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The main goal of this thesis research is developing a theory to describe the early

stages of star formation within magnetized, turbulent molecular clouds, which is a

fundamental problem in astrophysics. In giant molecular clouds, supersonic turbu-

lence creates shocks and compresses material to generate overdense structures that

can later collapse gravitationally, while the intrinsic magnetic fields in the clouds

limit the compression in turbulent shocks and provide support to prestellar cores

against self-gravity. Previous numerical simulations had shown promising results

that prestellar cores with realistic physical properties can form in shocked regions

with the presence of magnetic fields and ambipolar diffusion, but left a big gap in

understanding the fundamental mechanism driving prestellar core formation in tur-

bulent, magnetized environments, especially the longstanding puzzle of how these

dense, self-gravitating cores form in the diffuse, thermally-supported, and highly

magnetized clouds. In this thesis, we firstly adopted both analytic and numeri-

cal methods to investigate a one-dimensional C-type shock created by turbulence-



accelerated ambipolar diffusion, and we discovered a transient stage that can the-

oretically generate overdense regions with relatively low magnetic pressure. We

then turned to fully three-dimensional MHD simulations with supersonic conver-

gent flows, and quantitatively studied the physical properties of cores formed in the

shock-compressed regions, together with the detailed flows leading to core formation.

These cores have similar masses and sizes as the observed ones, and form within a

timescale comparable to the observed core lifetime. However, we found that am-

bipolar diffusion may not be a crucial mechanism for cores to lose magnetic support,

because gas in overdense regions preferably flows along the magnetic field lines. We

therefore extended the parameter space of our simulations to further examine the

anisotropic core formation model. Our results suggest that while prestellar cores

are seeded by perturbations from local turbulence, they are built up by collecting

surrounding materials anisotropically along the magnetic field lines. To conclude,

though turbulence-enhanced ambipolar diffusion can highly reduce the level of mag-

netization within shock-compressed dense regions, anisotropic contraction may be

the key mechanism driving prestellar core formation within turbulent, magnetized

giant molecular clouds. This mechanism leads to cores with masses and sizes that

are in good agreement with observed prestellar cores.
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Preface

This thesis contains research that has already been published. Chapter 2 en-

titled “Ambipolar Diffusion in Action: Transient C Shock Structure and Prestellar

Core Formation” has been published in the Astrophysical Journal (Chen, C.-Y. &

Ostriker, E. C. 2012, ApJ, 744, 124). Chapter 3 entitled “Formation of Magnetized

Prestellar Cores with Ambipolar Diffusion and Turbulence” has been published in

the Astrophysical Journal (Chen, C.-Y. & Ostriker, E. C. 2014, ApJ, 785, 69). Chap-

ter 4 entitled “Anisotropic Formation of Magnetized Cores in Turbulent Cloud” has

been submitted to the Astrophysical Journal (Chen, C.-Y. & Ostriker, E. C. 2015).

Simulations presented in Chapters 3−5 were performed on the HPCC deepthought

cluster administrated by the OIT at the University of Maryland, the yorp cluster in

the Department of the Astronomy, as well as the Tiger cluster at Princeton Univer-

sity. This work was supported by grant NNX10AF60G from NASA ATP, and by

grant NNX13AO52H supporting C.-Y. C. under the NASA Earth and Space Science

Fellowship Program
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Chapter 1: Introduction

Human society has always been fascinated by the night sky. The eagerness to

study astronomy begins with the observed stars, which are the birthplace of heavier

elements like helium, carbon, and oxygen that build up life on the Earth. The

formation process of individual stars is therefore one of the most important topics

in astronomy and astrophysics.

Stars form from cold, condensed molecular gas in the interstellar medium

(ISM), within which the extensive, coherent volumes with the highest column den-

sity and extinction are considered giant molecular clouds (GMCs; see Figure 1.1).

In GMCs, supersonic flows randomly compress material to initiate creation of a fil-

amentary network that can be observed in both gas and dust emission (André et al.

2014). Gravity also plays a role in creating filaments with high mass per unit length.

Some of the overdense regions will then shrink to form prestellar cores, which can

collapse gravitationally to create protostellar systems and later become stars (Shu

et al. 1987).

During the star forming process, magnetic fields within GMCs may play crucial

roles at all physical scales, and throughout different evolutionary stages. At earlier

stages and larger scales, the magnetic field can limit compression in turbulence-

1



Figure 1.1: A composite 3-color images of the Aquila molecular cloud
taken by the ESA Herschel Space Observatory with the Spectral and
Photometric Imaging Receiver (SPIRE, red at 500 µm) and the Pho-
todetector Array Camera and Spectrometer (PASC, green at 160 µm
and blue at 70 µm) (André et al. 2010, also see the ESA’s Online Show-
case of Herschel Images: http://oshi.esa.int/).

2
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generated interstellar shocks that create dense clumps and filaments (Mestel &

Spitzer 1956). On the other hand, the local magnetic field within collapsing cores

can help to remove angular momentum during the disk formation process (Gillis et

al. 1979; Mouschovias 1991). Therefore, magnetic effects are considered one of the

key dynamical mechanisms affecting star forming process in GMCs, in combination

with turbulence and gas gravity (McKee & Ostriker 2007).

1.1 Giant Molecular Clouds and Star-forming Regions

The ISM fills the space between stars within galaxies. GMCs, the colder,

denser components of the ISM, contain mostly molecular hydrogen (H2) because of

the low penetration ability of dissociating ultraviolet (UV) radiation in high column

density regions, although the molecular gas is lightly ionized by cosmic rays. Stars

form exclusively within molecular clouds because of the dense, cool environment.

It has also been shown in observations that the molecular gas is tightly correlated

with star formation, in the form of a power-law between the surface density of star

formation rate (SFR) and the total gas content, ΣSFR ∝ Σgas
N (Kennicutt 1998;

Bigiel et al. 2008; Heiderman et al. 2010). The slight ionization of GMCs (ionization

fractions ∼ 10−7−10−4, Draine et al. (1983)), in fact is sufficient for magnetic effects

to be important (see Section 1.4).

Spatially, GMCs can spread over tens of parsecs in the interstellar space

(Roman-Duval et al. 2010). These clouds have masses ∼ 102− 107 M�, with typical

particle number density ∼ 102 − 103 cm−3 and column density ∼ 10− 100 M�pc−2

3



(see review in Dobbs et al. 2014). Most observations of the physical properties of

GMCs have been conducted using carbon monoxide (CO) molecular lines (Lada

1976; Solomon et al. 1987; Fukui et al. 1999; Dame et al. 2001), especially the mil-

limeter rotational line J = 1 → 0 because the required minimum local density for

excitation is similar to the densities of GMCs. At least on large scales, for whole

GMCs, theoretical and observational investigations have indicated that CO can be

considered to trace H2 using a roughly constant conversion factor (Dickman 1978;

Frerking et al. 1982; Shetty et al. 2011; Bolatto et al. 2013). Since H2, the predom-

inant component in GMCs, is not a preferred tracer for ground-based observations

because of its lack of a radio spectrum, CO is commonly considered as an indicator

of the H2 distribution and other GMC properties (Scoville & Solomon 1975; Sanders

et al. 1984; Combes 1991; Heyer et al. 1998). Within individual GMCs, the 13CO

isotope traces detailed structure better than 12CO (e.g. Bally et al. 1987).

Observations have also revealed that the physical environment in GMCs is

highly turbulent with large velocity dispersion, σv ∼ 1−5 km/s (Larson 1981; Heyer

et al. 2009, and references therein), and it has been commonly agreed that these

random, supersonic gas motions crucially contribute to star formation within GMCs

(Mac Low & Klessen 2004; McKee & Ostriker 2007). Theoretical and observational

analysis show that turbulent flows are self-similar and follow specific power spectra

Pv(k) ∝ kq (Brunt & Heyer 2002; Padoan et al. 2006), which have dominant influence

on density structures within GMCs that later provide seeds for overdense prestellar

clumps to form (Elmegreen 1993; Klessen et al. 2000; Padoan et al. 2001). More

detailed connections between supersonic turbulence and star formation are discussed

4



in Section 1.3.

In addition to 12CO J = 1 → 0, high-density tracers (e.g. 13CO, C18O, NH3,

CS, and dust continuum) have revealed internal structures within GMCs at smaller

scales, including elongated structures and dense clumps (Myers & Benson 1983;

Snell et al. 1984; Bally et al. 1987; Chini et al. 1997; Johnstone & Bally 1999; Hacar

et al. 2013). The filamentary network shown in Figure 1.1 is commonly seen in

multiple GMCs, and has been considered as a universal feature within star-forming

molecular gas (see reviews in André et al. 2014; Molinari et al. 2014). Observations

suggest that prestellar cores are preferably distributed along dense filaments (André

et al. 2010; Könyves et al. 2010; Hacar & Tafalla 2011), but the evolutionary rela-

tionship between filamentary structures and prestellar core formation is yet not well

understood.

Physically, the balance between different energy components within GMCs can

be estimated using typically observed values. If Emag, Eth, Edyn, and Egrav represent

the magnetic, thermal, dynamic, and gravitational energy densities, respectively,

then for a GMC (Solomon et al. 1987; Blitz 1993; Dobbs et al. 2014):

Emag =
B2

8π
≈ (10 µG)2

8π
∼ 10−11 erg cm−3, (1.1)

Eth =
1

2
ρcs

2 ≈ 1

2

(
103 cm−3 mH

)
(0.2 km/s)2 ∼ 10−12 erg cm−3, (1.2)

Edyn =
1

2
ρvturb

2 ≈ 1

2

(
103 cm−3 mH

)
(5 km/s)2 ∼ 10−10 erg cm−3, (1.3)

Egrav =
3

5

GMρ

R
≈ 3

5

G · 4π (10 pc)3 /3 · (103 cm−3 mH)
2

10 pc
∼ 10−10 erg cm−3. (1.4)

This suggests that the turbulent energy and magnetic pressure are the main com-

ponents supporting GMCs from gravitational collapse.
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1.2 Prestellar Core Properties in Observations

A local minimum in the cloud’s gravitational potential may be considered a

prestellar core if it is gravitationally bound but does not yet contain a protostar.

Because of their overdensity (n ∼ 104−105 cm−3) and coldness (T ∼ 10 K; see review

in Andre et al. 2000), prestellar cores can be identified in GMC observations using

optical/infrared absorption, far infrared or sub-millimeter dust continuum emission,

or line emission of dense-gas tracers like NH3 and N2H+ (Myers et al. 1983; Jijina

et al. 1999; Lee & Myers 1999; Bacmann et al. 2000; Caselli et al. 2002; Ward-

Thompson et al. 2002; also see Figure 1.2). Surveys in nearby clouds have provided

constraints on physical properties of prestellar cores; in general, core mass and size

are in the ranges ∼ 0.1− 10 M� and ∼ 0.01− 1 pc (Motte et al. 2001; Ikeda et al.

2009; Rathborne et al. 2009; Kirk et al. 2013). Multiple studies have also shown that

the density profile of prestellar cores is very similar to that of a Bonnor-Ebert sphere

(Alves et al. 2001; Kandori et al. 2005; Kirk et al. 2005), and the internal motion

seems to be subsonic (Lee et al. 1999, or see review in di Francesco et al. 2007).

In addition, prestellar cores tend to be magnetically supercritical, with normalized

mass-to-flux ratios ∼ 2 (Falgarone et al. 2008; Troland & Crutcher 2008).

One intriguing feature of prestellar cores is the core mass function (CMF),

which shows the statistical distribution of the core counts over a range of masses

(Figure 1.3). There have been numerous measurements of the CMF in different

GMCs (e.g. Onishi et al. 2002; Enoch et al. 2006; Alves et al. 2007; Nutter & Ward-

Thompson 2007), which all show similar shape to the one in Figure 1.3 and the initial

6
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Fig. 12.— The integrated intensity map of N2H+(1-0) overlaid on a Herschel 250 µm image. The Herschel image
is obtained from the Herschel Science Archive (HSA). The contour levels are at 20, 30, 40, 50, 60, 70, 80, 90% of the
peak value.

Figure 1.2: The integrated intensity contours of N2H+ (1 − 0) of the
Serpens Main molecular cloud observed by the Combined Array for Re-
search in Millimeter-wave Astronomy (CARMA), overlaid on a Herschel
250 µm continuum image (Lee et al. 2014). Candidates of prestellar
cores can be easily picked by eye from the N2H+ line emission map.
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V. Könyves et al.: The Aquila prestellar core population revealed by Herschel

Fig. 2. a) Differential mass function (dN/dlogM) of the 452 starless cores in the Aquila main subfield, approximated with a lognormal fit (red
curve). The error bars correspond to

√
N statistical uncertrainties. The core sample is estimated to be complete down to ∼0.2–0.3 M#. The

lognormal fit has a peak at ∼0.6 M# and a standard deviation of ∼0.42 in log10 M. For comparison, the dash-dotted line shows the single-star IMF
(e.g., Kroupa 2001), and the dashed curve corresponds to the unresolved system IMF by Chabrier (2005). The dotted line shows a power law of the
form dN/dlogM ∝ M−0.6, which is the typical mass distribution of low-density CO clumps (see Kramer et al. 1998) The high-mass end of the CMF
is fitted by a power law (dN/dlogM ∝ M−1.5± 0.2), while the Salpeter IMF is dN/dlogM ∝ M−1.35. b) Same as a) for the subset of 314 candidate
prestellar cores identified in the Aquila main subfield. Here, the best-fit power law to the high-mass end of the bound cores CMF gives the same
result (dN/dlogM ∝ M−1.45± 0.2), while the lognormal fit peaks at ∼0.9 M# and has a standard deviation of ∼0.30. See text for discussion.

unit (dust+gas) mass, which was approximated by the power law
κν = 0.1 (ν/1000 GHz)β cm2/g (cf. Beckwith et al. 1990). The
dust emissivity index β was fixed to 2 (e.g., Hildebrand 1983).

Each SED data point was weighted by 1/σ2, where the rms
noise σ was estimated in an emission-free region of the map at
the relevant wavelength, and the calibration uncertainties were
also included. The two free parameters Td and Σ were derived
from the grey-body fit to the 5 Herschel data points for all pix-
els for which the fit was successful. Map pixels for which the fit
was unsuccessful or unreliable were assigned the median dust
temperature of the successful fits. Likewise, the column den-
sity along the line of sight to pixels with unreliable fits was
estimated directly from the surface brightness measured at the
longest wavelength with a reliable detection, assuming the me-
dian dust temperature of the successful fits.

A similar SED fitting procedure was employed to estimate
the dust temperature, column density, and mass of each core.
Here, the SEDs were constructed from the integrated flux densi-
ties measured by getsources for the extracted sources. Ignoring
the distance uncertainty (see discussion in Appendix A of André
et al. 2010), the core mass uncertainty is typically a factor of ∼2,
mainly due to uncertainties in the dust opacity law (κν).

Monte Carlo simulations were carried out to estimate the
completeness level of our SPIRE/PACS survey. We first con-
structed clean maps of the background emission at all Herschel
wavelengths by subtracting the emission of the compact sources
identified with getsources from the SPIRE/PACS images of
Aquila. We then inserted a population of ∼700 model star-
less cores and ∼200 model protostars at random positions in
the clean-background images to generate a full set of synthetic
Herschel images of the Aquila region. The model cores were
given a realistic mass distribution in the 0.01–10 M# range and
were assumed to follow a M ∝ R mass versus size relation. The
emission from the synthetic cores was based on spherical dust ra-
diative transfer models (Men’shchikov et al. in prep.). Compact
source extraction of several sets of these synthetic skies was per-
formed with getsources in the same way as for the observed im-
ages. Based on these simulations, we estimate that our Herschel
census of prestellar cores is 75% and 85% complete above a core
mass of ∼0.2 and ∼0.3 M#, respectively, in most of the field.
Likewise, our census of embedded protostars is more than 90%

complete down to Lbol ∼ 0.2 L#. Our survey may however be
less complete than these values in the high background region
around the W40 PDR (see white polygon in Fig. 1a).

4. Discussion and conclusions
4.1. Prestellar nature of the Aquila starless cores

In this paper, we follow the naming convention that a dense core
is called prestellar if it is starless and gravitationally bound (cf.
André et al. 2000; Di Francesco et al. 2007). In other words,
prestellar cores represent the subset of starless cores that are
most likely to form (proto)stars in the future.

Strictly speaking, spectroscopic observations would be re-
quired to derive virial masses for the cores and determine
whether they are gravitationally bound or not. However, mil-
limeter line observations in dense gas tracers such as N2H+
show that thermal motions generally dominate over non-
thermal motions in starless cores (e.g., André et al. 2007).
Assuming that this is indeed the case for the Aquila cores ob-
served here, we may use the critical Bonnor-Ebert (BE) mass,
Mcrit

BE ≈ 2.4 RBE a2/G, as a surrogate for the virial mass, where
RBE is the BE radius, a is the isothermal sound speed, and G
is the gravitational constant. The critical BE mass may also be
expressed as Mcrit

BE ≈ 1.18 a4

G3/2 P−1/2
ext , where Pext is the external

pressure, which may be estimated as a function of the column
density of the local background cloud, Σcl, as Pext ≈ 0.88 G Σ2

cl
(McKee & Tan 2003). For each object, we derived two esti-
mates of the BE mass: (1) MBE(Robs) as a function of the ob-
served core radius assuming a gas temperature of 10 K, and (2)
MBE(Σcl) as a function of the local background column den-
sity measured from both our source-subtracted Herschel im-
ages and the near-IR extinction map of Bontemps et al. (2010
– see also Fig. 6b). We then calculated BE mass ratios of αBE ≡
max[MBE(Robs),MBE(Σcl)]/Mobs and selected candidate prestel-
lar cores to be the subset of starless cores for which αBE <∼ 2.
Based on this criterion, 314 (or ∼69%) of the 452 starless cores
of the main subfield and 341 (or ∼63% ) of the 541 starless cores
of the entire field were found to be bound and classified as good
candidate prestellar cores. These high fractions of bound objects
are consistent with the locations of the Aquila starless cores in a
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Figure 1.3: The core mass function (CMF) from prestellar cores observed
by Herschel in the Aquila molecular cloud (Könyves et al. 2010).

stellar mass function (IMF; see e.g. Kroupa 2001; Chabrier 2005). Because of the

similarity between stellar IMFs/CMFs across different star-forming regions, it has

been suggested that there are universal star formation mechanisms that happen early

during the star-forming process leading to this shape (see review in Kroupa et al.

2013). Theoretical efforts have been conducted to study the origin of the IMF/CMF

(see reviews McKee & Ostriker 2007 and Offner et al. 2014). Density fluctuation

generated by the power spectrum of the multi-scale turbulence within GMCs are

believed to play a key role (Federrath et al. 2008; Hennebelle & Chabrier 2008;

Hopkins 2012; Krumholz et al. 2012), but later accretion onto individual forming

stars may also be important (Bonnell & Bate 2006). However, there still are many

uncertainties in understanding of the earliest stage of star formation.
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1.3 The Importance of Supersonic Turbulence and Conver-

gent Flows

The observed supersonic linewidth in GMCs is a strong indication that the

GMCs are highly turbulent (Williams et al. 2000). A power-law relation between

the velocity dispersion σv (measured by the linewidth of molecular emission lines)

and the size of the measured region L have been reported in many studies, typically

σv(L) ∝ L0.5 (Larson 1981; Myers 1983; Solomon et al. 1987; Passot et al. 1988;

Heyer & Brunt 2004). The nearly universal size-line relationship across different

GMCs in the Milky Way indicates that molecular clouds are gravitationally bound

systems with a characteristic surface density; generally, we have GM/r ∼ σ2 for

gravitationally bound systems, and since M ∼ Σr2 where Σ is the surface density,

simple theoretical scaling gives σ2 ∼ GΣr, or σ ∝ Σ1/2r1/2 (see review in Dobbs et

al. 2014).

Overdense fragments within GMCs may have formed due to in-cloud shocks

and colliding gas flows from cloud-scale turbulence (see reviews in Scalo 1985 and

Ballesteros-Paredes et al. 2007). Supersonic turbulence can generate density en-

hancement, and thus many numerical simulations have been conducted to study the

density structure and gravitational instability induced by the supersonic turbulence

inside GMCs, with or without magnetic effects (e.g. Vazquez-Semadeni et al. 1995;

Klessen 2000; Klessen et al. 2000; Li et al. 2004; Ostriker et al. 2001), which may be

directly related to the observed IMF/CMF (e.g. Klessen 2001; Padoan & Nordlund
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2002; Jappsen et al. 2005; also see Section 1.2 above).

Supersonic turbulence within GMCs creates a combination of shearing, di-

verging, and converging effects at all physical scales, but it is those regions with

large-scale convergent flows that will compress gas and strongly alter the gravita-

tional stability in the cloud (Mac Low & Klessen 2004). Gong & Ostriker (2011)

therefore adopted an idealized model of a local region inside a GMC containing

multi-scale turbulence where two large-scale supersonic flows collide. These simula-

tions showed that the convergent flow creates a planar, dense layer bordered by two

shock fronts, which provides favorable conditions for the birth of prestellar cores.

These simulations had a range of convergent inflow Mach number M = 1.1 − 9,

and found cores with masses 0.05− 50 M�. However, Gong & Ostriker (2011) only

considered hydrodynamic flows, and therefore could not predict the level of magne-

tization within prestellar cores, which is an important factor determining the ability

of the core to collapse and form a protostellar disk (see review in Li et al. 2014).

1.4 The Magnetic Field and Ambipolar Diffusion

The existence of magnetic fields in the ISM has been inferred since the dis-

covery of polarized light from distant stars (Hiltner 1949, 1951; Chandrasekhar &

Fermi 1953), which reveals the two-dimensional field morphologies within atomic

clouds and GMCs (Vrba et al. 1976; Moneti et al. 1984; Heyer et al. 1987; Tamura

et al. 1987; Goodman et al. 1990). Though it is hard to detect, the magnetic field

strength can be directly measured via Zeeman splitting of molecular lines (Good-
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man et al. 1989; Heiles et al. 1993; Crutcher 1999; Bourke et al. 2001). Observations

indicate the cloud-scale magnetic field strength is ∼ 10 µG, while it can be slightly

stronger (∼ 20−50 µG) in the filament/core regions (e.g. Troland & Crutcher 2008;

Chapman et al. 2011; or see review in Crutcher 2012).

The role played by magnetic fields during star formation within GMCs is

a complicated but important topic. At the cloud scale, magnetized shocks have

less compression than hydrodynamic shocks (see e.g. Shu 1992), so that turbulence

creates less dense structures. Also, because magnetic and gravitational energies

both increase as R−1 for a fixed mass and magnetic flux, sufficiently strong magnetic

fields may prohibit the formation or collapse of gravitationally bound cores (Mestel

& Spitzer 1956; Strittmatter 1966; Mouschovias & Spitzer 1976). Locally within

prestellar cores, magnetic braking can be catastrophic and entirely remove the core

angular momentum so that no disks will form (Mestel 1985; Mouschovias 1991; Allen

et al. 2003; also see review in Li et al. 2014).

To make things even more complicated, the GMCs are lightly ionized, and

only the charged particles (ions) are affected by magnetic fields. This suggests that

for theoretical modeling, it is necessary to consider non-ideal effects in magneto-

hydrodynamics (MHD), which means the material is not perfectly coupled to the

magnetic field.

In astrophysics, ambipolar diffusion is “a slip between neutrals and the charged

plasma,” (Shu 1992) and is the dominant non-ideal MHD process at the density

in clouds and cores (n ∼ 103 − 107 cm−3). In partially ionized systems, ambipo-

lar diffusion allows neutral particles to decouple from the magnetic fields, because
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the neutrals experience electromagnetic forces only through collisions with charged

species (Shu 1992). Magnetized shocks with active ambipolar diffusion therefore

show smooth transition between upstream and downstream conditions as continu-

ous (C-type) shocks (Draine 1980). Because ambipolar drift modifies the dynamical

effect of magnetic fields on the material, it has been considered in classical theory as

the main mechanism for overdense clumps to lose magnetic support within GMCs.

However, more recent simulations have suggested models of prestellar core forma-

tion that more realistically take into account the supersonic motions observed in

star-forming GMCs (see Section 1.5 below).

The ability of magnetic fields to affect the neutrals in GMCs depends on the

drag force and the collision rate between neutrals and ions (Spitzer 1956). The

timescale for magnetic diffusion can be estimated from the drift velocity

vdrift =
(∇×B)×B

4παρiρn
∼ B2

L

1

4παρiρn
, (1.5)

with the collision coefficient α = 3.7× 1013 cm3s−1g−1 (see Equations (27.8) in Shu

1992). The corresponding timescale is therefore

tdrift =
L

vdrift

∼ 4παρiρn
L2

B2
. (1.6)

In GMCs, ρn ∼ 103 cm−3 mH, L ∼ 20 pc, B ∼ 10 µG, and ρi ∼ µi · 10−7ρn/µn

with µi ≈ 30 mH, µn ≈ 2.3 mH (see Chapter 2 for detailed discussions); thus

tdrift ∼ 109 yr. The dynamical timescale across the same system is tdyn ∼ L/v; for

a typical GMC v ∼ 5 km/s, which gives tdyn ∼ 106 yr. Since it takes longer than

a crossing time (tdyn) for the magnetic field to drift relative to the neutrals, the

effect of ambipolar diffusion in GMCs most likely to happen in local regions. At
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prestellar core scale, ρcore ∼ 103 ρGMC, Bcore ∼ 10 BGMC, and Lcore ∼ 0.001 LGMC

(see Section 1.2 above); also, the ionization fraction is dependent on density, as

ni/nn ∝ nn
−1/2 (see Equation 2.28). Therefore tdrift|core ∼ 106 yr, which is longer

than the typical observed core lifetime (a few 105 yr; see Chapter 2). This suggests

that prestellar cores become supercritical not through quasi-static ambipolar diffu-

sion. This leads to the idea of turbulence-accelerated ambipolar diffusion and its

application to core formation, or the anisotropic core formation model that material

flows along magnetic field lines into cores. We investigate both processes in this

thesis work.

1.5 Theories of Prestellar Cores

The classical theory of star formation can be summarized in the four-stage

picture described in Shu et al. (1987), illustrated in Figure 1.4. The sites of star

formation are overdense prestellar cores within GMCs. When these cores are able to

overcome both the thermal and magnetic pressure, they will collapse gravitationally,

forming a protostellar system. The central protostar will continue accreting from

the gaseous envelope and the protostellar disk until a stable state is reached and

a new star is born. These stages are interconnected, with one setting the initial

conditions for the next one. Therefore, understanding the forming mechanism of

prestellar cores within GMCs is a fundamental problem in astrophysics, especially

in how do these cores lose magnetic support within the strongly-magnetized ISM to

become magnetically supercritical (Mouschovias 1978; Lizano & Shu 1989).
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Figure 1.4: The various stages of star formation within GMCs (Shu
et al. 1987): (a) Cores form from overdense regions in GMCs, (b) if
gravitationally bound, a core will collapse to become a protostar with
a disk, (c) the protostar continues to accrete from the disk and ejects
material via bipolar winds, and (d) a new born star with a circumstellar
disk.
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Classical theory of core formation only applies to the scenario in which a dense,

magnetized clump has already formed within the cloud, and considers quasi-static

ambipolar diffusion as the main mechanism for the cores to lose magnetic support

(Nakano 1979; Mouschovias 1979; Mouschovias & Ciolek 1999; Ciolek & Basu 2001).

The main difficulty with the classical picture (in addition to the lack of explanation

for how dense clumps form within GMCs) is that the timescale for quasi-static

ambipolar drift under typical dense core conditions is much longer than the observed

prestellar core lifetime (Ward-Thompson et al. 2007; Evans et al. 2009). In contrast

to the magnetic-dominated regime, there are alternative models that consider the

magnetic effects to play a minor role during the core forming process, as compared

to the supersonic turbulence (Mac Low & Klessen 2004; Vázquez-Semadeni et al.

2005).

Similar to the discussion in Section 1.1, we can estimate the balance between

the magnetic, thermal, dynamic, and gravitational energy densities within a prestel-

lar core using typically observed values:

Emag =
B2

8π
≈ (50 µG)2

8π
∼ 10−10 erg cm−3, (1.7)

Eth =
1

2
ρcs

2 ≈ 1

2

(
105 cm−3 mH

)
(0.2 km/s)2 ∼ 10−10 erg cm−3, (1.8)

Edyn =
1

2
ρvinternal

2 . Pth, (1.9)

Egrav =
3

5

GMρ

R
≈ 3

5

G · 4π (0.05 pc)3 /3 · (105 cm−3 mH)
2

0.05 pc
∼ 10−10 erg cm−3.

(1.10)

The magnetic pressure can easily become the key support against gravity, because

though both Eth and Edyn increase with the core density, Egrav has a stronger depen-
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dence on ρ.

In fact, it is now generally recognized that turbulence and magnetic fields

both play a crucial role during prestellar core formation (McKee & Ostriker 2007).

Theoretical studies have shown that large-scale supersonic turbulence can acceler-

ate ambipolar diffusion process within GMCs (Fatuzzo & Adams 2002; Heitsch et

al. 2004; Li & Nakamura 2004; Nakamura & Li 2005), and recent MHD simula-

tions including both turbulence and ambipolar diffusion have successfully created

prestellar cores with realistic masses, sizes, mass-to-flux ratios, and lifetimes (Kudoh

& Basu 2008, 2011; Nakamura & Li 2008). Though the fundamental physics has

not been fully explained, turbulence-accelerated, magnetically-regulated processes

are considered necessary for understanding prestellar core formation (André et al.

2009; Crutcher 2012). This thesis work aims to investigate the detailed physical

mechanism driving turbulence-enhanced ambipolar diffusion, and more generally to

characterize the role played by magnetic effects during prestellar core formation.

1.6 Thesis Outline

This thesis focuses on the early stages of star formation in magnetized clouds.

Chapter 2 presents a combined numerical and analytic investigation of one-dimensional

C-type shocks, which allows us to characterize the physics of turbulence-enhanced

ambipolar diffusion. In Chapter 3 we demonstrate that solar-mass prestellar cores

are able to form in shock-compressed dense regions in GMCs, based on our MHD

simulations with supersonic converging flows. The MHD simulations presented here
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show that anisotropic gas flow along the magnetic field lines may be the main mech-

anism driving core formation within post-shock dense layers, and in fact ambipolar

diffusion is not a required factor during this process. In Chapter 4, the parameter

space of Chapter 3 is extended, to determine how varying magnetic field strength

and converging flow velocity affect core properties. This also includes a compari-

son with observed core properties. I summarize my thesis work in Chapter 5 and

describe possible research plans in the future.
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Chapter 2: Ambipolar Diffusion in Action: Tran-

sient C shock Structure and Prestel-

lar Core Formation

Abstract

We analyze the properties of steady and time-dependent C shocks under condi-

tions prevailing in giant molecular clouds. For steady C shocks, we show that ioniza-

tion equilibrium holds and use numerical integrations to obtain a fitting formula for

the shock thickness mediated by ambipolar diffusion, Lshock ∝ n0
−3/4v0

1/2B0
1/2χi0

−1.

Our formula also agrees with an analytic estimate based on ion-neutral momentum

exchange. Using time-dependent numerical simulations, we show that C shocks have

a transient stage when the neutrals are compressed much more strongly than the

magnetic field. The transient stage has a duration set by the neutral-ion collision

time, tAD ∼ Lshock/vdrift ∼ 0.1 − 1 Myr. This transient creates a strong enhance-

ment in the mass-to-magnetic flux ratio. Under favorable conditions, supercritical

prestellar cores may form and collapse promptly as a result of magnetic flux loss

during the transient stage of C shocks.
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2.1 Introduction

Within giant molecular clouds (GMCs), dense gravitationally bound cores form

and collapse to create protostars (Shu et al. 1987; McKee & Ostriker 2007; André et

al. 2009). Supersonic turbulence is believed to strongly affect the core formation and

evolution processes, with post-shock dense regions the most susceptible to collapse

(see Gong & Ostriker 2011 and references therein). These processes can be modified

significantly by the interstellar magnetic field. Sufficiently strong magnetic fields,

if they are well-coupled to the gas, can entirely prevent collapse (Mestel & Spitzer

1956); this can be expressed in terms of a minimum ratio of mass to magnetic

flux, or Σ/B (Nakano & Nakamura 1978). However, in a partially-ionized medium,

magnetic fields are coupled to the neutrals only through ion-neutral collisions. This

ambipolar drift modifies the dynamical effect of magnetic fields on the neutral gas

(Mouschovias 1979), in particular altering the character of shocks (Draine & McKee

1993).

In ideal MHD, the fluid and magnetic fields are perfectly coupled by assump-

tion. When flow velocities exceed the relevant signal propagation speeds for a mag-

netized medium, discontinuities representing shock fronts (jump shock or J-type

shock) can form. The compression ratio is parametrized by the particle density,

inflow velocity, and magnetic field (e.g. Shu 1992). However, in lightly ionized

clouds, velocity differences that would produce a J shock in ideal MHD are small

compared to the magnetic signal speed (“Alfvén speed”) in the ionized medium,

vA,i = B/
√

4πρi. Ions and magnetic fields therefore smoothy transition between
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upstream and downstream conditions without discontinuities. As a result of the

ion-neutral drag forces, the transition in the neutrals is also modified and all phys-

ical quantities vary smoothly in the shock region, forming a continuous (C-type)

shock (Draine 1980). In a steady C shock, upstream and downstream values of the

neutral density, velocity, and magnetic field are the same as for a J shock. Thus,

upstream and downstream values of the mass-to-magnetic flux ratio (per unit length

parallel to the shock) are the same. Many studies of C shocks have investigated their

formation (e.g. Smith & Mac Low 1997), structure (e.g. Mac Low et al. 1995), and

stability (e.g. Wardle 1990; Stone 1997), as well as detailed chemical and emission

properties (e.g. Draine et al. 1983; Pineau des Forets et al. 1997).

Ambipolar diffusion may play a key role in the star-forming process. In the tra-

ditional picture, quasi-static prestellar cores form by gravitationally-driven ambipo-

lar diffusion in magnetically-supported clouds (see review by André et al. (2009)).

For a star to form out of gas that is initially strongly magnetized, dense cores must

lose magnetic support so that gravitational collapse can take place (Mouschovias

1978; Lizano & Shu 1989). If the magnetic pressure in a gravitationally-confined

core exceeds that in its surroundings, the gradient in magnetic pressure makes the

magnetic field (and ions) tend to expand. The neutrals will be left behind as a

supercritical core as the magnetic field diffuses outward (Nakano 1979). More real-

istically, Mouschovias (1979) argued that a cloud does not need to lose magnetic flux

as a whole to collapse. Rather, ambipolar diffusion redistributes the mass within

dense clumps, with the neutrals diffusing inward while the magnetic field threading

the outer region is left behind. The duration of the ambipolar diffusion process

20



can be considerably longer (up to a factor of 10) than the gravitational free-fall

timescale tff , although the evolution is more rapid if cores are initially closer to

critical (e.g. Mouschovias & Ciolek 1999; Ciolek & Basu 2001).

Observationally, the prestellar core lifetime can be estimated by calculating

the ratio of the number of cores with embedded young stellar objects (YSOs) to the

number of prestellar cores, which should be comparable to the ratio of protostar

lifetime to the prestellar core lifetime (Lee & Myers 1999). Several studies have

suggested a prestellar core lifetime of ∼ 106 yr, or (2 − 5)tff (Ward-Thompson et

al. 2007; Evans et al. 2009). This value is much lower than expected from the

magnetic-dominated model. In addition, in the turbulence-controlled regime where

magnetic field and ambipolar diffusion play minor roles (Mac Low & Klessen 2004),

ideal MHD simulations have shown that cores only live for (1− 2)tff (e.g. Vázquez-

Semadeni et al. 2005), after which they either collapse or re-expand. This would

not permit an extended period of ambipolar diffusion.

Several studies have suggested that turbulence in GMCs can accelerate am-

bipolar diffusion and star formation, by introducing large local gradients and non-

linearities. Considering small-scale fluctuations in a background field, Fatuzzo &

Adams (2002) analytically showed that turbulence can enhance the ambipolar dif-

fusion rate by a factor of 2− 3 for typical conditions in GMCs. Heitsch et al. (2004)

investigated this problem numerically in a 2.5-dimensional geometry and concluded

that the enhanced diffusion rate must be balanced against large-scale compressive

flows. Independently, Li & Nakamura (2004) and Nakamura & Li (2005) noted that

the failure of the standard theory to predict core formation timescales indicates
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that dense clumps may not have formed quasi-statically through ambipolar diffu-

sion. By performing two-dimensional simulations of magnetized sheetlike clouds,

they found that with sufficiently strong turbulence, dense filaments can form from

magnetic-field-dominated clouds in one turbulence crossing time (t ∼ 106 yr).

Turbulence-accelerated, magnetically-regulated star formation was studied by

Kudoh & Basu (2008) using three-dimensional simulations, including self-gravity

and adopting hydrostatic equilibrium in the vertical direction as an initial condition.

More recently, Kudoh & Basu (2011) conducted a parameter study of fragmentation

in magnetically subcritical clouds regulated by ambipolar diffusion and nonlinear

turbulent flows. They concluded that the core formation time is strongly affected by

the turbulence speed and the density in compressed region. These and other recent

simulations with both strong turbulence and ambipolar diffusion (e.g. Nakamura

& Li 2008) are consistent with observations in terms of the core evolution time,

the relatively low efficiency of star formation (∼ 3 − 6%, see Evans et al. (2009)),

and the core structure (subsonic infall motions, see Lee et al. (1999)). However,

the fundamental physical process driving core formation via turbulence-enhanced

ambipolar diffusion, as well as its dependence on environmental parameters, still

remain unclear.

To investigate this problem, we consider the simplest possible time-dependent

problem with large spatial gradients: a one-dimensional high-speed converging flow

that shocks. In order to clearly distinguish the effect of ambipolar diffusion from

other dynamics, we neglect the self-gravity of the gas. We also focus on the simplified

case in which the inflow velocity is perpendicular to the magnetic field lines; more
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general geometry (i.e., oblique shocks) is discussed in the Appendix A.

When gas is compressed by converging flow, the neutrals are pushed to accu-

mulate downstream. The ion density and magnetic field strength, however, will be

only moderately enhanced since the magnetic pressure resists strong compression.

These lagging ions exert a drag force on neutrals, reducing the streaming of neutrals

into the post-shock region. The momentum exchange between neutrals and ions

speeds up ions, increases the compression of the magnetic field, and reduces the

post-shock density of the neutrals. Over time, a steady C shock develops. However,

at early stages, for an interval comparable to the neutral-ion collision time, the neu-

trals do not experience drag forces from the ions (Roberge & Ciolek 2007; van Loo et

al. 2009; Ashmore et al. 2010). As a consequence, the initial shock for the neutrals

is essentially unmagnetized, and the neutrals can be very strongly compressed. If

the gravitational collapse timescale is sufficiently short, and a dense enough layer of

gas builds up, the magnetically supercritical region may be able to collapse gravita-

tionally before a steady C shock structure forms. The transient ambipolar diffusion

process in shocks may help to explain the physics of turbulence-accelerated, mag-

netically regulated star formation.

In this chapter, we first revisit the steady-state structure of C-type shocks

in conditions appropriate for GMCs, in particular allowing for varying ionization

fraction. By fitting the results of steady one-dimensional solutions, we obtain an

expression for the C shock thickness as a function of the upstream density, the ve-

locity, the magnetic field, and the ionization fraction. These C shock thicknesses

are comparable to, or exceed, the size of observed cores. We then consider time-
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dependent shocks, which we follow by implementing ambipolar diffusion in the MHD

code, Athena. Our simulations suggest that under some circumstances, transient C

shocks make it possible for a magnetically subcritical cloud to form supercritical

dense cores, which would then be able to collapse promptly. We show more gen-

erally that the mass-to-flux ratio is significantly increased by ambipolar diffusion

in transient post-shock regions, compared to the value that would hold under ideal

MHD or in a steady C shock.

This chapter is organized as follows. The model and the governing equations

are described in Section 2.2. In Section 2.3 we investigate the structure of steady

C shocks, and obtain (analytically and numerically) an explicit formula for the

dependence of shock thickness on environmental parameters. In Section 2.4 the

time-dependent numerical method is described, and we show that in the transient

early development of C shocks, the post-shock ratio of density to magnetic field is

very large. In Section 2.5, we discuss mass-to-flux ratios of shocked gas, which we

use to quantify the effect of ambipolar diffusion. A parameter study of the duration

and effect of transient C shocks is presented in Section 2.6. We summarize our

conclusions in Section 2.7.
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2.2 Dynamical Equations and Model Parameters

2.2.1 Basic Equations

For a partially ionized medium with a drag force fd between ions and neutrals,

the neutral fluid equations are

∂ρn
∂t

+∇ · (ρnvn) = 0, (2.1)

ρn

[
∂vn
∂t

+ (vn · ∇) vn

]
+∇Pn = fd, (2.2)

which represent conservation laws of mass and momentum, respectively. The corre-

sponding momentum equation for the ionized fluid and magnetic induction equation

are

ρi

[
∂vi
∂t

+ (vi · ∇) vi

]
+∇Pi −

1

4π
(∇×B)×B = −fd, (2.3)

∂B

∂t
+∇× (B× vi) = 0. (2.4)

We discuss the ion density evolution below; this must take into account ionization

and recombination.

The ion-neutral drag force per unit volume is

fd = αρnρi (vi − vn) , (2.5)

where |vi − vn| is the slip speed, and α = 〈σvrel〉/ (µn + µi) is the collision coefficient

with the collisional cross-section σ. The mean neutral and ion molecular weight µn

and µi are applied here so the number density is nn = ρn/µn, ni = ρi/µi. For

simplicity, we shall assume an isothermal equation of state, Pn = c2
snρn, Pi = c2

siρi,

and c2
s = P/ρ = kT/µ.
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2.2.2 Steady State One-dimensional Shock Equations

We now consider one-dimensional solutions that are steady, ∂/∂t = 0, in the

shock frame. We assume the magnetic field is parallel to the shock front. The x

coordinate is taken to be perpendicular to B and the shock front. We define the

compression ratio of neutral density induced by the shock:

ρn ≡ ρn,0rn, (2.6)

where rn → 1 upstream, and rn → const. downstream. Since ρnvn = const. from

Equation (2.1), vn = vn,0/rn, where vn,0 is the neutral speed far upstream.

Since magnetic flux is conserved, viB = const. in the gas. Far upstream,

B → B0 = const, vi → vi,0 = const.. We define the compression ratio for magnetic

field such that

B ≡ rBB0, (2.7)

and vi = vi,0/rB with rB → 1 upstream and rB → const. downstream.

For regions far from the shock there is no structure in the fluid, ∂v/∂x → 0,

∂ρ/∂x → 0, ∂B/∂x → 0. For Equations (2.2) and (2.3), this means vi = vn far

upstream and downstream. Therefore vn,0 = vi,0 ≡ v0 far upstream, and rn = rB ≡

rf far downstream. The velocities of neutrals and ions are therefore given in terms

of the upstream shock-frame speed v0 and the compression ratios at any x as

vn =
v0

rn
(2.8)

and

vi =
v0

rB
. (2.9)
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To simplify the equations, we define an ion compression ratio

ρi ≡ ρi,0ri, (2.10)

where ρi,0 is the upstream ion density, and ri → 1 upstream, ri → const. (not

necessarily equal to rf ) downstream, similar to rn and rB.

The momentum equations can now be expressed in dimensionless form as

M2 ∂

∂x

(
1

rn

)
+

∂

∂x
(rn) =

αρi,0
v0

M2rnri

(
1

rB
− 1

rn

)
, (2.11)

ρi,0
ρ0

M2 ri
rB

∂

∂x

(
1

rB

)
+
ρi,0
ρ0

µn
µi

∂

∂x
(ri) +

1

β

∂

∂x

(
r2
B

)
= −αρi,0

v0

M2rnri

(
1

rB
− 1

rn

)
,

(2.12)

in which M and β are two dimensionless parameters defined as

M2 ≡
(
v0

cs

)2

,
1

β
≡ B2

0

8πρ0c2
s

=
1

2

(
vA,0

cs

)2

, (2.13)

that is, upstream values of the square of Mach number and (half of) the square

of the Alfvén Mach number of neutrals, respectively. In Equations (2.11)−(2.13)

and subsequently, we use the shorthand notation csn → cs, ρn,0 → ρ0 ≡ µnn0, and

vAn,0 → vA,0. The drag force terms on the right-hand sides of Equations (2.11)

and (2.12) have equal magnitudes and opposite signs. Note that although Equa-

tions (2.11) and (2.12) represent the case with magnetic field parallel to the shock

front, the results for the case with more general geometry are qualitatively similar

(see Appendix A for detailed discussion).
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2.2.3 Governing Ordinary Differential Equation

Typically, we have µi/µn ≈ 30/2.3 ≈ 13, and

α =
〈σvrel〉
µi + µn

≈ 2× 10−9 cm3s−1

32.3mH

= 3.7× 1013 cm3s−1g−1 (2.14)

(Draine et al. 1983). The Mach number M is generally at least ∼ 10, the plasma

parameter is uncertain, but presumably β ∼ 0.01− 1, and since we are considering

lightly ionized fluid, xi,0 ≡ ni,0/n0 is a very small number, ∼ 10−6 (here, n0 =

ρ0/ (2.3mH)). The compression ratios rn, rB, and ri are dimensionless and are

maximal downstream, with typical values ∼ 10. Therefore, the last term on the

left-hand side in Equation (2.12) dominates over the other two terms.

Retaining only the largest terms in the ion momentum equation yields

dr2
B

dx
= −βαρi,0

v0

M2rnri

(
1

rB
− 1

rn

)
. (2.15)

Using this result, the neutral momentum equation can be written as

d

dx

(
M2

rn

)
+

d

dx
(rn) = − 1

β

d

dx

(
r2
B

)
, (2.16)

or

M2

rn
+ rn +

r2
B

β
= const. =M2 + 1 +

1

β
, (2.17)

an expression of conservation of momentum of the magnetized medium. On the

right-hand side of Equation (2.17), we have used rn = 1 = rB upstream. Equa-

tions (2.15) and (2.16) represent the “strong coupling” approximation, in which the

full magnetic force on the ions is conveyed to the neutrals, i.e.,

fd = αρiρn (vi − vn) =
(∇×B)×B

4π
(2.18)
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(Shu 1992, Equation (27.8)).

We can solve Equation (2.17) to obtain

rB =

[
1 + β (rn − 1)

(
M2

rn
− 1

)]1/2

; (2.19)

once rn(x) is known, this gives rB(x). The compression ratio rf for both neutrals

and magnetic field lines in the post-shock region is obtained by setting rB = rf = rn

in Equation (2.19), yielding

rf =
2βM2

1 + β +
[
(1 + β)2 + 4βM2

]1/2 . (2.20)

Note that if βM2 � 1, for a strong shock,

rf ≈
√
βM =

√
2
v0

vA,0

. (2.21)

In dimensional form, this is

rf ≈ 9.8
( n0

100cm−3

)1/2
(

v0

km/s

)(
B0

µG

)−1

. (2.22)

Note that for oblique C shocks, rB 6= rf in the post-shock region, and they

both depend on the angle θ between B and v. Appendix A provides expressions for

generalized rf (θ) with Equation (A.20) and rB,f (θ) with Equation (A.19).

Combining Equations (2.19) and (2.15), we obtain an ODE for rn. The gov-

erning equation is

drn
dx

=
−Drnri
1− M2

r2n

 1

rn
− 1√

1 + β (rn − 1)
(
M2

rn
− 1
)
 , (2.23)

where

D ≡ αρi,0
v0

M2 =
αµi
c2
s

xi,0n0v0. (2.24)
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If we use cs = 0.2 km/s (T/10K)1/2,

D = 150 pc−1
( n0

100 cm−3

)( v0

km/s

)( xi,0
10−6

)( T

10K

)−1

. (2.25)

2.2.4 Ionization Fraction

To solve the ODE in Equation (2.23), we need a relation between rn and ri. In

the dense interstellar medium, the main source of neutral ionization is cosmic rays,

while ions may recombine in the gas phase, or on dust grains. The evolution of ion

number density can be written as

dni
dt

= ζCRnn − αgasn
2
i − αgrainninn. (2.26)

Comparing the orders of magnitude of the three coefficients, ζCR ∼ 10−17−10−16 s−1

for cosmic ray ionization (Shu 1992; Draine et al. 1983), αgas ∼ 10−7 − 10−5 cm3s−1

(Tielens 2005, Table 4.11), and αgrain ∼ 10−15 cm3s−1 when T ∼ 10 K (Weingartner

& Draine 2001). In moderate-density clouds ni/nn ∼ 10−5 − 10−7 and nn ∼ 102 −

103 cm−3, so we can drop the grain surface recombination term. The ion balance

equation becomes

∂ni
∂t

+∇ · (nivi) ≈ ζCRnn − αgasn
2
i . (2.27)

2.2.4.1 Recombination-Ionization Equilibrium

In solving Equation (2.27), one possible approximation is to assume ionization-

recombination equilibrium everywhere. In this case, ζCRnn ≈ αgasn
2
i , so that

ni =

√
ζCR

αgas

n1/2
n ≡ 10−6χi0n

1/2
n , (2.28)
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for

χi0 ≡ 106 ×

√
ζCR

αgas

, (2.29)

where the coefficient χi0 ∼ 1− 20 (McKee et al. 2010).

If we adopt Equation (2.28), then ri = r
1/2
n , and the governing ODE becomes

drn
dx

=
−Dr3/2

n

1− M2

r2n

(
1

rn
− 1

rB

)
, (2.30)

where rB is given in terms of rn by Equation (2.19).

2.2.4.2 Frozen-in Magnetic Field

Another approach to Equation (2.27) is the so-called frozen-in condition (e.g. War-

dle 1990), which has been applied widely. In this approximation, ionizations and

recombinations are neglected, so that for a steady flow, nivi = const., which implies

ri = rB. This corresponds to a “frozen-in field”: the compression ratio of the mag-

netic field is the same as the ion flow. The governing ODE then becomes (using

Equation (2.19))

drn
dx

=
−Drn

1− M2

r2n


√

1 + β (rn − 1)
(
M2

rn
− 1
)

rn
− 1

 . (2.31)

One thing worth noting here is that in the frozen-in approximation, the ion-

ization fraction in the post-shock region will be the same as in the upstream region.

Since Equation (2.28) must hold far upstream and far downstream, we must choose

whether to set xi,0 based on n0 or rfn0.
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2.2.4.3 Explicit Solution

We can also retain all terms in the ionization-recombination equation in our

numerical integration. Using ni = n0rnxi, Equation (2.27) in steady state, for one

dimension, yields

dxi
dx

=
ζCR

v0

rB −
αgasn0

v0

x2
i rnrB + xi

d

dx

[
ln

(
rB
rn

)]
, (2.32)

Here, rB is given in terms of rn by Equation (2.19). By integrating Equations (2.32)

and (2.23) together, we can calculate the explicit solution for the steady C shock

system.

2.2.4.4 Comparison of Ionization Treatments

To compare ionization-recombination equilibrium and the explicit solution,

we choose just an upstream value χi0. For the frozen-in field case, we must also

choose whether our solution will have the same upstream ionization fraction as the

equilibrium case, or the same downstream value as the equilibrium case. Therefore

there are four different cases for us to compare.

An example comparing the shock solutions for the four different ionization

choices is shown in Fig. 2.1. Evidently, the approximation of ionization-recombination

equilibrium yields a solution very close to the explicit solution. We have found that

this is true for the full range of parameters of interest, n0 ∼ 102 to 103 cm−3, v0 ∼ 1

to 10 km/s, B0 ∼ 1 to 15 µG, χi0 ∼ 1 to 10. Henceforth, we shall adopt ionization-

recombination equilibrium and use ni ∝ n
1/2
n so that ri = r

1/2
n , and Equation (2.30)
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Fig. 1.—: Comparison of C shock solution with different approaches to ionization. Adopted param-

eters are B0 = 10µG, n0 = 500cm−3, v0 = 5km/s, and χi0 = 10. “Frozen-in(1)” means upstream

ionization is in equilibrium, and “Frozen-in(2)” means downstream ionization is in equilibrium.

Figure 2.1: Comparison of C shock solution with different approaches
to ionization. Adopted parameters are n0 = 500 cm−3, v0 = 5 km/s,
B0 = 10 µG, and χi0 = 10. “Frozen-in(1)” means upstream ionization
is in equilibrium, and “Frozen-in(2)” means downstream ionization is
in equilibrium. Evidently, recombination-ionization equilibrium (open
circles) is an excellent approximation to the exact solution (solid curve).
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governs steady C shocks.

2.3 Steady C Shock Thickness

For any given set of parameters n0, v0, B0, and χi0, Equation (2.30) can be

integrated to obtain a steady C shock solution. However, it is also useful to obtain

estimates of the dependence of the C shock thickness on the basic flow parameters.

This parameterization is potentially useful in diagnosing magnetic field strengths

from observations. In addition, it provides a helpful guide to assessing the scales at

which ambipolar diffusion becomes important in GMCs dominated by strong tur-

bulence. If, by appropriate simplifications we can integrate the governing ODE of

Equation (2.30) analytically, we can obtain an approximate expression for the shock

thickness as a function of n0, v0, B0, and χi0. Note that, since the governing equa-

tions for oblique shocks are qualitatively similar to the simplified case applied here,

the oblique shock thickness can be approached using the same methods discussed

in this section (see Appendix A).

2.3.1 Exact Solution

From numerical integrations of Equation (2.30) with a range of parameters,

we have found that rn/rB drops very quickly at the beginning, becomes flat in the

central region, then increases rapidly near the other edge of the shock (see bottom

panels of Fig. 2.2 and 2.3). This behavior can be used to define the thickness

of C-type shocks. Since the minimum of rn/rB depends on the parameters (see
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Equation (2.42) below), we should ensure that our thickness definition is insensitive

to this value. Based on these considerations, we adopt the following definition of

shock thickness for exact numerical solutions:

xs ≡ x
∣∣∣
rn/rB=0.95

, xf ≡ x
∣∣∣
rn/rB=0.95

, xf > xs; ⇒ shock thickness Lexact ≡
∣∣xf−xs∣∣.

(2.33)

Note that for some weak shocks, rn/rB is always larger than 0.95. Therefore this

definition also provides limitations in the parameter space to exclude shocks which

are not strong and thus do not satisfy our strong shock analysis.

We have integrated the shock ODE for a range of parameters, and computed

the shock thickness according to the definition in Equation (2.33). This is the dataset

of exact solutions of C shock thickness over a parameter grid with 10 values of n0

equally spaced between 102 and 103 cm−3, 14 values of v0 equally spaced between 2

and 15 km/s, 14 values of B0 equally spaced between 2 and 15 µG, and 11 values

of χi0 equally spaced between 1 and 21. The range of C shock thickness is 0.1 to

20 pc in this parameter range. Note that all parts of this parameter space are not

necessarily astronomically realistic. For example, low n0 and high v0 is unlikely to

have low χi0, so very large C shock thickness is not likely to be found.

Also note that even for C shock thickness ∼ 1 pc, in a real molecular cloud all

the parameters are likely to vary within this length scale, instead of staying constant

as in our models. However, our solutions still provide a useful guide to approximate

shock thicknesses for parameters within a given range.
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2.3.2 Zeroeth-order Approximation

We consider the relative magnitudes of the terms in Equations (2.19) and

(2.30). First, since cs ∼ 0.2 km/s whereas v0 & 1 km/s, in general M2 is a very

large number, and typically M2 � r2
n (see Equation (2.21)). Also, from Fig. 2.1,

the ratio rn/rB is small in much of the shock region. If we let rn/rB � 1, a “zeroeth-

order” approximation to Equation (2.30) is

drn
dx
≈ Dr

5/2
n

M2
. (2.34)

This can be integrated analytically to yield

rn(x) =

(
1− 3

2

Dx

M2

)−2/3

. (2.35)

This “zeroeth-order” approximation to the shock structure using Equation (2.35)

is shown in Fig. 2.2 and 2.3 for two parameter sets, in comparison to the exact

solution. The zeroeth-order shock thickness Lzeroeth is defined as x such that rn → rf

in Equation (2.35), giving

Lzeroeth =
2

3

M2

D

(
1− r−3/2

f

)
≈ 2

3

M2

D
, (2.36)

where the second approximation assumes a strong shock, rf � 1.

Substituting Equation (2.24) for D in Equation (2.36), we obtain a thickness

estimate in terms of physical parameters

Lzeroeth =
2

3

v0

αρi,0
∝ v0

χi0n
1/2
0

, (2.37)

or in dimensional form,

Lzeroeth ≈ 0.12 pc×
( n0

100cm−3

)−1/2
(

v0

km/s

)(χi0
10

)−1

. (2.38)
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Fig. 2.—: C shock solution (solid) compared to “zeroeth-order” estimate of eq. (32) (circle) and

an improved approximation given by Equation (40) (triangle), for parameters B0 = 5µG, n0 =

500cm−3, v0 = 5km/s, and χi0 = 10.

Figure 2.2: Exact C shock solution (solid) compared to the “zeroeth-
order” estimate of Equation (2.35) (circles) and an improved approxima-
tion given by Equation (2.43) (triangles), for parameters n0 = 500 cm−3,
v0 = 5 km/s, B0 = 5 µG, and χi0 = 10.
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Fig. 3.—: Same as Fig. 2, for B0 = 10µG, n0 = 500cm−3, v0 = 5km/s, and χi0 = 10.Figure 2.3: Same as Fig. 2.2, for n0 = 500 cm−3, v0 = 5 km/s, B0 =
10 µG, and χi0 = 10.
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Thus, the shock thickness increases with higher upstream velocity, and decreases

with higher upstream neutral density and ionization fraction. In this “zeroeth-order”

approximation the shock thickness does not depend on the upstream magnetic field

strength. From the examples shown in Fig. 2.2 and 2.3, we can see that although the

zeroeth-order solution follows the general behavior of C shocks, it is not accurate for

strongly-magnetized cases (Fig. 2.3). Compared with the dataset of exact solutions

discussed in previous section, the RMS value of (Lexact − Lzeroeth)/Lexact is 0.355,

and the range of (Lexact − Lzeroeth)/Lexact is −0.8 to 0.28.

The dependence on the velocity, ion density, and collision coefficient in Equa-

tion (2.37) can be understood in terms of the drag force between ions and neutrals.

The total momentum flux in neutrals entering the shock is ρ0v0
2. The mean drag

force per volume is ∼ αρ0ρi,0v0. The ratio of these quantities, which is the charac-

teristic distance over which momentum exchange takes place, is

L ∼ ρ0v0
2

αρ0ρi,0v0

∼ v0

αρi,0
∝ v0n

−1/2
0 χ−1

i0 . (2.39)

This dependence is similar to Equation (3.12) in Draine & McKee (1993) if the

Alfvén speed in the fluid is similar to the upstream velocity, vA ∼ v0. Although they

obtained an estimate using different assumptions and approximations, the basic idea

that the momentum transfer rate determines the shock thickness is similar.

2.3.3 Magnetic Field Influence

To obtain a more accurate estimate of the C shock thickness, we return to

the differential equation (2.11) for neutral momentum flux, making use of Equa-
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tion (2.24) and the ionization equilibrium condition ri = r
1/2
n ,

d

dx

(
rn +

M2

rn

)
= −Dr3/2

n

(
1

rn
− 1

rB

)
= −Dr1/2

n

(
1− rn

rB

)
. (2.40)

We integrate this equation, using constant values on the right-hand-side

〈
r1/2
n

〉
→

1 + r
1/2
f

2
≈
√
rf

2
,

〈
1− rn

rB

〉
→
(

1− (rn/rB)min

2

)
, (2.41)

where the minimum value of rn/rB can be derived explicitly from Equation (2.19)

as

rn
rB

∣∣∣∣
min

=
3
√

3

2
√
βM

. (2.42)

This yields a quadratic for rn as a function of x:

r2
n −

(
M2 + 1−D

〈
r1/2
n

〉〈
1− rn

rB

〉
x

)
rn +M2 = 0. (2.43)

Solving Equation (2.43) for rn(x) gives us another analytical approximation of the

shock structure. When compared with the explicit solution and the zeroth-order

approximation in Fig. 2.2 and 2.3, we can see that this correction is necessary only

when the background magnetic field is strong (Fig. 2.3).

For Equation (2.43) the magnetically-corrected estimate of the shock thickness

(x = Lest such that rn = rf ) can be written as

Lest =
(M2 − rf ) (rf − 1)

D
〈
r

1/2
n

〉
〈1− rn/rB〉 rf

. (2.44)

Assuming M2 � rf � 1 and (rn/rB)min � 1, and using Equation (2.24), we have

Lest ≈
4M2

Dr
1/2
f

=
4v0

αρi,0r
1/2
f

. (2.45)

Note that a similar result can be obtained for the generalized case with an oblique

C shock (Equation (A.23)). See Appendix A for detailed discussion.
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Taking the strong-compression limit rf ≈
√

2v0/vA,0 of Equation (2.21), we

have

Lest =
27/4v

1/2
0 v

1/2
A,0

αρi,0
∝ n

−3/4
0 v

1/2
0 B

1/2
0 χ−1

i0 , (2.46)

or in dimensional form

Lest = 0.22 pc×
( n0

100cm−3

)−0.75
(

v0

km/s

)0.5(
B0

µG

)0.5 (χi0
10

)−1

. (2.47)

Compared with Equation (2.37), the shock thickness still depends positively on

inflow velocity and negatively on upstream density and ionization fraction, but now

a dependence on the magnetic field enters as well. Compared with the dataset of

exact solutions discussed above, the RMS value of (Lexact−Lest)/Lexact is 0.13, and

the range of (Lexact−Lest)/Lexact is −0.21 to 0.26. Wardle (1990) and Li et al. (2006)

find Lshock ∼
√

2vA,0/ (αρi.0) in the case where ions are frozen in; this is smaller than

Equation (2.46) by a factor 2−5/4 (vA,0/v0)1/2.

2.3.4 Numerical Approach

Using the dataset of exact solutions discussed in Section 2.3.1, we construct a

simultaneous linear fit for logLexact to log n0, logB0, log v0, and logχi0. We find

Lfit = 0.21 pc×
( n0

100cm−3

)−0.73
(

v0

km/s

)0.54(
B0

µG

)0.46 (χi0
10

)−1

. (2.48)

Over the parameter grid, the RMS value of (Lexact − Lfit)/Lexact is 0.08, and the

range of (Lexact − Lfit)/Lexact is −0.29 to 0.22.

The result in Equation (2.48) agrees with our expectation that the shock thick-

ness depends on the magnetic field. Also, the dependences on all parameters are
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Table 2.1: Steady C shock Thickness Comparison

Model n0 v0 B0 χi0 Lshock (pc)
exact est. fit(

cm−3
)

(km/s) (µG) eq. (2.30) eq. (2.45) eq. (2.48)

N01 100 5 10 5 3.03 3.15 2.89
N03 300 5 10 5 1.20 1.38 1.30
N05 500 5 10 5 0.82 0.94 0.89
N08 800 5 10 5 0.58 0.66 0.63
N10 1000 5 10 5 0.50 0.56 0.54
V04 200 4 10 5 1.41 1.68 1.54
V06 200 6 10 5 1.55 2.05 1.92
V08 200 8 10 5 1.79 2.37 2.24
V10 200 10 10 5 2.08 2.65 2.53
V12 200 12 10 5 2.38 2.90 2.79
B02 200 5 2 5 0.92 0.84 0.83
B04 200 5 4 5 1.08 1.18 1.14
B06 200 5 6 5 1.26 1.45 1.38
B08 200 5 8 5 1.46 1.68 1.57
B10 200 5 10 5 1.66 1.87 1.74
B12 200 5 12 5 1.89 2.05 1.89
B14 200 5 14 5 2.12 2.22 2.03
X01 200 5 10 1 8.32 9.37 8.71
X06 200 5 10 6 1.39 1.56 1.45
X10 200 5 10 10 0.83 0.94 0.87
X15 200 5 10 15 0.55 0.62 0.58
X20 200 5 10 20 0.42 0.47 0.44

extremely close to Equation (2.47). Table 2.1 lists a set of model parameters (to

be used in time-dependent simulations) and the C shock thickness based on the

analytic estimate in Equation (2.45) and the multivariate fit in Equation (2.48), in

comparison with the results from explicit integration of the ODE (Equation (2.30)).

Both approaches are useful to estimate the shock thickness.
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2.4 C Shock Formation

2.4.1 Numerical Algorithm for Ambipolar Diffusion

To investigate how C shocks develop in time, we use a modified version of the

numerical MHD code, Athena (Stone et al. 2008). Athena employs a single-step,

directionally unsplit Godunov scheme to obtain conservative, second-order accurate

solutions of the ideal MHD equations (Gardiner & Stone 2005).

In the strong coupling limit, the drag force fd = αρiρn (vi − vn) is equal to

the Lorentz force fL = [(∇×B)×B] / (4π). The momentum equation for neutrals

is thus identical to that in the ideal MHD limit. The mass conservation equation

for neutrals is also the same as for ideal MHD. In this approximation, vi = vn +

[(∇×B)×B] / (4παρiρn), so that the induction equation (2.4) becomes

∂B

∂t
−∇× (vn ×B) = ∇×

[
((∇×B)×B)×B

4πρiρnα

]
. (2.49)

With vd = vi − vn the drift velocity between ions and neutrals, we can write the

correction term in Equation (2.49) in terms of a “drift” EMF,

Ed = vd ×B =
[(∇×B)×B]×B

4πρiρnα
. (2.50)

In our simplified 1-D problem, B = Byŷ, v = vxx̂, and the discretized mag-

netic field corrected by ambipolar diffusion before each step, at interface position

i∆x and time n∆t, is

By

∣∣n+1

i
= By

∣∣n
i

+
∆t

∆x

(
Ed,z
∣∣n
i+ 1

2

− Ed,z
∣∣n
i− 1

2

)
,
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and

Ed,z
∣∣n
i+ 1

2

=
1

4πα

(
By

∣∣n
i+1
−By

∣∣n
i

∆x

)
B2
y

ρiρn

∣∣∣∣n
i+ 1

2

.

This term is implemented in Athena as an operator-split update to the magnetic

field. The mesh resolution is set to be 0.01 pc.

In setting the timestep, we implement the super-timestepping approach as de-

scribed by Choi et al. (2009), choosing the factor ν = 0.2, and taking the ambipolar

diffusion timestep

∆tAD = 2πα (CFL number) (∆x)2 ·min

[
ρnρi
B2
y

]
, (2.51)

where the CFL number is set to be 0.8 in all simulations.

For figures presenting numerical results, nn → n and vn → v.

2.4.2 Convergent Flow Test

2.4.2.1 Simple Convergent Flow Test

One way to produce shocks in a numerical simulation is to use a simple con-

vergent flow, in which the initial conditions are

n = const., By = const., vx =

{
vinflow, left half
−vinflow, right half.

(2.52)

This will evolve to a dense post-shock region in the center, with outward-propagating

reverse C-type structures at the left and right (Fig. 2.4).

The C shock structures seen at x ≈ 1.5 and x ≈ 3.5 in Fig. 2.4 are the same

as the steady solutions obtained by integration of Equation (2.30), as confirmed by

comparing the detailed profiles (not shown). Note that the mass-to-flux ratio n/By
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Figure 2.4: Transient C shock structure (squares) compared with ideal
MHD shock (thin lines), generated from convergent flow, for parameters
n0 = 200 cm−3, v0 = 1 km/s, B0 = 2 µG, and χi0 = 10. The central
peak in density n and mass-to-flux ratio n/By is a signature of early C
shock structure.
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is analogous to rn/rB (except not normalized by upstream values). The dips in

n/By at the C shock locations correspond to the “well” in rn/rB seen in Fig. 2.2

and 2.3. However, the central peaks in both neutral density n and the mass-to-flux

ratio n/By in Fig. 2.4 are not a feature of steady C shocks. As the solution shown

in Fig. 2.4 evolves further in time, these peaks disappear. Thus, these peaks are a

signature of transient C shock development, as we discuss further below.

2.4.2.2 Colliding Clouds

The initial conditions for the simple converging flow are somewhat artificial, in

that only the velocity is discontinuous. Thus, we would like to test whether shocks

formed under more realistic conditions also show the transient peaks in n and n/By

described above.

We consider the collision of two idealized clumps inside a large molecular cloud.

We suppose that the two clumps are both denser than their surrounding, but the

mass-to-flux ratios are the same throughout the whole cloud. We imagine that the

large-scale turbulence in the molecular cloud imposes velocities such that the two

dense clumps collide with each other, producing a shock. We simulate the scenario

described, setting the background density to be 5% of the value in the dense clumps,

and the initial velocity of this gas to be zero. We focus just on the collision region,

so that the right and left sides of the domain are set to “clump” conditions, as in

Equation (2.52).

When the two dense clumps meet each other, a strong shock forms (Fig. 2.5).
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Figure 2.5: Two dense clumps collide with each other and produce a
shock (squares). Conditions at a time 0.88 Myr prior to the collision
are shown as thin lines for comparison. Parameters are n0 = 500 cm−3,
v0 = 1 km/s, B0 = 4 µG, and χi0 = 10.
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Figure 2.6: Shock structure generated from the colliding clumps
(squares), at a time 1.08 Myr after the stage shown in Fig. 2.5. Note
that the central peaks in n and n/By are qualitatively similar to those
in Fig. 2.4. These central peaks will then expand and smooth out (thin
lines show solution after an additional 7.67 Myr).
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Figure 2.7: Ptot (solid), PB (dashed), and Pgas (dotted) in the colliding
clump simulation, corresponding to the earlier (left) and later (right)
stages in Fig. 2.6. Note that the magnetic pressure dominates the post-
shock region, with the central peak in thermal pressure compensated for
by a reduction in the magnetic pressure. Over time, the thermal pres-
sure peak and magnetic pressure valley decline due to diffusion within
the post-shock region. In the frame of the (right- or left-ward) expand-
ing shock fronts (not shown), the total pressure in the post-shock re-
gion is the same as the total pressure upstream. Units for pressure are

[2.3mH cm−3]
[
1 km s−1

]2
.

Since all fluid variables (n, By, vx) are smooth and continuous prior to shock forma-

tion, the features produced are not a consequence of discontinuous initial conditions.

This test case eventually evolves to profile similar to that in the simple convergent

flow test (Fig. 2.6). The central peaks in density and mass-to-flux ratio show up

as well. Subsequent evolution leads to a decline in the central peak in n and n/By

(Fig. 2.6).

2.4.2.3 Transient C shock Development

Peaks in density above the “steady” shock solution have also been observed

in other ambipolar diffusion simulations using different MHD codes (e.g. Choi et

al. 2009). In addition, similar transient behavior of C shocks has been noted in
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models with more complex chemistry implemented (e.g. Chieze et al. 1998; van

Loo et al. 2009; Ashmore et al. 2010). Physically, we believe these peaks arise

because the neutrals are effectively “unmagnetized” when the shock first forms. As

a consequence, the neutrals can be very strongly compressed, forming what is seen

as a central density peak in Figs. 2.4−2.6.

The magnetic field, however, does not follow the initial strong compression

of the neutrals. Instead, the overly-compressed neutrals generate higher pressure

in the central regions, inhibiting the magnetic flux from getting in. Fig. 2.7 shows

the total pressure Ptot = ρnvn
2 + Pgas + PB of the system, where Pgas = ρncs

2

and PB = B2/8π, with vn measured in the “laboratory” frame. These three terms

correspond toM2/rn, rn, and rB
2/β respectively, in Equation (2.17). Since Athena

uses the conservative form of the momentum equation (∂ (ρv) /∂t+ ∂Ptot/∂x = 0),

Ptot must become constant in the post-shock region at late times. For strong shocks,

the magnetic pressure term dominates at late times in the post-shock region. At

early times, there is a slight depression of the magnetic field strength at the center of

the shock, in order to balance the extremely high neutral gas pressure in the density

peak.

Combining the strong neutral compression and slight magnetic exclusion, the

mass-to-flux ratio is elevated in the center when a shock forms. The collisions be-

tween neutrals and ions will gradually slow down the incoming neutrals and compress

ions and magnetic field to the center. Meanwhile, the neutrals in the central peak

diffuse outward in order to balance the increasing magnetic pressure and keep the

total pressure constant. Eventually, the ions and neutrals interact sufficiently that
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a steady-state C shock structure develops. The post-shock n/By is the same as the

upstream value. However, the ambipolar diffusion process takes time, and during

the transient stage, a region of very strongly compressed neutrals will be present.

Our finding that there is a transient stage of very strong density compression,

with an enhanced ratio of n/By or mass-to-magnetic flux, suggests that the very

early stage of shock development in GMCs may be particularly important to star

formation. The following sections examine this idea further.

2.5 Criticality of Clouds

2.5.1 Mass-to-flux Ratio

The mass-to-flux ratio is a crucial parameter defining whether the magnetic

field can support a cloud against its own self-gravity. The critical value of M/ΦB

for an uniform, spherical cloud has been derived to be M/ΦB

∣∣
crit

= cΦ/
√
G ≈

0.126/
√
G (Mouschovias & Spitzer 1976). The numerical coefficient cΦ differs with

the geometry of the cloud: an infinite sheet-like cloud has cΦ = 1/2π ≈ 0.16 (Nakano

& Nakamura 1978), while Tomisaka et al. (1988) found cΦ = 0.17− 0.18 for clouds

with various M/ΦB distributions (see review by McKee & Ostriker 2007). Since

the value of cΦ varies only ∼ 10% with geometry, we choose the commonly-used

cΦ = 1/2π (Kudoh & Basu 2011; Vázquez-Semadeni et al. 2011) as a reference

value, while keeping in mind that core geometry is not explicitly defined for our slab

system.
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Practically, for magnetic field in the y-direction the ratio can be written as

M

Φ
=

∫
ρdx · LyLz∫
Bydx · Lz

=
Ly
∫
ρdx∫

Bydx
∼ Σ

〈By〉
, (2.53)

where we assume that if a core formed in the post-shock region, its effective length

in the y-direction, Ly, would be comparable to that in the x-direction, Lx, so that

〈By〉 =
∫
Bydx/

∫
dx ∼

∫
Bydx/Ly. The mass-to-flux ratio, in units of the critical

value M/ΦB

∣∣
crit

=
(

2π
√
G
)−1

, is

Γ ≡ 2π
√
G · Σ
〈By〉

= 3.8

(
N(H)

1021cm−2

)(
〈By〉
µG

)−1

(2.54)

To convert the column of neutrals in our simulation to N(H), we use n = nH2 +nHe =

0.6nH. Note that the true value of the normalized mass-to-flux ratio would differ

from Equation (2.54) by a factor Ly/Lx, which could be up to ∼ 2.

If the mass-to-flux ratio of a prestellar core is larger than the critical value (Γ >

1), i.e., the gravitational force exceeds the magnetic support, the core is supercritical

and is eligible for collapse (subject to support by thermal pressure). In contrast, a

subcritical core has a mass-to-flux ratio smaller than the critical value (Γ < 1), and

cannot collapse unless it loses magnetic energy in either the strong-gravity mode

(the field lines diffuse outward through ambipolar diffusion while gravity holds the

gas material together) in which Γ ∼ 1 is required, or the magnetic-dominated mode

(neutral mass moves toward the center under the gravitational pull while ambipolar

diffusion allows the magnetic field lines to remain stationary) so the mass-to-flux

ratio increases.
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2.5.2 Bonnor-Ebert Sphere

A typical low-mass prestellar core has Σcore ∼ 1 M�/
[
(0.1 pc)2 π

]
≈ 0.007 g · cm−2,

so that a core with Binitial & 2π
√
G · Σcore ∼ 10.7 µG may be subcritical.

More precisely, we consider the Bonnor-Ebert sphere radius for a core whose

mean density is equal to the post-shock density ρf ,

RBE =
2.7cs

(4πGρf )
1/2

(2.55)

(e.g. Gong & Ostriker 2009), which is the largest sphere that can be supported by

its own internal thermal pressure.

We note that, from Equation (2.45), the ratio of the shock thickness to the

diameter of a Bonnor-Ebert sphere at the post-shock density is

Lest

2RBE

≈ 0.7 (4πGρ0)1/2

αρi,0

(
v0

cs

)
≈ v0

χi0cs
. (2.56)

A converging flow bounded by C shocks has breadth at least twice the shock thick-

ness. Under conditions in GMCs where v0/cs & 10, and χi0 . 10, this implies that

shocks are sufficiently broad that Bonnor-Ebert spheres can fit within the post-shock

region. Thus, if magnetic fields are weak enough, cores could grow and collapse in

post-shock gas.

The mass-to-flux ratio for a sphere of radius RBE in a post-shock magnetized

region, without ambipolar diffusion, is

M

ΦB

∣∣∣∣
BE

=
4πR3ρf/3

πR2Bf

=
4

3
RBE

ρf
Bf

, (2.57)
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with corresponding

ΓBE =
M/ΦB

∣∣
BE

M/ΦB

∣∣
crit

=
8π
√
G

3
RBE

ρf
Bf

=
1.8cs
vA,f

=
1.8cs

r
1/2
f vA,0

(2.58)

where

v2
A,f = B2

f/ (4πρf ) = rfv
2
A,0

using the shock jump conditions. Note that for a strong shock, rf ≈
√

2v0/vA,0, so

that ΓBE ≈ 1.5cs/ (v0vA,0)1/2, or

ΓBE ≈ 0.8
( n0

100cm−3

)0.25
(

v0

km/s

)−0.5(
B0

µG

)−0.5(
T

10K

)−0.5

. (2.59)

If ΓBE is larger than 1, a post-shock region of radius ∼ RBE is dense enough to

gravitationally collapse whether or not there is ambipolar diffusion. Otherwise, am-

bipolar diffusion would be needed for a region of size ∼ RBE to become supercritical.

For the set of shock models we are studying (see Table 2.1 for inflow parameters),

calculated radii and mass-to-flux ratios for Bonnor-Ebert spheres under post-shock

conditions without ambipolar diffusion are listed in Table 2.2. In all cases, ΓBE is

much smaller than 1, which means no collapse at the BE scale could happen in

the post-shock region without significant ambipolar diffusion. More generally, since

ΓBE ∼ cs/ (v0vA,0)1/2 � 1 under GMC conditions, most post-shock regions are suffi-

ciently magnetized that gravitational collapse of low-mass cores would be prevented

unless ambipolar diffusion occurs. Note that if ρ > rfρ0, as is true in the candidate

core material for transient C shocks, RBE will be lower than the value in the table.
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2.6 Core Forming Process

Current theoretical and observational work suggests that shocks produced by

supersonic turbulence play a role in compressing gas to form prestellar cores. Our

findings that the neutrals are compressed more than the magnetic field during the

early stages of shock formation raise an interesting question: Is it possible for a

subcritical cloud to form supercritical cores in shocks, which can then gravitationally

collapse promptly?

2.6.1 Evolution of Overdense Regions

For a prestellar core to collapse, the region must be dense enough so that

self-gravity overcomes the magnetic support. Although self-gravity is not included

in the present models, we can make an initial assessment of whether transient C

shocks are likely to affect the ability of cores to collapse promptly after they form.

In the context of our converging flow test, we shall define “candidate core”

material to be regions where

n

By

> 1.2×
(
n

By

)
background

; (2.60)

the background has uniform n/By, so the time evolution of this candidate core

material is easily calculated. Physically, this candidate core material corresponds to

that in the central peak of n/By as shown in e.g. Fig. 2.4 or Fig. 2.6.

For steady shocks with compression factor rf produced by a two-sided con-

verging flow with inflow speed vinflow from both sides, the upstream speed in the
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Figure 2.8: Dependence of “candidate core” material column density on
the ion-neutral collisional coefficient, for α = α0 = 3.7×1013 cm3s−1g−1,
α = 0.5α0, and α = 2α0. Also shown (straight dotted line) is the “kine-
matic” growth rate dN(H)/dt = 2nHvinflow for a steady shock. Parame-
ters for this model are n0 = 100 cm−3, v0 = 5 km/s, B0 = 10 µG, and
χi0 = 5.
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shock frame is v0 = vinflowrf/ (rf − 1), and vshock = vinflow/ (rf − 1). The rate at

which the column density grows for a steady shock is therefore

∆N(H)

∆t
= 2nHvinflow = 1.05× 1021 cm−2Myr−1

( n0

100cm−3

)(vinflow

km/s

)
, (2.61)

where n = nH2 + nHe = 0.6nH is assumed.

For a steady shock, the growth rate of the post-shock column is independent

of α, the collision coefficient between neutrals and ions. Fig. 2.8 shows evolution

of the “candidate core” column density with different values of α, for a model with

n0 = 100 cm−3, vinflow = 3.87 km/s, B0 = 10 µG, and χi0 = 5. In the very beginning,

all of the post-shock material has n/By greater than the background value, because

the core grows by unimpeded motion of the neutrals which do not “see” the ions.

Thus the column of “candidate core” material initially follows Equation (2.61), with

slope ∆N(H)/∆t ≈ 4× 1021 cm−2Myr−1 (also shown in Fig. 2.8), independent of α.

It is evident that at some point the growth rate of the “candidate core” column

decreases. Physically, the growth rate decreases as ions are pushed into the column

by inflowing neutrals, which causes the magnetic flux in the “candidate core” region

to increase more rapidly than the neutral column, and the mass-to-flux ratio to

decrease. Therefore, we might expect the growth of the demagnetized column to

slow down on a timescale tAD ∼ Lshock/vdrift, the time for neutrals to travel across

the shock front under the influence of ions. In timescales short compared to tAD,

neutrals which have arrived at the center were moving fully or partly free from

collisions with ions. These neutrals thus contribute to the column with high mass-

to-flux ratio. After tAD, neutrals which have interacted strongly with ions dominate,
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and the growth rate of the low-magnetization column starts to decrease.

This also corresponds to the timescale for steady C shock structure to develop,

and for the fronts surrounding the shocked layer to expand. After this time, neutrals

must then travel a greater distance through the condensed magnetic field and ions to

stream into the “candidate core” area. From Fig. 2.8, the “saturation” time varies,

roughly inversely with the collision coefficient α. With Equation (2.37) or (2.45) we

have Lshock (and hence tAD) ∝ 1/α, consistent with our numerical results.

2.6.2 Time Scale and the Mass-to-flux Ratio

As discussed earlier, our simulation results indicate that during an initial tran-

sient period, the neutrals are compressed much more strongly than the magnetic

field. Up to a certain time, corresponding to the ambipolar diffusion time scale,

the column density of gas with elevated n/B grows. After this time, the profile

transitions to that of a steady C shock, with n/B equal to the upstream value.

The ambipolar diffusion time scale should be comparable to the time it takes

for neutrals to travel through the thickness of a C-type shock under the influence of

ion drag. Therefore we have

tAD ≡
Lshock

〈vdrift〉
=
Lshock

v0

〈∣∣∣∣ 1

rn
− 1

rB

∣∣∣∣−1
〉
, (2.62)

where we have used vdrift = |vi − vn| = v0

∣∣r−1
n − r−1

B

∣∣ (see Equations (2.8) and (2.9)).

Assuming that rn � rB over the shock region because a steady-state C shock has
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not yet formed, and using 〈rB〉 ≈ rf/2 as an average value, we obtain

tAD ≈ 〈rB〉
Lshock

v0

≈ rf
2

Lshock

v0

(2.63)

≈
2r

1/2
f

αρi,0
≈ 25/4

αρi,0

(
v0

vA,0

)1/2

. (2.64)

In the second line, we use the estimate of Equation (2.45) for the shock thickness,

and Equation (2.21) for rf in a strong shock. Note that a similar formula for more

general cases with oblique shocks is given in Equation (A.24). In dimensional terms,

using the analytical approximation Equation (2.47) to the C shock thickness Lshock,

Equation (2.63) gives

tAD ≈ 1× 106 yr
( n0

100cm−3

)−0.25
(

v0

km/s

)0.5(
B0

µG

)−0.5 (χi0
10

)−1

(2.65)

= 0.36× 106 yr
( n0

100cm−3

)−0.5
(
v0

vA,0

)0.5 (χi0
10

)−1

. (2.66)

The time tAD can be compared to the gravitational free fall time

tff (ρ) =

(
3π

32Gρ

)1/2

= 3.4× 106 yr
( n

100cm−1

)−1/2

(2.67)

to give

tAD

tff(ρ)
≈
(
ρ

ρ0

)1/2(
v0

vA,0

)1/2

χi0
−1. (2.68)

The post-shock gas has density ρf = rfρ0 with rf ≈
√

2 (v0/vA,0) (see Equa-

tion (??)), which means that tAD/tff(ρf ) ∼ (v0/vA,0)χ−1
i0 . During the transient

stage, ρt > ρf , so tff (ρt) < tff (ρf ), implying tAD/tff (ρt) > (v0/vA,0)χ−1
i0 . Thus, for

strong shocks (v0/vA,0 & 10) and low ionization conditions (χi0 . 10), the transient

duration tAD will exceed the time tff (ρt) for post-shock perturbations to develop

into collapsing cores.
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If the growth rate of the neutral column density is dNH/dt ≈ 2nHv0 (see

Equation (2.61)), the final (maximum) value of the mass-to-flux ratio should be

M

ΦB

∣∣∣∣
final

≈ 1.4mHdNH/dt× tAD

Bfinal

≈ 2ρ0v0 × Lshockrf/ (2v0)

rfB0

=
ρ0Lshock

B0

. (2.69)

This estimate of the mass-to-flux ratio inside the pre-collapsing core depends only

on the upstream density and magnetic field, and the steady-state C shock thickness.

This can be evaluated (using Equation (2.47)) to give Γfinal ≡ 2π
√
G (M/ΦB)final:

Γfinal ≈ 0.41
( n0

100cm−3

)0.25
(

v0

km/s

)0.5(
B0

µG

)−0.5 (χi0
10

)−1

(2.70)

= 0.14

(
v0

vA,0

)0.5 (χi0
10

)−1

. (2.71)

Note that true Γ would differ by a factor Ly/Lx from Equations (2.70) and (2.71);

i.e. up to factor ∼ 2 larger.

Combining Equations (2.64), (2.67), and (2.69), we have

tAD =

(
32

6π2

)1/2

Γfinaltff (ρ0) = 0.74 Γfinaltff (ρ0) . (2.72)

Thus, shocks that are able to reach Γfinal ∼ 1 through transient ambipolar diffusion

will do so on a timescale comparable to the gravitational time tff (ρ0) of the large-

scale cloud. Since the large-scale dynamical timescale (∼ tff(ρ0) for a self-gravitating

cloud) determines the correlation time of the flows that create shocks, this means

that shocks will be sustained long enough for diffusion to occur.

If v0 & vA,0 and χi0 ∼ 1, from Equation (2.71) the candidate core will have

Γfinal exceeding unity. In this situation, a core would be able to collapse promptly,

without an extended period of ambipolar diffusion, since

tAD

tff (ρt)
&

(
v0

vA,0

)1/2

Γfinal > Γfinal. (2.73)
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In GMCs, the ionization fraction is dependent on chemical processes, with χi0 ∼

1−20 (McKee et al. 2010). The turbulent flow speed will not exceed∼ 10 km/s under

realistic conditions, and n0 ∼ 102−103 cm−3, typically1. Therefore, Γfinal will exceed

1 (see Equation (2.70)) only if the upstream magnetic field in the direction parallel

to the shock front is moderate, probably . 10 µG. The line-of-sight magnetic field

strengths in molecular clouds with density . 103 cm−3, however, can vary over

∼ 5 − 25 µG (Crutcher 1999; Crutcher et al. 2010). If the total magnetic field

strength (which is always ≥ BLOS) exceeds ∼ 20µG, then in order to reach Γfinal

close to 1 so that pre-collapse cores can develop efficiently, converging flows with v0

aligned . 30◦ to Bcloud are favored.

In addition, we note that for σ3D, cloud and vA, cloud the 3D turbulent veloc-

ity dispersion and mean-field Alfvén speed in a cloud, a gravitationally-bound (or

virialized) cloud has

Γcloud ∼
σ3D, cloud

vA, cloud

, (2.74)

so that

Γfinal ∼
1

χi0

(
v0

σ3D, cloud

)1/2(
Bcloud

B0

)1/2

Γ
1/2
cloud. (2.75)

The strongest shocks will have v0 ∼ σ3D, cloud. These regions will be able to reach

Γfinal ∼ 1 if the cloud is sufficiently supercritical (Γcloud � 1), the ionization fraction

is sufficiently low (χi0 ∼ 1), and/or the magnetic field parallel to the shock front

is weaker than the mean field threading the cloud (Bcloud/B0 > 1). Again, with

realistic χi0 and Γcloud, the most favorable circumstance for ambipolar diffusion to

1 Keep in mind that some combinations of parameters are not astronomically realistic; e.g. high
v0 is unlikely to have low χi0, and high n0 is unlikely to have low B0.
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yield Γfinal > 1 is if the inflow v0 is aligned locally towards Bcloud so that Bcloud/B0 >

1.2

Even if post-shock regions are subcritical, transient ambipolar diffusion signif-

icantly increases the mass-to-flux ratio compared to the value that would hold in

ideal MHD. A measure of the importance of this effect is the ratio between Γfinal

and ΓBE in the post-shock region. From Equations (2.70) and (2.59),

Γfinal

ΓBE

∼ 5

(
v0

km/s

)(
T

10K

)−1/2

χ−1
i0 ∼

M
χi0

(2.76)

is predicted. The turbulent motions in clouds can achieve M ∼ 50. With χi0 ∼

1 − 20, a significant enhancement in the mass-to-flux ratio can be expected due to

transient ambipolar diffusion.

2.6.3 Simulation Results

The estimates of Equations (2.65) and (2.70) can be compared to the ambipo-

lar diffusion time and mass-to-flux ratio as measured directly from time-dependent

numerical simulations. Examples showing evolution of the measured Γ for several

different parameter values are shown in Fig. 2.9.

To read the ambipolar diffusion time scale from simulations, recall that the

growth rate of the mass-to-flux ratio inside the core decreases at time ∼ tAD. We

adopt a definition of tAD as the time when the slope of the Γ vs. time curve drops to

25% of its maximum value. For each simulation, we measure the mass-to-flux ratio

2We have investigated oblique shocks with nonzero Bx,0 = Bcloud cos θ = B0 cot θ in Ap-
pendix A, where B0 = By,0 = Bcloud sin θ is the magnetic component parallel to the shock front.
Equation (A.25) gives an approximation of Γfinal as a function of θ (the angle between Bcloud and
v0). Since there is no strong dependence of Γfinal on θ, our 1-D results (Equations (2.70), (2.71),
and (2.75)) are applicable in most cases with nonzero Bx,0.
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Figure 2.9: Time evolution of the normalized central mass-to-flux ratio
Γ in the shocked gas. The parameters are n0 = 200 cm−3, v0 = 5 km/s,
B0 = 10 µG, and χi0 = 5 (solid line), with modifications as noted in the
key.
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Table 2.2: Results for Transient Mass-to-flux Enhancement

tAD Γfinal Lcore BE Sphere†

eq. (2.65) result§ at 2tAD
¶ RBE ΓBE Γ2tAD/

Model (106 years) eq. (2.70) Γ2tAD (pc) (pc) ΓBE

N01 1.42 1.12 0.55 0.37 0.58 0.46 0.12 3.08
N03 1.10 1.11 0.74 0.64 0.34 0.20 0.15 4.27
N05 0.98 1.09 0.85 0.78 0.27 0.13 0.17 4.59
N08 0.88 1.07 0.96 0.95 0.23 0.09 0.19 5.00
N10 0.83 0.90 1.02 1.07 0.21 0.08 0.20 5.35
V04 1.07 0.94 0.59 0.44 0.40 0.31 0.16 2.75
V06 1.33 1.42 0.73 0.60 0.42 0.25 0.13 4.62
V08 1.56 1.86 0.86 0.76 0.42 0.21 0.11 6.91
V10 1.75 1.88 0.96 0.91 0.43 0.19 0.10 9.10
V12 1.94 2.13 1.06 1.06 0.43 0.17 0.09 11.78
B02 2.88 4.93 1.58 2.83 0.51 0.12 0.31 9.13
B04 1.98 2.64 1.09 1.35 0.44 0.17 0.22 6.14
B06 1.59 2.15 0.87 0.89 0.43 0.21 0.18 4.94
B08 1.36 1.58 0.75 0.66 0.42 0.24 0.15 4.40
B10 1.21 1.08 0.66 0.52 0.42 0.27 0.14 3.71
B12 1.09 0.90 0.60 0.43 0.42 0.30 0.13 3.31
B14 1.01 0.79 0.55 0.37 0.40 0.33 0.12 3.08
X01 6.03 5.78 3.32 2.63 2.03 0.27 0.14 18.79
X06 1.01 0.89 0.55 0.43 0.34 0.27 0.14 3.07
X10 0.60 0.57 0.33 0.25 0.20 0.27 0.14 2.78
X15 0.40 0.48 0.22 0.16 0.14 0.27 0.14 1.79
X20 0.30 0.45 0.17 0.12 0.12 0.27 0.14 0.86
† Computed for post-shock conditions without ambipolar diffusion (see Equations (2.55) and
(2.58)).
§ Defined as when the slope of the Γ vs. time curve drops to 20% of its maximum value.
¶ Lcore ≡ N/〈n〉 in “candidate core” region with enhanced n/B.

Σ/〈By〉 at time t = 2tAD, and define this mass-to-flux ratio inside the central peak

(multiplied by 2π
√
G) as Γfinal.

Table 2.2 shows the predicted values of tAD and Γfinal from Section 2.6.2,

as well as the simulation results for these quantities. The measured ambipolar

diffusion time scale is ∼ 0.3 − 3 Myr. Our model predicts the ambipolar diffu-

sion time scale very well: the RMS value of (tAD, pred − tAD, sim) /tAD, sim is 0.19,

and the range of (tAD, pred − tAD, sim) /tAD, sim is −0.42 to 0.28. The measured
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mass-to-flux ratios deviate from predicted values somewhat more, with a range of

(Γfinal, pred − Γfinal, sim) /Γfinal, sim −0.44 to 0.49, and RMS value 0.28. The typical

size Lcore ≡ N/〈n〉 of the region with enhanced mass-to-flux ratio at time 2tAD is

∼ 0.2− 0.6 pc (Table 2.2, column 6).

In most of our simulations, the mass-to-flux ratios are higher than 0.6 (see

column 5 of Table 2.2), with some cases (N10, V12, B02, B04, and X01) reaching

Γ2tAD
> 1. Recall that we assumed the effective length of the system is comparable

in all directions when we define Γ in the candidate core material (see Section 2.5.1).

This means that the real mass-to-flux ratio would differ from our measured Γ2tAD
by

a factor Ly/Lx. Since cores may have axis ratios ∼ 2 : 1, the measured Γ2tAD
may

be underestimated by a factor up to ∼ 2. Therefore the fact that almost all models

have Γ2tAD
close to 1 shows that C shock transients may lead to supercritical cores

quite frequently.

The models with Γ2tAD
> 1 confirm our prediction that small values of B0

are crucial for forming supercritical cores (otherwise uncommonly high neutral den-

sity/inflow speed or extremely low ionization fraction may become necessary). Given

the limits on physical conditions in clumps within GMCs (see discussion in Sec-

tion 2.6.2), prompt supercritical core formation would preferentially occur if the

inflow direction is aligned relatively close to the magnetic field. A study of oblique

shocks using similar analysis to that in the previous section is performed in Ap-

pendix A, where we show that the transient behavior of C shocks is insensitive to

the component of magnetic field parallel to inflow velocity, so that our 1-D model

is qualitatively applicable in cases with more general geometry.
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We also list the value of Γ2tAD
/ΓBE in Table 2.2 for all our numerical models.

In most cases, this ratio is greater than 2, and the average value is ∼ 5.4. This means

that for essentially all reasonable parameters, transient ambipolar diffusion will be

important in enhancing the mass-to-flux ratio for forming cores. Since Γ2tAD
is close

to 1 in many situations, and Γ2tAD
/ΓBE is large, transient ambipolar diffusion during

core formation clearly plays an important role in setting the stage for subsequent

core evolution.

2.7 Summary

Ambipolar diffusion is an important phenomenon in interstellar clouds, which

are strongly magnetized in the sense vA ∼ v0 � cs, but are poorly ionized. Super-

sonic turbulence creates shocks, but ambipolar diffusion between ions and neutrals

spreads these shocks out. The thickness of C-type shocks depends on the inflow

velocity, density, the magnetic field strength, and the ionization fraction. Although

C shocks are normally studied in the steady-state limit, their early transient de-

velopment is quite interesting. During this transient stage, the central compression

of neutrals is strongly enhanced because they are effectively “unmagnetized.” The

time and space scales of these transients make them important to the structure and

dynamics within GMCs. The transient duration is comparable to the drift time

across the C shock thickness (∼ 0.1 − 1 pc), typically ∼ 0.1 − 1 Myr for GMC

conditions.

For star formation, ambipolar diffusion is usually analyzed in the context of
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slow evolution leading to gravitational collapse in magnetically-supported clouds.

However, our results show that since neutrals can stream through field lines in

shocks because of ambipolar diffusion, magnetically-supercritical cores may form due

to C shock transients. During the transient, strong central compression of neutrals

enhances n/B compared to steady-state values. If the compression and duration of

the transient are sufficient, the central post-shock region may become supercritical

and collapse gravitationally to make a prestellar core before it re-expands.

For both the traditional picture of supercritical core formation and the scenario

we propose, the magnetic field remains relatively stationary while the neutrals move

inward, within the high density regions. For the traditional picture, the inward neu-

tral motions are due to small-scale self-gravity within the core. For shock-induced

core formation, the inward motions of neutrals owes to large-scale converging super-

sonic flows within GMCs (which may ultimately be driven by large-scale self-gravity

within the cloud).

Transient ambipolar diffusion is particularly important because without it,

post-shock regions in GMCs typically have very small mass-to-magnetic flux ratios.

Thus, the regions with the shortest gravitational timescales (at high density, due to

shocks) would be prevented from collapsing by magnetic fields, which are also en-

hanced by shocks. Our numerical simulations show a peak in the mass-to-flux ratio,

produced by transient ambipolar diffusion. For strong shocks (v0/vA,0 sufficient)

and low enough ionization fraction, our results suggest that supercritical cores can

be produced.

Based on our simulation results and analyses, our main conclusions are as
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follows:

1. The dominant factors determining the ionization fraction in molecular clouds

are ionizing cosmic rays and gas-phase recombination. We derive steady-

state equations for C shocks including ionization and recombination (Equa-

tions (2.23) and (2.32)). Analyzing the solutions of these equations (Fig. 2.1),

we find that ionization-recombination equilibrium is generally an excellent

approximation, and for this regime is much better than the widely-applied

frozen-in condition. For equilibrium ionization, ρi ∝ ρ
1/2
n (Nakano 1976, 1979)

so that ri = rn
1/2 in our notation, and Equation (2.30) governs steady C

shocks.

2. We have solved the steady C shock ODE over a parameter range of upstream

neutral density n0 = 102−103 cm−3, inflow speed v0 = 2−15 km/s, upstream

magnetic field strength B0 = 2−15 µG, and ionization parameter χi0 = 1−21

(χi0 is defined in Equations (2.28)−(2.29)). Using a multilinear fit, we obtain

an expression for the C shock thickness (Equation (2.48)), in terms of these

parameters. We also obtain an analytic expression for the C shock thickness

(Equation (2.46)), which is in excellent agreement with the numerical result.

The dependence Lshock ∝ (v0vA,0)1/2 / (αρi,0) can be understood based on the

requirement for momentum transfer mediated by ion-neutral collisions. Our re-

sult for the C shock thickness is comparable to previous estimates (e.g. Draine

& McKee 1993), although the parameter dependence differs from the case of

“frozen-in” ions (Wardle 1990; Li et al. 2006).
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3. During the transient stage of C shocks, the central column density of gas with

enhanced mass-to-flux ratio initially grows kinematically (Equation (2.61)),

but this slows after a time comparable to the ion-neutral drift time tAD ≈

Lshock/vdrift across the C shock (Fig. 2.8 and Equation (2.63)). The duration

of the transient from our numerical models (see Table 2.2) is similar to our

analytic estimate, 0.1 − 1 Myr for the regime we have studied (see Equa-

tions (2.65)−(2.66)). Although the present models do not include self-gravity,

the duration of the transient C shock is comparable to the time needed for

prestellar cores to collapse, from both observations (e.g. Ward-Thompson et

al. 2007; Evans et al. 2009) and numerical simulations (e.g. Gong & Ostriker

2011.

4. Our finding of rapid initial enhancement in density and mass-to-flux ratio is

consistent with the results of Kudoh & Basu (2008), for somewhat different pa-

rameter regime. Their simulations included self-gravity, and they also pointed

out that with appropriate parameters, collapsing cores may form due to the

initial compression. Our work helps to explain the physics behind the rapid

collapse they identified, and more generally provides insight into other numer-

ical studies of turbulence-accelerated, magnetically-regulated star formation

(e.g. Li & Nakamura 2004).

5. Over the transient time tAD, a column ∼ 2n0v0tAD of “candidate core” material

accumulates. By taking the ratio with the post-shock magnetic field strength,

we can estimate the mass-to-flux ratio of this dense material. Equation (2.70)
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gives an estimate of the final dimensionless mass-to-flux estimate, Γ, which

is similar to numerical measures of Γfinal (Table 2.2). The relatively high

mass-to-flux ratios we find may explain the weak magnetic fields observed in

dense cores (Troland & Crutcher 2008). Without ambipolar diffusion, the

post-shock mass-to-flux ratio on the scale of a Bonnor-Ebert sphere (ΓBE ≈

1.5cs/ (v0vA,0)1/2) would be much smaller than the critical value. In contrast,

the mass-to-flux ratio in the candidate core material produced within transient

C shocks is several times larger than ΓBE (Table 2.2 and Equation (2.76)).

This large enhancement shows the significance of ambipolar diffusion during

shock-induced core formation.

6. In transient shocks that can produce Γfinal & 1, magnetically supercritical

cores can form and collapse rapidly. Shocks that can reach Γfinal & 1 have

tAD comparable to the gravitational free-fall time of the larger-scale cloud

(Equation (2.72)). Thus, shock-induced ambipolar diffusion is rapid, wherever

it occurs.

7. The most favorable conditions for forming gravitationally bound cores in cold,

turbulent, magnetized clouds are strong shocks (v0 � vA,0) in regions with

low ionization fraction (χi0 ∼ 1). Equation (A.25) in the Appendix gives the

final mass-to-flux ratio for the case of oblique shocks; the result is similar to

that with the same component of the magnetic field parallel to the shock front

(Equation (2.70)). Considering realistic conditions in molecular clouds, con-

verging flows with vinflow ⊥ Bcloud will have relatively low post-shock density
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and post-shock mass-to-flux ratio, and the post-shock gas layers formed will be

unfavorable for star formation. Cases where vinflow and Bcloud are more aligned

are more favorable for reaching Γfinal > 1 (Equation (2.75)). Further obser-

vations of the directions of magnetic fields relative to observed gas filaments

with or without embedded cores will test whether these orientation effects are

indeed important. If orientation of shocks is in fact important in producing

cores that can collapse, this may help explain the observed inefficiency of star

formation in GMCs.

While the present models are extremely useful for explaining the phenomenon

of transient ambipolar diffusion, simulations of more generalized cases are required

to support the scenario of prompt supercritical core formation in shocks. Three-

dimensional simulations of systems with oblique shocks, including self-gravity of

the gas, would be immediately helpful. In addition, a more realistic core-forming

environment can be examined by adding nonlinear turbulence to the inflow velocity

field. Further simulations along these lines, together with observations probing

density and magnetic structure in filaments and cores at different stages, will improve

understanding of what precipitates star formation.
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Chapter 3: Formation of Magnetized Prestellar Cores

with Ambipolar Diffusion and Turbu-

lence

Abstract

We investigate the roles of magnetic fields and ambipolar diffusion during

prestellar core formation in turbulent giant molecular clouds (GMCs), using three-

dimensional numerical simulations. Our simulations focus on the shocked layer

produced by a converging large-scale flow, and survey varying ionization and an-

gle between the upstream flow and magnetic field. We also include ideal mag-

netohydrodynamic (MHD) and hydrodynamic models. From our simulations, we

identify hundreds of self-gravitating cores that form within 1 Myr, with masses

M ∼ 0.04 − 2.5 M� and sizes L ∼ 0.015 − 0.07 pc, consistent with observations

of the peak of the core mass function (CMF). Median values are M = 0.47 M�

and L = 0.03 pc. Core masses and sizes do not depend on either the ionization

or upstream magnetic field direction. In contrast, the mass-to-flux ratio does in-

crease with lower ionization, from twice to four times the critical value. The higher

mass-to-flux ratio for low ionization is the result of enhanced transient ambipolar
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diffusion when the shocked layer first forms. However, ambipolar diffusion is not

necessary to form low-mass supercritical cores. For ideal MHD, we find similar

masses to other cases. These masses are 1 − 2 orders of magnitude lower than the

value Mmag,sph = 0.007 B3/(G3/2ρ2) that defines a magnetically supercritical sphere

under post-shock ambient conditions. This discrepancy is the result of anisotropic

contraction along field lines, which is clearly evident in both ideal MHD and diffusive

simulations. We interpret our numerical findings using a simple scaling argument

which suggests that gravitationally critical core masses will depend on the sound

speed and mean turbulent pressure in a cloud, regardless of magnetic effects.

3.1 Introduction

The formation of stars begins with dense molecular cores (McKee & Ostriker

2007; André et al. 2009). These cores form through the concentration of overdense

regions within turbulent, filamentary GMCs; subsequent core collapse leads to pro-

tostellar (or protobinary)/disk systems. Magnetic fields are important at all scales

during this process (McKee & Ostriker 2007; Crutcher 2012): the cloud-scale mag-

netic field can limit compression in interstellar shocks that create dense clumps

and filaments in which cores form, while the local magnetic field within individual

cores can prevent collapse if it is large enough (Mestel & Spitzer 1956; Strittmatter

1966; Mouschovias & Spitzer 1976), and can help to remove angular momentum

during the disk formation process if cores are successful in collapsing (Mestel 1985;

Mouschovias 1991; Allen et al. 2003; Li et al. 2014). The significance of magnetic
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fields in self-gravitating cores can be quantified by the ratio of mass to magnetic flux;

only if the mass-to-flux ratio exceeds a critical value is gravitational collapse possi-

ble. How the mass-to-flux ratio increases from the strongly-magnetized interstellar

medium to weakly-magnetized stars is a fundamental problem of star formation (Shu

et al. 1987; McKee & Ostriker 2007). Here, as suggested in Chen & Ostriker (2012,

hereafter Chapter 2), we consider core formation in GMCs with highly supersonic

turbulence and non-ideal MHD.

Magnetic fields are coupled only to charged particles, while the gas in GMCs

and their substructures is mostly neutral. The ability of magnetic fields to affect core

and star formation thus depends on the collisional coupling between neutrals and

ions. Ambipolar diffusion is the non-ideal MHD process that allows charged particles

to drift relative to the neutrals, with a drag force proportional to the collision rate

(Spitzer 1956). Ambipolar drift modifies the dynamical effect of magnetic fields on

the gas, and may play a key role in the star formation.

In classical theory, quasi-static ambipolar diffusion is the main mechanism for

prestellar cores to lose magnetic support and reach supercritical mass-to-flux ra-

tios. Through ambipolar drift, the mass within dense cores can be redistributed,

with the neutrals diffusing inward while the magnetic field threading the outer re-

gion is left behind (Mouschovias 1979). However, the quasi-static evolution model

(e.g. Mouschovias & Ciolek 1999; Ciolek & Basu 2001) gives a prestellar core lifetime

considerably longer (up to a factor of 10) than the gravitational free-fall timescale,

tff , while several observational studies have shown that cores only live for (2− 5) tff

(e.g. Ward-Thompson et al. 2007; Evans et al. 2009).
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The failure of the traditional picture to predict core lifetimes indicates that

supercritical cores may not have formed quasi-statically through ambipolar diffusion.

Indeed, it is now generally recognized that, due to pervasive supersonic flows in

GMCs, core formation is not likely to be quasi-static. Realistic star formation

models should take both ambipolar diffusion and large-scale supersonic turbulence

into consideration. This turbulence may accelerate the ambipolar diffusion process

(Heitsch et al. 2004; Li & Nakamura 2004), with an analytic estimate of the enhanced

diffusion rate by a factor of 2−3 for typical conditions in GMCs (Fatuzzo & Adams

2002).

In our previous work (Chapter 2; or see Chen & Ostriker 2012), we investigated

the physical mechanism driving enhanced ambipolar diffusion in one-dimensional

C-type shocks. These shocks pervade GMCs, and are responsible for the initial

compression of gas above ambient densities. We obtained a formula for the C-

shock thickness as a function of density, magnetic field, shock velocity, and ioniza-

tion fraction, and explored the dependence of shock-enhanced ambipolar diffusion

on environment through a parameter study. Most importantly, we identified and

characterized a transient stage of rapid ambipolar diffusion at the onset of shock

compression, for one-dimensional converging flows. For an interval comparable to

the neutral-ion collision time and before the neutral-ion drift reaches equilibrium,

the neutrals do not experience drag forces from the ions. As a consequence, the

initial shock in the neutrals is essentially unmagnetized, and the neutrals can be

very strongly compressed. This transient stage, with timescale ttransient ∼ 1 Myr

(but depending on ionization), can create dense structures with much higher ρ/B
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than upstream gas. Chapter 2 suggested this could help enable supercritical core

formation. In Chapter 2, we also found that (1) the perpendicular component of the

magnetic field is the main determinant of the shock compression, and (2) the per-

pendicular component of the magnetic field B⊥ must be weak (. 5 µG) for transient

ambipolar diffusion in shocks to significantly enhance ρ/B⊥.

Observations of nearby clouds provide direct constraints on the role of mag-

netic fields, as well as other properties of prestellar cores. The typical mean mass-to-

flux ratio of dark cloud cores is Γ ∼ 2 (in units of critical value; see Equation (3.16))

from Zeeman studies (Falgarone et al. 2008; Troland & Crutcher 2008). Due to

the instrumental limitations, magnetic field observations in solar-mass and smaller

scale regions are relatively lacking compared with observations of larger scales (see

review in Crutcher 2012), however. Surveys in nearby clouds have found that prestel-

lar cores have masses between ∼ 0.1 − 10 M� and sizes ∼ 0.01 − 1 pc (Motte et

al. 2001; Ikeda et al. 2009; Rathborne et al. 2009; Kirk et al. 2013). In addition, a

mass-size relation has been proposed as a power law M ∝ Rk, with k = 1.2 − 2.4

dependent on various molecule tracers (e.g. Elmegreen & Falgarone 1996; Curtis &

Richer 2010; Roman-Duval et al. 2010; Kirk et al. 2013).

The magnetic field strength within prestellar cores is important for late evo-

lution during core collapse, since disk formation may be suppressed by magnetic

braking (for recent simulations see Allen et al. 2003; Hennebelle & Fromang 2008;

Mellon & Li 2008; Hennebelle et al. 2011; or see review in Li et al. 2014). However,

many circumstellar disks and planetary systems have been detected (e.g. Haisch

et al. 2001; Maury et al. 2010), suggesting that the magnetic braking “catastro-
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phe” seen in many simulations does not occur in nature. The proposed solutions

include the misalignment between the magnetic and rotation axes (Hennebelle &

Ciardi 2009; Ciardi & Hennebelle 2010; Joos et al. 2012; Krumholz et al. 2013),

turbulent reconnection and other turbulent processes during the rotating collapse

(e.g. Santos-Lima et al. 2012; Seifried et al. 2012, 2013), and non-ideal MHD effects

including ambipolar diffusion, Hall effect, and Ohmic dissipation (e.g. Krasnopolsky

et al. 2010; Li et al. 2011; Machida et al. 2011; Dapp et al. 2012; Tomida et al.

2013). If prestellar cores have sufficiently weak magnetic fields, however, braking

would not be a problem during disk formation (e.g. Mellon & Li 2008; Li et al. 2013,

2014). Therefore, the magnetic field (and mass-to-flux ratio) within a prestellar core

is important not just for the ability of the core to collapse, but also of a disk to form.

Fragmentation of sheetlike magnetized clouds induced by small-amplitude per-

turbation and regulated by ambipolar diffusion has been widely studied (e.g. In-

debetouw & Zweibel 2000; Basu & Ciolek 2004; Boss 2005; Ciolek & Basu 2006;

Basu et al. 2009a). Analogous fully three-dimensional simulations have also been

conducted (e.g. Kudoh et al. 2007). Supercritical cores formed in the flattened

layer have masses ∼ 0.1 − 10 M� (e.g. Indebetouw & Zweibel 2000; Basu et al.

2009a), at timescales ∼ 1 − 10 Myr dependent on the initial mass-to-flux ratio of

the cloud (e.g. Indebetouw & Zweibel 2000; Kudoh et al. 2007; Basu et al. 2009a).

The above cited simulations start from relatively high densities (∼ 104 cm−3; e.g.

Kudoh et al. 2007) and included only the low-amplitude perturbations. Alterna-

tively, Li & Nakamura (2004) and Nakamura & Li (2005) took the formation of

these overdense regions into consideration by including a direct treatment of the

77



large-scale supersonic turbulence. They demonstrated that ambipolar diffusion

can be sped up locally by the supersonic turbulence, forming cores with masses

∼ 0.5 M� and sizes ∼ 0.1 pc within ∼ 2 Myr, while the strong magnetic field keeps

the star formation efficiency low (1 − 10%). Similarly, Basu et al. (2009b) found

that turbulence-accelerated, magnetically-regulated core formation timescales are

∼ 1 Myr in two-dimensional simulations of magnetized sheet-like clouds, with corre-

sponding three-dimensional simulations showing comparable results (Kudoh & Basu

2008, 2011). In addition, Nakamura & Li (2008) measured the core properties in

their three-dimensional simulations to find Lcore ∼ 0.04− 0.14 pc, Γcore ∼ 0.3− 1.5,

and Mcore ∼ 0.15 − 12.5 M�, while Basu et al. (2009b) found a broader core mass

distribution Mcore ∼ 0.04−25 M� in their parameter study using thin-sheet approx-

imation.

Supersonic turbulence within GMCs extends over a wide range of spatial scales

(Mac Low & Klessen 2004; Ballesteros-Paredes et al. 2007). Although turbulence

contains sheared, diverging, and converging regions in all combinations, regions in

which there is a large-scale convergence in the velocity field will strongly compress

gas, creating favorable conditions for the birth of prestellar cores. Gong & Ostriker

(2011) investigated core formation in an idealized model containing both a large-

scale converging flow and multi-scale turbulence. These simulations showed that the

time until the first core collapses depends on inflow Mach number M as tcollapse ∝

M−1/2. With a parameter range M = 1.1 to 9, cores formed in the Gong &

Ostriker (2011) simulations had masses 0.05 − 50 M�. Following similar velocity

power spectrum but including ideal MHD effects, Myers et al. (2014) performed
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simulations with sink particle, radiative transfer, and protostellar outflows to follow

the protostar formation in turbulent massive clump. They demonstrated that the

median stellar mass in the simulated star cluster can be doubled by the magnetic

field, from 0.05 M� (unmagnetized case) to 0.12 M� (star cluster with initial mass-

to-flux ratio Γ = 2). This is qualitatively consistent with the conclusion in Inoue &

Fukui (2013), that the mass of the cores formed in the post-shock regions created by

cloud-cloud collision is positively related to (and dominated by) the strong magnetic

field in the shocked layer. Note that, though the main focus of Inoue & Fukui (2013)

is the cloud’s ability to form massive cores (∼ 20−200 M� in their simulations), the

idea of cloud-cloud collision is very similar to the converging flows setup adopted in

Gong & Ostriker (2011) and this study.

In this chapter, we combine the methods of Chapter 2 for modeling ambipolar

diffusion with the methods of Gong & Ostriker (2011) for studying self-gravitating

structure formation in turbulent converging flows. Our numerical parameter study

focuses on the level of ambipolar diffusion (controlled by the ionization fraction of

the cloud) and the obliquity of the shock (controlled by the angle between the mag-

netic field and the upstream flow). We show that filamentary structures similar to

those seen in observations (see review in André et al. 2014) develop within shocked

gas layers, and that cores form within these filaments. We measure core properties

to test their dependence on these parameters. As we shall show, our models demon-

strate that low-mass supercritical cores can form for all magnetic obliquities and

all levels of ionization, including ideal MHD. However, our models also show that

ambipolar diffusion affects the magnetization of dynamically-formed cores.
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The outline of this chapter is as follows. We provide a theoretical analysis

of oblique MHD shocks in Section 3.2, pointing out that a quasi-hydrodynamic

compression ratio (which is ∼ 5 times stronger than in fast MHD shocks for the

parameters we study) can exist when the converging flow is nearly parallel to the

magnetic field. We also show that shock compression cannot increase the mass-to-

flux ratio except in the nearly-parallel case or with ambipolar diffusion. Section 3.3

describes methods used in our numerical simulations and data analysis, including

our model parameter set and method for measuring magnetic flux within cores.

The evolution of gas structure (including development of filaments) and magnetic

fields for varying parameters is compared in Section 3.4. In Section 3.5 we provide

quantitative results for masses, sizes, magnetizations, and other physical properties

of the bound cores identified from our simulations. Implications of these results for

core formation is discussed in Section 3.6, where we argue that the similarity of core

masses and sizes among models with different magnetizations and ionizations can

be explained by anisotropic condensation preferentially along the magnetic field.

Section 3.7 summarizes our conclusions.

3.2 Theoretical Analysis

3.2.1 Oblique MHD Shock

Chapter 2 describes a one-dimensional simplified MHD shock system with

velocity and magnetic field perpendicular to each other, including a short discussion

of oblique shocks. Here we review the oblique shock equations and write them in a
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Figure 3.1: Multiple solutions for Equation (3.3) at varying cos θ = B̂ · v̂
with the following parameters: M = 10, B0 = 10 µG, ρ0 = µn·1000 cm−3

where µn = 2.3 mH. Top: Compression ratio for neutrals. Equa-
tion (3.5) works as a good analytical approximation to rf,exp(θ), 1. Mid-
dle: Compression ratio for the perpendicular component (with respect
to the inflow direction) of the magnetic field. The analytical approxima-
tion rB,app(θ) is calculated from Equation (3.4), using Equation (3.5) for
rf (θ). Bottom: The corresponding post-shock magnetic field component
that is perpendicular to the inflow (parallel to the shock front).
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more general form to give detailed jump conditions.

We shall consider a plane-parallel shock with uniform pre-shock neutral density

ρ0 and ionization-recombination equilibrium everywhere. The shock front is in the

x-y plane, the upstream flow is along the z-direction (v0 = v0ẑ), and the upstream

magnetic field is in the x-z plane, at an angle θ to the inflow (B0 = B0 sin θx̂ +

B0 cos θẑ) such that Bx = B0 sin θ is the upstream component perpendicular to the

flow. The parameters M and β (upstream value of the Mach number and plasma

parameter) defined in Chapter 2 therefore become

M≡Mz =
v0

cs
,

1

β0

≡ B2
0

8πρ0c2
s

=
1

βx

1

sin2 θ
. (3.1)

The jump conditions of MHD shocks are described by compression ratios of density

and magnetic field:

rf ≡
ρn, downstream

ρn, upstream

, rB⊥ ≡
B⊥, downstream

B⊥, upstream

. (3.2)

From Equations (A.14) and (A.18) in Appendix A, we have

sin2 θrf
2

β0

(
1− 2 cos2 θ

β0M2

)2

=

(
M2 + 1 +

sin2 θ

β0

− M
2

rf
− rf

)(
1− 2rf cos2 θ

β0M2

)2

,

(3.3)

which can be solved numerically to obtain explicit solution(s) rf,exp(θ). The com-

pression ratio for the magnetic field perpendicular to the inflow is

rB⊥(θ) = rf (θ)
1− 2 cos2 θ

β0M2

1− 2rf (θ) cos2 θ

β0M2

. (3.4)

Equation (A.21) of Appendix A gives an analytical approximation to rf (θ):

rf,app(θ) =

√
β0M
sin θ

[
2 sin θ√

β0M tan2 θ
+

√
β0

2M sin θ
+ 1

]−1

. (3.5)
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Since Equation (3.3) is a quartic function of θ, there are four possible roots of rf

for each angle, and rf (θ) = const. = 1 (no-shock solution) is always a solution.

When θ is large, Equation (3.3) has one simple root (rf = 1) and a multiple root

with multiplicity = 3. When θ drops below a critical value, θcrit, Equation (3.3)

has four simple roots, which give us four different values of rB⊥ . Figure 3.1 shows

the three explicit solutions for rf and rB⊥ (rf,exp(θ) and rB,exp(θ)) as well as the

approximations (rf,app(θ) and rB,app(θ)) that employ Equation (3.5).

The fact that there are multiple solutions for post-shock properties is the

consequence of the non-unique Riemann problem in ideal MHD (see discussions in

e.g. Torrilhon 2003; Delmont & Keppens 2011; Takahashi & Yamada 2013), and

whether all solutions are physically real is still controversial. The first set of so-

lutions rf,exp(θ), 1 and rB,exp(θ), 1 shown in Figure 3.1 gives positive rf and rB⊥ ,

classified as fast MHD shocks (Shu 1992; Draine & McKee 1993), and is the princi-

pal oblique shock solution referred to in this contribution3. The other two solutions

for post-shock magnetic field, rB,exp(θ), 2 and rB,exp(θ), 3, both become negative

when θ < θcrit, indicating that the tangential component of the magnetic field to

the shock plane is reversed in the post-shock region. These two solutions are com-

monly specified as intermediate shocks (e.g. Wu 1987; Karimabadi 1995; Inoue &

Inutsuka 2007). Among these two field-reversal solutions, we notice that rf,exp(θ), 2

approaches the hydrodynamic jump condition (rf,hydro = M2) when θ → 0, and

rB,exp(θ), 2 is smaller in magnitude than other solutions when θ < θcrit. Thus, we

classify this set of solutions rf,exp(θ), 2 and rB,exp(θ), 2 as the quasi-hydrodynamic

3We use Equation (3.5) as analytical approximation for rf (θ), if necessary.
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shock. This quasi-hydrodynamic solution can create gas compression much stronger

than the regularly-applied fast shock condition, and may be the reason that when

θ < θcrit, even ideal MHD simulations can generate shocked layers with relatively

high mass-to-flux ratio (see Sections 3.4 and 3.5 for more details).

The definition of θcrit can be derived from Equation (3.4), which turns negative

when 1− 2 cos2 θ
β0M2 > 0 and 1− 2rf (θ) cos2 θ

β0M2 < 0:

cos2 θ > cos2 θcrit =
β0M2

2rf (θcrit)
. (3.6)

Using Equation (3.5) and considering only the terms ∼M, this becomes

cos2 θcrit

sin θcrit

≈
√
β0M
2

, (3.7)

or

sin2 θcrit +

√
β0M
2

sin θcrit − 1 = 0. (3.8)

Assuming θcrit � 1, this gives

θcrit ∼
2√
β0M

=
√

2
vA,0

v0

, (3.9)

where vA,0 ≡ B0/
√

4πρ0 is the Alfvén speed in the cloud. Therefore, the criterion

to have multiple solutions, θ < θcrit, is approximately equivalent to

v⊥ = v0 sin θ . v0 ·
√

2
vA,0

v0

∼ vA,0 (3.10)

where v⊥ is the component of the inflow perpendicular to the magnetic field. Though

Equation (3.9) only provides a qualitative approximation4 for θcrit, Equation (3.10)

suggests that when v⊥/vA,0 is sufficiently small, high-compression quasi-hydrodynamic

shocks are possible.

4For parameters used in Figure 3.1, Equation (3.9) gives θcrit = 18◦, approximately 2 times
larger than the exact solution.
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3.2.2 Gravitational Critical Scales in Spherical Symmetry

For a core to collapse gravitationally, its self-gravity must overcome both the

thermal and magnetic energy. For a given ambient density ρ ≡ µnn and assuming

spherical symmetry, the mass necessary for gravity to exceed the thermal pressure

support (with edge pressure ρcs
2) is the mass of the critical Bonnor-Ebert sphere

(see e.g. Gong & Ostriker 2009):

Mth,sph = 4.18
cs

3√
4πG3ρ

= 4.4 M�

(
T

10 K

)3/2 ( n

1000 cm−3

)−1/2

(3.11)

(see Section 3.3.2 for discussion about the value of µn). The corresponding length

scale at the original ambient density is

Rth,sph ≡
(

3Mth,sph

4πρ

)1/3

= 2.3
cs√

4πGρ
= 0.26 pc

(
T

10 K

)1/2 ( n

1000 cm−3

)−1/2

,

(3.12)

although the radius of a Bonnor-Ebert sphere with mass given by Equation (3.11)

would be smaller than Equation (3.12) by 25%, due to internal stratification.

In a magnetized medium with magnetic field B, the ratio of mass to magnetic

flux for a region to be magnetically supercritical5 can be written as

M

ΦB

∣∣∣∣
mag,crit

≡ 1

2π
√
G
. (3.13)

With M = 4πR3ρ/3 and ΦB = πR2B for a spherical volume at ambient density ρ,

this gives

Mmag,sph =
9

128π2G3/2

B3

ρ2
= 14 M�

(
B

10 µG

)3 ( n

1000 cm−3

)−2

. (3.14)

5See Section 3.3.3 for more detailed discussion about the critical value of M/ΦB .
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and

Rmag,sph =
3

8π
√
G

B

ρ
= 0.4 pc

(
B

10 µG

)( n

1000 cm−3

)−1

, (3.15)

A spherical region must have M > Mth,sph as well as M > Mmag,sph to be able

to collapse. In the cloud environment (the pre-shock region), B ∼ 10 µG and

n ∼ 1000 cm−3 are typical. Comparing Equation (3.11) and (3.14), the magnetic

condition is more strict than the thermal condition; if cores formed from a spherical

volume, the mass would have to exceed ∼ 10 M� in order to collapse. This value

is much larger than the typical core mass (∼ 1 M�) identified in observations. This

discrepancy is the reason why traditionally ambipolar diffusion is invoked to explain

how low-mass cores become supercritical.

We can examine the ability for magnetically supercritical cores to form isotrop-

ically in a post-shock layer. The normalized mass-to-flux ratio

Γ ≡ M

ΦB

· 2π
√
G (3.16)

of a spherical volume with density ρ, magnetic field B, and mass M is

Γsph =
8π
√
G

3

(
3

4π

)1/3

M1/3ρ2/3B−1

= 0.4

(
M

M�

)1/3 ( n

1000 cm−3

)2/3
(

B

10 µG

)−1

. (3.17)

Or, with Σ = 4Rρ/3 ≡ µnNn for a sphere, we have

Γsph = 2π
√
G · Σ

B
= 0.6

(
Nn

1021 cm−2

)(
B

10 µG

)−1

. (3.18)

Considering the cloud parameters from Figure 3.1 (M = 10, B0 = 10 µG, n0 =

1000 cm−3), the post-shock density and magnetic field are approximately nps ∼
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104 cm−3 and Bps ∼ 50 µG when θ > θcrit. A solar-mass spherical region in this

shocked layer will have Γps,sph ≈ 0.37; spherical contraction induced by gravity

would be suppressed by magnetic fields. Thus, typical post-shock conditions are

unfavorable for forming low-mass cores by spherical contraction in ideal MHD.

Furthermore, using rf and rB⊥ defined in Section 3.2.1, we can compare Γps,sph

and the pre-shock value Γpre,sph for spherical post-shock and pre-shock regions:

Γps,sph

Γpre,sph

=

(
Mps

Mpre

)1/3(
ρps

ρpre

)2/3(
Bps

Bpre

)−1

≈
(
Mps

Mpre

)1/3

rf
2/3rB⊥

−1. (3.19)

Considering volumes containing similar mass, Mps ∼ Mpre, the ratio between the

post-shock and pre-shock Γsph is smaller than unity when θ > θcrit, because Equa-

tion (3.4) shows that rB⊥ is larger than rf . Thus, provided θ > θcrit, the post-shock

layer will actually have stronger magnetic support than the pre-shock region for a

given spherical mass.

Based on the above considerations, formation of low-mass supercritical cores

appears difficult in ideal MHD. Adapting classical ideas, one might imagine that

low-mass subcritical cores form quasi-statically within the post-shock layer, then

gradually lose magnetic support via ambipolar diffusion to become magnetically

supercritical in a timescale ∼ 1 − 10 Myr. A process of this kind would, however,

give prestellar core lifetimes longer than observed, and most cores would have Γ < 1

(inconsistent with observations).

Two alternative scenarios could lead to supercritical core formation in a tur-

bulent magnetized medium. First, the dynamic effects during a turbulence-induced

shock (including rapid, transient ambipolar diffusion and the quasi-hydrodynamic
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compression when θ < θcrit) may increase the compression ratio of neutrals, cre-

ating rf � rB⊥ and Γps,sph > 1, enabling low-mass supercritical cores to form.

Second, even if the post-shock region is strongly magnetized, mass can accumulate

through anisotropic condensation along the magnetic field until both the thermal

and magnetic criteria are simultaneously satisfied. In this study, we carefully inves-

tigate these two scenarios, showing that both effects contribute to the formation of

low-mass supercritical cores within timescale . 0.6 Myr, regardless of ionization or

magnetic obliquity.

3.3 Numerical Methods and Models

3.3.1 Simulation Setup and Equations

To examine core formation in shocked layers of partially-ionized gas, we employ

a three-dimensional convergent flow model with ambipolar diffusion, self-gravity,

and a perturbed turbulent velocity field. We conducted our numerical simulations

using the Athena MHD code (Stone et al. 2008) with Roe’s Riemann solver. To

avoid negative densities if the second-order solution fails, we instead use first-order

fluxes for bad zones. The self-gravity of the domain, with an open boundary in

one direction and periodic boundaries in the other two, is calculated using the fast

Fourier transformation (FFT) method developed by Koyama & Ostriker (2009).

Ambipolar diffusion is treated in the strong coupling approximation, as described

in Bai & Stone (2011), with super time-stepping (Choi et al. 2009) to accelerate the

evolution.
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The equations we solve are:

∂ρn
∂t

+∇ · (ρnv) = 0, (3.20)

∂ρnv

∂t
+∇ ·

(
ρnvv − BB

4π

)
+∇P ∗ = 0, (3.21)

∂B

∂t
+∇× (B× v) = ∇×

[
((∇×B)×B)×B

4πρiρnα

]
, (3.22)

where P ∗ = P + B2/(8π). For simplicity, we adopt an isothermal equation of state

P = ρcs
2. The numerical setup for inflow and turbulence is similar to that adopted

by Gong & Ostriker (2011). For both the whole simulation box initially and the

inflowing gas subsequently, we apply perturbations following a Gaussian random

distribution with a Fourier power spectrum as described in Gong & Ostriker (2011).

The scaling law for supersonic turbulence in GMCs obeys the relation

δv1D(`)

σv,cloud

=

(
`

2Rcloud

)1/2

, (3.23)

where δv1D(`) represents the one-dimensional velocity dispersion at scale `, and

σv,cloud is the cloud-scale one-dimensional velocity dispersion. In terms of the virial

parameter αvir ≡ 5σv
2Rcloud/(GMcloud) with Mcloud ≡ 4πρ0Rcloud

3/3, and for the in-

flow Mach numberM comparable to σv/cs of the whole cloud, the three-dimensional

velocity dispersion δv =
√

3 · δv1D at the scale of the simulation box would be

δv(Lbox) =
√

3

(
πGαvir

15

)1/4

M1/2cs
1/2ρ0

1/4Lbox
1/2. (3.24)

To emphasize the influence of the cloud magnetization instead of the perturba-

tion field, our simulations are conducted with 10% of the value δv(Lbox), or δv =

0.14 km/s with αvir = 2. With larger δv(Lbox), simulations can still form cores,
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Figure 3.2: The schematic configuration for our simulations.

but because non-self-gravitating clumps can easily be destroyed by strong velocity

perturbations and no core can form before the turbulent energy dissipates, it takes

much longer, with corresponding higher computational expense.

3.3.2 Model Parameters

A schematic showing our model set-up is shown in Figure 3.2. Our simulation

box is 1 pc on each side and represents a region within a GMC where a large-

scale supersonic converging flow with velocity v0 and −v0 (i.e. in the center-of-

momentum frame) collides. The z-direction is the large-scale inflow direction, and

we adopt periodic boundary conditions in the x- and y-directions. We initialize the

background magnetic field in the cloud, B0, in the x-z plane, with an angle θ with

respect to the convergent flow. For simplicity, we treat the gas as isothermal at

temperature T = 10 K, such that the sound speed is cs = 0.2 km/s. The neutral

density within the cloud, ρ0, is set to be uniform in the initial conditions and in the
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upstream converging flow.

It has been shown that ionization-recombination equilibrium generally pro-

vides a good approximation to the ionization fraction within GMCs for the regime

under investigation (Chapter 2). Thus, the number density of ions in our model can

be written as

ni =
ρi
µi

= 10−6χi0

(
ρn
µn

)1/2

, (3.25)

with

χi0 ≡ 106 ×

√
ζCR

αgas

(3.26)

determined by the cosmic-ray ionization rate (ζCR) and the gas-phase recombination

rate (αgas). The ionization coefficient, χi0, has values ∼ 1 − 20 (McKee et al.,

2010), and is the model parameter that controls ambipolar diffusion effects in our

simulations, following Chapter 2. We use typical values of the mean neutral and ion

molecular weight µn and µi of 2.3mH and 30mH, respectively, which give the collision

coefficient (see Equation (3.22)) between neutrals and ions α = 3.7×1013 cm3s−1g−1.

The physical parameters defining each model are ρ0, v0 = |v0|, B0 = |B0|, θ,

and χi0. We set the upstream neutral number density to be n0 = ρ0/µn = 1000 cm−3

in all simulations, consistent with typical mean molecular densities within GMCs6

(e.g. Larson 1981; Williams et al. 2000; Bot et al. 2007; Bolatto et al. 2008). We

choose the upstream B0 = 10 µG as typical of GMC values (Goodman et al. 1989;

Crutcher et al. 1993; Heiles & Crutcher 2005; Heiles & Troland 2005) for all our

simulations. To keep the total number of simulations practical, we set the large-

6Note that the upstream neutral number density we adopted here is n0 = nneutral,0 ≡ nH2 +
nHe = 0.6nH = 1.2nH2 , with GMC observations giving nH2 ∼ 102 − 103 cm−3. Also note that
µn ≡ ρn/nn = (ρH2 +ρHe)/(nH2 +nHe) = (0.5nH×2mH +0.1nH×4mH)/(0.5nH +0.1nH) = 2.3mH.
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scale inflow Mach number toM = 10 for all models. Exploration of the dependence

on Mach number of ambipolar diffusion and of core formation has been studied in

previous simulations (Chapter 2 and Gong & Ostriker (2011), respectively). For our

parameter survey, we choose θ = 5, 20, and 45 degrees to represent small (θ < θcrit),

intermediate (θ > θcrit), and large (θ � θcrit) angles between the inflow velocity and

cloud magnetic field. For each θ, we conduct simulations with χi0 = 3, 10, and ideal

MHD to cover situations with strong, weak, and no ambipolar diffusion. We also

run corresponding hydrodynamic simulations with same ρ0 and v0 for comparison.

A full list of models is contained in Table 3.1. Table 3.1 also lists the steady-

state post-shock properties, as described in Section 3.2.1. Solutions for all three

types of shocks are listed for the θ = 5◦ (A5) case. For the θ = 20◦ and θ =

45◦ cases, there is only one shock solution. Also included in Table 3.1 are the

nominal values of critical mass and radius for spherically symmetric volumes to

be self-gravitating under these steady-state post-shock condition, as discussed in

Section 3.2.2 (see Equations (3.11), (3.12), (3.14) and (3.15)). Both “thermal”

and “magnetic” critical masses are listed. In most models, Mmag,sph > Mth,sph

and Mmag,sph � M�, indicating the post-shock regions are dominated by magnetic

support, and either ambipolar diffusion or anisotropic condensation would be needed

to form low-mass supercritical cores, as discussed in Section 3.2.2. On the other

hand, the quasi-hydrodynamic shock solution for models with θ < θcrit (i.e. A5

cases) has Mmag,sph < Mth,sph < M� downstream. If this shock solution could be

sustained, then in principle low-mass supercritical cores could form by spherical

condensation of post-shock gas.
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In order to collect sufficient statistical information on the core properties from

simulations, we repeat each parameter set 6 times with different random realizations

of the same perturbation power spectrum for the turbulence. The resolution is

2563 for all simulations such that ∆x ≈ 0.004 pc, or ∼ 800 AU. We tested this

setup with two times of this resolution (∆x ≈ 0.002 pc), and the resulting dense

structures are highly similar. Though the individual core properties vary around

±50%, the median values (which are more important in our statistical study) only

change within ±10 − 30%. Thus, our simulations with ∆x ≈ 0.004 pc are well-

resolved for investigations of core properties.

3.3.3 Analysis of Core Properties

To measure the physical properties of the cores formed in our simulations,

we apply the GRID core-finding method developed by Gong & Ostriker (2011),

which uses gravitational potential isosurfaces to identify cores. In this approach, the

largest closed potential contour around a single local minimum of the gravitational

potential defines the material eligible to be part of a core. We define the bound

core region as all the material within the largest closed contour that has the sum

of gravitational, magnetic, and thermal energy negative.7 All of our cores are, by

definition, self-gravitating.

The essential quantity to measure the significance of magnetic fields in self-

7The gravitational, thermal, and magnetic energy density in each zone are ug = −ρ∆Φg,
uth = 3nkT/2, and uB = B2/8π, respectively, where ∆Φg is the difference in gravitational potential
relative to the largest closed contour, and n is the neutral number density defined as n = ρ/µn.
The self-gravitating core consists of all zones with ug + uth + uB < 0.
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gravitating cores is the ratio of mass to magnetic flux (Mestel & Spitzer 1956;

Mouschovias & Spitzer 1976). From Gauss’s law the net flux of the magnetic field

through a closed surface is always zero. As a result, to measure the magnetic flux

within a core, we need firstly to define a cross-section of the core, and then measure

the net magnetic flux through the surface of the core defined by this cross-section

(which is the same as the flux through the cross-section itself).

To define the cross-section through a core, we use the plane perpendicular to

the average magnetic field that also includes the minimum of the core’s gravitational

potential. This choice ensures that we measure the magnetic flux through the part

of the core with strongest gravity. After defining this plane, we separate the core

into an upper half and a lower half, and measure the magnetic flux ΦB through

one of the halves. In practice, we compute this by firstly finding all zones that

contain at least one face which is on the core surface, and assign normal vectors n̂

(pointing outwards) to those faces. From these, we select only those in the upper

“hemisphere” of the core. After we have a complete set of those grid-faces that are

on the upper half of the core surface, we sum up their B · n̂ to get the net magnetic

flux of the core. This method is tested in spherical and rectangular ‘cores’ with

magnetic fields in arbitrary directions. Note that this method works best when the

core is approximately spherical (without corners).

After we have the measurement of magnetic flux ΦB, we can calculate the mass-

to-flux ratio of the core, M/ΦB. This determines whether the magnetic field can

support a cloud against its own self-gravity. The critical value of M/ΦB differs with

the geometry of the cloud, but the value varies only within ∼ 10% (e.g. Mouschovias
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& Spitzer 1976; Nakano & Nakamura 1978; Tomisaka et al. 1988, or see review in

McKee & Ostriker 2007). We therefore choose the commonly used value (2π
√
G)−1

(e.g. Kudoh & Basu 2011; Vázquez-Semadeni et al. 2011; Chapter 2) as a reference

value, and define the normalized mass-to-flux ratio as Γ ≡ 2π
√
G · M/ΦB (see

Equation (3.16)). For a prestellar core with Γ > 1, the gravitational force exceeds

the magnetic support and the core is magnetically supercritical. A subcritical core

has Γ < 1 and is ineligible for wholesale collapse unless magnetic fields diffuse out.

3.4 Sample Evolution of Structure

Figure 3.3 shows typical evolution of column density and magnetic field8 in

our numerical simulations. The simulations start with uniform density and constant

magnetic field. When compressed by the supersonic converging flows, the magnetic

fields perpendicular to the converging flows are amplified in the post-shock dense

region. Seeded by turbulent velocity perturbations, dense structures form within

the compressed layer.

The post-shock structure can be very different for different model parameters.

Figure 3.4 and 3.5 provide examples with weak (small θ and/or small χi0) and strong

(large θ and/or large χi0) magnetic effects in the shocked gas. The thickness of the

post-shock layer is very different for these two extreme cases. Especially at early

8The magnetic field lines shown in left panels of Figure 3.3, 3.4, and 3.5 are contours of the
absolute value of the magnetic vector potential Ψ in the direction perpendicular to the plane
plotted. By definition, B = ∇ × Ψ, and therefore Bx = dΨz/dy, By = −dΨz/dx. If we start
with Ψz = 0 in the lower-left corner (x = y = 0), we can compute Ψz(0, y) =

∫ y

0
Bx(0, y′)dy′, and

Ψz(x, y) = Ψz(0, y) −
∫ x

0
By(x′, y)dx′. After we have Ψz everywhere, we make contours to show

the magnetic field structures, with fixed spacing so δΨ =constant.
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Figure 3.3: An example of the evolution of the column density (col-
ormap) and magnetic field structures (pink lines on left and segments on
right) projected to the x-z plane (left panel) and x-y plane (right panel),
for model A20X10. Magnetic fields (integrated over the whole box) bend
through the shocked gas layer, as seen on left. Right panel shows x-y
projections (with segment lengths indicating strength) of the magnetic
field, which points primarily from left to right. The box size is (1pc)3.
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Figure 3.4: Similar to Figure 3.3, but for model A5X3 with upstream
magnetic field nearly parallel to the inflow (θ = 5◦), and low ionization
fraction (χi0 = 3).
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Figure 3.5: Similar to Figure 3.3, but for model A45ID, with 45◦ angle
between upstream v and B, and ideal MHD.
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time (0.3 Myr), structure is also different in these two cases, with stronger magnetic

effects producing filaments perpendicular to the magnetic field. The timescale at

which compressed layers become gravitationally unstable and start to form cores

also differ. Note that in the cases with ambipolar diffusion (Figure 3.3 and 3.4), a

highly-compressed layer forms in the center of the post-shock region. Quantitatively,

we measured the average density within the z = 0.5 pc ±∆x layer at t = 0.3 Myr

for model A5X3, and found this overdense layer has n ≈ 1.4 × 105 cm−3, which

exceeds the steady-MHD shock jump condition predicted in Table 3.1 even for the

quasi-hydrodynamic solution. This is a direct evidence of the existence of transient

stage of ambipolar diffusion (Chapter 2).

Table 3.2 lists the physical properties of the post-shock layers measured at

t = 0.2 Myr as well as the corresponding values of the critical mass and size of a

spherical region under these ambient conditions. Generally, models with upstream

magnetic field almost parallel to the inflow (A5 models) have weaker post-shock

magnetic field than that for a fast shock (see Table 3.1) even with ideal MHD

(A5ID), indicating that the quasi-hydrodynamic shock mode discussed in Section 3.2

plays a role. Also, models with stronger transient ambipolar diffusion effect (smaller

χi0) have higher density and weaker magnetic field in the post-shock layer, and thus

it would be easier to form self-gravitating cores promptly (small Mth,sph and Mmag,sph

values).

The difference in post-shock magnetic field among models with same upstream

magnetic obliquity but various ionization levels can be explained by varying transient

ambipolar diffusion. From Equation (2.64) in Chapter 2, the timescale before the
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shock profile transitions to that of a steady C-shock is

ttransient ≈
2rf

1/2

αρi,0
= 0.34 Myr

( rf
10

)1/2 (χi0
10

)−1 ( n0

1000 cm−3

)−1/2

. (3.27)

Therefore, while the late-time (ideal MHD) value of rf is the same for models with

same θ value, it will take 3.33 times longer for the X3 models to reach steady-state

post-shock values than the X10 models. Correspondingly, the compression rate of

the magnetic field in X3 models is 0.3 times slower than in X10 models, and thus

the magnetic field within the post-shock layer is weaker in X3 models than in X10

or ideal MHD models at a given time. This tendency is clearly shown in Table 3.2;

note that since rf might be larger because of the transient ambipolar diffusion effect,

the difference in post-shock magnetic field is further enhanced (smaller χi0 causes

higher rf , resulting in longer ttransient and weaker Bps).

Figure 3.6 compares the density structures formed under different physical

conditions, at the timescale when nmax ≥ 107 cm−3 in each simulation. With low

ionization (strong ambipolar diffusion), the clumps are relatively more isolated and

randomly distributed, following the initial perturbation pattern. Models with high

ionization (weak or no ambipolar diffusion) show well-ordered large-scale filament

structures. Structures are also at larger scales for models with larger magnetic field

parallel to the shock front (large θ). The filaments are around 0.05 pc wide, con-

sistent with the observed characteristic width of filaments (∼ 0.1 pc, Arzoumanian

et al. 2011; or see review in André et al. 2014). Note that the filaments are not

necessary perpendicular to the magnetic field as indicated in Inoue & Fukui (2013)

because the initial velocity field in our simulations is not homogeneous.
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Figure 3.6: The “spectrum” of column density (color map) and magnetic
field (pink segments) structure in the shocked gas layer for varying mag-
netic field parallel to the shock and ionization, at the time that maximum
density reaches 107 cm−3. Model parameters are given in Table 3.1.

102



Table 3.2: Summary of the post-shock properties measured from simulations.

Model

post-shock properties§ gravitational critical scales

nps Bps
βps

Mth,sph Rth,sph Mmag,sph Rmag,sph

(104 cm−3) (µG) (M�) (pc) (M�) (pc)

HD 5.5 − − 0.60 0.04 − −

A5X3 5.3 26 3.0 0.61 0.04 0.09 0.02
A5X10 5.3 40 1.3 0.60 0.04 0.31 0.03
A5ID 2.4 47 0.43 0.90 0.05 2.4 0.08

A20X3 5.3 45 1.02 0.61 0.04 0.45 0.03
A20X10 3.6 68 0.30 0.74 0.04 3.4 0.07
A20ID 1.4 78 0.09 1.2 0.07 33 0.22

A45X3 4.2 60 0.45 0.69 0.04 1.7 0.06
A45X10 2.7 86 0.14 0.85 0.05 12 0.13
A45ID 0.91 96 0.04 1.5 0.09 151 0.41

§Post-shock properties are measured at t = 0.2 Myr in each model, averaged over
the whole post-shock layer. The timescale is chosen so the downstream properties are
measured before the post-shock layer becomes strongly self-gravitating.

In addition, models with moderately strong magnetization have a network of

small sub-filaments aligned parallel to the magnetic field (A20X10, A20ID, A45X10,

and A45ID models in Figure 3.6). These features are very similar to the striations

identified in 12CO emission map of the Taurus molecular cloud (Goldsmith et al.

2008), subsequently observed in other clouds (Sugitani et al. 2011; Hennemann et

al. 2012; Palmeirim et al. 2013; or see review in André et al. 2014). This filament

pattern is likely due to the anisotropy of turbulence at small scales in a magnetized

medium (Goldreich & Sridhar 1995), which tends to have more power for wavenum-

bers k̂ ⊥ B. This leads to the formation of threads/striations/sub-filaments with

small separations aligned parallel to the magnetic field in molecular clouds if the

magnetic field is sufficiently strong. Vestuto et al. (2003) and Heyer et al. (2008)
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found that in order to have significant turbulent anisotropy, the plasma β must sat-

isfy β . 0.2, which agrees with our results for when these striations are seen (see

βps values listed in Table 3.2).

3.5 Survey of Core Properties

We define the timescale used in Figure 3.6 (at which nmax ≥ 107 cm−3) as

the moment tcollapse when the most evolved core starts to collapse, and measure

the physical properties of all cores formed at this time. We identified hundreds of

gravitationally bound cores from our 60 simulations (6 runs for each parameter set),

with examples illustrated in Figure 3.7. The simulation results are summarized in

Table 3.3, including the following core properties: mean density n, size L, mass M ,

mean magnetic field B, and normalized mass-to-flux ratio Γ. To ensure the measured

core properties are only for resolved structures, we omit cores with less than 27 zones,

or Lcore smaller than ∼ 0.015 pc. Table 3.3 also shows for each parameter set the

mean value of time tcollapse (at which the core properties are measured). These cores

have masses, sizes, and mass-to-flux ratios similar to observed values (e.g. Falgarone

et al. 2008; Troland & Crutcher 2008; Rathborne et al. 2009; Kirk et al. 2013).

Our results show that low-mass supercritical cores form at t < 1 Myr in

all models: with converging velocity either nearly aligned with the magnetic field

(small θ) or highly oblique (large θ), and for all levels of ambipolar diffusion. We

also calculated the core formation efficiency (CFE) from our simulations:

CFE ≡ mass in cores

mass of the shocked layer
=

∑
i

Mcore,i

2ρ0v0tcollapse · LxLy
≈ 3.1%. (3.28)

104



X3 X10 ID
A

5
A

20
A

45

0.57 Myr 0.60 Myr 0.55 Myr

0.65 Myr0.58 Myr 0.62 Myr

0.92 Myr0.60 Myr 0.64 Myr

y 
[p

c]

x [pc]

y 
[p

c]
y 

[p
c]

x [pc] x [pc]

Figure 3.7: An illustration, using one simulation for each set of model
parameters, of the cores identified at the time tcollapse when the max-
imum density reaches 107 cm−3. Candidate core regions are identified
using the modified GRID core-finding method (yellow contours), and we
only consider the gravitationally bound sub-regions (red contours). The
white dashed-line box in A20ID model is the zoomed-in region shown
in Figure 3.13 (note that the simulation box is periodic in x- and y-
directions).
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1,045 -1.308201 151 -1.588247 296 -1.490809 221 -1.533109 131 -1.608816 812 -1.344721 111 -1.632798 124 -1.616765 78 -1.683875 605 -1.387321

304 -1.486948 34 -1.804080 66 -1.708058 34 -1.804080 470 -1.423873 521 -1.408960 32 -1.812856 317 -1.480886 38 -1.787978 2,293 -1.194438
34 -1.804080 202 -1.546122 1,254 -1.281807 48 -1.754159 60 -1.721856 37 -1.791839 199 -1.548288 184 -1.559633 163 -1.577177 316 -1.481344

732 -1.359736 609 -1.386367 78 -1.683875 32 -1.812856 542 -1.403240 245 -1.518184 354 -1.464905 75 -1.689552 243 -1.519371 128 -1.612169
3,593 -1.129420 1,015 -1.312417 135 -1.604461 32 -1.812856 285 -1.496291 142 -1.597143 70 -1.699540 1,543 -1.251784 301 -1.488384 788 -1.349064

32 -1.812856 29 -1.827107 117 -1.625177 58 -1.726763 240 -1.521169 32 -1.812856 30 -1.822199 627 -1.382150 313 -1.482725 184 -1.559633
380 -1.454645 34 -1.804080 280 -1.498853 220 -1.533765 71 -1.697487 30 -1.822199 44 -1.766755 120 -1.621512 151 -1.588247 48 -1.754159
711 -1.363950 114 -1.628938 41 -1.776978 217 -1.535753 2,300 -1.193997 236 -1.523602 545 -1.402441 298 -1.489834 33 -1.808401 621 -1.383542
142 -1.597143 373 -1.457336 199 -1.548288 1,971 -1.216344 77 -1.685742 190 -1.554988 38 -1.787978 557 -1.399288 42 -1.773490 728 -1.360529

1,213 -1.286619 656 -1.375605 589 -1.391201 296 -1.490809 46 -1.760320 215 -1.537093 42 -1.773490 65 -1.710268 588 -1.391447 93 -1.658412
530 -1.406481 59 -1.724289 809 -1.345257 990 -1.316028 121 -1.620311 49 -1.751174 334 -1.473324 134 -1.605538 2,065 -1.209599 606 -1.387082
125 -1.615603 539 -1.404043 120 -1.621512 31 -1.817452 316 -1.481344 78 -1.683875 1,329 -1.273398 53 -1.739814 850 -1.338100 993 -1.315590

1,318 -1.274601 1,249 -1.282385 116 -1.626420 1,788 -1.230450 940 -1.323530 91 -1.661559 90 -1.663159 41 -1.776978 107 -1.638111 1184 -1.290122
116 -1.626420 264 -1.507371 41 -1.776978 435 -1.435076 151 -1.588247 113 -1.630213 122 -1.619119 457 -1.427934 87 -1.668066 214 -1.537768

3,678 -1.126035 572 -1.395441 110 -1.634108 263 -1.507921 748 -1.356606 178 -1.564433 285 -1.496291 45 -1.763502 80 -1.680209
27 -1.837451 1035 -1.309593 104 -1.642228 36 -1.795805 27 -1.837451 49 -1.751174 759 -1.354492 190 -1.554988 1,420 -1.263810
86 -1.669740 269 -1.504655 247 -1.517007 76 -1.687635 830 -1.341547 185 -1.558849 626 -1.382381 38 -1.787978 230 -1.527330
94 -1.656863 70 -1.699540 308 -1.485056 326 -1.476834 46 -1.760320 46 -1.760320 792 -1.348331 379 -1.455026 571 -1.395694

1,131 -1.296752 152 -1.587292 54 -1.737108 214 -1.537768 1,483 -1.257526 84 -1.673146 112 -1.631500 160 -1.579866 174 -1.567723
124 -1.616765 218 -1.535087 583 -1.392683 242 -1.519968 466 -1.425111 186 -1.558068 338 -1.471600 215 -1.537093 390 -1.450885
598 -1.389006 375 -1.456562 956 -1.321087 65 -1.710268 300 -1.488866 79 -1.682030 40 -1.780553 3,059 -1.152713 47 -1.757207
987 -1.316467 99 -1.649361 1170 -1.291844 275 -1.501462 343 -1.469475 106 -1.639471 166 -1.574537 117 -1.625177 509 -1.412333
350 -1.466550 1004 -1.313995 61 -1.719463 204 -1.544696 32 -1.812856 101 -1.646466 480 -1.420826 121 -1.620311 544 -1.402706
172 -1.569397 70 -1.699540 504 -1.413763 324 -1.477724 192 -1.553472 59 -1.724289 49 -1.751174 771 -1.352221 228 -1.528594

61 -1.719463 1925 -1.219762 693 -1.367662 117 -1.625177 725 -1.361127 120 -1.621512 263 -1.507921 75 -1.689552 34 -1.804080
53 -1.739814 73 -1.693465 116 -1.626420 44 -1.766755 51 -1.745383 511 -1.411766 46 -1.760320 107 -1.638111

125 -1.615603 845 -1.338954 81 -1.678411 948 -1.322303 156 -1.583531 1784 -1.230774 216 -1.536421 76 -1.687635
28 -1.832187 154 -1.585399 101 -1.646466 71 -1.697487 573 -1.395188 1,777 -1.231344 264 -1.507371

1,340 -1.272204 138 -1.601280 191 -1.554228 183 -1.560422 1,180 -1.290612 89 -1.664776 90 -1.663159
150 -1.589209 47 -1.757207 151 -1.588247 44 -1.766755 491 -1.417546 484 -1.419624
206 -1.543284 656 -1.375605 50 -1.748249 188 -1.556520 176 -1.566068 148 -1.591152
647 -1.377605 555 -1.399808 105 -1.640843 37 -1.791839 210 -1.540500
243 -1.519371 82 -1.676635 56 -1.731843 76 -1.687635 30 -1.822199

441 -1.433093 318 -1.480430 240 -1.521169 570 -1.395948
306 -1.485999 419 -1.440501 65 -1.710268 928 -1.325390
769 -1.352597 79 -1.682030 195 -1.551228
105 -1.640843 42 -1.773490 140 -1.599197

62 -1.717109 394 -1.449407 74 -1.691495
29 -1.827107 205 -1.543988 1,059 -1.306274

1,442 -1.261584 156 -1.583531 41 -1.776978
1,752 -1.233395 1,741 -1.234306 68 -1.703736

44 -1.766755 309 -1.484587 1,302 -1.276369
275 -1.501462 80 -1.680209
748 -1.356606 42 -1.773490

403 -1.446138
464 -1.425733

81 -1.678411
553 -1.400331

total

-2 0.0100 0 0.01 0 0 0 0 0 0 0 0 0 size count
-1.9 0.0126 0 0 0 0 0 0 0 0 0 0 0.0126 0
-1.8 0.0158 3 5 4 7 6 11 8 7 7 1 0.0158 59
-1.7 0.0200 6 0.02 4 9 7 5 12 3 5 5 4 0.0200 60
-1.6 0.0251 6 9 10 8 6 18 5 12 8 2 0.0251 84
-1.5 0.0316 3 8 9 15 5 4 7 6 7 4 0.0316 68
-1.4 0.0398 5 6 8 5 5 1 8 7 5 6 0.0398 56
-1.3 0.0501 5 0.05 7 6 3 5 2 4 3 5 3 0.0501 43
-1.2 0.0631 2 1 2 3 2 0 1 2 1 1 0.0631 15
-1.1 0.0794 2 0 1 1 0 1 0 0 0 0

-1 0.1000 0 0.1 0 0 0 0 0 0 0 0 0
30 40 48 48 34 48 36 42 38 21

-1.4928 -1.5238 -1.5382 -1.5505 -1.5324 -1.6272 -1.5398 -1.5488 -1.5527 -1.4871
-1.4767 0.0667 -1.5392 0.0578 -1.5483 0.0566 -1.5378 0.0580 -1.5373 0.0580 -1.6465 0.0451 -1.5036 0.0627 -1.5629 0.0547 -1.5598 0.0551 -1.4755 0.0669
0.2078 0.1759 0.1684 0.1649 0.1878 0.1321 0.1759 0.1720 0.1696 0.1601

13.92% 11.54% 10.95% 10.64% 12.26% 8.12% 11.42% 11.11% 10.93% 10.77%
-1.660083 0.0437 -1.634044 0.0465 -1.683875 0.0414 -1.680221 0.0418 -1.694551 0.0404 -1.717278 0.0383 -1.685042 0.0413 -1.683358 0.0415 -1.677174 0.0421 -1.612169 0.0488
-1.314400 0.0970 -1.384176 0.0826 -1.392683 0.0810 -1.477279 0.0666 -1.371655 0.0850 -1.557294 0.0554 -1.401587 0.0793 -1.420143 0.0760 -1.414156 0.0771 -1.383542 0.0827
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HD log A5X3 log A5X10 log A5ID log A20X3 log A20X10 log A20ID log A45X3 log A45X10 log A45ID log 0.6757

total mass

-1.5
-1.3
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-0.9
-0.7
-0.5
-0.3
-0.1
0.1
0.3
0.5

total

mean
median
std
std/mean
quartile1
quartile2

1.62 0.2095 0.555 -0.256 0.478 -0.321 0.715 -0.146 0.187 -0.728 0.050 -1.3019 0.678 -0.169 0.509 -0.293 1.960 0.292 0.689 -0.162 0.4650
0.512 -0.2907 0.393 -0.406 0.361 -0.442 0.487 -0.312 2.230 0.348 0.344 -0.4634 0.101 -0.996 0.374 -0.427 0.071 -1.146 0.875 -0.058

2.38 0.3766 1.840 0.265 0.856 -0.068 0.318 -0.498 0.313 -0.504 0.223 -0.6517 0.085 -1.070 0.071 -1.149 0.390 -0.409 1.010 0.004
0.0639 -1.1945 2.020 0.305 1.630 0.212 1.950 0.290 2.110 0.324 0.651 -0.1864 1.270 0.104 1.740 0.241 1.720 0.236 1.140 0.057

0.54 -0.2676 0.170 -0.770 0.198 -0.703 0.591 -0.228 0.075 -1.127 0.363 -0.4401 1.020 0.009 2.320 0.365 0.195 -0.710 0.667 -0.176
0.0967 -1.0146 0.345 -0.462 0.160 -0.796 2.150 0.332 0.156 -0.807 0.220 -0.6576 1.270 0.104 0.034 -1.470 1.570 0.196 2.110 0.324

0.656 -0.1831 0.131 -0.883 1.280 0.107 0.892 -0.050 0.365 -0.438 0.104 -0.9830 1.060 0.025 0.814 -0.089 0.534 -0.272 0.096 -1.019
1.2 0.0792 0.276 -0.559 0.785 -0.105 0.411 -0.386 0.212 -0.674 1.400 0.1461 0.357 -0.447 0.393 -0.406 0.331 -0.480 1.920 0.283

0.591 -0.2284 0.116 -0.936 0.212 -0.674 0.047 -1.332 1.460 0.164 1.020 0.0086 0.137 -0.863 0.751 -0.124 0.581 -0.236 2.210 0.344
0.291 -0.5361 0.369 -0.433 2.220 0.346 0.067 -1.176 0.139 -0.857 0.173 -0.7620 0.492 -0.308 1.060 0.025 0.848 -0.072 0.640 -0.194

1.5 0.1761 1.390 0.143 0.552 -0.258 0.039 -1.413 1.210 0.083 0.783 -0.1062 0.713 -0.147 0.230 -0.638 0.408 -0.389 0.925 -0.034
2.06 0.3139 1.590 0.201 0.813 -0.090 0.068 -1.170 0.907 -0.042 0.804 -0.0947 0.148 -0.830 2.210 0.344 1.570 0.196 1.09 0.0374264979

0.108 -0.9666 0.105 -0.979 0.307 -0.513 0.135 -0.870 0.378 -0.423 0.080 -1.0985 0.114 -0.943 0.823 -0.085 0.408 -0.389 0.789 -0.102922997
1.1 0.0414 0.060 -1.221 0.905 -0.043 0.341 -0.467 0.310 -0.509 0.249 -0.6038 0.545 -0.264 0.143 -0.845 0.210 -0.678 0.221 -0.655607726

0.534 -0.2725 0.217 -0.664 0.051 -1.294 0.518 -0.286 2.500 0.398 0.361 -0.4425 1.140 0.057 0.697 -0.157 0.044 -1.361 0.914 -0.039053804
0.34 -0.4685 0.999 -0.000 0.295 -0.530 2.140 0.330 0.237 -0.625 0.406 -0.3915 0.451 -0.346 1.430 0.155 0.170 -0.770 1.39 0.1430148003
1.04 0.0170 1.070 0.029 1.280 0.107 0.407 -0.390 0.065 -1.190 1.100 0.0414 0.247 -0.607 0.386 -0.413 1.200 0.079 0.527 -0.278189385
1.02 0.0086 0.086 -1.068 1.200 0.079 1.320 0.121 0.122 -0.914 0.357 -0.4473 0.405 -0.393 0.248 -0.606 2.610 0.417 1.47 0.1673173347

0.108 -0.9666 0.580 -0.237 0.289 -0.539 0.055 -1.260 0.462 -0.335 0.590 -0.2291 2.240 0.350 0.782 -0.107 1.890 0.276 2.29 0.3598354823
0.99 -0.0066 1.550 0.190 0.165 -0.783 2.260 0.354 1.190 0.076 0.261 -0.5834 0.169 -0.772 0.177 -0.752 0.354 -0.451 2.17 0.3364597338
0.09 -1.0278 0.698 -0.156 0.053 -1.279 0.926 -0.033 0.384 -0.416 0.255 -0.5935 0.607 -0.217 0.845 -0.073 0.574 -0.241 0.368 -0.434152181
1.75 0.2430 1.190 0.076 0.194 -0.712 0.358 -0.446 1.430 0.155 0.747 -0.1267 1.020 0.009 0.144 -0.842 0.426 -0.371
0.03 -1.5670 0.954 -0.020 0.500 -0.301 0.055 -1.258 0.041 -1.387 0.193 -0.7144 1.060 0.025 0.708 -0.150 1.460 0.164

0.0767 -1.1152 0.4 -0.398 0.826 -0.083 0.283 -0.548 0.920 -0.036 0.677 -0.1694 0.919 -0.037 0.667 -0.176 0.363 -0.440
0.1530 -0.8153 0.137 -0.863 0.456 -0.341 0.720 -0.143 0.084 -1.074 0.177 -0.7520 1.630 0.212 0.434 -0.363 0.813 -0.090

1.5 0.1761 0.148 -0.830 0.111 -0.955 0.395 -0.403 1.850 0.267 0.483 -0.3161 0.281 -0.55129368 0.250 -0.602 0.181 -0.742
0.32 -0.5003 0.243 -0.614 0.576 -0.239577517 0.516 -0.287 0.853 -0.069 0.617 -0.2097 0.861 -0.064996849 0.444 -0.353 0.392 -0.407
0.47 -0.3279 0.52 -0.284 1.23 0.0899051114 0.105 -0.979 0.508 -0.294 0.363 -0.4401 0.476 -0.322393047 3.150 0.498 0.158 -0.801
1.05 0.0212 0.132 -0.879 1.72 0.2355284469 0.569 -0.245 0.398 -0.400 0.280 -0.5528 0.293 -0.53313238 0.127 -0.896 1.420 0.152
1.12 0.0492 1.01 0.004 0.139 -0.8569852 0.470 -0.328 0.039 -1.412 0.666 -0.1765 0.876 -0.057495894 0.210 -0.678 1.230 0.090
0.40 -0.4012 0.101 -0.996 0.66 -0.180456064 0.880 -0.056 0.243 -0.614 0.148 -0.8297 0.0951 -1.021819483 0.996 -0.002 0.216 -0.666
0.13 -0.8794 1.5 0.176 1.32 0.1205739312 0.168 -0.775 0.955 -0.020 0.284 -0.5467 0.468 -0.329754147 0.126 -0.900 0.054 -1.264

0.104 -0.983 0.108 -0.966576245 0.139 -0.857 0.135 -0.870 0.122 -0.9136 1.23 0.0899051114 0.0502 -1.299296283 0.15 -0.823908741
0.128 -0.893 1.27 0.103803721 0.050 -1.302 1.850 0.267 0.684 -0.1649 2.71 0.4329692909 0.29 -0.537602002 0.153 -0.815308569
0.087 -1.061 0.292 -0.535 0.139 -0.857 0.161 -0.7932 0.956 -0.020 1.920 0.283 0.986 -0.006
1.390 0.143 0.312 -0.506 0.643 -0.192 0.213 -0.6716 2.100 0.322 0.260 -0.585 0.273 -0.564
0.973 -0.012 0.077 -1.111 0.547 -0.262 0.099 -1.0061 0.690 -0.161 0.382 -0.418
0.334 -0.476 0.626 -0.203 0.072 -1.142 0.861 -0.0650 0.331 -0.480 0.175 -0.757
0.491 -0.309 0.885 -0.053 0.132 -0.879 0.240 -0.6198 0.592 -0.228
0.580 -0.237 0.090 -1.046 0.206 -0.686 0.214 -0.6696 0.137 -0.863

0.733 -0.135 0.504 -0.298 0.675 -0.1707 1.670 0.223
0.392 -0.407 0.848 -0.072 0.231 -0.6364 1.560 0.193
1.060 0.025 0.090 -1.047 0.285 -0.5452
0.130 -0.886 0.085 -1.071 0.200 -0.6990
0.124 -0.907 0.364 -0.439 0.164 -0.7852
0.080 -1.099 0.608 -0.216 1.170 0.0682
2.260 0.354 0.792 -0.101 0.117 -0.9318

1.28 0.1072099696 1.590 0.201 0.252 -0.5986
0.170 -0.770 0.348 -0.458 1.870 0.2718

0.455 -0.342 0.251 -0.6003
1.490 0.173 0.084 -1.0778

0.789 -0.1029
0.727 -0.1385
0.220 -0.6576
1.580 0.1987

power law
CMF

23.8312 24.982 31.710 29.456 24.317 25.637 28.224 30.793 26.470 23.511 -2.00 0.010000 1.8235 0.260900
0.0308 7.74E+02 0.0309 8.09E+02 0.0374 8.48E+02 0.0390 7.56E+02 2.96% 8.20E+02 3.08% 8.32E+02 3.29% 8.57E+02 3.71% 8.29E+02 3.15% 8.41E+02 1.87% 1.25E+03 -1.80 0.015849 3.1589 0.499540

-1.60 0.025119 5.4724 0.738180
-1.4 1 0.0398 0 0 3 2 1 0 1 1 0 -1.40 0.039811 9 0.95616 9.4803 0.976820
-1.2 2 0.0631 1 3 5 2 0 0 2 2 0 -1.20 0.063096 17 1.23206 16.4233 1.215460

-1 0.10 4 0.1000 6 5 3 2 6 4 0 0 1 -1.00 0.100000 31 1.49276 28.4512 1.454100
-0.8 2 0.1585 6 7 5 4 6 3 6 7 0 -0.80 0.158489 46 1.66425 49.2879 1.692740
-0.6 2 0.2512 3 6 2 5 16 3 6 3 1 -0.60 0.251189 47 1.67441
-0.4 3 0.3981 6 5 11 5 7 6 6 9 1 -0.40 0.398107 59 1.77377
-0.2 5 0.6310 5 6 11 1 11 4 8 3 5 -0.20 0.630957 60 1.77547

0 1.00 7 1.0000 6 8 4 6 5 10 5 5 6 0.00 1.000000 63 1.79934 66.7114 1.824200
0.2 4 1.5849 6 7 4 4 3 3 5 7 3 0.20 1.584893 48 1.67747 39.7393 1.599220
0.4 2 2.5119 1 2 3 3 0 3 3 1 4 0.40 2.511886 25 1.38938 23.6723 1.374240

0.60 3.981072 14.1013 1.149260
32 40 49 51 34 55 36 42 38 21 0.80 6.309573 8.4000 0.924280

1.00 10.000000 5.0038 0.699300

0.7447 0.6245 0.6472 0.5776 0.7152 0.4661 0.7840 0.7332 0.6966 1.1196
0.5370 0.3965 0.4780 0.4110 0.3810 0.2840 0.6425 0.4765 0.4000 0.9250
0.6435 0.5632 0.5682 0.5826 0.7184 0.3976 0.6344 0.7140 0.6533 0.6758

86.41% 90.19% 87.80% 100.87% 100.45% 85.30% 80.91% 97.38% 93.78% 60.36%
0.14775 0.136 0.170 0.137 0.164 0.207 0.290 0.235 0.199 0.667

1.105 1.002 0.905 0.718 1.131 0.676 1.060 0.840 1.147 1.470
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Figure 3.8: The statistical distribution of core mass (left) and size (right)
from all models combined.

This is similar to the observed star formation efficiency (SFE), which is around

1 − 10% (e.g. Myers et al. 1986; Evans et al. 2009; Lada et al. 2010). Note that,

though the core formation timescale is slightly different from model to model (see

Figure 3.6), the CFE does not vary significantly between models; the variance in

CFE among all models is only ∼ 10%.

3.5.1 Mass and Size

Figure 3.8 shows the distribution of mass and size of cores for all model pa-

rameters. The masses range between 0.04 to 2.5 M�, with peak around ∼ 0.6 M�;

the core sizes are between 0.015 − 0.07 pc, with peak around ∼ 0.03 pc. These
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Figure 3.9: Median (diamond) and ±25% values (vertical bars) of core
mass, size, average magnetic field, and normalized mass-to-flux ratio for
different model parameters. In each figure from left to right, higher X
corresponds to increasing ionization, and larger A corresponds to larger
angle θ, or increasing pre-shock (upstream) magnetic field Bx = B0 sin θ
parallel to the shock front. The dashed line in the core size plot (bottom
left) indicates the lower limit (0.015 pc) of resolved core size; for our
simulations, 0.015 pc ≈ 3∆x.
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are consistent with observational results (e.g. Motte et al. 2001; Ikeda et al. 2009;

Rathborne et al. 2009; Kirk et al. 2013). Also, the distribution of the core mass

shows a similar shape to the observed core mass function (CMF) (e.g. Simpson et

al. 2008; Rathborne et al. 2009; Könyves et al. 2010). Interestingly, the peak in the

distribution is close to value given by Equation (7) from Gong & Ostriker (2011):

MBE, ps = 1.2
cs

4√
G3Pps

= 1.2
cs

3√
G3ρ0

1

M
→ 0.45 M�. (3.29)

This mass is characteristic of what is expected for collapse of a thermally-supported

core that is confined by an ambient medium with pressure equal to the post-shock

value9, where the numerical figure uses values for the mean cloud density and large-

scale Mach number equal to those of the converging flow in our simulations, n0 =

1000 cm−3 and M = 10. Correspondingly, since the critical ratio of mass and

radius is MBE/RBE = 2.4cs
2/G (Bonnor 1956), the characteristic size expected for a

collapsing core formed in a post-shock region when the Mach number of the large-

scale converging flow is M and the mean cloud density is ρ0, is

LBE = 2RBE =
cs√
Gρ0

1

M
→ 0.04 pc. (3.30)

This is again comparable to the peak value of the core size distribution in Figure 3.8.

We also separately explore the dependence of core mass, size, magnetic field

strength, and mass-to-flux ratio on model parameters, as shown in Figure 3.9. Our

results show that the core mass is relatively insensitive to both the ionization (i.e.

ambipolar diffusion effect) and obliquity of the upstream magnetic field (Figure 3.9,

9The post-shock total pressure (whether for an unmagnetized medium, as considered by Gong
& Ostriker (2011), or for a magnetized medium as considered here) will be comparable to the
momentum flux of the converging flow, Pps ≈ ρ0v0

2 = ρ0c
2
sM2.
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top left). The median masses are within a factor 2.4 of the mean of the whole

distribution, 0.68 M�, or a factor 2 of the median of all core masses (0.47 M�).

Similarly, median core sizes vary only between 0.022 pc and 0.034 pc for the various

parameter sets, with a median of 0.03 pc. Note that we chose to compare median

values between different parameter sets in Figure 3.9 instead of mean values used

in Table 3.3, because an average can be affected by any single value being high or

low relative to the other samples. The median value, on the other hand, repre-

sents the central tendency better, and with the ±25% values we can have a better

understanding of the sample distribution.

We note in particular that for the θ = 20◦ and θ = 45◦ ideal MHD cases, the

masses in Figure 3.8 and 3.9 are more than an order of magnitude lower than the

limits for a spherical region at post-shock conditions to be magnetically supercritical,

as listed in Table 3.1 and 3.2. This implies that the low-mass bound cores found in

the simulations did not form isotropically. We discuss this further in Section 3.6.

To further investigate the relationship between core masses and sizes, we

binned the data set by logLcore and calculate the average core mass and mean

density for different model parameters. The results are shown in Figure 3.10, where

we chose four models with different magnetization and ionization levels to compare:

HD (hydrodynamics; no magnetization), A5X3 (low ionization, weak upstream mag-

netic field parallel to the shock), A20X10 (moderate ionization and magnetic field),

and A45ID (ideal MHD, strong magnetic field). In both the mass-size and density-

size plots, the differences among models are small, and all four curves have similar

shape. In fact, from all resolved cores identified in our simulations, we found a
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Figure 3.10: The mass-size plot (top) and density-size plot (bottom)
for cores identified in selected models with different magnetization and
ionization levels: HD (cross), A5X3 (diamonds), A20X10 (asterisks),
and A45ID (triangles).

power-law relationship between the core mass and size, M ∝ Lk, with best-fitted

value k = 2.28. This is consistent with many core-property surveys towards different

molecular clouds (e.g. Elmegreen & Falgarone 1996; Curtis & Richer 2010; Roman-

Duval et al. 2010; Kirk et al. 2013), in which k = 1.2 − 2.4 with various molecule

tracers (for more details, see Figure 7 and corresponding discussions in Kirk et al.

2013).
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Figure 3.11: The statistical distribution of normalized core mass-to-flux
ratio Γ from all simulations combined. Models with low ionization (blue)
preferentially have higher Γ, whereas models with ideal MHD (red) have
lower Γ.

3.5.2 Magnetization

Figure 3.11 shows the distribution of core mass-to-flux ratio, a roughly normal

distribution with peak at Γ ∼ 3. This range of Γ is quite similar to observational

results (Γ ∼ 1 − 4; Falgarone et al. 2008; Troland & Crutcher 2008). In addition,

the color-coded histogram in Figure 3.11 shows how the mass-to-flux ratio depends

on magnetization: the high-end region (Γ & 5) is comprised of blue-green pieces

(which represent models with lower ionization), while the low-end tail is mostly red

and orange (highly ionized models). Note that essentially all of the cores in our

simulations are magnetically supercritical (Γ > 1), which is self-consistent with our
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Figure 3.12: Core mass-to-flux ratio versus core mass for sample sets of
parameters. The value of Γ tends to increase with ionization, and to a
lesser extent also increases with mass.

core-finding criterion (gravitationally bound; Eg + Eth + EB < 0).

The tendency of models with lower ionization to form cores with higher mass-

to-flux ratio is very clearly seen in Figure 3.9 (bottom right). The median value of the

core mass-to-flux ratio also decreases with increasing θ as the value of the upstream

Bx = B0 sin θ increases. Also from Figure 3.9 (top right), the average core magnetic

fields show a similar tendency as in post-shock magnetic field (see Table 3.2), which

decrease at lower ionization fractions for models with same pre-shock magnetic field

structure (same θ). The larger and more systematic variation of B than M with

model parameters suggests that the core mass-to-flux ratio is not decided by the

core mass, but by the core magnetic field. This is also shown in Figure 3.12, where

we binned the data by Mcore and calculated the average core mass-to-flux ratio in
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each bin for different models. For cores with similar mass, the mass-to-flux ratios

of cores formed in environments with low ionization and magnetization are much

higher than those with stronger and better coupled magnetic fields.

The fact that the median value of magnetic field strength within the core

depends on pre-shock magnetic obliquity and ionization is consistent with our dis-

cussions in Section 3.4 that magnetic fields are lower in shocked regions that have

longer transient timescales. Since lower ionization fraction leads to stronger ambipo-

lar diffusion and a longer transient stage10, it is logical to expect the cores formed

in weakly-ionized clouds have lower magnetic field than those formed with higher

ionization fraction (or strongly-coupled ions and neutrals).

In addition, Figure 3.9 (top right) shows that cores formed in models with

small θ (A5 cases) have weaker magnetic fields inside even with higher ionization

fraction or ideal MHD, which indicates that the magnetic field is less compressed

by the shock when the inflow is almost parallel to the upstream magnetic field.

This is consistent with the discussion in Section 3.2: when θ < θcrit, the MHD

shock becomes a composite compounded of the regular (fast) mode and the quasi-

hydrodynamic mode, which has relatively small magnetic field compression ratio.

Thus, the magnetic obliquity relative to the shock has a similar effect to the cloud

ionization fraction in determining field strengths in prestellar cores.

Based on the results shown in Section 3.5.1 and 3.5.2, we conclude that mag-

netic effects do not appear to control core mass and size. This suggests that once a

10From Chapter 2 and Equation (3.27), the predicted duration of the transient stage is 0.3 −
1.4 Myr for χi0 = 3 to 10 and our range of model parameters, assuming rf = rf, ideal MHD.
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core becomes strongly gravitationally bound, magnetic effects are relatively unim-

portant to its internal structure. However, the formation process of gravitationally

bound cores is highly dependent on magnetic effects. As noted above, Figure 3.6

shows clear differences in the large-scale structures from which cores condense; we

discuss core formation further in Section 3.6. Also, cores are born with either lower

or higher magnetic field, depending on the magnetic field structure and the ambipo-

lar diffusion in their surrounding environment.

3.6 Anisotropic Core Formation

3.6.1 Examples of Simulation Evolution

The fact that gravitationally supercritical low-mass cores (withM �Mmag,sph)

can form in the highly magnetized post-shock medium even without ambipolar dif-

fusion suggests that these cores did not contract isotropically. Figure 3.13 provides

a close-up view of the core forming process in highly magnetized environment with

ideal MHD, from model A20ID. At stages earlier than shown, the directions of the

perturbed magnetic field and gas velocity are determined randomly by the local tur-

bulence. The magnetic field is compressed by the shock (similar to Figures 3.3−3.5),

such that in the post-shock layer it is nearly parallel to the shock front (along x̂).

When the magnetic field strength increases, the velocity is forced to become increas-

ingly aligned parallel to the flow, as shown in Figure 3.13. By the time t = 0.65 Myr,

a very dense core has formed by gathering material preferentially along the magnetic

field lines. After the core becomes sufficiently massive, its self-gravity will distort
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the magnetic field and drag material inward even in the direction perpendicular to

the magnetic field lines (t = 0.77 Myr, Figure 3.13). This collapsing process with

a preferential direction is similar to the post-shock focusing flows found in previous

studies (e.g. Inoue & Fukui 2013; Vaidya et al. 2013) where the gas is confined by

the strong magnetic field in the shock-compressed region.

In fact, anisotropic condensation is key to core formation not only with ideal

MHD, but for all cases. Figure 3.14 shows space-time diagrams of all three velocity

components (vx, vy, vz) around collapsing cores in different parameter sets. Though

models with stronger post-shock magnetic fields (larger θ, larger χi0, or ideal MHD)

have more dominant vx (bluer/redder in the colormap), there is a general preference

to condense preferentially along the magnetic field lines (in the x-direction) among

all models, regardless of upstream magnetic obliquity and the ambipolar diffusion

level. Figure 3.14 also shows that there are flows perpendicular to the mean magnetic

field (along ŷ or ẑ) in the final ∼ 0.1 Myr of the simulations, indicating the stage

of core collapse. The prominent gas movement along x̂ long before each core starts

to collapse shows that cores acquire masses anisotropically along the magnetic field

lines, and thus anisotropic condensation is important for all models.

3.6.2 Theoretical Scalings

We have shown in Section 3.2.2 quantitatively that isotropic formation of low-

mass supercritical cores is not possible for oblique shocks with ideal MHD, because

the minimum mass for a spherical volume to become magnetically supercritical is
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log (N/
cm-2 )

t = 0.40 Myr

1 km/s

t = 0.50 Myr

t = 0.65 Myr

t = 0.77 Myr

0.5 km/s

Figure 3.13: A close-up view of magnetic field (pink lines) and gas veloc-
ity (black arrows) over column density (color map) projected to the x-z
plane (left panel) and x-y plane (right panel) around a forming core
at different times, from model A20ID. The region shown here is in-
dicated by the white dashed box in Figure 3.7. The size of the box
Nx ×Ny ×Nz is Lmag,cyl × 4Rth,sph × 4Rth,sph, where Lmag,cyl and Rth,sph

are calculated using Equation (3.33) and (3.38), respectively. The ve-
locity vectors are density-weighted averages over the box; i.e. v2D(i, j) =∑
k

(v3D(i, j, k)ρ(i, j, k))/
∑
k

ρ(i, j, k). We used the same method as in the

left panel in Figure 3.3 to draw the magnetic field lines. The magnetic
field line spacing and the length of the velocity vectors both indicate
strength. Note that the vector scale in the right panel is 2 times larger
than in the left panel in order to better show the gas movement. The
pre-shock supersonic inflows along the z-direction in the earlier stages
(first two plots in left panel) are omitted here to focus on the post-shock
dynamics.
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Figure 3.14: The space-time diagrams for varying magnetic obliquity and
ionization, showing the x- (left panels), y- (middle panels), and z- (right
panels) compressive components of the gas velocity averaged around a
collapsing core in each model, normalized by the total velocity vtot =√
vx2 + vy2 + vz2. The definition of box size is the same as in Figure 3.13.

It is evident that anisotropic condensation along the magnetic field (x-
direction) initiates core formation in all cases.
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≥ 10 M� (see Equation (3.14) and the Mmag,sph entries in Table 3.1 and 3.2 for cases

A20ID and A45ID), much larger than the typical core mass (∼ 1 M�). However,

non-spherical regions may have smaller critical mass. Consider, for example, a core

that originates as a prolate spheroid with semi-major axis R1 along the magnetic

field and semi-minor axis R2 perpendicular. The mass-to-flux ratio is then

M

ΦB

∣∣∣∣
prolate

=
4πR1R2

2ρ/3

πR2
2B

=
4

3

R1ρ

B
. (3.31)

The critical value for R1 would be the same as given in Equation (3.15), but the

critical mass would be lower than that in Equation (3.14) by a factor (R2/R1)2. For

R1/R2 ∼ 3− 4, the critical mass will be similar to that found in the simulations.

Here we provide a physical picture for core formation via initial flow along the

magnetic field, as illustrated in Figure 3.13 and 3.14. Consider a post-shock layer

with density ρps and magnetic field Bps. For a cylinder with length L along the

magnetic field and radius R, the normalized mass-to-flux ratio is

Γcyl =
πR2Lρps

πR2Bps

· 2π
√
G, (3.32)

and the critical length along the magnetic field for it to be supercritical is

Lmag,cyl =
Bps

ρps

1

2π
√
G

(3.33)

(note that up to a factor 3/4, this is the same as Equation (3.15)). The critical mass

Mmag,cyl = πR2Lmag,cylρps can then be written as

Mmag,cyl =
R2Bps

2
√
G

= 1.2 M�

(
R

0.05 pc

)2(
Bps

50 µG

)
. (3.34)

This cylinder is gravitationally stable to transverse contraction unless L . 2R (Mes-

tel & Spitzer 1956). However, contraction along the length of the cylinder is unim-
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peded by the magnetic field, and will be able to overcome pressure forces provided

Lmag,cyl exceeds the thermal Jeans length, which is true in general for oblique shocks

in typical conditions under consideration. The longitudinal contraction will produce

an approximately isotropic core of radius R when the density has increased by a fac-

tor

ρ′

ρps

=
Lmag,cyl

2R
, (3.35)

and at this point transverse contraction would no longer be magnetically impeded.

For the core to have sufficient self-gravity to overcome thermal pressure at this point,

the radius would have to be comparable to Rth,sph (see Equation (3.12)):

R ∼ Rth,sph = 2.3
cs√

4πGρ′
. (3.36)

Combining Equations (3.33), (3.35), and (3.36) yields

ρ′ = 0.19
Bps

2

4πcs2
, (3.37)

and

R = 5.3
cs

2

√
GBps

= 0.05 pc

(
Bps

50 µG

)−1(
T

10 K

)
. (3.38)

Substituting Equation (3.38) in Equation (3.34), the minimum mass that will be

both magnetically and thermally supercritical, allowing for anisotropic condensation

along B, will be

Mcrit = 14
cs

4

G3/2Bps

= 1.3 M�

(
Bps

50µG

)−1(
T

10 K

)2

. (3.39)

Thus, anisotropic contraction can lead to low-mass supercritical cores, with values

comparable to those formed in our simulations.11

11Note that up to factors of order unity, Equations (3.37) to (3.39) can equivalently be ob-
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In addition, anisotropic condensation also helps explain why the core masses

are quite similar for HD and MHD models, and independent of the angle between up-

stream magnetic field and converging flow. Note that Equation (3.39) only depends

on the post-shock magnetic field strength. For a magnetized shock, the post-shock

magnetic pressure must balance the pre-shock momentum flux: Bps
2/8π ∼ ρ0v0

2.

Therefore, Equation (3.39) can be expressed as

Mcrit = 2.8
cs

4√
G3ρ0v0

2
= 2.1 M�

( n0

1000 cm−3

)−1/2
(

v0

1 km/s

)−1(
T

10 K

)2

. (3.40)

This is equivalent to Equation (24) of Gong & Ostriker (2011) with ψ = 2.8. Gong

& Ostriker (2011) also pointed out that ρ0v0
2 will be proportional to GΣGMC

2 for

a gravitationally-bound turbulence-supported GMC. Thus, using Equation (28) of

Gong & Ostriker (2011) in a cloud with virial parameter αvir, Equation (3.40) would

become

Mcrit = 2.8 M�

(
T

10 K

)2(
ΣGMC

100 M� pc−2

)−1

αvir
−1/2. (3.41)

Equations (3.40) and (3.41) suggest that Mcrit is not just independent of magnetic

field direction upstream, it is also independent of magnetic field strength upstream.

That is, when cores form in post-shock regions (assuming the GMC is magnetically

supercritical at large scales), the critical mass is determined by the dynamical pres-

sure in the cloud, independent of the cloud’s magnetization. The models studied

here all have the same dynamical pressure ρ0v0
2, and same upstream B0. It will be

very interesting to test whether for varying B0 the core masses remain the same,

and whether the scaling proposed in Equation (3.40) holds for varying total dynamic

tained by taking B = Bps and requiring that the density ρ → ρ′ in Equations (3.11)−(3.12) and
(3.14)−(3.15) is such that Rth,sph ∼ Rmag,sph and Mth,sph ∼Mmag,sph.
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pressure.

3.7 Summary

In this work, we have used numerical simulations to study core formation in

magnetized, highly dynamic environments, including the effect of ambipolar diffu-

sion. Our simulations are fully three-dimensional, including a large-scale convergent

flow, local turbulence, and self-gravity, and allow for varying ambipolar diffusion

levels (parameterized by the ionization fraction coefficient χi0) and shock obliquity

(parameterized by the angle θ between the converging inflow and the global mag-

netic field). Filaments and then cores form in post-shock dense layers, with dense

structures very similar to those found in observations.

In all of our models (with or without ambipolar diffusion), magnetically su-

percritical cores form with physical properties similar to those found in observa-

tions. However, our parameter survey suggests that the transient ambipolar diffusion

timescale and quasi-hydrodynamic shocks are crucial in setting the magnetization of

cores formed in post-shock regions. In addition, we demonstrate and quantitatively

explain how low-mass supercritical cores form in strongly-magnetized regions, via

anisotropic condensation along the magnetic field.

Our main conclusions are as follows:

1. Under typical GMC conditions, isotropic formation of low-mass supercritical

cores is forbidden under ideal MHD by the relatively strong magnetic support

(Equation (3.14)). This is true even downstream from strong MHD shocks
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where gas density is enhanced, because the magnetic field is compressed as well.

In fact, for a spherical volume of given mass, the mass-to-flux ratio is generally

larger for pre-shock conditions than post-shock conditions (Equation (3.19);

except for the special case described in #2 below). For typical conditions,

the minimum post-shock critical mass for a spherical volume exceeds 10 M�

when ideal MHD applies (Tables 3.1, 3.2). This suggests that either transient

ambipolar diffusion in shocks must be taken into consideration, or that core

formation is not spherically symmetric.

2. When the incoming flows are almost parallel to the background magnetic

field, MHD shocks will have compound post-shock conditions, including the

regular fast mode (Shu 1992) and the quasi-hydrodynamic mode in which gas

is compressed more strongly (Figure 3.1). This happens when the angle θ

between the inflow and the magnetic field is smaller than a critical value,

θcrit (Equation (3.8)). For small θ, the post-shock layer will have relatively

high gas density and weak magnetic field compared to fast-mode MHD shocks

(Table 3.2).

3. Our three-dimensional simulations demonstrate the effect of transient ambipo-

lar diffusion, as earlier identified and explained in Chapter 2. During the ear-

liest stage of shock formation (t . 0.3 Myr), a thin but extremely dense layer

appears in the middle of the shocked region in models with ambipolar diffusion

(Figure 3.3 and 3.4), just like the central dense peak in the one-dimensional

shocks analyzed in Chapter 2. Consequently, post-shock densities are gener-
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ally higher in models with lower ionizations (smaller χi0; see Table 3.2), which

correspond to stronger ambipolar diffusion as predicted in Chapter 2.

4. The ionization fraction is the main parameter controlling the transient am-

bipolar diffusion timescale needed for the gas to reach steady post-shock con-

ditions (ttransient). Models with smaller χi0 have longer transient timescales

(Equation (3.27)), indicating lower growth rate of the post-shock magnetic

field and more weakly magnetized post-shock layers (Table 3.2). Therefore,

transient ambipolar diffusion is crucial in reducing the magnetic support in

the post-shock regions (see Mmag,sph and Rmag,sph in Table 3.2).

5. The filament network in more strongly magnetized post-shock cases is similar

to those found in observations: in addition to large-scale main filaments, there

are many thinner, less-prominent sub-filaments parallel to the magnetic field

(Goldsmith et al. 2008; Sugitani et al. 2011; Hennemann et al. 2012; Palmeirim

et al. 2013; André et al. 2014). Dense cores form within the large-scale main

filaments for all models.

6. In our simulations, magnetically supercritical cores are able to form in the

shock-compressed dense layers in all models, and the first collapse occurs at

t . 0.6 Myr in most cases. Cores formed in our simulations have masses

∼ 0.04 − 2.5 M� and sizes ∼ 0.015 − 0.07 pc (Table 3.3 and Figure 3.8),

similar to the values obtained in observations (e.g. Motte et al. 2001; Ikeda

et al. 2009; Rathborne et al. 2009; Kirk et al. 2013). The medians from the

distributions are 0.47 M� and 0.03 pc. The mass-size relationship derived
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from our cores, M ∝ L2.3, also agrees with observations (e.g. Elmegreen &

Falgarone 1996; Curtis & Richer 2010; Roman-Duval et al. 2010; Kirk et al.

2013).

7. Our results show that the core mass and size are relatively independent of both

the ambipolar diffusion and the upstream magnetic obliquity (Figure 3.9).

Hydrodynamic and ideal MHD models also have very similar core masses and

sizes. The core masses for ideal MHD cases with oblique shocks are more than

an order of magnitude lower than the magnetic critical mass for a spherical

region in the post-shock environment. Thus, simple estimates of the form in

Equation (3.14) should not be used in predicting magnetically supercritical

core masses from ambient environmental conditions in a GMC.

8. The magnetic field of cores follows the same trends as the post-shock mag-

netization, in terms of variation with the upstream magnetic obliquity and

ionization (Tables 3.2, 3.3). This indicates that further ambipolar diffusion is

limited during the core building phase, and instead cores form by anisotropic

self-gravitating contraction as described in Section 3.6. The mass-to-flux ratio

in cores secularly increases with decreasing ionization (Figure 3.9), ranging

from Γ ∼ 0.5 to 7.5 (Figure 3.11). From all models combined, the median

mass-to-flux ratio within cores is Γ ∼ 3 (Figure 3.11), agreeing with the ob-

served range of Γ (Γ ∼ 1 − 4; Falgarone et al. 2008; Troland & Crutcher

2008).

9. Anisotropic self-gravitating condensation is likely the dominant mechanism

125



for supercritical core formation in magnetized environments, regardless the

magnetization strength and ionization fraction. Figures 3.13 and 3.14 clearly

show how gas preferentially flows along the magnetic field lines in all models,

creating dense cores that are both magnetically and thermally supercritical.

The theoretical analysis of Section 3.6.2 shows that the characteristic mass

expected from anisotropic contraction (Equation (3.39)) is similar to the me-

dian core mass obtained from our simulations (Figure 3.8). For anisotropic

core formation in a post-shock region, the critical mass is expected to depend

only on the momentum flux entering the shock. We believe this explains why

core masses in our simulations are similar regardless of the ionization level,

whether the converging flow is nearly parallel to or highly oblique to the up-

stream magnetic field, or indeed whether the medium is even magnetized at

all.
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Chapter 4: Anisotropic Formation of Magnetized

Cores in Turbulent Clouds

Abstract

In giant molecular clouds (GMCs), shocks driven by turbulent flows create

high-density, strongly-magnetized regions that are locally sheetlike. In previous

work, we showed that within these layers, dense filaments and embedded self-

gravitating cores form by gathering material along the magnetic field lines. Here,

we extend the parameter space of our three-dimensional, turbulent MHD core for-

mation simulations. We confirm the anisotropic core formation model we previously

proposed, and quantify the dependence of median core properties on the pre-shock

inflow velocity and upstream magnetic field strength. Our results suggest that

bound core properties are set by the total dynamic pressure (dominated by large-

scale turbulence) and thermal sound speed in GMCs, independent of magnetic field

strength. For models with Mach number between 5 and 20, the median core masses

and radii are comparable to the critical Bonnor-Ebert mass and radius defined using

the dynamic pressure for Pext. We find cores and filaments form simultaneously, and

filament column densities are a factor ∼ 2 greater than the surrounding cloud when
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cores first collapse. We also show that cores identified in our simulations have phys-

ical properties comparable to those observed in the Perseus cloud. Superthermal

cores in our models are generally also magnetically supercritical, suggesting that the

same may be true in observed clouds.

4.1 Introduction

Prestellar core formation in giant molecular clouds (GMCs) is an important

issue in theoretical studies of star formation, because these cores are the immediate

precursors of protostars (Shu et al. 1987; McKee & Ostriker 2007; André et al. 2014).

It is believed that the magnetic field and supersonic turbulence may both play

important roles in core formation and subsequent evolution. In GMCs, simulations

show that overdense structures generated by supersonic turbulence may collapse

gravitationally to form protostellar systems, while also attracting material from

their surroundings (e.g. Ballesteros-Paredes et al. 1999; Ostriker et al. 1999; Klessen

et al. 2000; Padoan et al. 2001; Bate et al. 2003). Magnetic fields limit compression

in large-scale turbulence-induced shocks, channel material toward forming filaments,

provide support for cores as they grow, and remove angular momentum in collapsing

cores (Mestel & Spitzer 1956; Strittmatter 1966; Mouschovias & Spitzer 1976; Mestel

1985; Mouschovias 1991; Allen et al. 2003; Basu et al. 2009b; Li et al. 2010, 2014).

Because GMCs are only lightly ionized, and magnetic fields are only coupled to

charged particles, magnetic stresses are mediated by ion-neutral collisions, and are

affected by the level of ambipolar diffusion. Analytic studies and numerical simu-
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lations have shown that supersonic motions accelerate ambipolar diffusion (Fatuzzo

& Adams 2002; Heitsch et al. 2004; Li & Nakamura 2004). Similar simulations with

both strong turbulence and ambipolar diffusion have also demonstrated core evolu-

tion times, efficiency of star formation, and core structure similar to observations

(Nakamura & Li 2005, 2008; Kudoh & Basu 2008, 2011; Basu et al. 2009b). More

recently, Chen & Ostriker (2012, also see Chapter 2) studied the one-dimensional

C-type shocks and identified a transient stage of turbulence-accelerated ambipolar

diffusion. This transient stage, with timescale ttransient ∼ 0.1− 1 Myr (depending on

ionization), can explain the enhanced diffusion rate and affect the magnetization of

cores that form.

In Chapter 3 (also see Chen & Ostriker 2014), we applied three-dimensional

numerical simulations to study the roles of magnetic fields and ambipolar diffusion

during prestellar core formation in turbulent cloud environments. Our simulations

adopted the model framework of Gong & Ostriker (2011) to focus on the shocked

layer produced by turbulent converging flows, and surveyed varying ionization and

angle between the upstream flow and magnetic field. In simulations, we found

hundreds of self-gravitating cores with masses M ∼ 0.04 − 2.5 M� and sizes L ∼

0.015− 0.07 pc, all formed within 1 Myr.

In Chapter 3, we also found that core masses and sizes do not depend on either

the ionization or upstream magnetic field direction, and ambipolar diffusion is in

fact not necessary to form low-mass supercritical cores. Our analysis showed that

this is the result of anisotropic contraction along field lines, which can be clearly

seen in our simulations, with or without ambipolar diffusion. In the anisotropic core
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formation model, low-mass magnetically supercritical cores form rapidly even in a

strongly magnetized medium with high ionization. This explains the prevalence of

magnetically supercritical cores in observations (Crutcher 2012).

Using a simple scaling argument, we suggested in Chapter 3 that the charac-

teristic core mass may be set by the mean turbulent pressure in a GMC, regardless

of magnetic effects. The predicted core mass is a factor ∼M−1 lower than the ther-

mal Bonnor-Ebert mass at the mean density in the cloud, whereM is the turbulent

Mach number. Previously, Gong & Ostriker (2011) proposed a similar formula based

on the preferred scale for gravitational fragmentation of post-shock layers, for the

purely hydrodynamic case. Padoan et al. (1997) also argued for a similar character-

istic mass, based on statistics of turbulent flows. Although the analyses of Gong &

Ostriker (2011) and Padoan et al. (1997) neglect magnetic fields, the end result is

similar to the prediction of Chapter 3 that incorporates magnetic effects, with the

turbulent pressure in a cloud setting the characteristic core mass.

Here, following Chapter 3, we continue our study of anisotropic core formation

in turbulent molecular clouds. We extend our previous numerical study to explore

how the turbulent and magnetic pressures of the pre-shock gas can affect core for-

mation in the compressed region. We demonstrate that the dependence of core

properties on pre-shock parameters are similar to those predicted by the anisotropic

core formation model of Chapter 3. We also compare our results with observations,

showing that the mass-size relationship and ratio of mass to critical value of our

simulations is comparable to that seen in Perseus and other star-forming regions

(Sadavoy et al. 2010a; Kirk et al. 2013).
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The outline of this chapter is as follows. We review the anisotropic core forma-

tion model in Section 4.2, outlining the successive dynamical stages and associated

parameter dependence expected. Section 4.3 describes the equations solved in our

numerical simulations, and specifies the model parameter set we shall consider. The

post-shock gas structure for varying parameters is analyzed in Section 4.4, includ-

ing physical properties of the compressed layer (Section 4.4.1), and development of

filaments within it (Section 4.4.2). In Section 4.5 we provide quantitative results

for masses, sizes, magnetizations, and other physical properties of the bound cores

identified from our simulations, and compare to predictions from Chapter 3. We

also compare these results with observations (Section 4.6), focusing on interpreting

the physical state of super-Jeans mass cores and mass-size relationships. Section 4.7

summarizes our conclusions.

4.2 Anisotropic Core Formation: Review

Here we briefly review the anisotropic condensation model of core formation

proposed in Chapter 3. We consider a strongly-magnetized post-shock region created

by a large-scale converging turbulent flow within a cloud. As shown in Figure 4.1

(top left), the magnetic field will lie primarily parallel to the shock front in the layer,

with density ρps and magnetic field strength Bps. For a cylinder with radius R and

length L along the magnetic field (Figure 4.1, top right), if 2R . L . Lmag,crit (see

Equation (3.33) of Chapter 3) for

Lmag,crit =
Bps

ρps

1

2π
√
G
, (4.1)
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Bps

R

~

ρps

L

R

L’ = 2R

ρ’ R
ρ’

ρps

Bps

Figure 4.1: The anisotropic condensation process of a magnetically-
critical cylinder, initiated by longitudinal contraction along the magnetic
field. When the length of the cylinder has shrunk to satisfy L′ ∼ 2R, it
can be treated as an isotropic sphere with radius R, which will collapse
if the self-gravity overcomes thermal pressure.

it is gravitationally stable to transverse contraction across the magnetic field (Mestel

& Spitzer 1956). However, the magnetic field does not prohibit contraction along

the length of the cylinder, and gravity will be able to overcome pressure forces if

L exceeds the thermal Jeans length within the post-shock layer, LJ,2D ≡ cs
2/GΣps

or LJ,3D ≡ cs(π/Gρps)
1/2. Here, Σps is the total surface density of the post-shock

layer. In this situation, longitudinal contraction can reduce the length until an

approximately isotropic core with L′ ∼ 2R is produced (Figure 4.1, bottom), with
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density

ρ′ =
L

2R
ρps. (4.2)

At this point, transverse contraction is no longer impeded by the magnetic field

provided the original L ∼ Lmag,crit so the core is magnetically supercritical (note

that the mass-to-magnetic flux ratio remains the same during the longitudinal con-

traction). The core will also have sufficient gravity to overcome thermal pressure

support provided its mass is comparable to that of a critical Bonnor-Ebert sphere

at ambient density ρ′, which corresponds to radius (prior to central concentration)

R ∼ Rth,sph = 2.3
cs√

4πGρ′
. (4.3)

Combining L ∼ Lmag,crit with Equations (4.1)-(4.3), this yields

ρ′ = 0.19
Bps

2

4πcs2
≈ 0.38

ρ0v0
2

cs2
. (4.4)

In Equation (4.4), we have assumed a strong magnetized isothermal shock with

downstream magnetic pressure balanced by upstream ram pressure (Bps
2/ (8π) ≈

ρ0v0
2) so that

Bps = 31.04 µG

(
v0

1 km/s

)( n0

103cm−3

)1/2

, (4.5)

where ρ0, v0 are the density and inflow velocity of the shock, respectively, and

n0 = ρ0/µn for µn = 2.3mH the mean molecular weight. We can then solve for

the critical radius and mass that allows an anisotropically formed core to be both

magnetically and thermally supercritical:

Rcrit = 5.3
cs

2

√
GBps

= 1.06
cs

2√
Gρ0v0

2

= 0.09 pc
( n0

1000 cm−3

)−1/2
(

v0

1 km/s

)−1(
cs

0.2 km/s

)2

, (4.6)
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and

Mcrit = 14
cs

4

G3/2Bps

= 2.8
cs

4√
G3ρ0v0

2

= 2.1 M�
( n0

1000 cm−3

)−1/2
(

v0

1 km/s

)−1(
cs

0.2 km/s

)4

. (4.7)

Equation (4.7) uses Mcrit = πRcrit
2Lmag,critρps = Rcrit

2Bps/(2
√
G). Equations (4.6)

and (4.7) suggest that the characteristic mass of prestellar cores formed in post-

shock regions in magnetized GMCs is determined by the dynamical pressure in

the cloud, independent of the cloud’s magnetization, when anisotropic condensation

along the magnetic field is taken into account. We already showed in Chapter 3

that models with varying upstream magnetic field directions have similar values of

the median core mass and radius. Here, we extend our previous investigation to

consider variation in the inflow velocities and background magnetic field strength.

4.3 Numerical Methods and Models

The simulation setup is similar to the one discussed in Chapter 3, and is

summarized here. We employ a three-dimensional ideal MHD model with convergent

flow, self-gravity, and a perturbed turbulent velocity field (Gong & Ostriker 2011).

These numerical simulations are conducted using the Athena MHD code (Stone et

al. 2008) with the Roe Riemann solver. As we found in Chapter 3 that ambipolar

diffusion plays a secondary role in core formation, here we consider ideal MHD. The
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equations we solve are:

∂ρ

∂t
+∇ · (ρv) = 0, (4.8)

∂ρv

∂t
+∇ ·

(
ρvv − BB

4π

)
+∇P ∗ = 0, (4.9)

∂B

∂t
+∇× (B× v) = 0, (4.10)

where P ∗ = P + B2/(8π). For simplicity, we adopt an isothermal equation of state

P = ρcs
2 with cs = 0.2 km/s. For both the whole simulation box initially and the

inflowing gas subsequently, we apply perturbations following a Gaussian random

distribution with a Fourier power spectrum v2 (k) ∝ k−4 (Gong & Ostriker 2011,

or see Equations (3.23) and (3.24) in Chapter 3). We use H-correction (Sanders et

al. 1998) to suppress the carbuncle instability, and, when needed, first order flux

correction (Lemaster & Stone 2009).

Our simulation box is 1 pc on each side, representing a region within a GMC

where a large-scale supersonic converging flow with velocity v0 = v0 ẑ and −v0 (i.e.

in the center-of-momentum frame) collides. The z-direction is the large-scale inflow

direction, and we adopt periodic boundary conditions in the x- and y-directions.

We initialize the background magnetic field in the cloud, B0, in the x-z plane, with

an angle θ = 20◦ with respect to the convergent flow. The number density of the

neutrals, defined as n ≡ ρ/µn, is set to n0 = 1000 cm−3 in the initial conditions and

in the upstream converging flow. The physical parameters defining each model are

then the inflow Mach number and upstream magnetic field strengthM≡ v0/cs and

B0. We chooseM = 5, 10, and 20 to look at the dependence of core mass/size on the

inflow velocity, and B0 = 5, 10, and 20 µG to test whether the initial magnetization
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of the cloud can affect the core properties (see Table 4.1).

Similar to our previous work, we repeat each model 6 times with different ran-

dom realizations of the same turbulent power spectrum to collect sufficient statistical

information. Note that the resolution adopted in Chapter 3 (∆x = 1/256 pc) is not

high enough to resolve strong shocks generated by high inflow velocity, especially

M = 20 cases. Therefore, we increased our resolution to 5123 for all models in this

work, such that ∆x ≈ 0.002 pc.

From each simulation, we apply the GRID core-finding method (Gong & Os-

triker 2011), which uses the largest closed gravitational potential contours around

single local minimums as core boundaries. We then select the gravitationally bound

cores as those with negative total energy (sum of gravitational, magnetic, and ther-

mal energy). It is then straightforward to measure the mass and size for each

identified core. For the magnetic flux within a core, we first find the plane that in-

cludes the minimum of the core’s gravitational potential and is perpendicular to the

average magnetic field direction within the core. This plane separates the core into

an upper half and a lower half, and we can measure the magnetic flux ΦB through

the core by summing up B · n̂ in either the upper or lower half of the core surface

(see Chapter 3). The normalized mass-to-magnetic flux ratio of the core is therefore

Γ ≡M/ΦB · 2π
√
G.
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4.4 Post-shock Environment and Structure Formation

4.4.1 Post-shock Layer

The post-shock results from our simulations are summarized in Table 4.1.

Similar to our work in Chapter 3, we measured the post-shock properties at t =

0.2 Myr, a timescale that is short enough that no cores have formed, yet long

enough for the post-shock region to reach a steady-state solution. In fact, the

timescale tsg necessary for the post-shock layer to become self-gravitating can be

derived by considering when the gravitational weight,

πGΣps
2

2
=
πG (2ρ0v0tsg)2

2
, (4.11)

exceeds the post-shock pressure Bps
2/8π ≈ ρ0v0

2. The result is

tsg =
1√

2πGρ0

= 0.79 Myr
( n0

1000 cm−3

)−1/2

. (4.12)

This justifies our choice of measuring post-shock properties at t = 0.2 Myr.

As explained in Chapter 3, there are two different length scales (and cor-

responding characteristic masses) for spherical cores in the post-shock region at

a given ambient density ρ: one that is supported by thermal pressure (a critical

Bonnor-Ebert sphere)

Rth,sph = 2.3
cs√

4πGρ
, (4.13)

Mth,sph = 4.18
cs

3√
4πG3ρ

, (4.14)
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Figure 4.2: The post-shock layer thickness Hps in different models mea-
sured from simulations (solid), compared to possible mass-gathering
scales, Rth,sph from Equation (4.13) (dashed) and Rmag,sph from Equa-
tion (4.15) (dotted) within the post-shock layer. Since the post-shock
layer is strongly magnetized with Rmag,sph much larger than Hps during
the core building phase (∼ 0.5 Myr), cores cannot collect mass along the
direction perpendicular to the layer.
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and one that is supported by magnetic stresses (defined from 4R/3 = Lmag,crit)

Rmag,sph =
3

8π
√
G

B

ρ
, (4.15)

Mmag,sph =
9

128π2G3/2

B3

ρ2
(4.16)

(see Equations (3.11)−(3.12) and (3.14)−(3.15) in Chapter 3). Figure 4.2 shows

the measured post-shock layer thickness in each model, compared with these two

possible mass-gathering scales in the post-shock environment, Rth,sph and Rmag,sph.

It is obvious from Figure 4.2 that Rmag,sph is much larger than the post-shock thick-

ness during the entire core-building phase, and thus magnetically supercritical cores

cannot form spherical symmetrically within the post-shock layer. Quantitatively,

since the post-shock layer thickness is Hps = Σps/
(
2ρps

)
, we have

Rmag,sph

Hps

=
3

4π
√
G

Bps

Σps

≈ 3

4π
√
G

√
8πρ0v0

2

2ρ0v0t

=
3√

8πGρ0t
= 1.2

( n0

1000 cm−3

)−1/2
(

t

Myr

)−1

. (4.17)

Since the core formation timescales in our models all satisfy t . 1 Myr, Equa-

tion (4.17) suggests Rmag,sph > Hps when cores formed. This means that gravity-

induced mass collection in the direction perpendicular to the shocked layer is pre-

vented by magnetic forces, and in-plane mass collection is required for core formation

in post-shock regions.

4.4.2 Structure Formation

Figure 4.3 shows examples of structures formed within the post-shock layers,

at the time that the most evolved core collapses (tcoll; see Section 4.5). We have
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Figure 4.3: The structure formed in the post-shock layer (in column
density; color map) for models with different inflow Mach numbers and
background magnetic fields. Magnetic field directions in the post-shock
layer are also shown (pink segments).
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Figure 4.4: The space-time diagrams of vx, vy, vz around the most
evolved core in each model, normalized by the total velocity vtot =

(vx
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2 + vz
2)

1/2
at each zone. In all models, vz dominates in the

beginning of the simulation because of the convergent flow setup, but vx
(along the magnetic field lines) soon becomes the strongest component
around the forming core.
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selected models with identical initial turbulence realization, which is responsible for

seeding the structures that subsequently grow. Filamentary structures are obviously

seen in all models with width ∼ 0.05 pc, similar to those found in observations

(see review in André et al. 2014). Also, note that the filaments are not necessary

perpendicular to the magnetic field, because the locations of nulls in the velocity

field are independent of each other on each magnetic field line.

In addition, we see networks of small sub-filaments or striations parallel to

the magnetic field in some models. Similar features have been observed in multiple

molecular clouds (Goldsmith et al. 2008; Sugitani et al. 2011; Hennemann et al.

2012; André et al. 2014), and are consistent with the theoretical expectation of

anisotropy of magnetized turbulence (Goldreich & Sridhar 1995). Quantitatively,

computational studies suggest β . 0.2 is required to have significant anisotropy

at Mach number = 5 (Vestuto et al. 2003; Heyer et al. 2008), and the critical

value of β may become smaller for higher Mach numbers (Heyer et al. 2008). This

roughly agrees with our results in Figure 4.3: striations parallel to the magnetic field

direction (not necessarily perpendicular to the main filaments) are evident in models

with low Mach numbers or strong magnetic fields (M5, M10/B10, B20). Otherwise,

the high velocity turbulence (M20) or the weak magnetization (B5, see Table 4.1)

may have destroyed the anisotropy.

Similar to our work in Chapter 3, we use space-time diagrams of different

velocity components to demonstrate the anisotropic process of core formation (Fig-

ure 4.4). We consider the region with size Lx×Ly×Lz = Lmag,crit×2Rth,sph×2Rth,sph

centered around the most-evolved core at tcoll of each model, and plot the averaged
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Table 4.2: Results from filaments measured at t = tcoll, averaged over all 6 runs
for each parameter set.

Model tcoll
§ FFE1.0

† FFE1.5
† Afila,1.0 Afila,1.5 Lmag,crit Lacc

‡ λm
‡

(Myr) (pc2) (pc2) (pc) (pc) (pc)

M5B10 0.83 0.65 0.31 0.34 0.11 0.19 0.51 0.39
M10B10 0.53 0.57 0.27 0.34 0.11 0.18 0.49 0.28
M20B10 0.43 0.59 0.31 0.35 0.13 0.19 0.51 0.20

M10B5 0.58 0.61 0.33 0.34 0.13 0.10 0.27 0.28
M10B10 0.53 0.57 0.27 0.34 0.11 0.18 0.49 0.28
M10B20 0.63 0.53 0.36 0.30 0.15 0.37 1.00 0.28

§Collapse is defined as the time when nmax = 107 cm−3 in each simulation.
†FFE (filament formation efficiency) is the ratio of the total mass in filamentary structures
to the total mass in the shocked layer at tcoll, as defined in Equation (4.19).
‡See Section 4.5.

vx, vy, vz along x-, y-, z-directions in the unit of the total velocity vtot. Anisotropic

gas flows along the x-direction are obvious in all models, and appear much earlier

than the core collapse (when all three velocity components show convergent flow).

Note that, from Figure 4.4 we can see that Model B5 has less prominent convergent

flow along the x-direction than the other models, indicating that anisotropy is not

as strong in this model (see Section 4.5).

Quantitatively, if we define overdense (filamentary) structures as those with

surface density contrast higher than a certain value, say, Σ > X · Σps, then we can

measure the mean surface density of filaments, Σfila, as the ratio of total mass inside

filamentary structures,

Mfila ≡
∫

Σfila(x, y) · dx · dy, (4.18)

to total area (Afila) of the same structures. The filament formation efficiency (FFE)

is defined by:

FFE =
Mfila

Mps

=
Mfila

2ρ0v0t
. (4.19)
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X = 0 X = 1 X = 1.5

Figure 4.5: Comparison between filamentary structures above different
cut-off X values in the criterion Σ > X · Σps (top), and the fraction
of filament mass (bottom left) and the fraction of filament area (bottom
right) as functions of X, from model M10B10.

Table 4.2 lists the measured FFE and total area of filaments using X = 1.0 and

X = 1.5, as well as three mass-accreting scales Lmag,crit (see Equation (4.1)), Lacc,

and λm (see discussion in Section 4.5). Though the core collapse timescale varies

with inflow Mach number, the filament formation efficiency and the total area of

filaments do not seem to have strong dependence on either the inflow Mach number

or the pre-shock magnetic field. This is in contrast to the core formation efficiency

(CFE), which varies with tcoll (see Table 4.3 and discussion in Section 4.5).

Note that there is some arbitrariness in the choice of X. Figure 4.5 compares

the post-shock structures under different cutoff values in surface density, and shows

the differential PDFs of filament mass and area as functions of the surface density

ratio X ≡ Σ/Σps. Since there is no “break” in the differential PDF at any particular
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value of X, there is not an obvious value of X to use as a lower limit for filament gas.

Using X = 1.0, Figure 4.6 shows the average column density of the post-shock layer,

Nps = Σps/µn, and Nfila for each model, as functions of time. We also measured

the filament column density at tcoll; in all models, Ncoll ≡ Nfila(tcoll) ∼ 1022 cm−2,

comparable to the observed “critical column density” for filaments with active core

formation (see review in André et al. 2014). In detail, we find that for X = 1,

Ncoll/Nps ≈ 1.8 (see Figure 4.6).

As we shall show below (see Equation (4.27)), the expected post-shock column

density at the collapse time is Nps ∝ (n0v0)1/2. When Σ/Σps > X = 1 is used to

define filaments, Ncoll/Nps ≈ 1.8 for all models (see Figure 4.6), implying the same

dependence of filament column density on v0 as mean post-shock column density.

4.5 Statistical Core Properties

Similar to Chapter 3, we define the timescale at which nmax ≥ 107 cm−3 as

the moment tcoll when the most evolved core collapses, then identify cores formed

at this time and investigate their physical properties (see Section 4.3). Figures 4.7

and 4.8 show the statistical distributions of core mass, size, mean magnetic field,

and mass-to-flux ratio measured from our simulations, normalized by total number

of cores identified for each parameter set. The normalized mass-to-magnetic flux

ratio is defined as

Γ ≡ M

ΦB

· 2π
√
G. (4.20)
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Cores with Γ > 1 are magnetically supercritical, and have self-gravity strong enough

to overcome the magnetic support and collapse.

Cores identified in our simulations have masses Mcore ∼ 0.002 − 10 M�, sizes

Rcore ∼ 0.004− 0.05 pc, and normalized mass-to-flux ratio Γ ∼ 0.4− 4.5, consistent

with observations (e.g. Troland & Crutcher 2008; Sadavoy et al. 2010a; Kirk et

al. 2013). We also included the normalized mass distribution of starless cores in

the Perseus molecular cloud (adopted from Sadavoy et al. 2010a) in Figure 4.7 as

a comparison (see Section 4.6 for more discussion). The median values of core

properties are summarized in Table 4.3, as well as the averaged core formation

efficiency (CFE) and core collapse time tcoll. In Figure 4.9 we show that the CFE is

positively related to the core collapse time, tcoll. This is because more structures in

the post-shock region have become nonlinear at later tcoll.

Note that though the mean core density, ncore, is ∼ 10 times larger than the

ambient density in the post-shock layer, the magnetic field within cores (Bcore) is not

significantly different from the post-shock region (see nps and Bps in Table 4.1). This

is additional evidence of anisotropic core formation: cores gather material along the

magnetic field and become more massive without significantly compressing the field

and enhancing the magnetic support.

In the anisotropic condensation model (Section 4.2), core properties are ex-

pected to depend on the inflow Mach number. In particular, Equations (4.6) and

(4.7) suggest that Rcore and Mcore should decrease with increasingM, while varying

B0 should not have significant effect on these core properties. Furthermore, the core

field is expected to be comparable to the post-shock value given in Equation (4.5),
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Figure 4.7: Statistical distribution of core mass (left panel) and size
(right panel) for models with different inflow Mach numbers (top row)
and cloud magnetic fields (bottom row).

so that it increases with M and is insensitive to B0. Our results in Table 4.3 and

Figures 4.7 and 4.8 generally agree with these theoretical predictions.

Quantitatively, we plot the median values of core mass, size, and mean mag-

netic field as well as the average core collapse time in Figure 4.10, as functions of

initial Mach number (top row) and pre-shock cloud magnetic field (bottom row).

We also include theoretical models (dotted lines) with Mcore ∝ M−1 (according to

Equation (4.7)), Rcore ∝M−1 (according to Equation (4.6)), Bcore ∝M (according
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Figure 4.8: Statistical distribution of core mean magnetic field (left
panel) and mass-to-flux ratio (right panel) for models with different in-
flow Mach numbers (top row) and cloud magnetic fields (bottom row).

to Equation (4.5)), and tcoll ∝ M−1/2 (see Equation (4.25) below). For each theo-

retical comparison, we adopt the predicted scaling and obtain a best-fit coefficient.

All simulated results fit the theoretical predictions very well, providing quantitative

support for the anisotropic core formation model. The fit coefficients we find for

radius and mass are Mcore = 4.4 M� M−1 and Rcore = 0.14 pc M−1; these are

shown in Figure 4.10.

The Bonnor-Ebert critical radius and mass for an external pressure Pext are
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timescale M5 M10 M20 total M_core CFE surfd1 surfd2 upper value slope FFE FilaMass FFE_1.5 FilaMass_1.5 FilaArea FilaArea_1.5 Lx, fila Lx,fila_2 Mcore/Mfila binned all slope mean CFE med CFE

mean

std

0.55

mean

std

mean

std

t=0.2 Myr

IDL output

n_ps

mean

B_ps

mean

beta_ps

mean

LJ_ps, 2D

mean

LJ_ps, 3D

mean

Lmag_ps

mean

Pth

mean

PB

mean

Pth/PB

t=0.2 Myr

IDL output

Vrms

mean

Vrms, x

mean

Vrms, y

mean

Vrms, z

mean

vrms/vA

M5 M5R1 6.130000 7.04% 22.660000 23.330000 1.00E+01 -1.4925 0.6938 60.4476 0.2354 20.5083 0.3884 0.0890 0.5416 0.0789 10.14% -3.65 3.75% 4.26%
B5 B10 B20 5.000000 10.000000 20.000000 M5R2 5.861000 6.01% 22.530000 23.190000 1.00E+02 -3.0303 0.6380 62.2608 0.3078 30.0380 0.3286 0.1067 0.5042 0.1432 9.41% -3.15 2.60% 1.58%

0.75 M5R3 9.929000 10.17% 22.590000 23.260000 8.00E+01 -2.8404 0.6449 62.9311 0.2942 28.7054 0.3305 0.0961 0.5097 0.1493 15.78% -2.65 4.03% 3.54%
0.84 B5 5 0.5800 M5R4 7.301700 7.66% 22.6200 23.5000 3.00E+01 -1.6785 0.6508 61.9946 0.3616 34.4509 0.3166 0.1262 0.5134 0.1619 11.78% -2.15 3.74% 3.90%
0.84 B10 10 0.8250 0.5333 0.4317 M5R5 3.829200 4.02% 22.5300 23.3200 4.00E+01 -2.0279 0.6440 61.3521 0.2956 28.1598 0.3399 0.1092 0.5098 0.1217 6.24% -1.65 7.35% 7.35%
0.82 B20 20 0.6283 M5R6 4.637980 4.54% 22.5800 23.4000 7.00E+01 -2.2501 0.6495 66.4004 0.3362 34.3739 0.3231 0.1143 0.5159 0.1642 6.98%
0.82 37.688880 6.55% -2.2200 0.6528 62.5644 0.3065 29.3727 0.3378 0.1069 0.5158 0.1463 10.04%
0.88 M10R1 5.0500 4.26% 22.4900 23.1600 2.00E+02 -3.4344 0.5898 69.8899 0.2684 31.7994 0.3485 0.1093 0.5251 0.1212 7.23% individual mean slope mean CFE median slope median CFE t_collapse

M10R2 4.2872 3.55% 22.48 23.12 2.00E+02 -3.5954 0.5618 67.8820 0.2572 31.0810 0.3296 0.1008 0.5008 0.1298 6.32% M5 -2.2200 6.5539% -2.1390 6.5207% 0.8250
0.8250 avg 1.8341 M10R3 4.7810 3.74% 22.590000 23.300000 1.00E+02 -2.8169 0.5626 71.8940 0.2806 35.8588 0.3232 0.1109 0.5062 0.1448 6.65% M10 -2.7731 3.6458% -2.6001 3.6448% 0.5333
0.0428 1.8206 1.8448 1.6865 1.9305 M10R4 1.9880 1.61% 22.590000 23.410000 9.00E+01 -2.3832 0.5751 70.8192 0.2705 33.3055 0.3322 0.1044 0.5141 0.1376 2.81% M20 -3.0203 0.8133% -3.1258 0.8736% 0.4317

1.9870 M10R5 3.2620 2.75% 22.550000 23.300000 4.00E+01 -2.1361 0.5731 67.9112 0.2465 29.2090 0.3493 0.1035 0.5125 0.1095 4.80% B5 -3.0126 2.0571% -3.1190 1.7895% 0.5800
M10 M10R6 7.7390 5.74% 22.610000 23.490000 1.00E+02 -2.2727 0.5848 78.8016 0.2932 39.5060 0.3339 0.1150 0.5260 0.1470 9.82% B10 -2.7731 3.6458% -2.6001 3.6448%
B5 B10 B20 27.1072 3.65% -2.7731 0.5746 71.1997 0.2700 33.4600 0.3361 0.1073 0.5141 0.1337 6.35% B20 -3.0870 5.3581% -3.0555 5.2453% 0.6283

0.60 0.51 0.59 0.8142 0.5757 0.4071 M20R1 0.2580 0.14% 22.730000 23.380000 1.00E+02 -3.0769 0.5893 109.5350 0.3025 56.2353 0.3560 0.1318 0.5573 0.1501 0.24%
0.53 0.52 0.61 M20R2 2.2705 1.22% 22.770000 23.400000 1.00E+02 -3.1746 0.5802 107.8520 0.2928 54.4334 0.3514 0.1234 0.5525 0.1555 2.11%
0.56 0.55 0.64 M20R3 2.0781 1.12% 22.780000 23.460000 5.00E+01 -2.4985 0.5732 106.5460 0.2855 53.0680 0.3525 0.1240 0.5486 0.1504 1.95% Q1 slope Q3 slope Q1 CFE Q3 CFE
0.59 0.53 0.63 M20R5 0.9910 0.47% 22.810000 23.390000 1.00E+02 -3.4483 0.5809 121.4760 0.3105 64.9232 0.3459 0.1306 0.5567 0.1758 0.82% M5 -2.692855 -1.765891 4.9040% 7.5075%
0.61 0.51 0.65 M20R8 2.7583 1.32% 22.840000 23.450000 1.00E+02 -3.2787 0.5888 123.1250 0.3469 72.5493 0.3287 0.1376 0.5607 0.2129 2.24% M10 -3.280005 -2.300351 2.9517% 4.1316%
0.59 0.58 0.65 M20R13 1.4325 0.63% 22.780000 23.650000 2.00E+02 -2.6449 0.5969 135.9080 0.3398 77.3784 0.3410 0.1383 0.5702 0.1941 1.05% M20 -3.252667 -2.752877 0.5127% 1.1956%

9.7884 0.81% -3.0203 0.5853 117.4070 0.3146 63.0979 0.3459 0.1310 0.5577 0.1656 1.39% B5 -3.243691 -2.961102 1.4787% 2.1341%
0.5800 0.5333 0.6283 B5R1 2.481000 1.78% 22.500000 23.300000 4.00E+02 -3.2526 0.6198 86.4012 0.3497 48.7520 0.3387 0.1373 0.5600 0.1878 2.87% B10 -3.280005 -2.300351 2.9517% 4.1316%
0.0297 0.0273 0.0240 B5R2 2.215700 1.80% 22.450000 23.220000 3.00E+02 -3.2170 0.5910 72.7816 0.2625 32.3197 0.3546 0.1052 0.5346 0.1353 3.04% B20 -3.405879 -2.631136 3.7514% 6.1072%

B5R3 2.921900 2.25% 22.620000 23.300000 1.00E+02 -2.9412 0.5973 77.7193 0.3031 39.4334 0.3448 0.1231 0.5421 0.1529 3.76%
M20 B5R4 1.889600 1.38% 22.570000 23.390000 3.00E+02 -3.0209 0.6182 84.7518 0.3520 48.2546 0.3287 0.1289 0.5602 0.2072 2.23%
B5 B10 B20 B5R5 1.931000 1.36% 22.610000 23.300000 2.00E+02 -3.3348 0.6034 85.5269 0.3451 48.9159 0.3288 0.1314 0.5517 0.2043 2.26% Mcore/Mfila

0.40 B5R6 5.193700 3.79% 22.780000 23.550000 6.00E+01 -2.3093 0.6074 83.2705 0.3441 47.1700 0.3267 0.1274 0.5513 0.1963 6.24% M5 5 0.100400
0.40 16.632900 2.06% -3.0126 0.6066 81.7419 0.3275 44.1409 0.3370 0.1256 0.5500 0.1920 3.39% M10 10 0.063453
0.40 B20R1 4.010700 2.93% 22.730000 23.410000 5.00E+01 -2.4985 0.5468 74.9604 0.3347 45.8846 0.3086 0.1360 0.5356 0.2168 5.35% M20 20 0.013895
0.45 B20R2 6.221100 4.39% 22.600000 23.190000 2.00E+02 -3.9001 0.5550 78.6565 0.3331 47.2058 0.3225 0.1399 0.5537 0.2112 7.91% B5 5 0.033913
0.45 B20R3 9.084500 6.11% 22.760000 23.450000 9.00E+01 -2.8322 0.5486 81.5837 0.3626 53.9256 0.3078 0.1463 0.5776 0.2694 11.14% B10 10 0.063453
0.49 B20R4 5.180000 3.54% 22.770000 23.550000 1.00E+02 -2.5641 0.5126 75.0266 0.3585 52.4830 0.2858 0.1436 0.5701 0.3023 6.90% B20 20 0.100343

B20R5 9.214300 6.10% 22.800000 23.380000 1.00E+02 -3.4483 0.5220 78.8424 0.3838 57.9695 0.2852 0.1569 0.5873 0.3225 11.69%
0.4317 B20R6 13.223300 8.76% 22.790000 23.400000 1.00E+02 -3.2787 0.5209 78.6645 0.3638 54.9480 0.2999 0.1532 0.5906 0.2938 16.81%
0.0376 46.933900 5.36% -3.0870 0.5340 77.9557 0.3567 52.0694 0.3016 0.1460 0.5692 0.2816 10.03%
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Figure 4.9: The core formation efficiency (CFE) vs. core collapse
timescale. Each point represents one model parameter set (M5, M10B10,
etc.).

given by RBE = 0.485 cs
2 (GPext)

−1/2 and MBE = 1.2 cs
4 (G3Pext)

−1/2
. If we take

Pext → ρ0v0
2 and normalize to n0 = 1000 cm−3, cs = 0.2 km/s as in our simulations,

the result is

RBE,dyn = 0.196 pc
( n0

1000 cm−3

)−1/2
(

cs
0.2 km/s

)
M−1,

MBE,dyn = 4.43 M�
( n0

1000 cm−3

)−1/2
(

cs
0.2 km/s

)3

M−1. (4.21)

Comparing to our fitted core radius and mass expressions, we have

Rcore = 0.71 RBE,dyn, Mcore = 0.99 MBE,dyn. (4.22)

Therefore, our results suggest that bound core properties are well described by

critical Bonnor-Ebert spheres defined by the dynamical pressure of the environ-

ment. This supports the key conclusion predicted in our anisotropic core formation
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model.12

Equations (4.6) and (4.7) were derived assuming that the accumulation length

along the magnetic field is Lmag,crit (Equation (4.1)). If, however, we instead assume

an accumulation length Lacc and follow the same steps as before, Equations (4.6)

and (4.7) would have an additional factor (Lacc/Lmag,crit)
−1, i.e.

Rcore = 0.43 pc
( n0

1000 cm−3

)−1/2
(

cs
0.2 km/s

)
M−1

(
Lacc

Lmag,crit

)−1

(4.23)

and

Mcore = 10.5 M�
( n0

1000 cm−3

)−1/2
(

cs
0.2 km/s

)3

M−1

(
Lacc

Lmag,crit

)−1

. (4.24)

Comparing to our fits, this implies Lacc/Lmag,crit = 2.4 or 3.2 for the mass or radius

fit, respectively. This suggests that cores actually need to gather material along the

magnetic field lines from a length scale Lacc > Lmag,crit. Since Lmag,crit represents

the critical (minimum) length scale for cores to be magnetically supercritical, our

finding of Lacc > Lmag,crit is consistent with the anisotropic core formation model.

Table 4.2 includes the value (in pc) of Lacc = 2.7 Lmag,crit in each model that would

be required for the median core mass and radius to match Equations (4.24) and

(4.23).

We also use the best-fit coefficients found in M-models (Figure 4.10, top

row) to derive the predicted values (dotted lines) of core mass, size, magnetic field

strength, and collapse time for B-models (Figure 4.10, bottom row). Most of the

theoretical predictions are in good agreement with the simulation results, except the

12Note that RBE,dyn and MBE,dyn are respectively factors 0.46 and 0.43 smaller than the radius
and mass given in Equations (4.6) and (4.7).
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Figure 4.10: Summary of simulated core statistical properties for models
with different inflow Mach numbers (top row) and cloud magnetic fields
(bottom row), with theoretical predictions (dotted lines). The dashed
lines in the core size plots (second column) indicate the resolution of our
simulations; ∆x ≈ 0.002 pc.

core mass in the B5 model. This is because the B5 model has very strong post-shock

density compression but only moderate post-shock magnetic field (see Table 4.1),

and supercritical cores may form isotropically. This tendency can also be seen in

Figures 4.3 and 4.4, that the structures formed in the B5 model are more randomly

distributed compared to other models, the anisotropic gas flow is less prominent,

and there is less large-scale structure in the B5 model.

154



Figure 4.10 shows that the core collapse time follows the relationship tcoll ∝

M−1/2 very well, as predicted in Equation (29) of Gong & Ostriker (2011). The

best-fit coefficient gives

tcoll = 1.82 Myr M−1/2 (4.25)

If we compare with Equation (29) of Gong & Ostriker (2011) (with n0 = 1000 cm−3

and cs = 0.2 km/s), this would imply a maximum amplification in the post-shock re-

gion of ln(δΣ/δΣ0)max = 2.29. The corresponding length scale of the most-amplified

mode (see Equation (30) of Gong & Ostriker (2011)) is then

λm =

(
2
√

3π

2.29

)1/2
cs

(Gρ0)1/2

1

M1/2

= 0.39 pc
( n0

1000 cm−3

)−1/2
(

v0

1 km/s

)−1/2

. (4.26)

In most of our models, λm > Lmag,crit (see Table 4.2), which means the most-

amplified mode would be able to form gravitationally bound cores and collapse. In

fact, the amplification is similar for a range of modes with similar wavelengths (see

Equation (26) of Gong & Ostriker (2011)), so it is not surprising that Lacc differs

from λm (see Table 4.2).

Using the fitted coefficient of Equation (4.25) combined with the expectation

tcoll ∝ n0
−1/2, the predicted post-shock surface density at the time of collapse is

Σps (tcoll) = 2ρ0v0tcoll, corresponding to column density

Nps (tcoll) = 5.4× 1021 cm−2
( n0

1000 cm−3

)1/2
(

v0

1 km/s

)1/2

. (4.27)

This is in good agreement with measured values, as shown in Figure 4.6. Considering

Equation (4.27) and the fact thatNfila (tcoll) /Nps ≈ 1.8 in all models (see Figure 4.6),
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this suggests that the filament column density at the core collapse time may have the

same dependence on inflow density and velocity as the post-shock column density,

i.e. Nfila (tcoll) ∝ (n0v0)1/2.

4.6 Comparison to the Perseus Molecular Cloud

4.6.1 Cloud Environment

The dark cloud in Perseus is an active star forming region approximately 250 pc

away, with a total mass of about 104 M� over a region about 8× 25 pc (see review

in Bally et al. 2008). Dense gas tracers and dust emission have revealed filamentary

structures and a wealth of dense cores in this region (e.g. Enoch et al. 2006; Kirk

et al. 2006). In addition, since the Perseus molecular cloud has been observed in

12CO and 13CO emission lines (e.g. Ridge et al. 2006), the cloud density should be

& 103 cm−3, similar to the value adopted in our simulations. The Perseus molecular

cloud thus represents a good case to compare with our simulation results.

However, the Perseus molecular cloud shows large velocity differences across

the region (Bally et al. 2008). The observed CO linewidth is about 5 km/s over

the whole cloud (Ridge et al. 2006). Though numerical simulations with rms Mach

numberM = 6−8 have shown agreement with observational data on linewidth and

cloud structures (Padoan et al. 1999, 2006), there is still uncertainty in the actual

value of σv in the Perseus molecular cloud because of the possibility of superposition

of multiple clouds (Bally et al. 2008).

For our comparisons, we adopted the observed properties of starless cores in
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the Perseus molecular cloud from Sadavoy et al. (2010a). The core mass distribution

of Perseus is included in Figure 4.7 as a comparison to simulations. As discussed in

Section 4.5, the Gaussian-fit peaks of the core mass functions from our simulations

shift with the inflow Mach number, or equivalently, the velocity dispersion in the

cloud. From Figure 4.7, the CMF of Perseus has a peak core mass similar to that of

the M5 model, suggesting that Perseus may be a relatively quiescent star-forming

environment with converging flow velocities only of order ∼ 1 km/s.

4.6.2 Bonnor-Ebert Mass

One interesting feature of the Perseus cloud is the existence of “super-Jeans

mass cores” (Sadavoy et al. 2010b). These massive cores have relatively strong self-

gravity compared to their internal thermal pressure, but still remain starless. An

interesting possibility is that these and similar cores may be partially magnetically

supported. Our models are useful for addressing this question, because we can

measure the fraction of super-Jeans mass cores under different environments in our

simulations, and we also can measure magnetic support.

For consistency with theoretical work, we will consider the critical Bonnor-

Ebert mass instead of the Jeans mass. We thus convert from the M/MJ ratios in

Sadavoy et al. (2010b) to M/MBE, making use of the core mass and effective radius

published in Sadavoy et al. (2010a), and using Equation (19) in Gong & Ostriker
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Figure 4.11: Statistical distribution of the ratio between core mass and
theoretical Bonnor-Ebert mass, compared with the observed values in
Perseus, for cores formed in the M-models (top) and B-models (bottom).
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(2009):

MBE = 1.18
cs

4√
G3Pedge

= 1.85
cs

4

√
G3Pmean

= 1.85
cs

3√
G3ρmean

= 3.8
cs

3

G3/2

R3/2

M1/2
. (4.28)

For a core at mass M , radius R, and density ρmean that is pressure confined at

its surface, the thermal pressure is insufficient to prevent gravitational collapse if

M > MBE. For each core identified in our simulations, we calculated the value of

the Bonnor-Ebert mass using the core’s mass and radius.

Figure 4.11 shows the statistical distribution of Mcore/MBE from both our

simulations and Perseus; in addition to the binned counts, we also show best fit log-

normal functions for each model. The distributions for all models and for Perseus

are similar. Figure 4.11 shows that although the median core mass is close to MBE,

the majority of our gravitationally-bound cores have Mcore/MBE > 1, näıvely con-

sistent with the fact that these cores are magnetized. However, these super-BE

mass cores do not in fact seem to be supported primarily by the magnetic field.

Figure 4.12 shows the mass-to-flux ratio Γ versus M/MBE for all cores from our

simulations. Evidently, most cores with high M/MBE (& 3) are also strongly mag-

netically supercritical (Γ & 2). This suggests that the super-BE mass cores observed

in Perseus may be strongly self-gravitating and on their way to collapse, rather than

being magnetically supported. In fact, in our model, cores with Mcore/MBE & 7 all

have nmax & 107 cm−3, which means they are the most-evolved collapsing cores in

individual simulation runs.
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M5 depth mass_bd n_bd R (pc) mean rho Sigma GM/R MBE M/MBE M_mag M/M_mag avgB_bd Ga_bd Ltot L/MRc_s J^2/GM (AU) M/ (Sigma 
H^2)

M10 depth mass_bd n_bd R (pc) mean rho Sigma GM/R MBE M/MBE M_mag M/M_mag avgB_bd Ga_bd Ltot M/ (Sigma 
H^2)

M20 depth mass_bd n_bd R (pc) mean rho Sigma GM/R MBE M/MBE M_mag M/M_mag avgB_bd Ga_bd Ltot L/MRc_s J^2/GM (AU)

R1

R2

R3

R4

R5

R6

median
mean

0.150 1.000 11,276 0.027170 2.08E+05 2.34E+22 0.1584 0.4823 2.073 0.3475 14.47 50.600 2.437 6.23E-04 0.1146 18.62 0.5986 R1 0.090 0.146 711 0.010814 4.83E+05 2.16E+22 0.0581 0.3170 0.461 0.0610 8.41 56.100 2.034 4.79E-05 0.1020 R1 0.160 0.258 626 0.010365 9.69E+05 4.15E+22 0.1071 0.2237 1.153 0.1595 1.09 159.600 1.028 3.20E-04 0.5978 285.83

0.160 1.450 20,737 0.033288 1.64E+05 2.26E+22 0.1874 0.5432 2.670 0.3723 34.23 36.120 3.247 1.65E-03 0.1709 42.89 0.8679 0.790 4.710 34,816 0.039563 3.18E+05 5.20E+22 0.5123 0.3905 12.062 0.9055 5.62 62.190 1.778 2.11E-02 3.2898 R2 0.160 0.256 243 0.007561 2.48E+06 7.74E+22 0.1457 0.1399 1.829 0.0875 5.38 164.500 1.752 1.26E-04 0.3250 45.30

0.650 3.680 39,602 0.041299 2.18E+05 3.73E+22 0.3834 0.4712 7.811 0.5447 32.01 34.330 3.175 4.71E-03 0.1550 21.39 2.2028 0.110 0.194 704 0.010778 6.48E+05 2.89E+22 0.0775 0.2736 0.709 0.0801 8.16 74.130 2.013 6.19E-05 0.1355 0.190 0.460 1,456 0.013733 7.43E+05 4.22E+22 0.1441 0.2555 1.800 0.1775 2.21 101.200 1.303 2.29E-04 0.1815 25.94

0.170 0.889 5,472 0.021351 3.82E+05 3.37E+22 0.1792 0.3563 2.495 0.2383 14.58 56.200 2.443 3.87E-04 0.1019 10.22 0.3788 R2 0.110 0.291 1,821 0.014796 3.76E+05 2.30E+22 0.0846 0.3593 0.810 0.0924 8.38 45.360 2.031 1.65E-04 0.1918 0.097 0.021 63 0.004821 7.65E+05 1.52E+22 0.0183 0.2518 0.081 0.0268 0.08 123.800 0.436 3.62E-05 1.8319 7,309.23

0.070 0.021 214 0.007247 2.31E+05 6.91E+21 0.0125 0.4585 0.046 0.0228 0.13 46.750 0.512 2.36E-06 0.0776 28.96 0.0089 0.190 0.899 5,458 0.021333 3.87E+05 3.41E+22 0.1813 0.3539 2.540 0.1985 59.18 46.900 3.897 9.48E-04 0.5924 0.160 0.284 452 0.009299 1.48E+06 5.68E+22 0.1314 0.1812 1.567 0.1276 8.06 158.600 2.005 5.87E-05 0.1112 7.23

0.086 0.233 2,093 0.015499 2.62E+05 1.68E+22 0.0647 0.4305 0.541 0.0882 4.20 39.490 1.613 8.42E-05 0.1165 26.90 0.0993 0.270 1.340 10,928 0.026887 2.88E+05 3.20E+22 0.2145 0.4102 3.267 0.4609 19.14 68.530 2.675 1.35E-03 0.8830 0.540 1.250 3,285 0.018011 8.94E+05 6.66E+22 0.2986 0.2328 5.369 0.4285 16.95 142.000 2.569 1.29E-03 0.2863 40.86

0.098 0.235 2,238 0.015848 2.47E+05 1.62E+22 0.0638 0.4432 0.530 0.1236 6.49 52.890 1.865 8.42E-05 0.1130 26.22 0.1001 0.079 0.065 293 0.008047 5.23E+05 1.74E+22 0.0349 0.3045 0.214 0.0462 1.66 76.770 1.183 3.82E-05 0.0430 R3 0.160 0.412 1,400 0.013554 6.92E+05 3.88E+22 0.1308 0.2648 1.556 0.2065 3.51 120.800 1.520 3.25E-04 0.2905 72.31

0.120 0.553 4,599 0.020149 2.83E+05 2.35E+22 0.1181 0.4142 1.335 0.1589 6.22 42.070 1.839 7.42E-04 0.3330 156.40 0.2356 0.100 0.258 1,500 0.013870 4.04E+05 2.32E+22 0.0800 0.3463 0.745 0.1278 4.06 71.390 1.595 1.77E-04 0.1700 0.500 1.450 2,477 0.016394 1.38E+06 9.32E+22 0.3806 0.1877 7.724 0.4455 2.74 178.200 1.400 1.46E-03 0.3077 33.72

0.320 1.700 16,679 0.030957 2.40E+05 3.07E+22 0.2363 0.4499 3.779 0.4794 21.16 53.770 2.766 2.08E-03 0.1975 42.25 0.7243 0.130 0.264 770 0.011105 8.06E+05 3.70E+22 0.1023 0.2453 1.076 0.1017 9.80 88.680 2.140 4.89E-05 0.1740 0.081 0.013 27 0.003635 1.14E+06 1.71E+22 0.0155 0.2062 0.064 0.0141 0.27 114.400 0.645 1.47E-06 0.1540 45.98

0.860 2.230 9,070 0.025268 5.78E+05 6.04E+22 0.3798 0.2897 7.699 0.3517 37.73 59.22 3.354 9.83E-04 0.0872 4.19 0.9501 0.500 1.170 2,741 0.016957 1.00E+06 7.03E+22 0.2969 0.2198 5.322 0.2394 15.79 89.5 2.509 9.81E-04 0.7710 0.130 0.203 495 0.009584 9.64E+05 3.82E+22 0.0911 0.2243 0.905 0.1185 1.81 138.7 1.219 1.59E-04 0.4096 145.87

0.120 0.539 5,756 0.021714 2.20E+05 1.98E+22 0.1068 0.4694 1.148 0.1960 15.12 44.69 2.473 3.75E-04 0.1603 43.18 0.2296 R3 0.170 0.618 3,500 0.018396 4.15E+05 3.16E+22 0.1446 0.3418 1.808 0.1796 8.43 57.04 2.035 3.56E-04 0.3442 R5 0.140 0.269 671 0.010607 9.42E+05 4.13E+22 0.1091 0.2268 1.186 0.1758 0.93 168 0.9759 1.84E-04 0.3228 83.71

0.200 2.440 28,733 0.037110 2.00E+05 3.06E+22 0.2829 0.4929 4.951 0.5205 26.95 40.63 2.998 2.45E-03 0.1352 19.81 1.0396 0.29 2.22 15276 0.030063 3.42E+05 4.24E+22 0.3178 0.3768 5.892 0.3434 64.82 40.84 4.017 3.12E-03 1.2363 0.13 0.157 250 0.007633 1.48E+06 4.66E+22 0.0885 0.1812 0.866 0.0977 1.79 180.3 1.214 2.82E-05 0.1175 9.84

0.380 2.800 25,933 0.035863 2.54E+05 3.76E+22 0.3360 0.4371 6.406 0.5698 47.08 47.62 3.611 2.14E-02 1.0665 1,003.79 1.1930 0.094 0.172 850 0.011477 4.76E+05 2.26E+22 0.0645 0.3193 0.539 0.0859 4.35 70.07 1.632 5.29E-05 0.0958 0.2 0.565 2715 0.016903 4.89E+05 3.42E+22 0.1438 0.3148 1.795 0.4149 0.40 156.1 0.7349 1.94E-03 1.0131 996.99

0.670 2.990 26,065 0.035924 2.70E+05 4.00E+22 0.3582 0.4241 7.051 0.4732 34.46 39.42 3.254 3.22E-03 0.1497 18.59 1.2739 0.094 0.156 1427 0.013641 2.57E+05 1.45E+22 0.0492 0.4344 0.359 0.1065 2.11 61.50 1.283 7.90E-05 0.0869 R8 0.14 0.17 624 0.010354 6.40E+05 2.74E+22 0.0707 0.2752 0.618 0.1386 0.25 139 0.63 6.18E-05 0.1754 37.27

0.220 1.160 7,253 0.023453 3.76E+05 3.64E+22 0.2128 0.3591 3.230 0.2980 14.46 58.24 2.436 8.85E-04 0.1627 24.10 0.4942 0.2 0.989 4557 0.020088 5.10E+05 4.24E+22 0.2119 0.3083 3.208 0.2048 33.92 54.55 3.237 4.69E-04 0.5508 0.13 0.079 296 0.008075 6.27E+05 2.09E+22 0.0421 0.2780 0.284 0.0709 0.20 116.9 0.5874 3.26E-04 2.5529 10,333.10

0.440 2.250 17,210 0.031282 3.07E+05 3.97E+22 0.3095 0.3972 5.664 0.4773 28.71 52.43 3.062 5.39E-02 3.8268 12,235.53 1.0305 0.18 0.304 241 0.007540 2.97E+06 9.24E+22 0.1735 0.1279 2.377 0.0973 13.84 183.9 2.401 8.53E-05 0.1693 0.12 0.0739 223 0.007347 7.79E+05 2.37E+22 0.0433 0.2495 0.296 0.0691 0.54 137.5 0.8163 4.94E-05 0.4548 290.28

0.076 0.026 109 0.005788 5.54E+05 1.33E+22 0.0191 0.2958 0.087 0.0256 0.53 82.07 0.8088 1.13E-05 0.3812 363.83 0.0118 0.21 0.322 199 0.007074 3.80E+06 1.11E+23 0.1959 0.1129 2.852 0.0877 15.16 188.4 2.475 9.41E-05 0.1793 0.22 0.343 689 0.010701 1.17E+06 5.18E+22 0.1379 0.2036 1.685 0.1602 2.81 150.4 1.411 7.30E-04 0.9940 633.70

0.670 4.040 40,004 0.041438 2.37E+05 4.07E+22 0.4195 0.4520 8.939 0.6433 39.41 40.27 3.403 7.35E-03 0.2194 39.31 1.8503 R4 0.13 0.526 3196 0.017847 3.87E+05 2.85E+22 0.1268 0.3540 1.486 0.1725 15.27 58.21 2.481 7.15E-04 0.3274 0.13 0.082 263 0.007763 7.33E+05 2.35E+22 0.0455 0.2572 0.319 0.1008 0.08 179.8 0.4384 7.43E-05 0.5838 481.24

0.077 0.190 2,056 0.015407 2.17E+05 1.38E+22 0.0531 0.4725 0.402 0.0494 5.32 22.35 1.746 1.10E-04 0.1872 84.11 0.0870 0.16 1.09 6499 0.022611 3.94E+05 3.68E+22 0.2074 0.3507 3.108 0.2574 13.36 54.13 2.373 1.36E-02 0.6784 0.18 0.381 895 0.011676 1.00E+06 4.83E+22 0.1404 0.2201 1.731 0.2114 2.01 166.7 1.263 2.06E-04 0.2320 36.99

0.110 0.796 5,992 0.022007 3.12E+05 2.84E+22 0.1557 0.3941 2.020 0.2625 4.34 58.26 1.631 1.06E-03 0.3028 107.19 0.3646 0.22 0.372 276 0.007889 3.17E+06 1.03E+23 0.2029 0.1237 3.007 0.1034 39.03 178.6 3.392 4.23E-03 0.2315 0.11 0.0683 93 0.005489 1.73E+06 3.92E+22 0.0535 0.1676 0.408 0.0394 6.00 140.5 1.817 1.11E-05 0.1479 18.54

0.076 0.087 1,043 0.012287 1.97E+05 9.98E+21 0.0305 0.4967 0.176 0.0569 0.49 40.48 0.7909 4.14E-05 0.1932 124.14 0.0399 R5 0.12 0.194 764 0.011076 5.97E+05 2.73E+22 0.0754 0.2850 0.681 0.0993 3.15 86.99 1.466 7.88E-05 0.1355 0.44 1.52 4930 0.020621 7.25E+05 6.18E+22 0.3172 0.2587 5.876 0.6001 1.05 151.7 1.017 4.90E-03 0.7813 328.08

0.180 0.817 5,517 0.021409 3.48E+05 3.08E+22 0.1642 0.3732 2.189 0.2760 8.60 64.74 2.049 3.04E-04 0.0870 8.16 0.3742 0.58 0.968 1514 0.013913 1.50E+06 8.64E+22 0.2994 0.1796 5.389 0.2587 19.66 143.7 2.699 2.78E-04 0.6761 0.095 0.0411 78 0.005177 1.24E+06 2.65E+22 0.0342 0.1979 0.208 0.0424 0.50 170.1 0.7922 1.19E-05 0.2801 98.29

0.110 0.597 8,951 0.025157 1.57E+05 1.63E+22 0.1021 0.5561 1.073 0.2002 9.75 34.01 2.136 2.72E-04 0.0905 16.69 0.2734 0.39 2.1 16700 0.030970 2.96E+05 3.78E+22 0.2918 0.4050 5.185 0.4935 18.99 55.31 2.668 4.61E-03 1.4668 R13 0.078 0.018 32 0.003847 1.32E+06 2.10E+22 0.0201 0.1915 0.094 0.0147 1.56 106.6 1.16 3.97E-06 0.2868 129.92

0.079 0.107 683 0.010670 3.68E+05 1.62E+22 0.0432 0.3629 0.295 0.0535 2.40 50.51 1.339 1.81E-05 0.0792 12.83 0.0490 R6 0.12 0.331 1301 0.013227 5.98E+05 3.27E+22 0.1077 0.2847 1.162 0.0855 9.94 52.52 2.15 1.98E-04 0.1572 0.42 0.736 695 0.010732 2.49E+06 1.10E+23 0.2951 0.1396 5.273 0.2445 11.88 228.2 2.282 6.53E-04 0.4136 51.43

0.540 1.490 4,890 0.020565 7.16E+05 6.09E+22 0.3118 0.2602 5.727 0.3610 16.78 91.75 2.56 2.57E-04 0.0419 0.96 0.6824 0.099 0.151 462 0.009367 7.68E+05 2.97E+22 0.0694 0.2512 0.601 0.0681 4.21 83.48 1.615 3.94E-05 0.0717 0.1 0.0363 34 0.003925 2.51E+06 4.07E+22 0.0398 0.1390 0.261 0.0356 0.36 248.6 0.7087 1.29E-05 0.4537 167.86

0.150 0.731 5,134 0.020902 3.35E+05 2.89E+22 0.1505 0.3806 1.921 0.2140 6.78 52.65 1.893 9.27E-04 0.3034 105.72 0.3348 0.56 1.72 7092 0.023279 5.70E+05 5.49E+22 0.3180 0.2916 5.898 0.3680 49.92 73.00 3.682 1.29E-03 0.8168 0.1 0.0712 143 0.006336 1.17E+06 3.07E+22 0.0484 0.2035 0.350 0.0582 0.29 155.8 0.6605 2.62E-05 0.2905 91.41

0.067 0.025 200 0.007086 2.97E+05 8.71E+21 0.0154 0.4038 0.063 0.0195 0.59 41.85 0.8404 6.05E-06 0.1686 108.41 0.0094 0.38 1.4 6827 0.022985 4.82E+05 4.58E+22 0.2621 0.3172 4.414 0.3165 63.24 64.41 3.984 2.25E-03 0.6648 0.21 0.382 377 0.008753 2.38E+06 8.62E+22 0.1878 0.1427 2.677 0.1626 3.38 228.2 1.501 4.41E-04 0.6592 167.41

0.061 0.003 33 0.003886 1.91E+05 3.07E+21 0.0030 0.5040 0.005 0.0043 0.06 30.90 0.3946 8.10E-08 0.0389 16.35 0.0010 0.089 0.15 719 0.010855 4.90E+05 2.20E+22 0.0595 0.3145 0.477 0.0709 5.05 64.73 1.716 6.68E-05 0.0712 0.16 0.189 70 0.004993 6.35E+06 1.31E+23 0.1629 0.0874 2.162 0.0773 3.56 333.4 1.527 3.25E-05 0.1724 7.53

0.280 1.040 5,587 0.021499 4.38E+05 3.89E+22 0.2082 0.3329 3.124 0.2647 22.26 61.55 2.813 6.69E-04 0.1496 19.10 0.3854 0.73 3.21 18317 0.031939 4.12E+05 5.44E+22 0.4325 0.3431 9.356 0.7354 4.50 77.50 1.651 3.41E-03 1.5243

0.095 0.213 1,165 0.012749 4.30E+05 2.26E+22 0.0719 0.3359 0.634 0.1003 2.98 66.33 1.439 5.72E-05 0.1052 16.24 0.0789 0.27 0.777 1928 0.015080 9.47E+05 5.90E+22 0.2217 0.2262 3.434 0.2517 9.09 119.0 2.087 2.42E-04 0.3690

0.170 0.277 121 0.005993 5.38E+06 1.33E+23 0.1989 0.0949 2.918 0.0844 9.60 252.7 2.125 5.06E-05 0.1523 5.78 0.1026

0.170 1.520 25,102 0.035476 1.42E+05 2.09E+22 0.1844 0.5837 2.604 0.4984 19.60 42.57 2.696 2.14E-03 0.1988 62.86 0.5633
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Figure 4.12: Scatter plot of core mass-to-flux ratio vs. M/MBE in differ-
ent models. Each point represents one core formed in the corresponding
model.

4.6.3 Mass-radius Relation

Several observations have found that there is a power-law relationship between

the core mass and its size, M ∝ Rk, with k ∼ 2 (Kirk et al. 2013). Figure 4.13

is the binned mass-size plot from all identified cores in our simulations, compared

to the observed cores found in the Perseus molecular cloud (reported in Sadavoy et

al. 2010a). Similar to the observations, the binned data from our simulations show

k ∼ 2 for the power-law relationship between core mass and radius. At a given

radius, our cores have slightly higher mass than those in Perseus.

A relationship Mcore ∝ Rcore
2 would suggest that the core surface density

Σcore ≡ Mcore/(πRcore
2) is constant for cores regardless of their masses and sizes.

Figure 4.14 shows the scatter plot of the core column density (Ncore ≡ Σcore/µn)

versus core mass for all cores formed in our simulations. Although core mass varies
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Figure 4.13: The mass-radius relationship measured from our simula-
tions (diamonds) compared with the observation results from Perseus
(asterisks), using the median values of the binned counts. For both the
simulations and observations, the vertical bars represent the ±25% val-
ues in each bin. The best-fit power laws (dotted lines) are M ∝ R1.96 for
Perseus, and M ∝ R2.16 for our simulations.
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M5 depth mass_bd n_bd R (pc) mean rho Sigma GM/R MBE M/MBE M_mag M/M_mag avgB_bd Ga_bd Ltot L/MRc_s J^2/GM (AU) M/ (Sigma 
H^2)

M10 depth mass_bd n_bd R (pc) mean rho Sigma GM/R MBE M/MBE M_mag M/M_mag avgB_bd Ga_bd Ltot M/ (Sigma 
H^2)

M20 depth mass_bd n_bd R (pc) mean rho Sigma GM/R MBE M/MBE M_mag M/M_mag avgB_bd Ga_bd Ltot L/MRc_s J^2/GM (AU) mean

R1

R2

R3

R4

R5

R6

median
mean

0.150 1.000 11,276 0.027170 2.08E+05 2.34E+22 0.1584 0.4823 2.073 0.3475 14.47 50.600 2.437 6.23E-04 0.1146 18.62 0.5986 R1 0.090 0.146 711 0.010814 4.83E+05 2.16E+22 0.0581 0.3170 0.461 0.0610 8.41 56.100 2.034 4.79E-05 0.1020 R1 0.160 0.258 626 0.010365 9.69E+05 4.15E+22 0.1071 0.2237 1.153 0.1595 1.09 159.600 1.028 3.20E-04 0.5978 285.83 Sigma_core 3.73E+22

0.160 1.450 20,737 0.033288 1.64E+05 2.26E+22 0.1874 0.5432 2.670 0.3723 34.23 36.120 3.247 1.65E-03 0.1709 42.89 0.8679 0.790 4.710 34,816 0.039563 3.18E+05 5.20E+22 0.5123 0.3905 12.062 0.9055 5.62 62.190 1.778 2.11E-02 3.2898 R2 0.160 0.256 243 0.007561 2.48E+06 7.74E+22 0.1457 0.1399 1.829 0.0875 5.38 164.500 1.752 1.26E-04 0.3250 45.30

0.650 3.680 39,602 0.041299 2.18E+05 3.73E+22 0.3834 0.4712 7.811 0.5447 32.01 34.330 3.175 4.71E-03 0.1550 21.39 2.2028 0.110 0.194 704 0.010778 6.48E+05 2.89E+22 0.0775 0.2736 0.709 0.0801 8.16 74.130 2.013 6.19E-05 0.1355 0.190 0.460 1,456 0.013733 7.43E+05 4.22E+22 0.1441 0.2555 1.800 0.1775 2.21 101.200 1.303 2.29E-04 0.1815 25.94

0.170 0.889 5,472 0.021351 3.82E+05 3.37E+22 0.1792 0.3563 2.495 0.2383 14.58 56.200 2.443 3.87E-04 0.1019 10.22 0.3788 R2 0.110 0.291 1,821 0.014796 3.76E+05 2.30E+22 0.0846 0.3593 0.810 0.0924 8.38 45.360 2.031 1.65E-04 0.1918 0.097 0.021 63 0.004821 7.65E+05 1.52E+22 0.0183 0.2518 0.081 0.0268 0.08 123.800 0.436 3.62E-05 1.8319 7,309.23

0.070 0.021 214 0.007247 2.31E+05 6.91E+21 0.0125 0.4585 0.046 0.0228 0.13 46.750 0.512 2.36E-06 0.0776 28.96 0.0089 0.190 0.899 5,458 0.021333 3.87E+05 3.41E+22 0.1813 0.3539 2.540 0.1985 59.18 46.900 3.897 9.48E-04 0.5924 0.160 0.284 452 0.009299 1.48E+06 5.68E+22 0.1314 0.1812 1.567 0.1276 8.06 158.600 2.005 5.87E-05 0.1112 7.23

0.086 0.233 2,093 0.015499 2.62E+05 1.68E+22 0.0647 0.4305 0.541 0.0882 4.20 39.490 1.613 8.42E-05 0.1165 26.90 0.0993 0.270 1.340 10,928 0.026887 2.88E+05 3.20E+22 0.2145 0.4102 3.267 0.4609 19.14 68.530 2.675 1.35E-03 0.8830 0.540 1.250 3,285 0.018011 8.94E+05 6.66E+22 0.2986 0.2328 5.369 0.4285 16.95 142.000 2.569 1.29E-03 0.2863 40.86

0.098 0.235 2,238 0.015848 2.47E+05 1.62E+22 0.0638 0.4432 0.530 0.1236 6.49 52.890 1.865 8.42E-05 0.1130 26.22 0.1001 0.079 0.065 293 0.008047 5.23E+05 1.74E+22 0.0349 0.3045 0.214 0.0462 1.66 76.770 1.183 3.82E-05 0.0430 R3 0.160 0.412 1,400 0.013554 6.92E+05 3.88E+22 0.1308 0.2648 1.556 0.2065 3.51 120.800 1.520 3.25E-04 0.2905 72.31

0.120 0.553 4,599 0.020149 2.83E+05 2.35E+22 0.1181 0.4142 1.335 0.1589 6.22 42.070 1.839 7.42E-04 0.3330 156.40 0.2356 0.100 0.258 1,500 0.013870 4.04E+05 2.32E+22 0.0800 0.3463 0.745 0.1278 4.06 71.390 1.595 1.77E-04 0.1700 0.500 1.450 2,477 0.016394 1.38E+06 9.32E+22 0.3806 0.1877 7.724 0.4455 2.74 178.200 1.400 1.46E-03 0.3077 33.72

0.320 1.700 16,679 0.030957 2.40E+05 3.07E+22 0.2363 0.4499 3.779 0.4794 21.16 53.770 2.766 2.08E-03 0.1975 42.25 0.7243 0.130 0.264 770 0.011105 8.06E+05 3.70E+22 0.1023 0.2453 1.076 0.1017 9.80 88.680 2.140 4.89E-05 0.1740 0.081 0.013 27 0.003635 1.14E+06 1.71E+22 0.0155 0.2062 0.064 0.0141 0.27 114.400 0.645 1.47E-06 0.1540 45.98

0.860 2.230 9,070 0.025268 5.78E+05 6.04E+22 0.3798 0.2897 7.699 0.3517 37.73 59.22 3.354 9.83E-04 0.0872 4.19 0.9501 0.500 1.170 2,741 0.016957 1.00E+06 7.03E+22 0.2969 0.2198 5.322 0.2394 15.79 89.5 2.509 9.81E-04 0.7710 0.130 0.203 495 0.009584 9.64E+05 3.82E+22 0.0911 0.2243 0.905 0.1185 1.81 138.7 1.219 1.59E-04 0.4096 145.87

0.120 0.539 5,756 0.021714 2.20E+05 1.98E+22 0.1068 0.4694 1.148 0.1960 15.12 44.69 2.473 3.75E-04 0.1603 43.18 0.2296 R3 0.170 0.618 3,500 0.018396 4.15E+05 3.16E+22 0.1446 0.3418 1.808 0.1796 8.43 57.04 2.035 3.56E-04 0.3442 R5 0.140 0.269 671 0.010607 9.42E+05 4.13E+22 0.1091 0.2268 1.186 0.1758 0.93 168 0.9759 1.84E-04 0.3228 83.71

0.200 2.440 28,733 0.037110 2.00E+05 3.06E+22 0.2829 0.4929 4.951 0.5205 26.95 40.63 2.998 2.45E-03 0.1352 19.81 1.0396 0.29 2.22 15276 0.030063 3.42E+05 4.24E+22 0.3178 0.3768 5.892 0.3434 64.82 40.84 4.017 3.12E-03 1.2363 0.13 0.157 250 0.007633 1.48E+06 4.66E+22 0.0885 0.1812 0.866 0.0977 1.79 180.3 1.214 2.82E-05 0.1175 9.84

0.380 2.800 25,933 0.035863 2.54E+05 3.76E+22 0.3360 0.4371 6.406 0.5698 47.08 47.62 3.611 2.14E-02 1.0665 1,003.79 1.1930 0.094 0.172 850 0.011477 4.76E+05 2.26E+22 0.0645 0.3193 0.539 0.0859 4.35 70.07 1.632 5.29E-05 0.0958 0.2 0.565 2715 0.016903 4.89E+05 3.42E+22 0.1438 0.3148 1.795 0.4149 0.40 156.1 0.7349 1.94E-03 1.0131 996.99

0.670 2.990 26,065 0.035924 2.70E+05 4.00E+22 0.3582 0.4241 7.051 0.4732 34.46 39.42 3.254 3.22E-03 0.1497 18.59 1.2739 0.094 0.156 1427 0.013641 2.57E+05 1.45E+22 0.0492 0.4344 0.359 0.1065 2.11 61.50 1.283 7.90E-05 0.0869 R8 0.14 0.17 624 0.010354 6.40E+05 2.74E+22 0.0707 0.2752 0.618 0.1386 0.25 139 0.63 6.18E-05 0.1754 37.27

0.220 1.160 7,253 0.023453 3.76E+05 3.64E+22 0.2128 0.3591 3.230 0.2980 14.46 58.24 2.436 8.85E-04 0.1627 24.10 0.4942 0.2 0.989 4557 0.020088 5.10E+05 4.24E+22 0.2119 0.3083 3.208 0.2048 33.92 54.55 3.237 4.69E-04 0.5508 0.13 0.079 296 0.008075 6.27E+05 2.09E+22 0.0421 0.2780 0.284 0.0709 0.20 116.9 0.5874 3.26E-04 2.5529 10,333.10

0.440 2.250 17,210 0.031282 3.07E+05 3.97E+22 0.3095 0.3972 5.664 0.4773 28.71 52.43 3.062 5.39E-02 3.8268 12,235.53 1.0305 0.18 0.304 241 0.007540 2.97E+06 9.24E+22 0.1735 0.1279 2.377 0.0973 13.84 183.9 2.401 8.53E-05 0.1693 0.12 0.0739 223 0.007347 7.79E+05 2.37E+22 0.0433 0.2495 0.296 0.0691 0.54 137.5 0.8163 4.94E-05 0.4548 290.28

0.076 0.026 109 0.005788 5.54E+05 1.33E+22 0.0191 0.2958 0.087 0.0256 0.53 82.07 0.8088 1.13E-05 0.3812 363.83 0.0118 0.21 0.322 199 0.007074 3.80E+06 1.11E+23 0.1959 0.1129 2.852 0.0877 15.16 188.4 2.475 9.41E-05 0.1793 0.22 0.343 689 0.010701 1.17E+06 5.18E+22 0.1379 0.2036 1.685 0.1602 2.81 150.4 1.411 7.30E-04 0.9940 633.70

0.670 4.040 40,004 0.041438 2.37E+05 4.07E+22 0.4195 0.4520 8.939 0.6433 39.41 40.27 3.403 7.35E-03 0.2194 39.31 1.8503 R4 0.13 0.526 3196 0.017847 3.87E+05 2.85E+22 0.1268 0.3540 1.486 0.1725 15.27 58.21 2.481 7.15E-04 0.3274 0.13 0.082 263 0.007763 7.33E+05 2.35E+22 0.0455 0.2572 0.319 0.1008 0.08 179.8 0.4384 7.43E-05 0.5838 481.24

0.077 0.190 2,056 0.015407 2.17E+05 1.38E+22 0.0531 0.4725 0.402 0.0494 5.32 22.35 1.746 1.10E-04 0.1872 84.11 0.0870 0.16 1.09 6499 0.022611 3.94E+05 3.68E+22 0.2074 0.3507 3.108 0.2574 13.36 54.13 2.373 1.36E-02 0.6784 0.18 0.381 895 0.011676 1.00E+06 4.83E+22 0.1404 0.2201 1.731 0.2114 2.01 166.7 1.263 2.06E-04 0.2320 36.99

0.110 0.796 5,992 0.022007 3.12E+05 2.84E+22 0.1557 0.3941 2.020 0.2625 4.34 58.26 1.631 1.06E-03 0.3028 107.19 0.3646 0.22 0.372 276 0.007889 3.17E+06 1.03E+23 0.2029 0.1237 3.007 0.1034 39.03 178.6 3.392 4.23E-03 0.2315 0.11 0.0683 93 0.005489 1.73E+06 3.92E+22 0.0535 0.1676 0.408 0.0394 6.00 140.5 1.817 1.11E-05 0.1479 18.54

0.076 0.087 1,043 0.012287 1.97E+05 9.98E+21 0.0305 0.4967 0.176 0.0569 0.49 40.48 0.7909 4.14E-05 0.1932 124.14 0.0399 R5 0.12 0.194 764 0.011076 5.97E+05 2.73E+22 0.0754 0.2850 0.681 0.0993 3.15 86.99 1.466 7.88E-05 0.1355 0.44 1.52 4930 0.020621 7.25E+05 6.18E+22 0.3172 0.2587 5.876 0.6001 1.05 151.7 1.017 4.90E-03 0.7813 328.08

0.180 0.817 5,517 0.021409 3.48E+05 3.08E+22 0.1642 0.3732 2.189 0.2760 8.60 64.74 2.049 3.04E-04 0.0870 8.16 0.3742 0.58 0.968 1514 0.013913 1.50E+06 8.64E+22 0.2994 0.1796 5.389 0.2587 19.66 143.7 2.699 2.78E-04 0.6761 0.095 0.0411 78 0.005177 1.24E+06 2.65E+22 0.0342 0.1979 0.208 0.0424 0.50 170.1 0.7922 1.19E-05 0.2801 98.29

0.110 0.597 8,951 0.025157 1.57E+05 1.63E+22 0.1021 0.5561 1.073 0.2002 9.75 34.01 2.136 2.72E-04 0.0905 16.69 0.2734 0.39 2.1 16700 0.030970 2.96E+05 3.78E+22 0.2918 0.4050 5.185 0.4935 18.99 55.31 2.668 4.61E-03 1.4668 R13 0.078 0.018 32 0.003847 1.32E+06 2.10E+22 0.0201 0.1915 0.094 0.0147 1.56 106.6 1.16 3.97E-06 0.2868 129.92

0.079 0.107 683 0.010670 3.68E+05 1.62E+22 0.0432 0.3629 0.295 0.0535 2.40 50.51 1.339 1.81E-05 0.0792 12.83 0.0490 R6 0.12 0.331 1301 0.013227 5.98E+05 3.27E+22 0.1077 0.2847 1.162 0.0855 9.94 52.52 2.15 1.98E-04 0.1572 0.42 0.736 695 0.010732 2.49E+06 1.10E+23 0.2951 0.1396 5.273 0.2445 11.88 228.2 2.282 6.53E-04 0.4136 51.43

0.540 1.490 4,890 0.020565 7.16E+05 6.09E+22 0.3118 0.2602 5.727 0.3610 16.78 91.75 2.56 2.57E-04 0.0419 0.96 0.6824 0.099 0.151 462 0.009367 7.68E+05 2.97E+22 0.0694 0.2512 0.601 0.0681 4.21 83.48 1.615 3.94E-05 0.0717 0.1 0.0363 34 0.003925 2.51E+06 4.07E+22 0.0398 0.1390 0.261 0.0356 0.36 248.6 0.7087 1.29E-05 0.4537 167.86

0.150 0.731 5,134 0.020902 3.35E+05 2.89E+22 0.1505 0.3806 1.921 0.2140 6.78 52.65 1.893 9.27E-04 0.3034 105.72 0.3348 0.56 1.72 7092 0.023279 5.70E+05 5.49E+22 0.3180 0.2916 5.898 0.3680 49.92 73.00 3.682 1.29E-03 0.8168 0.1 0.0712 143 0.006336 1.17E+06 3.07E+22 0.0484 0.2035 0.350 0.0582 0.29 155.8 0.6605 2.62E-05 0.2905 91.41

0.067 0.025 200 0.007086 2.97E+05 8.71E+21 0.0154 0.4038 0.063 0.0195 0.59 41.85 0.8404 6.05E-06 0.1686 108.41 0.0094 0.38 1.4 6827 0.022985 4.82E+05 4.58E+22 0.2621 0.3172 4.414 0.3165 63.24 64.41 3.984 2.25E-03 0.6648 0.21 0.382 377 0.008753 2.38E+06 8.62E+22 0.1878 0.1427 2.677 0.1626 3.38 228.2 1.501 4.41E-04 0.6592 167.41

0.061 0.003 33 0.003886 1.91E+05 3.07E+21 0.0030 0.5040 0.005 0.0043 0.06 30.90 0.3946 8.10E-08 0.0389 16.35 0.0010 0.089 0.15 719 0.010855 4.90E+05 2.20E+22 0.0595 0.3145 0.477 0.0709 5.05 64.73 1.716 6.68E-05 0.0712 0.16 0.189 70 0.004993 6.35E+06 1.31E+23 0.1629 0.0874 2.162 0.0773 3.56 333.4 1.527 3.25E-05 0.1724 7.53
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Figure 4.14: Scatter plot of Ncore vs. Mcore in different models. Each
point represents one core formed in the corresponding model.

over nearly three orders of magnitude (∼ 0.01−10 M�), Ncore is within a factor of 10.

The mean value is Ncore = 3.7×1022 cm−2. By comparison, we found in Section 4.4.2

that the overdense filamentary structures have column density Nfila ∼ 1022 cm−2 at

the time of collapse. Thus, the typical core column density Ncore ∼ 4 Nfila.

However, any k > 2 value indicates that Ncore increases with Mcore or Rcore,

and this trend is evident in Figure 4.14, for different models. Figure 4.15 shows the

mass-radius relations for individual models in our simulations as well as the fitted

Mcore ∝ Rcore
k power-law (the complete fitting coefficients are listed in Table 4.4).

We found that the fitted k values are generally higher than 2, implying that Ncore

is not a constant over cores with different masses and sizes.13 This means that

it is possible that there is no “universal” core column density, but simply a weak

13Composite distribution of cores from different models show a smaller value of k, and more
dispersion, than individual models.
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Figure 4.15: Scatter plot of Mcore vs. Rcore in different models (each
point represents one core formed in corresponding model), as well as the
fitted power-law relationship M ∝ Rk (dashed lines) with the k values
listed on the bottom right of each panel.
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Table 4.4: The fitted Mass-size relation-
ship from our simulations, Mcore/M� =
A(Rcore/pc)k.

Model A (×103) k R-square?

M5 33.57 2.83 0.94
M10 10.28 2.40 0.82
M20 36.14 2.58 0.86
B5 4.31 2.17 0.64
B20 17.66 2.47 0.88
All 4.45 2.17 0.81

?R-square is the coefficient of determina-
tion that indicates the goodness of fit. R-
square = 1 means the regression line per-
fectly fits the data.

dependence of Ncore on parameters, which is difficult to identify from the present

models. For example, the post-shock column density at the time of core collapse

varies asNps ∝ (n0v0)1/2 (see Equation (4.27)), and filament column densities appear

to follow a similar trend. If the mean core column density is also a multiple of this,

then it would vary by only a factor two for our models, which all have n0 = 1000 cm−3

and have v0 varying by a factor four. We do indeed find a higher mean Ncore for

v0 = 4 km/s (4.8× 1022 cm−2) compared to v0 = 1 km/s (3.0× 1022 cm−2). Further

investigations, both observational and computational, are needed to reach a clearer

conclusion.

4.7 Summary

In this chapter, we extended the investigation of Chapter 3 to further exam-

ine the anisotropic core formation model and test the theoretical scalings of core
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properties over a larger parameter space. We carried out fully three-dimensional

ideal MHD simulations with self-gravitating gas, including supersonic convergent

flows with local turbulence. Our models allow for varying inflow Mach number and

magnetic field strength of the background cloud. Our simulation results demon-

strate that the ram pressure of the converging flow (ρ0v0
2) is the dominant factor

controlling the physical properties of cores formed in the shocked layer. These

core properties are consistent with the predictions of the anisotropic core formation

theory. Although the post-shock layer is strongly magnetized in all cases, core prop-

erties are insensitive to the pre-shock magnetic field strength. We also compared

cores formed in our simulations with those observed in the Perseus molecular cloud,

and found very similar core mass distribution, super-Bonnor-Ebert mass ratio, and

mass-size relation.

Our main conclusions are as follows:

1. Considering typical GMC conditions, spherically symmetric core formation is

impossible in the magnetized post-shock region, because the required mass

gathering scales are much larger than the thickness of the shocked layer (Ta-

ble 4.1 and Figure 4.2). Quantitatively, it takes & 1 Myr for the post-shock

layer thickness to be comparable with the magnetic critical length under post-

shock conditions (Equation (4.17)), much longer than typical core formation

timescale in our simulations.

2. Filamentary structures formed in the post-shock regions are similar to those

found in observations, with dense cores embedded within filaments (Figure 4.3).
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We measured the filament formation efficiency (FFE) to be around 50% (de-

pendent on the choice of column density threshold of filament; Table 4.2),

independent of the pre-shock conditions. We also found that the filament col-

umn density at the time when cores start to collapse is proportional to the

mean post-shock column density; Nfila (tcoll) ≈ 1.8Nps (Figure 4.6).

3. Our velocity space-time diagrams (Figure 4.4) show clear evidence that the

mass-gathering flows that create cores and filaments are highly anisotropic.

Until late times, flow along the magnetic field is much stronger than in the

two perpendicular directions. However, our simulations also show that the

“seeds” of cores are present even at early times. This suggests that core and

filament formation is simultaneous, instead of the commonly-assumed picture

that cores form only after filaments do.

4. Magnetically supercritical cores form within the post-shock layers in all of

our simulations, with masses ∼ 0.002 − 10 M�, sizes ∼ 0.004 − 0.05 pc, and

normalized mass-to-flux ratio ∼ 0.4 − 4.5 (Table 4.3). The core formation

timescale is tcoll ∼ 0.4−0.9 Myr, and the core formation efficiency is positively-

related to the core collapse time (Figure 4.9).

5. The statistical distributions of core mass, size, mean magnetic field, and mass-

to-flux ratio clearly show that median core properties depend on the pre-shock

inflow Mach numberM = v0/cs but not the upstream magnetic field strength

B0 (Figures 4.7 and 4.8). The theoretical scalings predicted in the anisotropic

core formation model are Mcore ∝ M−1, Rcore ∝ M−1, and Bcore ∼ Bps ∝ M
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(Equations (4.5)-(4.7)), which agree with our simulation results very well (Fig-

ure 4.10). Furthermore, the core collapse timescale in our MHD simulations

generally follow the relationship tcoll ∝ M−1/2. The tcoll scaling is consistent

with the prediction of Gong & Ostriker (2011) based on hydrodynamic anal-

ysis, because the flows in the post-shock layer are primarily parallel to the

magnetic field. This also gives the post-shock column density at tcoll to be

Nps (tcoll) ∝M1/2 (Equation (4.27)).

6. Quantitatively, the median core mass and radius depend on inflow velocity

as Mcore = 0.88 M� (v0/ (km/s))−1 and Rcore = 0.028 pc (v0/ (km/s))−1. This

suggests that the core mass and radius will be, respectively, a factor 0.99 and

0.71 lower than the Bonnor-Ebert critical mass and radius computed using

the sound speed and total dynamical pressure (ρ0v0
2) in the cloud (Equa-

tions (4.21) and (4.22)). This result is similar to the scaling for characteristic

mass proposed by Padoan et al. (1997), but our coefficient is higher by a factor

∼ 2.

7. Cores identified in our simulations have physical properties very similar to

those observed in Perseus (Sadavoy et al. 2010a). In addition, we found simi-

lar statistical distributions of Mcore/MBE in simulations and observations (Fig-

ure 4.11). We suggest that the “super-Bonnor-Ebert mass cores” identified in

Sadavoy et al. (2010b) are probably not supported by magnetic pressure and

will collapse gravitationally, since most cores with high Mcore/MBE in our sim-

ulations also have high Γ values, indicating that these cores are magnetically
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supercritical (Figure 4.12).

8. We find (Figure 4.13) a composite mass-radius relation for our simulated

prestellar cores comparable to that seen in observations, Mcore ∝ Rcore
2 (e.g. Kirk

et al. 2013). Although the observed relation is sometimes interpreted as im-

plying a “universal” core surface density, our results suggest that there might

be a weak dependence of the core surface density Σcore ≡ Mcore/
(
πRcore

2
)

on core mass or radius (Figure 4.14). We also find that the exponent k in

the mass-size relation M ∝ Rk is larger for individual models with consis-

tent shock conditions than the composite from heterogeneous environments

(Figure 4.15).

To conclude, the success of the anisotropic core formation model for explaining

idealized converging turbulent magnetized flows is very encouraging, and provides

strong motivation for testing these ideas in global MHD simulations of star-forming

molecular clouds. Further investigations considering more extreme conditions of

GMCs would also be interesting to examine the properties of core-forming filaments,

and potential variations in the core mass-size relationship.

We are grateful to Sarah Sadavoy for providing a table of core properties in

Perseus.
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Chapter 5: Summary and Future Work

Understanding prestellar core formation is an important step in developing

a complete theory of stellar evolution, as needed to explain the lives of stars, the

building blocks of the universe seen by human eyes. The process for dense cores to

form within diffuse ISM involves physics, chemistry, and dynamics over a large range

of spatial scales. The complexity makes the overall problem challenging, but we have

made considerable progress by breaking it down to several focused investigations.

5.1 Summary of Thesis Study

Before I started my thesis research, it had been generally recognized that

magnetic fields and supersonic turbulence are the two keys of core formation within

GMCs, but it was not well understood exactly how these interact or the role played

by ion-neutral drift. We therefore began our study with a combined analytic and

numerical investigation of MHD shocks, focusing on the behavior of turbulence-

accelerated ambipolar diffusion (Chapter 2). We found an analytic estimate of

the C-type shock thickness as a function of the pre-shock density, inflow veloc-

ity, background magnetic field, and gas ionization fraction (Equation (2.47)). We

also derived an expression for the ambipolar diffusion timescale, tAD ≈ Lshock/vdrift
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(Equation (2.65)), which can be applied to determine the duration of the transient

stage in GMCs, before neutrals and ions are well coupled.

The transient stage of turbulence-enhanced ambipolar diffusion is the most im-

portant discovery in our one-dimensional study, during which the post-shock gas is

strongly compressed as in pure hydrodynamic shocks (Figures 2.4 and 2.8). The ex-

istence of this transient diffusion effect increases the mass-to-flux ratio downstream

(Equation (2.76)), creating a favorable circumstance for prestellar cores to form.

Our results help to explain why ambipolar diffusion that drives core formation can

be accelerated by turbulence, because the transient behavior happens promptly at

the beginning of the shock compression.

In addition, in our analysis of one-dimensional oblique C-type shocks (Ap-

pendix A), we concluded that regions with large-scale velocity more aligned to the

cloud magnetic field are more favorable for magnetically supercritical cores to form

(Equation (A.25)).

To study how transient ambipolar diffusion and shock obliquity can affect core

formation within real turbulent clouds, we conducted fully three-dimensional simu-

lations to follow structure (filaments, clumps, and cores) formation with converging

flows and magnetic effects, ideal and non-ideal (Chapter 3). We used the ionization

fraction coefficient (see Equation (2.29) or (3.26)) as the main parameter controlling

ambipolar diffusion, and varied the angle between the inflow and the cloud magnetic

field to achieve different shock obliquity (see Equations (3.4) and (3.5)).

To provide context for our simulations, we analyzed MHD shock compression

with varying obliquity. We found that shocks that have inflows almost parallel to
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the magnetic field can create post-shock compression in neutrals as strong as in hy-

drodynamic shocks, making the magnetization level relatively weak (see Table 3.1).

This effect is in addition to transient ambipolar diffusion. We showed that, except

for these quasi-hydrodynamic cases, without non-ideal MHD effects, the formation

of low-mass, magnetically-supercritical cores by spherical contraction is forbidden

under typical GMC conditions, because the minimum scale for a spherical region to

be magnetically supercritical corresponds to a large mass (see Section 3.2.2).

From our three-dimensional, self-gravitating, turbulent converging flow simu-

lations, we identified gravitationally bound cores within the post-shock dense layer

using the gravitational potential of the neutral gas (Figure 3.7). These cores are

physically similar to those observed in GMCs in terms of mass, size, magnetiza-

tion, and formation timescale (Table 3.3). However, though the magnetization level

within cores (or the core mass-to-flux ratio) depends on transient ambipolar diffu-

sion and the upstream magnetic obliquity (Figures 3.11 and 3.12), the core mass

and size are relatively independent of both effects (Figures 3.8 and 3.9).

Close-up views of the gas dynamics around forming cores suggest that ma-

terial flows primarily along the magnetic field lines into the forming core regions

(Figures 3.13 and 3.14), which explains why the magnetic field of cores follows the

same trends as the post-shock magnetization (Tables 3.2 and 3.3). Motivated by

this evidence, we proposed that anisotropic self-gravitating condensation may be the

dominant mechanism for low-mass, magnetically-supercritical cores to form within

GMCs, regardless of the ambipolar diffusion strength or magnetization level in the

ambient environment. Anisotropy would explain how low-mass cores are able to
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form even with ideal MHD, given that the strong magnetic fields forbid spherical

contraction of low-mass condensations.

To further test the anisotropic core formation model, we extended our numer-

ical study to a larger parameter survey, allowing for varying inflow velocities and

cloud magnetic fields (Chapter 4). Our simulation results strengthened the idea

that it is impossible for cores to form isotropically in the magnetized post-shock

layer under reasonable cloud conditions (Figure 4.2 and Table 4.1). In addition, we

demonstrated that the momentum flux (or ram pressure) of the converging flow is

the dominant parameter controlling the physical properties of cores formed in the

post-shock region, while the primary role played by the magnetic field is to enforce

anisotropic core formation (Figure 4.10).

In addition, we compared our results with the observed properties of starless

cores in the Perseus molecular cloud, using data published in Sadavoy et al. (2010a).

We found very similar core mass distributions (Figure 4.7) and mass-size relationship

(Figure 4.13) between cores formed in our simulations and identified in Perseus.

More importantly, the range of Mcore/MBE values in our simulations agrees with

that derived from Sadavoy et al. (2010a) and Sadavoy et al. (2010b), approximately

∼ 0.01 − 100 (Figure 4.11). For both our simulations and in Perseus, most cores

haveMcore/MBE > 1 (i.e. they are “super-BE” in mass), indicating that their internal

thermal pressure is relatively weak compared to the self-gravity. However, we also

showed that most cores in our simulations with high Mcore/MBE values are also

magnetically supercritical (Figure 4.12). This suggests that the observed super-BE

mass cores may not be supported by the magnetic field, and will in fact collapse
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gravitationally.

To conclude, this thesis work provides answers to some longstanding and fun-

damental problems in star formation, including how dense cores form from more

diffuse gas and what role cloud magnetic fields play during this process. We now

know that ambipolar diffusion is important at the very beginning of core forma-

tion, because the shock-induced transient ambipolar diffusion sets the magnetization

level of the post-shock region and of the cores that form within that region. How-

ever, ambipolar diffusion is not necessary in order to form low-mass, magnetically-

supercritical cores. Through anisotropic mass collection along the magnetic field

lines, candidate cores can gather enough material to overcome magnetic support

and collapse gravitationally to form protostellar systems. Cores formed via this

anisotropic mechanism in our simulations strongly resemble observed cores in their

masses, sizes, and magnetizations.

5.2 Future Work

5.2.1 From Local to Global Simulations

Our core-forming simulations with converging flows showed great success in

explaining the magnetohydrodynamics of prestellar core formation, characterizing

their physical properties, and connecting them to the GMC environment. However,

this idealized setup has limitations. For example, our simulations did not include

turbulence corresponding to the scales between the size of the simulation box (1 pc)

and the size of the cloud (∼ 10 pc). In addition, we applied somewhat reduced tur-
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bulent amplitudes compared to observations, due to constraints of the local model.

Also, the real converging flows in GMCs may not be perfectly aligned up to 1 pc

wide as assumed in our model, and thus the pc-size post-shock dense layer formed

in our simulations may be too artificial as a core-forming site.

Therefore, it is necessary to test under what circumstances the conditions

in the local model actually apply within realistic turbulent clouds, and how the

less idealized converging-flow conditions within a global simulation may affect core

formation. By running larger-scale adaptive mesh refinement (AMR) simulations

with box size covering the whole cloud (e.g. Lbox = 20−30 pc) and including multi-

scale turbulence following the observed power spectrum (|σv(k)| ∝ k−2), one can

investigate the shocked regions as they form within a more natural environment. The

shape, kinematic structure, and lifetime of these dense post-shock “layers,” together

with the user-controlled cloud parameters like density and turbulence amplitude,

will reveal under what circumstances our idealized converging flow model can be

considered to represent local regions in the real GMCs.

5.2.2 Potential Future Projects

The magnetization level within prestellar cores is not only important for the

ability of the core to collapse, but also for late evolutionary stages during pro-

tostellar disk formation and subsequent planet formation. One major challenge in

understanding the evolution from prestellar cores to protostellar systems is the mag-

netic braking problem (McKee & Ostriker 2007; Li et al. 2014). In contrast to the
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unmagnetized situation in which disks form naturally from angular momentum con-

servation during core collapse, the magnetic field removes angular momentum from

the inner parts of the collapsing core and thus suppresses disk formation (Allen et

al. 2003; Hennebelle & Fromang 2008; Mellon & Li 2008; Hennebelle et al. 2011).

Numerical simulations show that the formation of large-scale rotationally supported

disks (RSDs) (as are needed to form observed planetary systems) is suppressed by

powerful magnetic braking unless the dense cores are weakly magnetized to an un-

realistic level (Allen et al. 2003; Hennebelle & Fromang 2008; Mellon & Li 2008;

Hennebelle et al. 2011).

One potential solution is that non-ideal MHD effects, which break the flux-

freezing condition, may alter the evolution sufficiently to avert the “catastrophe” (Li

et al. 2011; Machida et al. 2011; Dapp et al. 2012; Tomida et al. 2013, 2015). With

observational evidence for a random distribution of the angle between the magnetic

field and the bipolar outflow axis (Hull et al. 2013), some theoretical models have

also suggested that a reduction in the magnetic braking efficiency is induced by large-

enough field-rotation misalignment, and RSDs may form in moderately-magnetized

dense cores (Hennebelle & Ciardi 2009; Ciardi & Hennebelle 2010; Joos et al. 2012;

Krumholz et al. 2013; Li et al. 2013). In addition, simulations of turbulent core

collapse demonstrated a beneficial effect of turbulence on RSD formation because of

the turbulence-induced magnetic flux loss and tangling of field lines (Santos-Lima

et al. 2012; Seifried et al. 2012, 2013; Joos et al. 2013), though it is possible that

limited grid resolution enhances the magnetic reconnection (Li et al. 2014).

The above work shows promise for solving the magnetic braking catastrophe.
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However, it all shares a common numerical weakness: making artificial assumptions

for idealized initial conditions. By following evolution of cores similar to those found

in our previous simulations (Chapters 3 and 4), one can investigate the formation

of protostellar systems with realistic turbulent levels and magnetic field strengths.

Note that to follow disk formation, AMR is required to increase numerical resolu-

tion locally, because our previous simulations (∆x = 400 − 800 AU) do not have

enough resolution for disk-scale structures. From our previous results, one can sys-

tematically choose a sample of cores with different angular momentum, magnetic

field strength, turbulence level, and field-rotation misalignment. By importing these

cores as initial conditions into three-dimensional MHD simulations with AMR, it

may be possible to understand better the environmental requirements of circumstel-

lar disk formation, as well as details of the processes involved. This kind of study

will be extremely helpful for understanding what physical mechanism is responsible

for reducing the efficiency of magnetic braking during prestellar core collapse.
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Appendix A: Oblique C shocks

The main text in Chapter 2 considers a 1-D system with velocities and mag-

netic fields perpendicular to each other, for simplicity. We expect that our results

will qualitatively hold for more general geometry. Here, we show that under certain

conditions, our results can quantitatively be applied to oblique C-type shocks.

In the following, we shall consider a plane-parallel shock in the standard shock

frame, using the same coordinate system as before. The shock front is in the y-z

plane, the upstream flow is along the x-direction (v0 = v0x̂), and the upstream

magnetic field is now in the x-y plane (Bcloud = Bx,0x̂ +By,0ŷ), at an angle θ to the

inflow (By,0/Bx,0 = tan θ).

For steady, plane-parallel shocks, ∂t = ∂y = ∂z = 0. From the mass and

momentum conservation equations for neutrals (Equations (2.1)−(2.2)), we have

d

dx
(ρnvn,x) = 0, (A.1)

d

dx

(
ρnv

2
n,x + c2

sρn
)

= αρiρn (vi,x − vn,x) , (A.2)

d

dx
(ρnvn,xvn,y) = αρiρn (vi,y − vn,y) . (A.3)

Similarly, the momentum equation for ions and the magnetic induction equation
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(Equations (2.3)−(2.4)) are (with the strong coupling approximation)

1

8π

d

dx
B2
y = αρiρn (vn,x − vi,x) , (A.4)

Bx

4π

d

dx
By = −αρiρn (vn,y − vi,y) , (A.5)

vi,xBy − vi,yBx = const. = v0By,0. (A.6)

Note that Bx = const. = Bx,0 in plane-parallel shocks, since ∇ ·B = 0.

By defining our parameters as

rn ≡
ρn
ρ0

=
v0

vn,x
, rix ≡

v0

vi,x
, rB ≡ rBy =

By

By,0

, (A.7)

and

M≡Mx =
v0

cs
,

1

βy
≡

B2
y,0

8πρ0c2
s

=
1

2

(
vAy,0

cs

)2

, (A.8)

and applying the ionization-recombination equilibrium (ρi ∝ ρ
1/2
n ), Equations (2.15)

and (2.16) become

d

dx
r2
B = −βy

αρi,0
v0

M2r3/2
n

(
1

rix
− 1

rn

)
(A.9)

d

dx

(
M2

rn

)
+

d

dx
(rn) = − 1

βy

d

dx
r2
B. (A.10)

Since Equation (A.10) is the same as Equation (2.16) with β → βy, the rB vs. rn

relation for oblique shocks is the same as in shocks with Bx = 0 (Equation (2.19)).

In addition, in the post-shock regime, rn,f = rix,f . From Equations (A.3) and (A.5),

the neutral velocity parallel to the front is given by

vn,y
v0

=
1

tan θ

(
vAy,0

v0

)2

(rB − 1) . (A.11)
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The governing equation in the direction perpendicular to the shock front now be-

comes

d

dx
rn =

−Dr3/2
n

1−M2/r2
n

(
1

rn
− 1

rix

)
. (A.12)

This approaches Equation (2.30) only if rix ≈ rB.

It is straightforward to show (Wardle 1991) that

1

rix
=

1

rB

tan2 θ + (rnrB)−1 + 2 (rB − 1) (βyM2)
−1

tan2 θ + r−2
B

; (A.13)

evidently rix ≈ rB for θ → π/2. By substituting for rB in terms of rn using Equa-

tion (2.19), Equation (A.13) gives rix in terms of rn. Using this, Equation (A.12)

may be integrated. Fig. A.1 shows an example of the C shock structure with vary-

ing θ values. For sufficiently large θ, the shock is changed little with respect to the

θ = π/2 case. For smaller θ, the structure is quantitatively different, but qualita-

tively similar.

The final magnetic compression ratio rB,f is obtained from Equation (A.13)

using rf (θ) ≡ rn,f = rix,f :

rB,f =
rf (θ)

(
tan2 θ − 2

βyM2

)
tan2 θ − 2rf (θ)

βyM2

. (A.14)

From the exact solutions, we know that rf (θ) ≤ rf (π/2) ≡ rf,90, Equation (A.14)

therefore suggests that for each model, there is a minimum angle between B0 and

v0:

θmin ≈ tan−1

(√
2rf,90

βyM2

)
≈ tan−1

( 2√
βyM

)1/2
 . (A.15)

Since, for a given By,0 (or βy), small θ corresponds to large upstream magnetic field

strength, a shock is not possible for very small θ. More practically, this can also be
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Figure A.1: The structure, the final compression ratio, and the shock
thickness of an oblique C shock with n0 = 500 cm−3, By,0 = 5 µG,
v0 = 5 km/s, and χi0 = 5, as functions of the angle θ between B0 and
v0 from θ = θmin = 16.49◦ to θ = 90◦. The analytical approximations,
Equations (A.20) and (A.23), provide good estimates to the exact solu-
tions.

180



written as

v0 &
√

2vA,cloud
1− sin2 θ

sin θ
, (A.16)

or θ > θmin (assuming sin θmin � 1/ sin θmin) for

sin θmin ∼
√

2
vA,cloud

v0

, (A.17)

where vA,cloud = Bcloud/
√

4πρ0. The reason for the condition θ > θmin is to ensure

that the inflow is strong enough to produce shocks in the magnetized gas.

To obtain rf (θ), we need to simultaneously solve

M2

rf (θ)
+ rf (θ) +

r2
B,f

βy
=M2 + 1 +

1

βy
(A.18)

and Equation (A.14), which can only be done numerically. Alternatively, we can

also use Equation (A.18) to write (assuming M2 � rf (θ)� 1)

rB,f ≈
√
βy [M2 − rf (θ)] ≈

√
βyM

(
1− rf (θ)

2M2

)
. (A.19)

Substituting Equation (A.19) into Equation (A.14) gives us a quadratic equation

for rf (θ):

rf
2(θ)√

βyM3 tan2 θ
+

[
2

βyM2 tan2 θ

(
1−

√
βyM

)
− 1−

√
βy

2M

]
rf (θ) +

√
βyM = 0.

(A.20)

Since M� 1, keeping only M−1 terms gives

rf (θ) ≈
√
βyM

[
2√

βyM tan2 θ
+

√
βy

2M
+ 1

]−1

. (A.21)

This is an analytical approximation for rf (θ) (see Fig. A.1). The compression factor

rf,90 for the case with magnetic field parallel to the shock front (tan θ → ∞) is
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rf,90 ≈
√
βyM (see Equation (2.21)). Note that for tan θ &

[
2/
(√

βyM
)]1/2

,

rf (θ) ∼ rf,90. Thus, for all but the smallest angles, oblique shocks have similar

compression factor to the 90◦ case with the same By,0.

Since rn/rix is small thorough most of the shock just like rn/rB, we can follow

the derivation in Section 2.3.3 to get the formula for the C shock thickness with

different rf (θ). Equation (A.12) for the shock structure is

d

dx

(
rn +

M2

rn

)
= −Dr1/2

n

(
1− rn

rix

)
, (A.22)

similar to Equation (2.40). Therefore, as for Equation (2.45), the oblique C shock

thickness can be written as

Lest(θ) ≈
4M2

D [rf (θ)]
1/2

=
4v0

αρi,0 [rf (θ)]1/2
. (A.23)

An example comparing the approximation Equation (A.23) (using rf (θ) from Equa-

tion (A.21)) with the exact solution is shown in Fig. A.1.

Regarding the time-dependent behavior of oblique C shocks, we use conver-

gent flow to produce shocks in numerical simulations. To see how the component

of magnetic field parallel to the inflow direction (Bx) can affect the evolution of

the candidate core material, we fix the values of n0, v0, By,0, χi0, and choose dif-

ferent values of θ so that Bx = By,0 cot θ. Based on our theory, the growth rate of

column density dN(H)/dt is proportional to vinflow(θ) = v0 [rf (θ)− 1] /rf (θ), which

should be almost the same for different θ, since rf (θ) � 1. The ambipolar diffu-

sion timescale tAD and the final mass-to-flux ratio Γfinal, however, should decrease

slightly for smaller θ because of their dependence on rf (θ). The generalizations of
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Equations (2.64) and (2.69) are:

tAD(θ) ≈ 2 [rf (θ)]
1/2

αρi,0
= tAD,90

[
rf (θ)

rf,90

]1/2

, (A.24)

Γfinal(θ) ≈ 2π
√
G · 2ρ0v0 × tAD(θ)

rB,fB0

≈ Γfinal,90

[
rf (θ)

rf,90

]1/2

(A.25)

where we apply rB,f ≈ rf,90 to get the second equation, and Equation (2.70) gives

Γfinal,90. Since rf (θ)/rf,90 is order-unity unless θ is extremely small, Γfinal(θ) is close

to Γfinal,90 in most cases.

The simulation results shown in Fig. A.2 agree with our expectation. The

column density grows at an identical rate in all cases (though the shape of the

central peak differs from one to another), and the transition happens slightly earlier

for smaller θ. There is no obvious difference between the final mass-to-flux ratios

in each case, however, since rB,f actually decreases for smaller θ and makes Γfinal(θ)

slightly larger, thus cancels part of the effect from rf (θ).

In conclusion, these tests show that the evolution of C shock transients to

make candidate prestellar cores is not significantly affected by the component of

magnetic field parallel to the inflow velocity.
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Figure A.2: The transient behavior and time evolution of the column
density and normalized central mass-to-flux ratio in the post-shock gas
of oblique C shocks with n0 = 500 cm−3, By,0 = 5 µG, v0 = 5 km/s, and
χi0 = 5. Though the profile of transient central core differs, the growth
rate and the final value of Γ are very similar in each case.
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André, P., Men’shchikov, A., Bontemps, S., et al. 2010, Astronomy and Astrophysics,
518, LL102
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Hennebelle, P., Commerçon, B., Joos, M., et al. 2011, Astronomy and Astrophysics,
528, AA72

Hennebelle, P., & Fromang, S. 2008, Astronomy and Astrophysics, 477, 9

Hennemann, M., Motte, F., Schneider, N., et al. 2012, Astronomy and Astrophysics,
543, L3

190



Heyer, M. H., Brunt, C., Snell, R. L., et al. 1998, Astrophysical Journal Supplement,
115, 241

Heyer, M. H., & Brunt, C. M. 2004, Astrophysical Journal Letters, 615, L45

Heyer, M., Gong, H., Ostriker, E., & Brunt, C. 2008, Astrophysical Journal, 680,
420

Heyer, M., Krawczyk, C., Duval, J., & Jackson, J. M. 2009, Astrophysical Journal,
699, 1092

Heyer, M. H., Vrba, F. J., Snell, R. L., et al. 1987, Astrophysical Journal, 321, 855

Hiltner, W. A. 1949, Astrophysical Journal, 109, 471

Hiltner, W. A. 1951, Astrophysical Journal, 114, 241

Hopkins, P. F. 2012, Monthly Notices of the Royal Astronomical Society, 423, 2037

Hosking, J. G., & Whitworth, A. P. 2004, Monthly Notices of the Royal Astronomical
Society, 347, 1001

Hull, C. L. H., Plambeck, R. L., Bolatto, A. D., et al. 2013, Astrophysical Journal,
768, 159

Ikeda, N., Kitamura, Y., & Sunada, K. 2009, Astrophysical Journal, 691, 1560

Indebetouw, R., & Zweibel, E. G. 2000, Astrophysical Journal, 532, 361

Inoue, T., & Fukui, Y. 2013, Astrophysical Journal Letters, 774, L31

Inoue, T., & Inutsuka, S. 2007, Progress of Theoretical Physics, 118, 47

Jappsen, A.-K., Klessen, R. S., Larson, R. B., Li, Y., & Mac Low, M.-M. 2005,
Astronomy and Astrophysics, 435, 611

Jijina, J., Myers, P. C., & Adams, F. C. 1999, Astrophysical Journal Supplement,
125, 161

191



Johnstone, D., & Bally, J. 1999, Astrophysical Journal Letters, 510, L49

Joos, M., Hennebelle, P., & Ciardi, A. 2012, Astronomy and Astrophysics, 543,
AA128

Joos, M., Hennebelle, P., Ciardi, A., & Fromang, S. 2013, Astronomy and Astro-
physics, 554, AA17

Kandori, R., Nakajima, Y., Tamura, M., et al. 2005, Astronomical Journal, 130,
2166

Karimabadi, H. 1995, Advances in Space Research, 15, 507

Kennicutt, R. C., Jr. 1998, Astrophysical Journal, 498, 541

Kirk, J. M., Ward-Thompson, D., & André, P. 2005, Monthly Notices of the Royal
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Ward-Thompson, D., André, P., Crutcher, R., Johnstone, D., Onishi, T., & Wilson,
C. 2007, Protostars and Planets V, 33

Wardle, M. 1990, Monthly Notices of the Royal Astronomical Society, 246, 98

Wardle, M. 1991, Monthly Notices of the Royal Astronomical Society, 251, 119

Weingartner, J. C., & Draine, B. T. 2001, Astrophysical Journal, 563, 842

Williams, J. P., Blitz, L., & McKee, C. F. 2000, Protostars and Planets IV, 97

Wu, C. C. 1987, Geophysical Research Letters, 14, 668

200


	List of Figures
	Introduction
	Giant Molecular Clouds and Star-forming Regions
	Prestellar Core Properties in Observations
	The Importance of Supersonic Turbulence and Convergent Flows
	The Magnetic Field and Ambipolar Diffusion
	Theories of Prestellar Cores
	Thesis Outline

	Ambipolar Diffusion in Action: Transient C shock Structure and Prestellar Core Formation
	Introduction
	Dynamical Equations and Model Parameters
	Basic Equations
	Steady State One-dimensional Shock Equations
	Governing Ordinary Differential Equation
	Ionization Fraction

	Steady C Shock Thickness
	Exact Solution
	Zeroeth-order Approximation
	Magnetic Field Influence
	Numerical Approach

	C Shock Formation
	Numerical Algorithm for Ambipolar Diffusion
	Convergent Flow Test

	Criticality of Clouds
	Mass-to-flux Ratio
	Bonnor-Ebert Sphere

	Core Forming Process
	Evolution of Overdense Regions
	Time Scale and the Mass-to-flux Ratio
	Simulation Results

	Summary

	Formation of Magnetized Prestellar Cores with Ambipolar Diffusion and Turbulence
	Introduction
	Theoretical Analysis
	Oblique MHD Shock
	Gravitational Critical Scales in Spherical Symmetry

	Numerical Methods and Models
	Simulation Setup and Equations
	Model Parameters
	Analysis of Core Properties

	Sample Evolution of Structure
	Survey of Core Properties
	Mass and Size
	Magnetization

	Anisotropic Core Formation
	Examples of Simulation Evolution
	Theoretical Scalings

	Summary

	Anisotropic Formation of Magnetized Cores in Turbulent Clouds
	Introduction
	Anisotropic Core Formation: Review
	Numerical Methods and Models
	Post-shock Environment and Structure Formation
	Post-shock Layer
	Structure Formation

	Statistical Core Properties
	Comparison to the Perseus Molecular Cloud
	Cloud Environment
	Bonnor-Ebert Mass
	Mass-radius Relation

	Summary

	Summary and Future Work
	Summary of Thesis Study
	Future Work
	From Local to Global Simulations
	Potential Future Projects


	Oblique C shocks
	Bibliography

