potential Future Projects

The magnetization level within prestellar cores is not only important for the
ability of the core to collapse, but also for late evolutionary stages during pro-
tostellar disk formation and subsequent planet formation. One major challenge in
understanding the evolution from prestellar cores to protostellar systems is the mag-

netic braking problem (McKee & Ostriker||2007; |Li et al.|2014)). In contrast to the
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unmagnetized situation in which disks form naturally from angular momentum con-
servation during core collapse, the magnetic field removes angular momentum from

the inner parts of the collapsing core and thus suppresses disk formation (Allen et

al|[2003; [Hennebelle & Fromang|2008; Mellon & Li/ 2008} [Hennebelle et al.|[2011]).

Numerical simulations show that the formation of large-scale rotationally supported
disks (RSDs) (as are needed to form observed planetary systems) is suppressed by

powerful magnetic braking unless the dense cores are weakly magnetized to an un-

realistic level (Allen et al. [2003; Hennebelle & Fromang 2008; Mellon & Li|2008;

Hennebelle et al|2011]).

One potential solution is that non-ideal MHD effects, which break the flux-

freezing condition, may alter the evolution sufficiently to avert the “catastrophe” (Li

et al|2011; Machida et al.|[2011; Dapp et al.[2012; Tomida et al.|2013, 2015). With

observational evidence for a random distribution of the angle between the magnetic

field and the bipolar outflow axis (Hull et al. 2013]), some theoretical models have

also suggested that a reduction in the magnetic braking efficiency is induced by large-

enough field-rotation misalignment, and RSDs may form in moderately-magnetized

dense cores (Hennebelle & Ciardil[2009; (Ciardi & Hennebelle|2010; [Joos et al.[2012;

Krumholz et al|[2013; Li et al|2013). In addition, simulations of turbulent core

collapse demonstrated a beneficial effect of turbulence on RSD formation because of

the turbulence-induced magnetic flux loss and tangling of field lines (Santos-Lima

et al.|2012; Seifried et al. 2012} 2013; |Joos et al.| 2013), though it is possible that

limited grid resolution enhances the magnetic reconnection (Li et al.|[2014).

The above work shows promise for solving the magnetic braking catastrophe.
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However, it all shares a common numerical weakness: making artificial assumptions
for idealized initial conditions. By following evolution of cores similar to those found
in our previous simulations (Chapters 3 and 4), one can investigate the formation
of protostellar systems with realistic turbulent levels and magnetic field strengths.
Note that to follow disk formation, AMR is required to increase numerical resolu-
tion locally, because our previous simulations (Axz = 400 — 800 AU) do not have
enough resolution for disk-scale structures. From our previous results, one can sys-
tematically choose a sample of cores with different angular momentum, magnetic
field strength, turbulence level, and field-rotation misalignment. By importing these
cores as initial conditions into three-dimensional MHD simulations with AMR, it
may be possible to understand better the environmental requirements of circumstel-
lar disk formation, as well as details of the processes involved. This kind of study
will be extremely helpful for understanding what physical mechanism is responsible

for reducing the efficiency of magnetic braking during prestellar core collapse.

176



Appendix A: Oblique C shocks

The main text in Chapter 2 considers a 1-D system with velocities and mag-
netic fields perpendicular to each other, for simplicity. We expect that our results
will qualitatively hold for more general geometry. Here, we show that under certain
conditions, our results can quantitatively be applied to oblique C-type shocks.

In the following, we shall consider a plane-parallel shock in the standard shock
frame, using the same coordinate system as before. The shock front is in the y-z
plane, the upstream flow is along the z-direction (vo = wx), and the upstream
magnetic field is now in the z-y plane (Bgoua = By oX + By oY), at an angle 6 to the
inflow (By0/Byo = tanf).

For steady, plane-parallel shocks, 0; = 0, = 0., = 0. From the mass and

momentum conservation equations for neutrals (Equations (2.1))—(2.2)), we have

d
% (pnvn,x) = 07 (Al)
d 2 2
% (pnvn,z + Cspn) = QP;iPn (vi,x - UTLJ»’) ) (AQ)
d
. (PrVn,2Uny) = apipn (Viy — Uny) - (A.3)

Similarly, the momentum equation for ions and the magnetic induction equation
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(Equations (2.3))—(2.4)) are (with the strong coupling approximation)

1 d

S—W%By = apipn (Unz — Vig), (A.4)

B, d

E%By = —QpPiPn (Un,y - Ui,y) 9 (A5>
Vo By — vy B, = const. = 1By . (A.6)

Note that B, = const. = B, in plane-parallel shocks, since V - B = 0.

By defining our parameters as

_ Pn Vo Y _ By
n=— " = ) w — ) = = 5 A 7
r o s r o B =TB, Byo (A.7)
and
1 B2 1 2
M=M, =2 — = w0 _ _(Th0) (A.8)
Cs By,  8mpoc: 2 Cs

and applying the ionization-recombination equilibrium (p; pyll/ 2), Equations 1)

and ([2.16) become

d 5 APi0 2 3/2 1 1

—de’B = ﬁy—vo M T, _T'ix E (A9)
d (M2  d 1d
% ( Tn ) + % (Tn> = —ﬂ—yETB. (A]_O)

Since Equation (A.10) is the same as Equation (2.16) with 5 — 3,, the rp vs. r,
relation for oblique shocks is the same as in shocks with B, = 0 (Equation (2.19))).
In addition, in the post-shock regime, r, y = 7, r. From Equations (A.3]) and (A.5)),

the neutral velocity parallel to the front is given by

L (e, e

Vo tanfd \ vy
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The governing equation in the direction perpendicular to the shock front now be-

comes

d —Dr? /11
L = (2 ), A12
dxr 1—M2/r2 (rn rix> ( )

This approaches Equation (2.30]) only if 7;, ~ rp.

It is straightforward to show (Wardle|1991) that

_ —1
11t 0+ (rarp) ! +2(rp — 1) (B M) (A.13)

evidently r;, =~ rg for § — 7/2. By substituting for rg in terms of r, using Equa-
tion , Equation gives 1, in terms of r,. Using this, Equation (A.12)
may be integrated. Fig. shows an example of the C shock structure with vary-
ing ¢ values. For sufficiently large 6, the shock is changed little with respect to the
0 = m/2 case. For smaller 0, the structure is quantitatively different, but qualita-
tively similar.

The final magnetic compression ratio rp s is obtained from Equation (A.13))

using 7¢(0) = 1y, p = Tig g

r¢(6) (tan2 0 — By/2\42>

'B.f = 2, (0)

5 (A.14)
tan“ 6 — EWYE

From the exact solutions, we know that r,(6) < rp(m/2) = r90, Equation (A.14)
therefore suggests that for each model, there is a minimum angle between B, and

Vo.

1/2
0,in A~ tan "t ( %) ~ tan ! <\/ﬁ_2/\/l> . (A.15)
Y Y

Since, for a given By (or 3,), small § corresponds to large upstream magnetic field
strength, a shock is not possible for very small #. More practically, this can also be
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Figure A.1: The structure, the final compression ratio, and the shock
thickness of an oblique C shock with ng = 500 em™®, B,y = 5 uG,
vo = b km/s, and y;0 = 5, as functions of the angle 6 between B, and
v from 6 = 0,;, = 16.49° to § = 90°. The analytical approximations,
Equations and (A.23), provide good estimates to the exact solu-

tions.
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written as

1 —sin®0
o 2 V208 doud————— (A.16)
sin
or 0 > Oy (assuming sin Oy, << 1/ sin fy,) for
SN Gy ~ /2 cloud. (A.17)

Vo

where vA coud = Beona/V4mpo. The reason for the condition 6 > 6, is to ensure
that the inflow is strong enough to produce shocks in the magnetized gas.

To obtain (), we need to simultaneously solve

M? TQBf 1
() + L = M+ A18

and Equation (|A.14]), which can only be done numerically. Alternatively, we can

also use Equation (A.18)) to write (assuming M? > r;(0) > 1)

rog B, M2 = 1p(0)] & /B, M (1 - ggfj;) . (A.19)

Substituting Equation (A.19) into Equation (A.14)) gives us a quadratic equation

for r,(0):

ri(0) 2 VB, -
/By M?3 tan? 0 * [ﬁy/\/l2tan29 <1 B \/ﬁ_yM> —1- Qj\j] r(6) +/B,M=0.

(A.20)
Since M > 1, keeping only M~! terms gives
—1
2 VB
0) =~ +/B,M + +1 A.21
Tf() ﬁy [\/ﬁ_yMtaHQQ 2M ( )

This is an analytical approximation for 7¢(6) (see Fig.|A.1]). The compression factor

Tto0 for the case with magnetic field parallel to the shock front (tanf — oo) is
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1/2
Y

rroo & +/ByM (see Equation (2.21)). Note that for tan6 > [2/ (\/B,M)]

r#(0) ~ rf90. Thus, for all but the smallest angles, oblique shocks have similar
compression factor to the 90° case with the same B, .

Since 7, /7, is small thorough most of the shock just like 7, /rg, we can follow
the derivation in Section to get the formula for the C shock thickness with

different r(6). Equation (A.12)) for the shock structure is

2
% (rn M ) = —Drl/? (1 — T—") , (A.22)

Tn Tix

similar to Equation (2.40]). Therefore, as for Equation (2.45]), the oblique C shock

thickness can be written as

AM? 4
Lou(0) ~ — M U (A.23)

Drs(O)'"*  apiolrs (0)]'

An example comparing the approximation Equation (A.23|) (using r¢(#) from Equa-
tion (A.21)) with the exact solution is shown in Fig. |A.1]

Regarding the time-dependent behavior of oblique C shocks, we use conver-
gent flow to produce shocks in numerical simulations. To see how the component
of magnetic field parallel to the inflow direction (B,) can affect the evolution of
the candidate core material, we fix the values of ng, vo, By, Xio0, and choose dif-
ferent values of 0 so that B, = B, cotf. Based on our theory, the growth rate of
column density dN(H)/dt is proportional to visfiow(8) = vo [r(8) — 1] /7¢(#), which
should be almost the same for different 6, since r¢(#) > 1. The ambipolar diffu-
sion timescale top and the final mass-to-flux ratio I'gh., however, should decrease

slightly for smaller § because of their dependence on 7;(f). The generalizations of
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Equations (2.64]) and (2.69) are:

201 +(0)]Y? re(6)1Y?
tan(0) ~ w = tAD.90 [M] ’ (A.24)
ap;0 T f,90
— 2 tap (0 0)1"/?
Fﬁnal(e) A 2m G . poto . AD( ) ~ Fﬁnal,90 |:rf< ):| <A25)
rB,fBo T'£.90

where we apply rp s & 7790 to get the second equation, and Equation (2.70]) gives
Lnatgo. Since 7(0) /790 is order-unity unless 6 is extremely small, I'gn1(0) is close
to I'final00 In most cases.

The simulation results shown in Fig. agree with our expectation. The
column density grows at an identical rate in all cases (though the shape of the
central peak differs from one to another), and the transition happens slightly earlier
for smaller #. There is no obvious difference between the final mass-to-flux ratios
in each case, however, since rp ; actually decreases for smaller 6 and makes I'gpai ()
slightly larger, thus cancels part of the effect from r,(6).

In conclusion, these tests show that the evolution of C shock transients to
make candidate prestellar cores is not significantly affected by the component of

magnetic field parallel to the inflow velocity.
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Figure A.2: The transient behavior and time evolution of the column
density and normalized central mass-to-flux ratio in the post-shock gas
of oblique C shocks with ng = 500 cm™®, B, o = 5 uG, vg = 5 km/s, and
Xio = 5. Though the profile of transient central core differs, the growth
rate and the final value of I' are very similar in each case.
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