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In this thesis, we study the origin and evolution of planets, rings, and moons in

the context of orbital dynamics. In particular, we investigate the Kepler 36 exoplanet

system, which features two known planets whose semimajor axes differ by 0.01 AU

but whose densities differ by nearly a factor of 10, in contrast to predictions from

standard Solar System evolution theory. We use resonance and perturbation theory

to show that these planets could have migrated to their current positions through a

swarm of smaller bodies that knocked them progressively closer together.

We then develop a set of orbital elements designed to be used for a body

orbiting an oblate host such as Saturn. Our corrections properly vanish in the limit

that the oblateness terms go to 0, in contrast to the so-called “epicyclic elements,”

which do not correctly reduce to their osculating counterparts. We compare the

accuracy of our elements to the epicyclic elements as well as a simple numerical fit.



We also provide an explicit inverse function for our elements that transforms them

back to state vectors.

Next, we study the confinement of narrow, eccentric rings. Dozens of these odd

structures are known to orbit the three outer planets as well as several small bodies,

but simple theory predicts they should spread on timescales as short as tens of years.

The standard confinement theory suggests that these rings can be “shepherded” by

nearby satellites, but most narrow rings lack such nearby satellites. We argue that

by circularizing, eccentric rings can lengthen their spreading timescales by a factor

of 105. We support our theory with simulations of narrow eccentric ringlets and find

that we can self-confine the Titan ringlet at Saturn.

Finally, we consider the formation and evolution of Saturn’s largest moon,

Titan. No self-consistent theory exists that can explain all of its unusual features,

including its enormous mass, “lonely” location within Saturn’s satellite system, and

relatively high orbital eccentricity and inclination. We argue that Titan could have

formed from a dynamical instability within a resonant chain of moons similar to

the modern-day Galilean chain of Io, Europa, and Ganymede at Jupiter. We sim-

ulate this process for a wide variety of tidal migration and eccentricity damping

strengths along with over a hundred unique possible mass distributions and find

that instabilities are rare but possible.
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2.2 Sample integration. We plot the mean motion ratio n1

n2
, semimajor

axes a1 and a2, and eccentricities e1 and e2 of both planets. The
subscripts 1 and 2 denote Kepler 36b and c, respectively. Initial
planetary masses and orbital elements are as in Table 2.2. The inner
planet feels no drag force (i.e., ka,1 = 0), while ka,2 = 4 × 10−7 yr−1.
The eccentricity damping strengths are ke,1 = 3×10−4 yr−1 and ke,2 =
10−7 yr−1. The vertical dashed lines mark entrance (∼1.25 × 106 yr)
and exit (2.0 × 106 yr) into the 2:1 MMR as well as entrance into
the 3:2 MMR (∼2.4 × 106 yr). The effects of collisions at 0.5, 1.0,
1.5, and 2.0 × 106 yr are readily apparent, particularly in the e1 plot. 29

2.3 Inner and outer e resonances for the 2:1 MMR (top two panels) and
3:2 MMR (bottom two panels), where the subscripts 1 and 2 denote
Kepler 36b and c, respectively, and λ̄ and $ denote mean longitude
and longitude of periapse, respectively. The inner e resonance is
active for both 2:1 MMR captures, whereas the outer one is only
active for the second capture. . . . . . . . . . . . . . . . . . . . . . . 31

2.4 Two simulations showing the minimum δv
v

required to eject Kepler
36b and c from the 2:1 MMR, with semimajor axis drag applied to
the outer body only (ka,2 = 4×10−6 yr−1) and no eccentricity damping
on either. The planets’ masses are as in Table (2.2), and Kepler 36’s
mass is 1.113 M@ [2]. At 3,000 yr, the planets are in the 2:1 MMR,
and at 5,000 yr, we apply a kick to the inner body in the v̂ direction.
For δv

v
= 0.00166 (the blue curve), corresponding to an estimated

impactor mass of 2.17 MMoon, the bodies remain in resonance but
librate with a much greater amplitude. For δv

v
= 0.00167 (the green

curve), corresponding to an estimated impactor mass of 2.18 MMoon,
the bodies exit resonance. . . . . . . . . . . . . . . . . . . . . . . . . 33

2.5 Example of permanent 7:6 capture with four collisions, at 0.5, 1, 1.5,
and 2 ×106 yr. We display results between 0.9 and 2.5 ×106 yr to
highlight the interesting behavior therein. The top panel shows the
mean motion ratio of the two planets; the second and third show the
inner and outer planetary semimajor axes; and the fourth and fifth
show the inner and outer planetary eccentricities. We denote entry
into and exit from resonance with dotted vertical lines; the specific
resonances are noted, although we are unsure of the 4:3 (see text).

Our disk parameters were ka,1 = 5 × 10−8 yr−1, ke,1
ka,1

= 1, ke,2
ka,2

= 30,

and ka,2 = 4 × 10−7 yr−1. Given typical impactor eccentricities of
0.25, we estimate that the inner body accreted ∼ 1.50MC, ending
with 4.8MC – about 10 per cent above the observed value of 4.45MC

(see Table 2.1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
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2.6 Example of permanent 7:6 capture with nine collisions. We display
only results between 2 and 6 ×106 yr. As in Fig. 2.5, the mean motion
ratio in the interval marked “4:3 (?)” librates about an unusual value
(here ∼1.364); we are again unsure if this truly is the 4:3 MMR.

Our disk parameters were ka,1 = 2 × 10−7 yr−1, ke,1
ka,1

= 30, ke,2
ka,2

= 1,

and ka,2 = 4× 10−7 yr−1. We estimate that the inner body accreted
∼ 1.89MC, ending with 5.19MC. . . . . . . . . . . . . . . . . . . . . . 37

2.7 Example of permanent 7:6 capture with fifteen collisions. We display
only results between 3 and 9 ×106 yr. Our disk parameters were
ka,1 = 10−7 yr−1, ke,1

ka,1
= 30, ke,2

ka,2
= 300, and ka,2 = 4× 10−7 yr−1. We

estimate that the inner body accreted ∼ 4.63MC, ending with 7.33MC. 39
2.8 Final estimated mass, using three different assumptions for ei, for

each simulation that ended in or near the 7:6 MMR. The solid black
line indicates Kepler 36b’s current observed mass. . . . . . . . . . . . 40

2.9 Number of simulations that ended in or near the 7:6 MMR for each
number of collisions N . Little more than the broad outlines of a
pattern can be seen. . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.10 Simulated (top) versus observed (bottom) resonance incidence for
selected MMRs. In the simulated plot, we refer to the resonance
in which each simulation ended; we have excluded simulations that
ended with swapped planetary positions (1,923 of 7,020 total), did
not end in resonance (172), or ended in an unidentified resonance
(327). Observed data is taken from exoplanet.eu and is current as
of 18 May 2020; we only include confirmed, radially adjacent planets
with period errors known to be less than one per cent. Results for ξ
= 1, 0.75, and 0.5 are shown overlaid upon each other (see text). As
ξ decreases, the observed data increasingly resembles the simulated
data, most notably for ξ = 0.5 (blue). . . . . . . . . . . . . . . . . . . 49

3.1 Typical average eccentricity e error (green) and semimajor axis a
error (red) versus number of points N from our numerical fit using
γ = 20, i.e., in which we print twenty times per orbit. We have
normalized the error by the true quantitiy; that is, we define the
error in a quantity x as |xtrue−xcalc|

xcalc
, where xtrue is the true value of

x and xcalc is the calculated value. Ellipse parameters were a = 1
and e = 0.001; we rotated the periapse point 0.01 radians counter-
clockwise each output. We have marked the N corresponding to the
first dip for both sets of errors. . . . . . . . . . . . . . . . . . . . . . 70
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3.2 Doubly averaged errors on a and e versus output interval (i.e., 1
γ
).

Whereas in Fig. (3.1), each plotted point was the average error over
a simulation, here the point at output interval = 1

20
= 0.05 in the top

panel is the average of all red points from N = 30 to 70 in Fig. (3.1);
likewise for the bottom panel and green points. The other points in
each panel are similar averages for different choices of output interval.
All simulations were again performed using a = 1 and e = 0.001 with
periapse rotation of 0.01 rad per output. The inset in the bottom
panel zooms in on the output interval from 31.46 to 31.49, showing
the large dip in errors there; this is discussed further in the text. . . . 71

3.3 The geometric a (top) and e (middle), and q error (bottom) for ten
orbits of a test particle around Saturn. The dark blue curve is the
epicyclic elements, the cyan curve is the fitted numerical elements,
and the green curve is the analytic elements. The dotted lines in the
bottom plot are the average q error values. The numerical elements
appear to perform best; their average q error is closest to 0, and the
libration amplitude for both q error and e is lower than that of the
other two sets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.4 Average q error of analytic (green), numerical/fitted (cyan), and
epicyclic (blue) elements. The sizes of the circles signify the relative
q amplitudes but are NOT to scale. We show results for e ≈ 0.1J2

(top panel), e ≈ J2 (middle panel), and e ≈ 10J2 (bottom panel).
Results for Earth, Uranus, and Saturn are displayed in the left, mid-
dle, and right columns, respectively. The simulation from Fig. (3.3)
is summarized in the top panel’s Saturn column. We logarithmically
space the columns according to the planetary J2. The fitted elements
always have the lowest error and have the lowest amplitude in every
case except at Uranus with e ≈ 10J2 and at Saturn with e ≈ J2. . . . 75

4.1 Schematic showing the energy cycle of a non-spreading ringlet. In the
top left diagram (1), pericenter collisions kick the innermost ringlet
further inwards. In (2) and (3), this ringlet then begins to circularize
and differentially precess until the point of closest approach between
the ringlet and the rest of the ring is close enough to begin transferring
energy in (4). This leads the ring back to its initial configuration with
a slightly lower eccentricity. . . . . . . . . . . . . . . . . . . . . . . . 87
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4.2 Display of the fractional z component of angular momentum |∆Lz |
|Lz |

for four two-dimensional ring simulations that differ only in their
timesteps. The rings have eccentricity e = 0.005 and density σ = 10−6

in units of MSaturn = 5.6846× 1029 g and rring = 1.178145× 1010 cm.
For ease of comparison to theory, we use two streamlines, each with
250 particles. The initial semimajor axes of the two streamlines are
1.0005 rring and 0.9995 rring. The initial ∆e is 10−5. There is no
viscosity. The timestep for the simulation corresponding to the dark
blue line is five orbits, while the timestep for the simulation repre-
sented by the green line is 0.5 orbits, etc. The green and red lines
nearly lie atop each other. Note the linear growth in angular mo-
mentum error as the number of timesteps increases, regardless of the
actual timestep value. Even varying the timestep over several orders
of magnitude does little to change the rate of growth. . . . . . . . . . 93

4.3 Three plots displaying the evolution of a ring that has been slightly
perturbed from its equilibrium. The simulated libration time agrees
very well with that predicted by [3] (see text). Initial conditions
are identical to those in Fig. 4.2 – the only forces active are the
ring’s self-gravity and the gravity from the oblate host planet. Our
timestep was five orbital periods. From top to bottom, the panels
feature the difference between outer and inner longitudes of periapse,
the q parameter, and the difference ∆a between the center of the ring
and its edge, equal to half the width of the ring. . . . . . . . . . . . . 94

4.4 Five simulations of librating ringlets identical except for timestep.
Only the differences in longitudes of periapse have been plotted. The
blue curve has a timestep of 0.016 orbital periods, green has 0.08
orbital periods, red has 0.16, cyan 0.32, and magenta 0.63. Despite
the wide range of stepsizes, all curves maintain very similar libration
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4.5 Several plots describing the evolution of a viscous, self-gravitating,
narrow eccentric ringlet of two streamlines with sixteen particles per
streamline. The ring is initialized with ∆a = 10−4 rring, e = 10−3,
∆e = 10−5, and sigma = 4.4 × 10−8 in the units of Fig. 4.2. Both
shear and bulk viscosity equaled 2114 cm2 s−1. While these viscosity
values are about an order of magnitude greater than is typical [4],
they permitted us to greatly speed up the simulation while retaining
a similar, if accelerated, evolution. The top panel features the dif-
ference between outer and inner longitudes of periapse. The second
and third, and fourth panels from the top feature the q parameter,
the eccentricity gradient term a de

da
, and the inner and outer eccen-

tricities ein and eout, respectively. The fifth panel shows ∆L
L

, which
is consistently < 10−7 until the spike at the end indicating the onset
of numerical instability. The bottom panel shows the difference ∆a
between the center of the ring and its edge, equal to half the width
of the ring. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
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4.6 Several plots describing a possible evolutionary path of the Titan
ringlet. In this two-dimensional simulation, the ring spreads until
t ∼ 110, but then contracts until t ∼ 150. The reason for such con-
traction is easiest to see via panel 1 – the ring “overshoots” the equi-
librium twist value and starts to compensate. After briefly spreading
again, it reaches its equilibrium at t ∼ 300 and remains confined.
All parameters of the host planet (e.g., mass, radius, etc.) are again
equal to those of Saturn. The initial inner and outer semimajor axes
are 1 − 1.6 × 10−6 and 1 + 1.6 × 10−6 respectively, using a length
unit of 7.7871×109 cm (see Table 4.1). The initial eccentricity of the
inner streamline is 0.00026, while the initial ∆e is 0. The ring begins
with a very small pericenter twist of −0.062◦. Both shear and bulk
viscosity parameters are 63.4 cm2 s−1. Density is 8.93 g cm−2. The
ring is in equilibrium from t ∼ 300 to the end of the integration. . . . 99

4.7 Identical to Fig. 4.6 except run for ten times longer. While the
ring is in equilibrium and the eccentricity is above ecrit, i.e., from
t ∼ 300 − 1300, the ring spreads quite slowly, although once it is
sufficiently circular, the spreading timescale shortens considerably. . . 100

5.1 Dynamical instability among an initially resonant chain of satellites.
We plot semimajor axis a (blue), periapse distance q (red), and

apoapse distance Q (green) for all three bodies. We used k2p

Qp
= 10−3

and k2s

Qs
= 6 × 10−4 with a mass distribution of log2

´

m2

m1

¯

= −4 and

log2

´

m3

m1

¯

= -1.5 and a speed-up factor C of 1000. The middle satel-

lite’s orbit almost immediately crosses both of its neighbors’, and it
is ejected at ∼ 140 Myr. We have scaled the time axis accordingly
with our speed-up factor. . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.2 Five notable resonant arguments for the simulation in Fig. 5.1. From
top down: the Laplace resonance argument ϕL, the inner and outer ec-
centricity resonance arguments ϕ21,i and ϕ21,o, respectively, between
bodies 1 and 2, and the inner and outer eccentricity resonance ar-
guments ϕ32,i and ϕ32,o, respectively, between bodies 2 and 3. All
resonances are active for most of the simulation, as denoted by the
libration of their arguments around fixed values. In particular, both
the outer eccentricity resonance between bodies 1 and 2 and the in-
ner eccentricity resonance between bodies 2 and 3 are active, rapidly
forcing up the eccentricity of the middle satellite. . . . . . . . . . . . 119
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5.3 Crossing orbits, but no dynamical instability, between an initially
resonant chain of satellites (compare with Fig. 5.1). We again used
k2p

Qp
= 10−3 and k2s

Qs
= 6 × 10−4 but with a mass distribution of

log2

´

m2

m1

¯

= −4 and log2

´

m3

m1

¯

= -2.5 and a speed-up factor C of

100. The middle satellite’s orbit almost immediately crosses that of
the inner body, but not the outer body, and the system does not go
unstable. Again scaling our time accounting for the speed-up factor,
we integrated for 4 Gyr. We show only the time up to 700 Myr to
highlight the interesting behavior at the beginning of the integration. 120

5.4 The same resonant arguments as plotted in Fig. 5.2, now for the sim-
ulation presented in Fig. 5.3. All resonances are initially active, but
following a significant perturbation at ∼250 Myr, ϕ32,o permanently
ceases libration even as the others eventually recover. . . . . . . . . . 121
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Chapter 1: Introduction

This thesis is focused on the orbital motions of rings, moons, and planets. We

extensively use orbital elements, perturbation theory, and numerical integration in

the main body of the thesis and accordingly supply a brief introduction to those

topics here.

1.1 The Two-Body Problem

To a decent approximation, all major Solar System bodies from Mercury to

Pluto follow circular orbits around either the Sun or a planet. On closer inspection,

of course, this model falls apart; sufficiently precise observations of the planets’

positions, for example, are incompatible with circular orbits regardless of what they

are centered on. Kepler’s model, as outlined by his three “Laws,” is much more

accurate. Planets are now assigned elliptical orbits with one focus at the Sun (the

First Law), they sweep out equal areas in equal times (the Second), and the square of

their periods is proportional to the cube of their orbital semimajor axes (the Third).

Although originally found empirically for the planets, these laws can be derived for

any two masses M and m interacting solely via gravity using just two equations and

the assumption that M >> m. This assumption is appropriate for planets orbiting
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the Sun as well as satellites or rings orbiting a planet – such orbits are called “Kepler

orbits” – and will be used for the rest of this thesis unless otherwise noted.

First, we need Newton’s law of gravitation describing the force F g between

two masses separated by a displacement vector r:

F g = −GMm

r3
r, (1.1)

where G ≈ 6.67430× 10−11 m3 kg−1 s−2 is the universal gravitational constant and

r = |r|. We also need Newton’s Second Law, F = m:r, equating the force F upon a

body of mass m to the acceleration :r it experiences. With these additions, we can

rewrite Eq. (1.1) as:

:r = −GM
r2

r̂, (1.2)

where r = rr̂.

We can now sketch the derivation of Kepler’s Laws; interested readers can

consult, e.g., [5] or [6] for more detail. By crossing both sides of Eq. (1.2) with r

and integrating, one can show the existence of a conserved quantity: the angular

momentum per unit mass h = hĥ = r × 9r. This leads immediately to Kepler’s

Second Law; one finds that 9A = h
2
, where A =

∫ t2
t1

9Adt is the area of the orbit swept

out between arbitrary times t1 and t2. Next, by taking the second time derivative

of r = rr̂ and setting it equal to the right hand side (RHS) of Eq. (1.2), one can

show that two bodies in a bound system interacting solely via gravity will follow

static confocal ellipses whose common focus is their center of mass, or barycenter.
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Recalling our assumption that M >> m, where here M is the solar mass and m is

the planetary mass, we can approximate the Solar System’s barycenter as the center

of the Sun: thus, Kepler’s First Law. This procedure also yields h2 = GMa p1− e2q

for orbital semimajor axis a and eccentricity e. Thus, integrating A =
∫ t2
t1

9Adt over

an orbital period yields Kepler’s Third Law.

The general equation of a rotated, off-center ellipse is given as:

P1x
2 + P2xy + P3y

2 + P4x+ P5y = 1 (1.3)

for constant parameters P1, P2, P3, P4, and P5. For a non-rotated ellipse, the P2

term vanishes; for an ellipse centered at (0, 0), the P4 and P5 terms vanish. For a

non-rotated ellipse centered on (0, 0), the P1 and P3 terms reduce to their familiar

values, P1 = a−2 and P3 = b−2 for semimajor axis a and semiminor axis b.

Since the orbits are ellipses, we can describe them using Eq. (1.3); since they

are static, all five parameters must be constant. This implies the existence of more

conserved quantities; for a two-dimensional orbit, only the z component of h is non-

zero, so we need four more. Given Newton’s Third Law, which states that that forces

the two bodies exert on each other are equal and opposite, we can show that their

barycenter cannot accelerate; thus, we can always transform to an inertial frame

of reference in which it is constant. This provides two more conserved quantities,

which specifically account for parameters P4 and P5 in Eq. (1.3). We get the fourth

by dotting both sides of Eq. (1.2) with r, which yields the energy per unit mass

C = 1
2
v2 − GM

r
, where the speed v = | 9r|. The last is somewhat more obscure: the
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eccentricity vector e = 1
GM

v × h − r̂, which points from apoapse to periapse and

whose magnitude e equals the orbital eccentricity [6].

We typically want a more direct description of an orbit than this. To that

end, one can show that C = −GM
2a

; recalling that h2 = GMa p1− e2q, we see that

energy and angular momentum respectively control the size and shape of the orbit.

Furthermore, one can use e to calculate the argument of periapse ω, which describes

the orientation of the orbit relative to some fixed reference point. These three

quantities – a, e, and ω – are commonly cited parameters called orbital elements,

and for a two-dimensional system, they are sufficient to completely describe the

orbital path.1 If we incline the orbit relative to some reference plane (e.g., the plane

of the ecliptic for planetary orbits), then we produce two more orbital elements;

the inclination angle i and the longitude of ascending node Ω, which describes

the relative orientation of the orbital and reference planes. We do not need any

additional conserved quantities to find i and Ω; the x and y components of h are

no longer zero for three-dimensional orbits and are used to calculate these two

additional elements.

Although we only need three parameters to describe a two-dimensional orbit

(and five for a three-dimensional orbit), we need one more to describe motion. One

can see this by directly integrating Eq. (1.2) to get r, which produces kN linearly

independent parameters for N bodies in k dimensions. Common choices for this last

parameter are the true (or mean) anomaly (or longitude), all of which describe the

1If we locate M at the origin, the center offset must always have magnitude ae and direction
(− cosω,− sinω).
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body’s location on its orbit. Although this is mathematically unsatisfying – these

choices are not constants – the typical alternative is the time of periapse passage,

which is constant but much less practically useful, and this thesis will not reference

it again.

This completes the two-body problem. Given a position and velocity vector

for each body at any point in time, we can determine their positions and velocities

at all times. What if we add more bodies?

1.2 The N-Body Problem

Although it is beyond the scope of this thesis to prove so here, the N -body

problem – that is, determining the motions of N bodies analytically for all time –

is sadly unsolvable for N > 2; there are simply not enough additional constants of

motion. Although special cases of the three-body problem do have analytic solutions,

if we want to predict the general motions of more than two bodies, we must resort

to numerical integration. The underlying mathematics have now been studied for

over two centuries [7]; interested readers may consult [8] or [9] for more details.

Various integration schemes exist, but the only one used in this thesis is the

(second-order) symplectic integrator, which splits Eq. (1.2) into two equations, one

of which is integrated for velocity, and the other for position:

9v =
GM

r2
r̂ 9r = v. (1.4)

A single step forward in time (called the “timestep”) is typically ordered as “kick-
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drift-kick” (update velocity, then position, then velocity again) or “drift-kick-drift”

(vice versa). We give one example of a “kick-drift-kick” scheme in which position

and velocity are updated from step n to step n+ 1 here:

vn+ 1
2

= vn +

ˆ

∆t

2

˙

9v(rn) (1.5)

rn+1 = rn + ∆tvn+ 1
2

(1.6)

vn+1 = vn+ 1
2

+

ˆ

∆t

2

˙

9v(rn+1) (1.7)

where ∆t is the timestep. Since the velocity and position are updated “out of sync”

with each other, this is often called the leapfrog method – see Fig. 1.2.

Note that Eqs. (1.5), (1.6), and (1.7) are time reversible. To go backwards in

time, one uses the same steps, replacing ∆t with −∆t, and ends at precisely the same

position and velocity whence they started. As a result, this method (and in fact any

symplectic integrator, by definition) conserves orbit-averaged energy and angular

momentum – there are no secular errors in either quantity. This is only possible

because the acceleration, :r, is a function solely of position and not velocity. For

this reason, symplectic integrators can remain stable far longer than non-symplectic

alternatives such as standard Runge-Kutta methods.

To show that our leapfrog algorithm truly is accurate to second order 2 in

∆t, we substitute Eq. (1.5) into Eq. (1.6) and write v as 9r, which produces the

2One might find it strange that any errors in r exist at all given that there are no secular errors
in energy or angular momentum. The reason is that the integrator is not actually conserving the
true energy, but rather a slightly perturbed one.

6



following expression for the estimated rn+1:

rn+1, est. = rn + ∆t 9rn +

ˆ

(∆t)2

2

˙

:rn. (1.8)

The true expression for rn+1 can be expressed as a Taylor expansion3:

rn+1, true = rn + ∆t 9rn +

ˆ

(∆t)2

2

˙

:rn +O
`

(∆t)3
˘

. (1.9)

The error on rn+1 is the difference between Eqs. (1.8) and (1.9), which in turn is

O p(∆t)3q. Higher-order integrators are possible via, e.g. [10], [11], [12], but we do

not consider them here.

1.3 Perturbations

Thus far, the only force we have considered is gravity, and we have tacitly

assumed that all bodies are zero-dimensional point particles. Despite being far more

complex in general, reality does offer the lone simplification that many systems of

interest (and all systems of interest to this thesis) are dominated by a single mass,

such as the Sun and planets or Jupiter and its moons. This allows us to recast

the N -body problem as N − 1 two-body problems subject to various perturbations.4

While an N-body integrator of the type described above can easily account for

perturbations that conserve energy and angular momentum (e.g., gravity from other

planets to Earth’s orbit around the Sun), others (e.g. gas drag or tidal forces) are

3This is an exact expression for constant acceleration, but in reality the acceleration itself is
changing.

4Kepler’s Laws implicitly do this recasting while ignoring all perturbations.
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more challenging to include, and we require other means of approximating them.

Recall that in the two-body problem, both bodies move on static ellipses. In

fact, only pure gravity (or, interestingly, a simple harmonic oscillator) can produce

such orbits. If pure gravity is perturbed, the ellipses will no longer remain static.

Converting C, h, and e to the orbital elements will not produce constant a, e, etc.,

but rather the so-called “osculating” elements – the elements of the orbit the bodies

would take if the perturbation vanished upon their calculation. The osculating

elements will vary in time, and given the radial, tangential, and normal components

of the force, we can write down what this variation will be via [13].

This thesis will largely be concerned with near-equatorial orbits, so we will

ignore variations in i and Ω, while variations in ω will be due to conservative forces

that our numerical integrator, HNBody, can accommodate naturally [14]. Thus, we

will limit our interest to 9a and 9e:

9a

a
= 2

c

a

µ p1− e2q
rRe sin ν + T (1 + e cos ν)s (1.10)

9e

e
=
a

aµ−1 pe−2 − 1q rR sin ν + T pcos ν + cosEqs , (1.11)

where µ = G(M + m) for central mass M and perturbed body mass m, E is

eccentric anomaly, defined via cosE = x
a
, and R and T are the radial and tangential

components of the perturbing force, respectively. We see immediately that only

forces in the orbital plane can affect a and e. Furthermore, for constant R and T ,

there can be no secular changes to e; this is not the case for a.
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When we include perturbing forces, we typically care less about their precise

forms, which may be disputed in any case, and more about the timescales on which

they act and the secular effects they have on a and e. We can then include extra

forces in our numerical integrations that have these desired effects despite not being

“correct” using Eqs. (1.10) and (1.11). For example, if we wish to simulate secular

a changes but no secular e changes, we can include an extra force pointed in the

tangential direction that is constant over an orbit period. We can then multiply it

by whatever constant is required to produce the desired timescale. This strategy

allows us fine control over the perturbations we simulate; we can pick and choose

the effects we wish to enhance or ignore.

1.4 Mean Motion Resonances

A system of multiple bodies orbiting one high-mass object offers the possibility

of mean motion resonances, which occur when the mean motions of two or more

bodies are a ratio of low integers.5 One example in nature can be found between

Neptune and Pluto, which are in the 3:2 (or 2:3) mean motion resonance: Pluto

completes almost exactly two orbits for every three of Neptune. Even though their

orbits cross, this resonance ensures that Pluto and Neptune are always more than

20 AU [5] from each other, preventing Neptune from scattering its tiny neighbor.

We shall presently examine how resonances perturb the orbits of the bodies

that inhabit them. First, however, we note that the mathematics behind resonant

interactions is far more complex than our simplified treatment here. Our discus-

5Many kinds of resonances exist, but this thesis will focus on just this one.
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sion will highlight and heuristically explain some results relevant to this thesis, but

readers interested in a proper treatment may consult [5], [15], [16], [17], or [18].

Consider a system of two coplanar resonant planets orbiting a star in which the

inner planet’s orbit is eccentric while the outer planet’s orbit is circular. Considering

only perturbations from the outer planet on the inner, [5] show that in general, orbit-

averaged tangential forces will nudge the latter’s orbit until conjunctions occur at

its periapse. At this point, orbit-averaged tangential forces vanish, making this

configuration a stable equilibrium; there is also an unstable equilibrium in which

conjunctions occur at the inner planet’s apoapse.

This stable equilibrium, however, is a moving target. Each time the inner

planet approaches conjunction, the outer planet pulls it outward, slowing its mo-

tion and rotating its periapse. Thus, orbit-averaged tangential forces always exist

and period ratios are never truly exact; one must always correct for this periapse

rotation. 6 Ultimately, the inner planet will librate around the equilibrium. In the

case where the inner planet’s orbit is circular, the outer planet’s orbit is eccentric,

and we consider only perturbations from the inner planet on the outer, the stable

equilibrium is now at the outer planet’s apopase, and the unstable one is at its

periapse.

Such behavior has two important consequences for this thesis. First, bodies

in resonance will stay in resonance absent a very powerful perturbation that knocks

them sufficiently far from their equilibrium. In future chapters, we will subject res-

6In the case of mutually inclined orbits, the two orbital planes may also rotate relative to each
other, necessitating a further correction.
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onant bodies to extra forces that change their semimajor axes, but because of this

phenomenon, their orbit-averaged period ratios will not change. Second, the tangen-

tial forces near periapse on the librating body must change its orbital eccentricity.

To see this, recall Eq. (1.11); at periapse, cos ν = 1 and cosE = 1 by convention,

so if T is non-zero, there must likewise be a non-zero 9e.

1.5 Thesis Outline

This thesis will be structured as follows. Chapter 2 will study the origins

of the Kepler 36 planetary system, which features two planets of very different

densities whose orbits are radially close to each other, contrary to the expectations

of standard solar system formation theory. Chapter 3 will derive a set of “geometric”

orbital elements that vary far less than the standard osculating elements under the

perturbation that arises from an oblate central body. Chapter 4 will examine a

new formation model for Titan, Saturn’s largest moon, in which several resonating

satellites (similar to the modern-day Galilean moons at Jupiter) undergo dynamical

instability and merge. Chapter 5 will present a new theory for how narrow eccentric

rings can remain confined to radial widths of approximately 1-10 km even in the

absence of nearby “shepherd” satellites. Finally, Chapter 6 will summarize the

results of the thesis.
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Figure 1.1: Depiction of an orbit (blue ellipse) relative to some reference line (black
line). Points A and P are the apoapse and periapse, respectively; the orange line
connecting them is the line of apses and has length AP = 2a for semimajor axis
a. Point C is the center, where AC = CP = a. Point F is one of the two foci (the
other is not labeled); the lines FP and FA are the periapse and apoapse distances,
respectively, where FP = a(1− e) and FA = a(1 + e) for eccentricity e. The length
CF is the distance from center to focus such that CF = ae. The angle between the
orange line of apsides and the black reference line is the argument of periapse ω.
Finally, point B is the location of the body, and the angle from periapse to body
(i.e., between the orange line FP and the green line FB) is the true anomaly ν,

where FB = a(1−e2)
1+e cos ν

. For a Kepler orbit, FB = r. This example uses the elements
e = 0.7, ω = 30◦, and ν = 130◦.
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Figure 1.2: Depiction of a leapfrog integration scheme. Position x is updated
at integer subscripts of time t, whereas velocity v is updated at half-integer
subscripts. Source: https://www.astro.umd.edu/~ricotti/NEWWEB/teaching/

ASTR415/class15.pdf
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Chapter 2: Exploring the Origin and Evolution of the Kepler 36 Sys-

tem

In this Chapter, we examine two unusual exoplanets; despite a huge difference

in densities, their orbits are extremely close together, and they both lie very close to

their host star. Such a configuration is wholly alien to residents of the Solar System,

which has a very different architecture. How did these exoplanets get to their current

positions with their current densities? We use perturbation and resonance theory

to investigate this question in a self-consistent, natural way. This chapter has been

submitted for publication to the Monthly Notices of the Royal Astronomical Society.

2.1 Introduction

2.1.1 Previous Work

Among the most dynamically interesting extra-solar planets (exoplanets) are

those in so-called ‘tightly packed’ systems, which feature multiple bodies all orbiting

close both to their host star and to each other. One such system is Kepler 36

(Table 2.1).

These planets have two notable features. First, they are located very near one
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Name Semimajor Axis (AU) Density (g cm−3) Mass (MC)
Kepler 36b 0.1153 ± 0.0015 7.46 +0.74

−0.59 4.45 +0.33
−0.27

Kepler 36c 0.1283 ± 0.0016 0.89 +0.07
−0.05 8.08 +0.60

−0.46

Table 2.1: Key properties of Kepler 36b and c. Data taken from [19].

another and are also within 1 per cent of the 7:6 orbital mean motion resonance

(MMR), i.e., their periods are very close to a 7:6 ratio. Second, their densities differ

by nearly a factor of 10 despite their small radial separation. The placement of

a gaseous sub-Neptune so close to a rocky super-Earth defies standard formation

models that predict planetary systems to be segregated by both mass and density,

as the Solar System is. This chapter proposes a new evolutionary path in which

these planets migrate past other more common resonances and terminate at the 7:6

MMR in their current locations.

Several works instead posit that high-energy protostellar radiation might sig-

nificantly alter these planets’ atmospheres [1, 20, 21, 22]. They argue that the

elevated X-ray and XUV (extreme ultraviolet) flux of a young star could strip the

atmospheres of high-density, close-in planets. In their now-standard model, [1] ini-

tialize both planets at their current orbits with identical H/He mass fractions (∼ 22

per cent) and radii (∼ 10 RC), but different masses (mb ∼ 5.7 MC, mc ∼ 9.4 MC)

and bulk densities (ρb ∼ 0.031 g cm−3, ρc ∼ 0.052 g cm−3). Kepler 36b loses nearly

all of its atmosphere to high-energy stellar radiation within 108 yr, while Kepler 36c

retains roughly half of its own envelope. The authors attribute this difference to Ke-

pler 36c’s greater assumed amount of rocky material (7.34 MC compared to 4.45 MC

for Kepler 36b) and predict that Kepler 36b should lose its envelope approximately

three times faster than Kepler 36c despite receiving only about 24 per cent more
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radiation. Since they receive similar amounts of radiation, the planets’ atmosphere

retention rates are largely determined by their core masses; by fine-tuning them,

the authors reproduce the observed masses and densities of the Kepler 36 planets.

[21] and [22] study similar formation scenarios without fundamentally modifying

the idea that stellar XUV radiation is responsible for the density disparity between

these two planets.

More generally, [1] predict that the incidence of sub-Neptune planets (1.8 <

radius < 4.0 RC), should decline rapidly for periods À 10 days, while the incidence of

smaller planets should simultaneously rise. In Fig. 2.1, we compare these predictions

to the modern planetary database found at exoplanet.eu. Current observations

show that while the frequency of sub-Neptunes does decline for shorter periods, this

decline begins at ∼4 days, much closer than the 10-day prediction of [1]. A steady

increase in the number of small planets as the stellar distance decreases from 10 d

to 1 d periods is also apparent in Fig. 2.1. The correlation between these two trends

is not strong.

[23] study a scenario in which the density disparity between the planets is

due entirely to the composition of their feeding zones. In their picture, Kepler

36b is rocky because it is formed from the mergers of several rocky bodies totaling

3 MC; likewise for Kepler 36c and two icy bodies totaling 7.3 MC. These are

reasonably close to the planets’ current observed masses. Stellar radiation is ignored.

Once Kepler 36c forms, it migrates inward toward Kepler 36b, skipping past several

resonances but stopping in the 7:6 MMR with Kepler 36b, in which the two planets

reside for the remainder of the simulation. While this idea for the density disparity
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Figure 2.1: Instances of confirmed planets with period P < 16 days, radiusR < 4RC,
and period and radius errors less than one per cent, using 64 bins. The red bars
correspond to planets with R < 1.8RC, which [1] designate as super-Earths. The
blue bars conversely correspond to those planets they designate as sub-Neptunes.
Sub-Neptune frequency peaks at P ∼ 4 days. Data taken from the exoplanet.eu
catalog and current as of 18 May 2020.
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is compelling, we find that convergent migration alone is unlikely to account for the

7:6 MMR. Our simulations (Sec. 2.2) indicate that collisions are necessary to eject

bodies from resonance, and in their absence, it is difficult to force planets so close

together. Furthermore, [24] find that stochastically forced planets that capture into

the 7:6 resonance from disk forces alone are unlikely to stay there permanently.

[24] investigate a different model, in which they place numerous Mars-mass

planetary embryos beyond the two planetary orbits; the embryos migrate inwards

until they collide with one of the planets, typically the outermost body. After fine

tuning the number of embryos, the migration rate, and other parameters, [24] find

that these collisions can force the planets past several resonances in which they would

otherwise remain trapped. In their scenarios, impacts with embryos that stripped

one planet (assumed to have already differentiated) of its less dense outer material

produced the density contrast. [24] suggested two possible formation pathways. In

the first, the outer planet (which received approximately twice as many impacts as

the inner) lost its mantle, and subsequent collisions kicked it past the inner planet,

i.e., the planets exchanged positions. In the second, the inner planet was stripped

instead, and no such exchange occurred. Each scenario faces significant difficulties

reproducing the density contrast; either the planets had to cross orbits without

going unstable, or the planet receiving fewer impacts had to lose its mantle while

the planet receiving more could not.

Although this model has many appealing aspects, we do not expect Mars-

mass embryos to necessarily migrate inward faster than planets with an order of

magnitude more mass. [24] assume that the planets would open gaps in the gas disk
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(Type II migration) whereas the embryos would not (Type I migration), and that

this difference would yield a faster migration rate for the embryos. However, the

precise mass range at which planets transition from Type I to Type II migration,

and the nature of migration within this range, has enjoyed considerable debate for

decades with few firm conclusions beyond general guidelines (e.g. [25], [26], [27]).

These analyses are typically subject to various simplifying assumptions about the

gas disk itself [28]. In particular, [27] estimate that Type II migration should not

begin until planetary mass Á 30MC for a typical disk, which would place both Kepler

36 planets firmly in the Type I range. Furthermore, [28] predict that the Type I

migration rate should be proportional to mass (their equation 70), implying that

planets should migrate faster than embryos. We likewise adopt this requirement.

2.1.2 Our Model

In this chapter, we present a formation model for the Kepler 36 planetary

system that incorporates many elements of that proposed by [24] but is nevertheless

distinct in several ways. In our model, Kepler 36b forms within the ice line with

less mass than that which [19] measured, and Kepler 36c forms beyond the ice line

with roughly its current mass, perhaps via a similar process to that outlined by [23].

The two planets migrate inward through a protoplanetary disk; Kepler 36c migrates

faster, rapidly overtaking its less massive neighbor and capturing it into the 2:1

MMR. After this capture, the two planets migrate in together through a field of

embryos and small protoplanets. The inner planet is pushed inward into undepleted
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parts of the disk and interacts with these bodies, colliding and merging with many

of them. Most small planetesimals are gone at this point, having merged to form

the larger planetary embryos. Those that remain play no role in the dynamical

evolution of the two planets. In this model, most of the embryo/protoplanet disk

accretes onto the inner planet as it migrates inward. Its mass roughly equals the

mass of the accreted material, typically ranging from a few Earth masses to several

(see Fig. 2.8 in Section 2.3.4).

The likelihood of the smaller bodies colliding with the inner planet, rather than

scattering, depends on the inner planet’s escape speed vesc and the smaller body’s

orbital speed vorb; they preferentially collide for vesc < vorb and preferentially scatter

for vorb < vesc [29]. Planet b has a radius of 1.486± 0.035 RC [19]; its mass is given

in Table (2.1). These values yield vesc ≈ 19.4 km s−1. This allows us to estimate a

critical semimajor axis acrit below which an object would preferentially collide with

planet b by equating vesc with average orbital velocity 〈vorb〉 ≈
b

GM
acrit

`

1− 1
4
e2
˘

,

where G is the gravitational constant, M is the mass of Kepler 36, and a and e

are the semimajor axis and eccentricity of the smaller body, respectively. Taking

e = 0.2, this yields acrit ≈ 2.57 AU, somewhat lower than typical ice line estimates

for a Sun-like star (see, e.g., [30], [31], [32]). Since we model the inner planet as

forming within the ice line and migrating inward, we therefore expect that most

close approaches with it should result in collisions, not scattering. As a result,

the innermost planet can effectively shield the outermost from the material, as a

cowcatcher leading a train shields it from debris on the tracks.

Importantly, some of the collisions are of sufficient strength to eject Kepler 36b
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from its resonance entirely. Depending on the direction of impact, either the planet

is kicked inward and quickly recaptured by the inwardly moving 2:1 resonance, or

it is flung outward and is soon captured by a closer resonance, e.g., the 3:2. These

outcomes each occur with a ∼50 per cent possibility because the planet is about as

likely to collide with a slower body (thus losing energy) as a faster one (thus gaining

energy). We envision that this process repeats until the planets are left near the 7:6

resonance. Additionally, the accretion of denser material not only raises the bulk

density of planet b but also increases its mass to the current measured value; the

greater self-gravity also acts to further raise the planet’s density by compression.

Earth has a density of 5.5 g cm−3, a value enhanced by compression of its iron core,

and 4.5 MC of Earth-like material could easily have an average density of 7.5 g cm−3.

2.2 Simulations

2.2.1 Damping Forces

To test our model, we used the symplectic option within the N-body integrator

HNBody [14] to simulate two planets orbiting Kepler 36 in a protoplanetary disk.

In addition to the normal gravitational forces between the three bodies in the inte-

gration, we also included two additional forces via HNDrag, an expansion suite to

HNBody, that approximated the semimajor axis drag ( 9a) and eccentricity damping

( 9e) effects of the disk. We modeled 9a with the user-defined force per unit mass

fa = −kav, for planetary velocity v and strength ka = − 9a
2a

. This force has the

useful property that 9e = 0 when averaged over an orbit. We define the e damping
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force by f e = −kevrŝ, where vr is the radial speed, ŝ is a unit vector perpendicular

to the overall velocity (minimizing changes to the body’s energy), and ke = − 9e
2e

is analogous to ka. The velocities in these forces are expressed in units of initial

circular velocity of whichever body to which they are applied, approximately equal

to 22.3 km s−1 for planet b and 14.1 km s−1 for planet c. With this normalization,

ka
−1 and ke

−1 are the approximate timescales of 9a and 9e, respectively.

These forces are clearly simplifications of the true forces these planets would

experience in a protoplanetary disk. [24] and [33], who investigated the strengths

of different orbital resonances in the Solar nebula, suggest two alternatives. [33]

considers small planetesimals in a turbulent disk that feel aerodynamic gas drag

[34]. By contrast, [24] use a Stokes drag-like force: f d = − v
2τa
− v−vc

τe
, where v and

vc are the planet’s velocity and circular velocity at its current radius, respectively,

and τa and τe are the migration and eccentricity damping time-scales, respectively. 1

[33] notes that such a force would be appropriate for a laminar (smooth) disk. [27]

also assume a viscous, laminar disk for most of their discussion of migration rates.

2.2.2 Collisions

We also included collisions, approximated as impulses (changes in velocity

δv), in our simulations. This technique offered several advantages over the more

traditional approach of directly integrating the impactors along with Kepler 36 and

its two planets.

First, we could guarantee that a precise number of impacts would occur,

1Our drag model differs from this only on orbital timescales.
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whereas integrating the impactors would have allowed the possibility of no impacts

or too many. Clearly, collisions could occur in some cases; we simply integrated un-

der the assumption that they did. Second, simulating collisions as impulses gave us

perfect control over when they occurred, in what direction, and with what strength,

enabling us to easily study and understand the effects of a single collision in great

detail. Finally, simulating collisions as impulses dramatically reduced integration

time and allowed us to simulate arbitrary numbers of collisions at little extra cost.

Since integration time is O(n2) for n bodies, directly integrating, e.g., 10 impactors

in addition to the star and two planets would have increased our computation time

by a factor of nearly 20.

We spaced our impacts at intervals of 5 × 105 yr; the number of impulses N

ranged between 3 and 15 per simulation. For each of our thirteen choices of N , we

randomly generated five sets of N values for δv
v

(for 65 sets total); these values were

randomly distributed between −0.05 and 0.05 to ensure that most impulses would

be able to kick planets out of resonance (see Section 2.3.2). We selected our range for

N by estimating the minimum and maximum number of collisions needed to move

the planets from the 2:1 MMR to the 7:6 without going beyond it. We thought

it highly unlikely that only one or two collisions could knock the bodies across

so many resonances. Even if this were possible, and even assuming they kicked

the planets towards each other, such powerful collisions could potentially deviate

from our perfect-accretion impulse model quite significantly, e.g., could shatter the

impacted body. For our maximum case, we considered the “unlucky” scenario in

which only 1
3

of the impulses pushed the planets together, and each one moved the
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planets into the next-closest first-order MMR, for fifteen impulses total. Of course,

we could have raised this maximum by allowing still fewer impulses to push the

planets together, but we estimated each of our impactors to be several to tens of

lunar masses (Section 2.3.2). We wished to avoid adding too much rocky mass to a

system that already had several times that of the Solar System’s terrestrial planets.

Impulses with positive δv were parallel to the impacted planet’s velocity, and

those with negative δv were antiparallel. For each set of disk parameters (Table 2.2),

we ran five simulations, each using a different set of impulses. All simulations with

the same N used the same five impulse strength sets. The timing scheme was not

random; we chose a uniform interval that was much longer than the e damping

time-scales we tested. Our tests of different uniform intervals, all of which were

again much longer than the e damping time-scale, found only minor differences. In

any case, it is not obvious what a more “natural” timing distribution would have

looked like. We searched for simulations in which the two planets ended in the 7:6

MMR and separately evaluated how physically likely those scenarios were.

Due to our impulse approximation for collisions, we needed to estimate the

impactor masses. Thus, we assigned an orbit with eccentricity ei to each impactor

and assumed perfect angular momentum conservation, i.e., no loss of fragments:

miri × vi +mprp × vp = (mi +mp)rf × vf , (2.1)

where r and v respectively denote position and velocity, m denotes mass, and the

subscripts i, p, and f respectively denote impactor, planet, and final. At time of
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impact, ri = rp and vi ≈ (vp + eivp,circ)v̂p for planetary circular speed vp,circ. With

these substitutions, we could solve for mi given two subsequent simulation outputs,

where the state vectors from the first output provided rp and vp, and those from

the second provided rf and vf .

This approach led to some small errors. While in principle, our mass calcula-

tion algorithm depended on our output frequency, in practice, we output coordinates

frequently enough that each planet’s angular momentum changed very little from

one output step to the next; changing this frequency introduced differences of order

À 1% to the calculated mass, a value far below the uncertainty in the assumed im-

pactor eccentricity. Most significantly, we did not update Kepler 36b’s mass within

the simulation after each impulse. Since the planet masses are comparable and the

inner planet often increased in mass by a third or more, not updating Kepler 36b’s

mass also introduced some error into our integrations; for example, more massive

bodies require more powerful kicks to eject from resonance.

2.2.3 Initial Conditions

We performed over 7,000 simulations using the University of Maryland su-

percomputer deepthought2, in which we varied five parameters: the inner planet’s

migration rate, inner and outer planet eccentricity damping strengths, number of

impulses, and set of impulse strengths. The values that we used for the first four of

these parameters as well as planetary masses and initial orbital elements are given

in Table 2.2. All integrations ran for 107 yr except for cases in which the inner body
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got within 0.1 AU of the star, at which point our timestep of 0.001 yr was too long

to reliably resolve the orbital motion and the simulation came to a pre-programmed

halt. Under these conditions, most simulations ended with the two planets near Ke-

pler 36b and c’s observed semimajor axes – each sits just over 0.1 AU from Kepler

36 (Table 2.1). In cases featuring powerful collisions that kicked Kepler 36 b out

past c, however, the planets could end up far apart from each other, as the new,

faster-migrating inner planet moved away from the new outer planet until it got

within 0.1 AU of the star and the simulation ended.

We printed the bodies’ state vectors once per thousand years and prioritized

searching a wide parameter space – and finding integrations in which the planets

evolved to the current observed Kepler 36 planetary configuration – over confining

ourselves to values consistent with a ‘standard’ protoplanetary disk. We do not

know, for example, whether the planets opened a gap in the disk, whether the

disk was vertically isothermal, the strength of the disk’s viscosity or self-gravity,

etc. Furthermore, given that the Kepler 36 system is unusual, the disk in which it

evolved may have likewise been unusual. In any case, the specific migration rates

of each planet are less important than the relative migration rate of the outer body

to the inner one because the relative rate determines how quickly Kepler 36c can

‘catch up’ to Kepler 36b, which in turn drives the resonance dynamics.
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Parameter Kepler 36b Kepler 36c
m (Mstar) 10−5 2.42659× 10−5

a (AU) 2 5
e 0.01 0.01
i (◦) 0.002 0.007
Ω, $, λ (◦) 0 0
ka (×10−7 yr−1) 0.5, 1, 2 4
ke
ka

1, 3, 10, 30, 100, 300 1, 3, 10, 30, 100, 300

# Collisions 3, 4, ..., 15 0

Table 2.2: All parameter values used for the two planets in our simulations: plan-
etary mass (m), semimajor axis (a), eccentricity (e), inclination (i), longitude of
ascending node (Ω), longitude of peripase ($), and true longitude (λ). Quanti-
ties separated by commas indicate the different values we used for that parameter.
The initial mass of the outer body (8.08 MC) corresponds to its current observed
mass (hence the large number of significant figures), whereas we have chosen the
initial mass of the inner body (3.30 MC) to be considerably less than its observed
value. The very small inclinations on each body were imposed to allow inclination
resonances, but as they are very weak, our integrations remained close to two-
dimensional.

2.3 RESULTS

2.3.1 Sample Simulation

In general, our individual simulations display diverse resonance and impact

phenomena, as we illustrate in a custom sample simulation (Fig. 2.2). We include

migratory and eccentricity damping forces to mimic the effects of nebular gas and

arrange for four impacts to occur on the inner planet at intervals of 5 × 105 yr. For

simplicity of illustration, only the outer planet feels a migratory force. The inner

planet’s eccentricity damping force is 3,000 times stronger than that of the outer

planet. These choices allow us to easily see how the planets’ semimajor axes and

eccentricities respond to resonance capture and departure. As in the rest of our

simulations, we follow the planets’ evolution for 107 yr, although we only show the
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first 3 × 106 yr in Fig. 2.2.

At ∼1.25 × 106 yr, the planets enter the 2:1 MMR. In the top panel, this

is immediately evident from the constant mean-motion ratio. Resonance capture is

likewise responsible for the changed migration rates in the next two panels; as the

inner planet starts moving inward, the outer planet slows somewhat. Finally, the

establishment of nonzero eccentricity equilibria in the bottom two panels also tracks

resonance capture. These equilibria are due to two competing forces: the resonance

pushes eccentricity up, while our damping force pushes it down. At 1.5 × 106 yr,

the inner planet collides with another embryo and is kicked radially inward, out of

the 2:1 MMR; Kepler 36b’s migration ceases and the e1 equilibrium is destroyed.

Due to its migration, the outer body eventually recaptures the inner body into

the 2:1 MMR, and they move in as a unit until 2 × 106 yr, whereupon the inner

body is hit with yet another embryo. This time, it is knocked outward, closing the

radial distance between the planets. As before, the inner body is ejected from the 2:1

MMR, but at ∼2.4 × 106 yr, the outer body captures the inner into the 3:2 MMR,

where the planets remain for the remainder of the integration. The two resonances

can be distinguished from one another not only through the different mean-motion

ratios in the top panel but also through the different eccentricity equilibrium values

in the bottom two.

Notice the responses of the two planets’ eccentricities to the 2:1 MMR. Upon

initial entrance at ∼1.25 × 106 yr, the resonance forces the inner body’s eccentricity

to a nonzero value while that of the outer body freely decays. After 1.5 × 106 yr,

however, both bodies’ eccentricities are forced up. Two distinct resonances are
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Figure 2.2: Sample integration. We plot the mean motion ratio n1

n2
, semimajor axes

a1 and a2, and eccentricities e1 and e2 of both planets. The subscripts 1 and 2
denote Kepler 36b and c, respectively. Initial planetary masses and orbital elements
are as in Table 2.2. The inner planet feels no drag force (i.e., ka,1 = 0), while
ka,2 = 4 × 10−7 yr−1. The eccentricity damping strengths are ke,1 = 3× 10−4 yr−1

and ke,2 = 10−7 yr−1. The vertical dashed lines mark entrance (∼1.25 × 106 yr)
and exit (2.0 × 106 yr) into the 2:1 MMR as well as entrance into the 3:2 MMR
(∼2.4 × 106 yr). The effects of collisions at 0.5, 1.0, 1.5, and 2.0 × 106 yr are
readily apparent, particularly in the e1 plot.

29



responsible; they are described by the resonant arguments 9φ1 = jn1− kn2− 9$1 and

9φ2 = jn1 − kn2 − 9$2 for positive integers j, k with j > k, where the subscripts

1 and 2 refer to the inner and outer bodies, respectively, and n and 9$ refer to

the bodies’ mean motions and rates of periapse precession, respectively. These

resonances are not precisely colocated, i.e., 9φ1 6= 9φ2, as 9$1 6= 9$2. This is due to

the substantial planet-planet perturbations, which are strong enough to generate

differential precession and split the resonances.

This resonance-splitting phenomenon is displayed in Fig. 2.3, where we plot

both first-order resonances for the 2:1 MMR and 3:2 MMR. The inner 2:1 e resonance

(top panel) is active during both captures, as denoted by its low-amplitude libration

near 0◦ between ∼1.25×106 and 2×106 yr, with a swift exit and re-entry at 1.5×106

yr, as shown by the errant dots there. However, the outer 2:1 e resonance (second

panel) is only active during the second capture; it librates around 180◦. Both inner

and outer e resonances (third and fourth panels respectively) are also active during

the 3:2 MMR capture after ∼2.4 × 106 yr.

2.3.2 Effect of a Single Collision

In Fig. 2.2, kicks removed planets from resonance. We simulated impulses of

various strengths and numerically determined that δv
v

Á 1.67 × 10−3 was required

to eject planets from the 2:1 MMR (see Fig. 2.4). For such an impulse, assuming

ei = 0.2 (following [24]), we calculate mi ≈ 8.05 × 10−8 M@ = 2.18 MMoon using

our mass-approximation scheme from Section 2.2.2 and the state vectors from the
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Figure 2.3: Inner and outer e resonances for the 2:1 MMR (top two panels) and
3:2 MMR (bottom two panels), where the subscripts 1 and 2 denote Kepler 36b
and c, respectively, and λ̄ and $ denote mean longitude and longitude of periapse,
respectively. The inner e resonance is active for both 2:1 MMR captures, whereas
the outer one is only active for the second capture.
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outputs at 5,000 yr and 5,002 yr. Using a length unit of AU and a time unit of yr,

these vectors were rp = (−0.8860873093, − 0.2227002668, 2.909956005 × 10−5),

vp = (1.968863867, −6.93120374, −1.009533242× 10−4), rf = (−0.3684893442, −

0.8413240048, 8.438573771 × 10−6), vf = (6.453097908, − 3.151421393, −

2.353317075 × 10−4). One can use the state vectors to reproduce our mass esti-

mate.

[33] and [24] also investigated the δv
v

required to knock a larger body out of

resonance. [33] analytically found that | δv
v
| ≈

´

j2

j+1

¯1/4

µ1/2η1/4 for a j + 1 : j

MMR (Eq. 30 in [33]). Here, µ is the mass of the planet in units of the central

star, and η ≈ 0.80e2
eq(j + 1) for equilibrium eccentricity eeq, yielding δv

v
≈

a

jµeeq.

Taking j = 1, eeq = 0.02, and µ = 10−5, as in Fig. 2.2, Malhotra’s expression gives

δv
v
≈ 4.5 × 10−4, about a factor of four below our own estimate. The discrepancy

may be due to the different context; [33] considered a single self-consistent model

in which 9a and 9e were derived from a gas drag force. By comparison, we followed

no such restrictions, allowing 9a and 9e to take a wide variety of independent values.

As a result, the equilibrium eccentricity (a product of the eccentricity damping)

was considerably less predictive of the resonance width and hence δv
v

(a product of

the semimajor axis damping) in our simulations as compared to those of [33]. [24]

likewise found, using an order-of-magnitude approximation, that δE
E
≈

a

(j + 1)µeeq

for fractional change in energy δE
E

. For our impulses, which act along the velocity

vector of the impacted body, δv
v
≈ δa

2a
≈ δE

2E
, so the expressions from [33] and [24]

agree to within a factor of two.
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Figure 2.4: Two simulations showing the minimum δv
v

required to eject Kepler 36b
and c from the 2:1 MMR, with semimajor axis drag applied to the outer body
only (ka,2 = 4 × 10−6 yr−1) and no eccentricity damping on either. The planets’
masses are as in Table (2.2), and Kepler 36’s mass is 1.113 M@ [2]. At 3,000 yr, the
planets are in the 2:1 MMR, and at 5,000 yr, we apply a kick to the inner body in
the v̂ direction. For δv

v
= 0.00166 (the blue curve), corresponding to an estimated

impactor mass of 2.17 MMoon, the bodies remain in resonance but librate with a
much greater amplitude. For δv

v
= 0.00167 (the green curve), corresponding to an

estimated impactor mass of 2.18 MMoon, the bodies exit resonance.
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2.3.3 Individual Simulations

Our simulations demonstrated several distinct evolutionary paths the two plan-

ets could take to the 7:6 MMR. In Fig. 2.5, we show an example that requires only

four collisions. This simulation is particularly intriguing due to the behavior from

∼1.8 - 1.9 ×106 yr, during which the two bodies have sufficiently high eccentrici-

ties to experience close approaches during each orbit. These encounters nudge the

two bodies closer to each other, seen clearly in the a1 panel (second from the top).

This allows them to go directly to the 6:5 resonance, bypassing the 5:4 entirely and

enabling 7:6 capture with relatively few collisions. Note that while we have tenta-

tively identified the resonance from 1.5 to ∼ 1.8 ×106 yr as the 4:3, the actual mean

motion ratio at that point librates around n1

n2
∼ 1.352 (we expect libration around

n1

n2
∼ 1.333), and both of the 4:3 eccentricity resonance arguments show no evidence

of the expected libration about 0◦ or 180◦. While secular effects may have moved

the location of the 4:3 MMR, the mean motion ratios for the 6:5 and 7:6 resonances

librate around their expected values of n1

n2
∼ 1.2 and n1

n2
∼ 1.167. Investigation of

the nearby, weaker 7:5 and 11:8 MMRs likewise proved fruitless – we saw no libra-

tion indicative of capture in their resonance arguments. Nevertheless, we know this

phenomenon must be an MMR because the mean motion ratio remains flat, and we

believe that it is the 4:3 simply because that is the closest strong resonance.

In Fig. 2.6, a series of nine somewhat serendipitous collisions moves the bodies

to ever closer resonances, culminating in 7:6 capture. This simulation is fairly repre-

sentative of our ‘successful’ simulations (i.e., those that end in the 7:6 MMR). Most
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Figure 2.5: Example of permanent 7:6 capture with four collisions, at 0.5, 1, 1.5,
and 2 ×106 yr. We display results between 0.9 and 2.5 ×106 yr to highlight the
interesting behavior therein. The top panel shows the mean motion ratio of the two
planets; the second and third show the inner and outer planetary semimajor axes;
and the fourth and fifth show the inner and outer planetary eccentricities. We denote
entry into and exit from resonance with dotted vertical lines; the specific resonances
are noted, although we are unsure of the 4:3 (see text). Our disk parameters were

ka,1 = 5 × 10−8 yr−1, ke,1
ka,1

= 1, ke,2
ka,2

= 30, and ka,2 = 4 × 10−7 yr−1. Given typical

impactor eccentricities of 0.25, we estimate that the inner body accreted ∼ 1.50MC,
ending with 4.8MC – about 10 per cent above the observed value of 4.45MC (see
Table 2.1).

35



impulses not only kick the planets together, but do so with just the right strength

– powerful enough to bypass resonances, but weak enough to avoid instability. In

addition, the impulses cease immediately after entrance into the 7:6 MMR, ensuring

its survival. Unsurprisingly, the probability of all these conditions being present

simultaneously is low.

In our final example (Fig. 2.7), we show a simulation with two 7:6 captures,

the second of which was permanent. This simulation was noteworthy because of the

high number (fifteen) of collisions - the greatest number we tested. Due to 5×105 yr

collision spacing, this meant that several collisions occurred when the planets orbited

quite closely to one another after migrating inward for several millions of years.

Eccentricity damping prevented orbit crossing, but there were still two interesting

consequences. First, as resonances clustered more tightly, planets could be knocked

apart and recaptured into a more distant resonance than before; this happened at

6 ×106 yr (the planets were kicked from the 7:6 MMR to the 9:7) and at 7 ×106 yr

(kicked from the 6.5 to the 5:4). The close resonant spacing effectively destroyed

the asymmetry in which randomly oriented kicks preferentially moved the planets

to successively closer resonances. In turn, this kept them from moving into very

close resonances such as the 8:7 or 9:8.

In addition, the bottom two panels, showing the inner and outer planetary

eccentricities, clearly show how as the planets get closer and closer, the perturbing

force they apply on each other grows. The first eccentricity resonance corresponding

to the 3:2 MMR librates very narrowly around its equilibrium value, but as the radial

separation between orbits shrinks, each resonance’s libration amplitude increases. In
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Figure 2.6: Example of permanent 7:6 capture with nine collisions. We display only
results between 2 and 6 ×106 yr. As in Fig. 2.5, the mean motion ratio in the interval
marked “4:3 (?)” librates about an unusual value (here ∼1.364); we are again
unsure if this truly is the 4:3 MMR. Our disk parameters were ka,1 = 2× 10−7 yr−1,
ke,1
ka,1

= 30, ke,2
ka,2

= 1, and ka,2 = 4 × 10−7 yr−1. We estimate that the inner body

accreted ∼ 1.89MC, ending with 5.19MC.
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addition, as the planets get very close to each other, the inner and outer eccentricity

resonances begin to overlap. [35] derive a criterion that predicts when this overlap

begins in the limit of a test particle orbiting an oblate planet; in principle, one could

adapt their criterion for our purposes, but that would require estimating secular

precession rates and is beyond the scope of this chapter. Since the two resonances

are of roughly equal strength, they jostle for control with neither dominating the

other, raising the libration amplitude. Finally, note that while the bodies are in the

sole second order resonance, the 11:9, their eccentricity oscillations do not appear to

damp. This may be due to a longer damping timescale associated with the weaker

resonance.

2.3.4 Summary and Mass Calculations

Of our 7,020 simulations, 84 (about 1.2 per cent) ended with the two bodies

in a resonance with a period ratio within 1 per cent of 7:6. For each of those

84 simulations, we estimated the total accreted mass mtotal assuming a variety of

impactor eccentricities ei; Fig. 2.8 shows how mtotal varied with selected ei for each

simulation.

Since mass varies quite considerably with our choice for ei, we cannot conclude

how much mass would have ‘actually’ been accreted. Nevertheless, it is clear that,

as long as the assumed impactor eccentricity is not too low (the lower the impactor

eccentricity, the lower the collision speed between impactor and planet and con-

versely the higher the impactor mass must be), it is simultaneously possible for the
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Figure 2.7: Example of permanent 7:6 capture with fifteen collisions. We display
only results between 3 and 9 ×106 yr. Our disk parameters were ka,1 = 10−7 yr−1,
ke,1
ka,1

= 30, ke,2
ka,2

= 300, and ka,2 = 4 × 10−7 yr−1. We estimate that the inner body

accreted ∼ 4.63MC, ending with 7.33MC.

39



Figure 2.8: Final estimated mass, using three different assumptions for ei, for each
simulation that ended in or near the 7:6 MMR. The solid black line indicates Kepler
36b’s current observed mass.
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planets to end in the 7:6 MMR and for the simulated Kepler 36b to accrete sufficient

mass to end at or near its current observed mass. Naturally, simulations with fewer

collisions tended to end with less accreted mass on the inner body.

In Table 2.3, we show ‘hot spots’ - clusters of parameter values that are simi-

lar to one another - within the parameter space of simulations that ended with the

bodies in the 7:6 MMR. Forty two simulations are included. Rather than a few large

clusters, we found many small ones, indicating that capture into the 7:6 resonance

did not depend strongly upon the strength of the disk interactions with the planets

or upon number of collisions. The most successful cluster used ka,1 = 5×10−8 yr−1,

ke,2
ka,2

= 300, and eight collisions. That combination of values yielded four inte-

grations that terminated in the 7:6 MMR, corresponding to ke,1
ka,1

= 1, 3, 10, and 30.

However, apart from that cluster and a few others, there were few obvious patterns

in the parameter space.

In Table 2.4, we show the disk parameters for all simulations that ended in a

stable 7:6 MMR but were not in a ‘hot spot’; coincidentally, there are again forty

two (or perhaps not coincidentally – see [36]). Perhaps the most notable difference

between the simulations in Tables 2.3 and 2.4 is the collision sets. A majority of

the simulations in Table 2.3 featured eight, nine, or eleven collisions, whereas those

in Table 2.4 were more evenly distributed in this parameter. However, with that

exception, there are few differences of obvious statistical significance between the

two Tables. This reinforces the idea that disk parameters may not play a decisive

role in determining entry or exit into the 7:6; a series of reasonably ‘fortunate’

collisions is clearly necessary and may also be sufficient.
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Figure 2.9: Number of simulations that ended in or near the 7:6 MMR for each
number of collisions N . Little more than the broad outlines of a pattern can be
seen.

Finally, in Fig. 2.9, we show how the number of simulations ending in the 7:6

MMR varies with N . Unfortunately, we cannot draw many firm conclusions here.

While the curve somewhat resembles a Gaussian centered around N = 8 or 9, the

points at N = 6, 7, 10, and 15 all significantly depart from their expected values. To

quantify how meaningful these departures are, we used the Shapiro-Wilk test, which

tests the null hypothesis that a data sample comes from a normal distribution. This

yielded a p value of 0.052, providing further evidence that the similarity of these

data to a Gaussian sits right at the edge of statistical significance.
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ka,1 (×10−7 yr−1) ke,1
ka,1

ke,2
ka,2

Collision Set

0.5 30, 100 30 5a
0.5 300 3, 10 5b
1 30 1, 3 8a
1 30, 100, 300 300 8b
1 100 3, 300 8b
1, 0.5 30 300 8b
0.5 1, 3, 10, 30 300 8b
0.5 3, 10 100 8b
2 30 1, 3 9a
1 3, 100 300 9a
1, 0.5 300 100 9a
1 300 3, 300 9b
0.5 100, 300 3 9c
2 1, 10, 30 300 11a
2 10, 30 30 11b
1 10, 30, 300 300 11c
1 1 30 12a, 12b
1 1, 10 30 12b
0.5 300 10 12a, 12c
0.5 300 300 15a, 15b
0.5 300 30, 300 15b

Table 2.3: Selected disk parameter sets that produced simulations ending in the 7:6
MMR. Every set is identical to at least one other set except for a single condition,
denoted by multiple values separated by commas; there are forty two such unique
sets. Recall that for every number of collisions, we used five different sets of collision
strengths. In the Collision Set column, we specify the number of collisions and
differentiate between different sets with the letters a-e; e.g., the sets 8a and 8b both
have eight collisions but with different collision strengths, while the sets 5a and 8a
are unrelated. In addition, ka,2 = 4× 10−7 yr−1 for every simulation.
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ka,1 (×10−7 yr−1) ke,1
ka,1

ke,2
ka,2

Collision Set

0.5 1 30 4a
1 30 1 4a
0.5 100 100 5b
1 3 30 5b
0.5 100 3 6a
1 30 10 6a
1 3 100 7a
1 30 3 7a
1 100 10 7a
2 10 1 7a
0.5 100 30 8b
1 1 100 8a
1 3 30 8c
0.5 1 30 9a
0.5 30 10 9a
0.5 30 300 9b
1 100 100 9b
2 30 30 9b
0.5 1 30 10a
1 30 10 10a
1 100 3 10b
2 1 10 10b
2 10 1 10b
0.5 3 30 11a
0.5 10 100 11a
1 3 300 11b
1 30 3 11d
2 100 10 11c
2 300 3 11a
0.5 1 100 12a
0.5 1 300 12b
1 300 30 12a
0.5 300 1 13a
1 30 300 13b
1 300 3 13a
2 1 30 13b
0.5 1 30 14a
1 1 3 14a
0.5 100 10 15a
0.5 100 30 15b
1 30 300 15a
2 1 30 15a

Table 2.4: Selected disk parameter sets that produced simulations ending in the 7:6
MMR. Every set differs from every other set by at least two parameters; there are
again forty two such sets. In every simulation, ka,2 = 4× 10−7 yr−1.44



2.4 Comparison to Observations

We mined our dataset of 7,020 simulations for statistics on resonant popula-

tions using a custom python script. The script first determines which outputs, if

any, must be checked for resonance by calculating a2

a1
for each. The first output is

always checked. If the planets have exchanged positions, i.e. a2

a1
< 1, the output

is marked as such. In general, a2

a1
should monotonically decrease in the absence of

resonance, so the vast majority of simulations in which the planets exchanged po-

sitions ended with the newly inner body spiraling into the star. 2 Otherwise, an

output is flagged as potentially in resonance if:

a) the previous output is in a recognized resonance, but the current output is no

longer sufficiently nearby,

b) the previous output is in an unrecognized resonance, or

c) the previous output is not in resonance, and its a ratio is smaller than that of

the current output.

If the previous output is in a recognized resonance and the current output

is sufficiently close to it, it is marked as being in that resonance; if the previous

output is not in resonance and its a ratio is larger than that of the current output,

the current output is marked as not being in resonance.

After determining which outputs must be checked for resonance, the script

evaluates each by studying test sequences of twenty consecutive a ratios, beginning

2We manually examined simulations in which the bodies exchanged positions but ended with a
a2
a1

value on the order of unity and found none that ended in the 7:6 resonance.
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with the a ratio corresponding to the output being checked. We use two criteria

to test for resonance. For each test sequence, the script compares the average of

the first four elements to the average of the last four elements. The averages must

be sufficiently close, i.e., a2

a1
must be sufficiently flat, for the sequence to satisfy the

first criterion. In addition, the script counts the number of times a2

a1
increases from

one output to the next within the test sequence. The second criterion is satisfied

if the number of a2

a1
increases is sufficiently high, indicating the oscillatory behavior

characteristic of resonance. This approach takes advantage of our unique conditions

in which a2

a1
monotonically decreases in the absence of resonance due to our migration

forces. If the sequence satisfies both criteria, the output corresponding to the first a

ratio of the sequence is marked as in resonance. The specific resonance is determined

by checking if the a2

a1
value is within 0.5 per cent of the a2

a1
value of the 2:1, 3:2, 4:3,

5:4, 6:5, 7:6, 8:7, 9:8, 5:3, 7:5, 9:7, 11:9, 7:4, 8:5, 10:7, 11:8, 13:10, 14:11, 9:5, or 11:7

MMR. If none of these proves a match, the output is labeled as being in some other

resonance.

In Fig. 2.10, we report the incidences of resonances in which each simulation

ended and compare them to those observed in nature. Pairs are considered to be

sufficiently close to a j + k : j MMR if they satisfy the condition:

ε =

∣∣∣∣1− (j + 1)n2

jn1

∣∣∣∣ < 0.01ξk−1, (2.2)

where ξ is a tuneable parameter that allows us to account for the narrower widths

of higher-order resonances. Using this criterion, all pairs within one per cent of

46



a first-order MMR location are included regardless of ξ, but weaker, higher-order

resonances are increasingly excluded for smaller ξ.

The plots in Fig. 2.10 show some agreement in the overall trend – in both

cases, resonant incidence peaks at the 3:2, and in general, the lower the order of the

resonance, the greater its incidence relative to nearby higher-order ones. While we

consider this encouraging, there are also significant differences that require explana-

tion, particularly for the ξ = 1 case, in which all pairs are considered resonant if they

are within one per cent of a resonance location regardless of order. First, relative

lower-order resonant incidence is much greater in reality than in our simulations;

second, overall resonant incidence is much higher in our simulations than in reality.

In our model, all evolution ceases after 107 yr under the assumption that the

protoplanetary disk has expired; the planetesimal swarm is depleted of high-mass

objects and the planets no longer migrate. However, this is not true in reality; we

expect that typically, collisions with the potential to knock bodies out of resonance

would continue well after the protoplanetary disk phase. After the planets ceased to

migrate, re-entry into a resonance would be very difficult if a collision knocked them

out of it. Consequently, whenever the swarm still had high-mass bodies remaining

subsequent to the protoplanetary disk phase, we would expect many of the planets

in resonances to be kicked out. Our neglect of this process could explain why our

simulations report resonances to be more common than they actually are. However,

if most natural resonances are relics from their systems’ gas disk phases, the relative

resonance incidences from both simulations and reality should resemble each other.

Furthermore, in our simulations, resonant incidence was placed in a clear hier-
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archy depending on the order of the resonance – lower-order resonances had greater

incidence. This trend is far less noticeable – though not entirely absent – in the

actual exoplanet data. We believe that this again may be a result of our simplified

disk model; a true disk would smoothly transition from rapid migration to no mi-

gration as the density asymptotically approached zero. Therefore, as the disk waned

and migration slowed, lower-order resonances would have much greater chances of

capture. Unfortunately, due to the low population numbers of observed resonances

(i.e. 7:6, 8:9, etc.), performing more rigorous statistical comparison between the two

models is difficult. In future work, we could test these ideas by refining our disk

model and simulating a period of collisions without convergent migration.

Finally, in Fig. 2.10, we compare our resonance statistics to those of most

observed resonant pairs regardless of their masses. However, we designed our simu-

lations with the Kepler 36 system in mind and did not attempt to model, e.g., the

evolution of gas giants. Higher-mass planets might open a gap in the gas disk and

therefore experience Type II migration. They would also be more difficult to eject

from resonance and thus would be more likely than lower-mass planets to occupy not

only more distant resonances, but weaker ones as well. This may explain why our

simulations report a relative dearth of resonances between the 3:2 and 2:1 compared

to observations.
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Figure 2.10: Simulated (top) versus observed (bottom) resonance incidence for se-
lected MMRs. In the simulated plot, we refer to the resonance in which each sim-
ulation ended; we have excluded simulations that ended with swapped planetary
positions (1,923 of 7,020 total), did not end in resonance (172), or ended in an
unidentified resonance (327). Observed data is taken from exoplanet.eu and is cur-
rent as of 18 May 2020; we only include confirmed, radially adjacent planets with
period errors known to be less than one per cent. Results for ξ = 1, 0.75, and 0.5
are shown overlaid upon each other (see text). As ξ decreases, the observed data
increasingly resembles the simulated data, most notably for ξ = 0.5 (blue).
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2.5 DISCUSSION

2.5.1 Broader Implications

We have demonstrated a possible mechanism to keep convergently migrating

planets from getting too close to each other (Fig. 2.7). Once the distance δar

between resonances is comparable to the typical δai from an impact, collisions no

longer preferentially move planets together and instead have a roughly even chance

of moving the planets into a closer or farther resonance. This condition is satisfied

when resonances are “bunched up” together. We quantify this statement by noting

that δv
v
≈

a

jµeeq (Sec. 2.3.2). Substituting δai
2a
≈ δv

v
gives

δai
a
≈ 2

a

jµeeq. (2.3)

Via eq. (8.203) from [5], the distance δar
a

between a j+1 : j MMR and a j+2 : j+1

MMR is

δar
a

=

ˆ

j + 1

j + 2

˙
2
3

−
ˆ

j

j + 1

˙
2
3

≈ 2

3j2
. (2.4)

Setting δar ≈ δai and solving for j gives

jcr ≈ p9µeeqq
− 1

5 . (2.5)

For the case of µ = 10−5 and eeq = 0.05 (Figs. (2.5) and (2.6)), this gives jcr ≈ 12, 3

3If we use the exact equation for δar
a and numerically solve for jcr, we get jcr ≈ 11.
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i.e., predicts that at the 13:12 MMR, impacts are equally likely to move the planets

into a closer or farther resonance. Given the dearth of both simulated and observed

first-order MMRs beyond the 7:6, we might have expected jcr ≈ 7, but we think that

the difference can again be explained by the different damping force assumptions we

used versus [33]. Indeed, comparing between Figs. 2.5, 2.6, and 2.7, the equilibrium

eccentricity varies substantially even for the same resonances. This is due to our

choice of testing many different values of 9e
9a
, whereas [33] considered a single model

for gas forces.

We can also calculate the chaotic overlap criterion value jch given by [37]:

jch ≈ 0.5µ−
2
7 , (2.6)

defined such that all j+1 : j MMRs with j > jch overlap. Plugging in µ = 10−5 gives

jch ≈ 13, which is consistent with our simulations; the first-order MMRs appear to

be well defined in our data. Ideally, we could also compare jch with jcr; however,

the unreliability of our jcr estimate renders this comparison rather unhelpful.

2.5.2 Limitations

As noted in Sec. 2.2.2, we neglected to update the inner planet’s mass each

time it was hit with an impulse. As Fig. 2.8 shows, this was not a trivial omission;

in many cases, the inner body’s mass would have doubled or even tripled. Bodies

with more mass are, of course, more resistant to perturbation, so had we updated

the masses, the simulated planets may have not been kicked out of resonance as
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easily. This choice therefore may have skewed our statistics towards closer-together

resonances.

In addition, we ended the simulations after 107 years, assuming that the gas

disk, and hence disk forces, would no longer exist after then. In particular, we

ignored post-disk collisions and other sources of migration. As our result, most

of our simulated planets ended in resonance – the opposite of what is observed in

reality. We suspect that collisions occurring after the disk has dissipated would

significantly lower resonant populations. In addition, [38] study the effects of the

rebound of the magnetospheric cavity in the gas disk dispersal phase. They find that

a pair of super-Earths in an MMR with a more massive outer planet can experience

divergent migration, breaking them out of resonance. [39] produce another such

mechanism; they show that tidal dissipation can cause planets in or near an MMR

to repel each other.

2.6 CONCLUSIONS

We have shown that planets migrating inward in a gas disk can successfully

reproduce many features of the Kepler 36 planetary system, including both its un-

usually close 7:6 MMR as well as its observed masses. By construction, the model

is also capable of modeling density contrast. Furthermore, these results are possible

in a variety of disks, including both disks that strongly affect the planets’ a and e as

well as disks with a much lighter touch, as our successful simulations are relatively

insensitive to these disk parameters (Table 2.3). Since the Kepler 36 system appears
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to be unique, with no other known comparable pairs of planets inhabiting the 7:6

MMR, our success rate of around 1.2 per cent is low but not necessarily worrisome

and may in fact be required. Indeed, the relative 7:6 MMR incidence of our simula-

tions is qualitatively similar to that observed in reality. Although the small number

of known planets within tightly packed systems prevents us from performing rigor-

ous statistical analysis, our modeled rate is consistent with the observed rate. We

again caution, however, that this modeled rate may have substantially decreased

had we updated the inner planet’s mass each time it was kicked. As more planets

in tightly packed MMRs are discovered and we are able to estimate the true 7:6

incidence with greater precision, this disparity may need to be revisited and our

work revised.

Furthermore, we accomplished this goal without invoking planet position swap-

ping and mantle stripping, as required by [24], or high-energy radiation models with

the planets forming in situ, as required by [1]. While our model also required as-

sumptions, e.g., of impactor mass and the planets’ initial conditions and masses,

we argue that these assumptions are at least as reasonable as those made by these

other approaches. [1] assume favorable initial conditions; in particular, they choose

an initial core mass for Kepler 36b that equals its current mass, so the problem

reduces to simply burning off the inner planet’s envelope while leaving that of the

outer one intact. This ignores the problems of how such a high-mass core could form

in the first place along with how the two planets could be found so close together

with such different properties and small semimajor axes. While we undoubtedly

assume a convenient starting mass for the outer planet, this choice (i.e., placing a
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gaseous sub-Neptune at 5 AU) is more consistent with standard planetary formation

theory. Furthermore, as we noted in Section 2.1.1, we think that lower-mass bodies

are likely to migrate slower, not faster, than higher-mass ones. Thus, we sidestep the

problematic assumption in [24] that Mars-mass embryos initialized far away from

the star would catch up and collide with the two closer planets. This assumption

is crucial for the success of their model, which relies on these collisions to move the

planets closer together.
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Chapter 3: Perturbed Orbital Elements

In the previous Chapter, we saw that as the two planets got very close to each

other (e.g., at the ends of the simulations presented in Figs. 2.5, 2.6, and 2.7), the

orbital elements – especially e – got “fuzzier.” When the planets were far apart,

each was essentially a two-body system with Kepler 36. When they got closer, they

perturbed the other from its two-body state, and the elements were no longer static.

Such fuzziness in the elements is typically not a problem, since perturbations are

usually quite weak. In some cases, however, notably when studying ring orbits, the

fuzziness becomes a major complication, and we desire an orbit parameterization

whose elements do not oscillate as much. We investigate that problem here.

3.1 Introduction

3.1.1 The Two-Body Problem

The solution to the two-body problem – that is, determining the motion of two

point particles interacting solely via gravity – has been known for centuries. The

particles follow static, confocal ellipses, and the common focus lies at their center of

mass (e.g., [5]). Their positions and velocities are known at all times. While the true
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Universe contains rather more than two point particles, this result is nevertheless

useful for predicting the motion of particles in systems dominated by a single body.

Describing a particle’s orbit in the three-dimensional two-body problem re-

quires six linearly independent values; its position and velocity vectors are necessary

and sufficient. These values are usually converted into parameters more useful for

describing the shape and orientation of the traced ellipse; such parameters are called

the orbital elements. Table 3.1 notes some common choices along with their usual

symbols, which we shall use for the rest of the chapter.

Orbital Element Symbol
semimajor axis a

periapse distance q
eccentricity e
inclination i

longitude of ascending node Ω
argument (longitude) of periapse ω ($)

true (mean) anomaly ν (M)
mean motion n

Table 3.1: Common orbital elements and the symbols we use for them in this chapter.

In the pure two-body problem, all orbital elements (other than the anomaly)

are constant; the orbit is static. In reality, however, any perturbations to the two-

body approximation likewise perturb the two-body solution. The particles’ orbits –

and hence, their orbital elements – then may vary with time. The pure two-body

conversions from state vectors to orbital elements produce “osculating” elements:

those one would get if the perturbation(s) vanished immediately upon their calcu-

lation. The ellipse they describe lies tangent to the true orbit.

In most cases, these elements describe the particle’s orbit well enough that no
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further thought need be given to them. However, in some circumstances – such as

the cases of a ring particle very near an oblate host, or two planets that perturb

each other – the osculating elements vary enough that their utility is diminished. We

desire an alternative that minimizes this variance, typically known as “geometric”

elements. As noted by [40], the differences between the osculating and geometric

elements can be considerable.

3.1.2 Epicyclic Elements

[41] considered the case of a ring particle orbiting an oblate planet and de-

rived a fully three-dimensional set of elements, termed the “epicyclic” elements due

to their use of the three epicyclic frequencies that describe motion in an oblate poten-

tial. They then showed that their epicyclic elements could serve as the sought-after

geometric elements for this type of perturbation. However, the epicyclic elements

have what appears to be a serious flaw: they do not converge to the two-body so-

lution in the limit that oblateness is turned off, but rather to an expansion of the

two-body solution accurate to O(e2, i2). This is not an error, but the reason is fairly

subtle.

At the heart of the epicyclic element derivation is an expansion in small quan-

tities around a circular, equatorial orbit in a potential corrected for oblateness. [41]

derive the first-, second-, and third-order corrections to particle position and veloc-

ity in terms of the gravitational spherical harmonic constants J2, J4, and J6 along

with the epicyclic e and i. The planetary oblateness is accounted for in the zeroth
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order solution and is not, therefore, a perturbation. Since the expansion is around

circular, equatorial motion, the sources of “perturbation” are actually e and i. Since

the epicyclic elements are not expansions around the two-body solution, they do not

reduce to the two-body solution when the oblateness terms are set to zero.

This choice of expansion is quite natural for studying ring orbits, which are

typically very close to circular and equatorial but are heavily perturbed by the host

body’s oblateness. However, once e and/or i (in radians) grow to be comparable

to J2, the epicyclic elements are no longer appropriate, and a new set of geometric

elements is necessary. To that end, we have produced two sets of alternative ele-

ments, which we describe in Section 3.2 below. To simplify our task, we consider

only equatorial orbits. We then compare these new sets of elements against the

epicyclic elements in Section 3.3 and discuss our results in Section 3.4.

3.2 Alternative Choices of Elements

3.2.1 Analytic

3.2.1.1 State Vectors to Elements

In this section, we derive analytic corrections to the orbital elements such

that the corrected elements reduce to the osculating elements in the absence of any

perturbation. We begin with semimajor axis.

The energy C per unit mass of a particle’s orbit is defined as:
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C =
1

2
v2 + V (r) (3.1)

for velocity v, potential V , and position r. Our goal is to get an expression for C

in terms of orbital elements accurate to O(J2
3, J2J4, J6, J2e

2), following [41], and

use it to derive the various corrections to a. However, analytically getting v2 of an

elliptical orbit around an oblate planet is difficult, perhaps impossible. Therefore,

our strategy is to average Eq. (3.1); the left hand side (LHS) remains unchanged,

but the right hand side (RHS) is replaced with averaged quantities:

C =
1

2
〈v2〉+ 〈V 〉. (3.2)

To O(J6), the equatorial potential around an oblate planet (via [5]) is:

V (r) = −µ
r

«

1 +
1

2
J2

ˆ

Rp

r

˙2

− 3

8
J4

ˆ

Rp

r

˙4

+
5

16
J6

ˆ

Rp

r

˙6
ff

(3.3)

Averaging, we get:

〈V 〉 = −µ
„〈

1

r

〉
+

1

2
J2Rp

2

〈
1

r3

〉
− 3

8
J4Rp

4

〈
1

r5

〉
+

5

16
J6Rp

6

〈
1

r7

〉
. (3.4)

We now must derive expressions for each of the four averaged quantities on the

RHS of Eq. (3.4). Note that each requires accuracy to a different order in small

quantities:
〈

1
r

〉
to third order,

〈
1
r3

〉
to second order (because it is already being

multiplied by J2), etc. Using the expansion for r to third order in e in terms of
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mean anomaly M [5]:

r = a

„

1− e cos(M) +
e2

2
(1− cos(2M)) +

3e3

8
(cos(M)− cos(3M))



, (3.5)

and averaging from 0 to 2π gives
〈

1
r

〉
= 1

a
,
〈

1
r3

〉
= 1

a3

`

1 + 3
2
e2
˘

,
〈

1
r5

〉
= 1

a5 , and〈
1
r7

〉
= 1

a7 to the requisite orders. Substituting into Eq. (3.4) gives:

〈V 〉 = −µ
a

«

1 +
1

2
J2

ˆ

Rp

a

˙2 ˆ

1 +
3

2
e2

˙

− 3

8
J4

ˆ

Rp

a

˙4

+
5

16
J6

ˆ

Rp

a

˙6
ff

. (3.6)

Next, the averaged, squared orbital speed of an object is:

〈v2〉 = 〈 9r2〉+ 〈(r 9ν)2〉, (3.7)

by definition. Differentiating and squaring Eq. (3.5) gives:

9r2 = paneq2
“

sin2(M) + 2e sin(M) sin(2M)
‰

(3.8)

to third order in e, where n = 9M . Averaging gives:

〈 9r2〉 =
1

2
(ane)2. (3.9)

Via [5], the expansion for 9ν in M to third order in e is:

(3.10)9ν = n

[
1 + 2e cos(M) +

5

2
e2(cos(2M)) +

e3

4
(13 cos(3M)− cos(M))

]
.
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where again n = 9M . Multiplying Eqs. (3.5) and (3.10), squaring, and averaging,

we get:

〈
(r 9ν)2

〉
= (an)2

ˆ

1− 1

2
e2

˙

. (3.11)

Adding Eqs. (3.9) and (3.11) now gives:

〈v2〉 = (an)2 =
µ

a

«

1 +
3

2
J2

ˆ

Rp

a

˙2

(1 + 4e2)− 15

8
J4

ˆ

Rp

a

˙4

+
35

16
J6

ˆ

Rp

a

˙6
ff

(3.12)

where we have used Eq. (A10) from [41] for n2. Finally, substituting Eqs. (3.12)

and (3.6) into Eq. (3.2) gives:

C = − µ

2a

«

1− 1

2
J2

ˆ

Rp

a

˙2

+
9

8
J4

ˆ

Rp

a

˙4

− 25

16
J6

ˆ

Rp

a

˙6

− 9

2
J2e

2

ˆ

Rp

a

˙2
ff

,

(3.13)

We can now derive first-, second-, and third-order corrections to a. First, by

plugging Eqs. (3.3) and (3.13) into Eq. (3.1) and multiplying through by − 2
µ
, we

get:

(3.14)
−v

2

µ
+

2

r
+
J2R

2
p

r3
− 3

4
J4

(
Rp

4

r5

)
+

5

8
J6

(
Rp

6

r7

)
=

1

a
− 1

2

J2Rp
2

a3
+

9

8

J4Rp
4

a5
− 25

16

J6Rp
6

a7
− 9

2

J2e
2Rp

2

a3
,

Now we expand a in the small quantity δ:
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a = a0

ˆ

1 + δ
a1

a0

+ δ2a2

a0

+ δ3a3

a0

˙

, (3.15)

where a0 is the osculating a. Then, we Taylor expand 1
a
, 1
a3 , 1

a5 , and 1
a7 to the

requisite orders:

1

a
=

1

a0

«

1− δa1

a0

+ δ2

˜

ˆ

a1

a0

˙2

− a2

a0

¸

− δ3

˜

ˆ

a1

a0

˙3

− 2a1a2

a0
2

+
a3

a0

¸ff

, (3.16)

1

a3
=

1

a0
3

«

1− 3δ
a1

a0

+ 3δ2

˜

2

ˆ

a1

a0

˙2

− a2

a0

¸ff

, (3.17)

1

a5
=

1

a0
5

ˆ

1− 5δ
a1

a0

˙

, (3.18)

and

1

a7
=

1

a0
7
. (3.19)

Using Eqs. (3.15), (3.16), (3.17), (3.18) and (3.19), we can split Eq. (3.14) into four

separate equations to determine the zeroth-, first-, second-, and third-order terms:

− v2

µ
+

2

r
=

1

a0

(3.20)
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J2R
2
p

r3
= −δ a1

a0
2
− J2Rp

2

2a3
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(3.21)
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(3.23)
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8
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4
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2

2a3
0

(
2

(
a1

a0

)2

− a2

a0

)

− 45a1δJ4Rp
4

8a0
6

− 25

16

J6Rp
6

a0
7
− 9

2

J2e
2Rp

2

a0
3

Note that summing Eqs. (3.20) through (3.23) recovers Eq. (3.14) and that Eq.

(3.20) is the equation for the unperturbed osculating semimajor axis, as expected.

Letting αi = Ji

´

Rp

a0

¯i

and β = a0

r
and solving Eq. (3.21) for δa1 gives:

δ
a1

a0

= −α2

ˆ

1

2
+ β3

˙

, (3.24)

and substituting Eq. (3.24) into Eq. (3.22) and solving for δ2a2 gives:

δ2a2

a0

= −1

2
α2

2
`

1 + β3 − 2β6
˘

+ α4

ˆ

9

8
+

3

4
β5

˙

(3.25)

Finally, plugging Eqs. (3.24) and (3.25) into Eq. (3.23) gives:

(3.26)
δ3a3

a0

= −α2
3

(
7

8
+

3

2
β3 + β9

)
− α2α4

(
9

4
+

63

8
β3 − 3

8
β5 +

3

2
β8

)
− α6

(
25

16
+

5

8
β7

)
− 9

2
α2e

2

Plugging Eqs. (3.24), (3.25), and (3.26) into Eq. (3.15), we can now explicitly

describe a to third order:
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a= a0

[
1−α2

(
1

2
+β3

)
− 1

2
α2

2
(
1+β3−2β6

)
+α4

(
9

8
+

3

4
β5

)
−α2

3

(
7

8
+

3

2
β3 +β9

)
− α2α4

(
9

4
+

63

8
β3 − 3

8
β5 +

3

2
β8

)
− α6

(
25

16
+

5

8
β7

)
− 9

2
α2e

2

]
(3.27)

To get e, we use the eccentricity vector corrected to O(J2, J4, J6) and zeroth

order in e:

e =
1

k
v × h− r̂, (3.28)

where k is defined via f(r) = − k
r2 r̂ for force per unit mass f , v is the velocity vector,

h is the angular momentum vector, and r̂ is the position unit vector. Note that if

we multiply both sides of Eq. (3.28) by k, the LHS will remain the same because

we are ignoring corrections ∝ e. This gives:

e =
1

µ
v × h− r̂

«

1 +
3

2
J2

ˆ

Rp

r

˙2

− 15

8
J4

ˆ

Rp

r

˙4

+
35

16
J6

ˆ

Rp

r

˙6
ff

, (3.29)

where r is constant to zeroth order in e. We now have e =
a

ex2 + ey2 + ez2 where

e = (ex, ey, ez). The eccentricity vector points from apoapse to periapse, so for a

two-dimensional orbit, ω is now simply given as:

ω = tan−1

ˆ

ey
ex

˙

(3.30)

To get ν, we use the true latitude u = tan−1
`

y
x

˘

= ν + ω:
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ν = tan−1
´y

x

¯

− ω (3.31)

This completes our orbital element set for a two-dimensional orbit.

3.2.1.2 Elements to State Vectors

To convert back from geometric elements to state vectors, we first convert to

osculating elements, which we will denote with the subscript “0” (i.e., a0, e0, etc.).

First, we calculate r using geometric elements:

r =
a(1− e2)

1 + e cos ν
(3.32)

Since our geometric elements are approximate, r will necessarily be approximate as

well. However, the equation itself is valid provided we assume the particle follows

an ellipse – an assumption without which this entire effort is nonsense anyway.

To get the osculating semimajor axis given a, e, and r, we numerically solve

Eq. (3.27) for a0. Starting with the initial guess that a0 = a, we calculate the

correction to a (i.e., the bracketed expression on the RHS of Eq. (3.27)), calculate

a0,new = a
correction

, and then compare a0 to a0,new. If their difference is within an

acceptable tolerance (we use 10−14), we are finished; otherwise, we set a0 = a0,new

and repeat the procedure.

To get e0, we subtract the osculating eccentricity vector e0 = 1
µ
v×h− r̂ from

both sides of Eq. (3.29):
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e− e0 = −r̂φ, (3.33)

where φ = 3
2
J2

´

Rp

r

¯2

− 15
8
J4

´

Rp

r

¯4

+ 35
16
J6

´

Rp

r

¯6

. For a two-dimensional orbit, this

yields two equations:

ex − ex,0 = −x
r
φ (3.34)

and

ey − ey,0 = −y
r
φ (3.35)

By definition, we have x
r

= cosu and y
r

= sinu for true latitude u = ω + ν. In

addition, we have ex = e cosω and ey = e sinω. Substituting these expressions into

Eqs. (3.34) and (3.35) gives:

ex,0 = e cosω + φ cos(u) (3.36)

and

ey,0 = e sinω + φ sin(u) (3.37)

We can now use Eqs. (3.36) and (3.37) to get e0 and ω0 via:

e0 =
a

ex,02 + ey,02, (3.38)
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ω0 = tan−1

ˆ

ey,0
ex,0

˙

, (3.39)

and

ν0 = u− ω0. (3.40)

Note that Eq. (3.40) implies that u = ω0 + ν0 = ω + ν. This is justified since

we do not distinguish between an osculating and geometric u: both are defined via

u = tan−1
`

y
x

˘

(see Eq. (3.31)).

This inverse conversion to osculating elements from geometric ones is not per-

fect because it relies on an approximate value of r. Nevertheless, we can now get

state vectors from osculating elements using standard conversions found in, e.g., [5].

3.2.2 Numerical

In this section, we get the orbital elements numerically. We use a least-squares

routine to fit sets of N positions to a rotated, off-center ellipse. Note that given

M independent positions, we will only obtain M − N orbital element sets, and

the time assignment to each will be ambiguous: an unavoidable weakness of this

approach.

The normalized equation 1 of a rotated, off-center ellipse with semimajor axis

a and center point (x0, y0) is :

1This is one of infinitely many, equally valid normalizations.
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Ax2 +Bxy + Cy2 +Dx+ Ey = 1, (3.41)

where A, B, C, D, and E are independent parameters. For this choice of normal-

ization, a2, x0, and y0 are given by:

a2 = 2
AE2 + CD2 −BDE −B2 + 4AC

(B2 − 4AC)2

´

A+ C +
a

(A− C)2 +B2
¯

(3.42)

x0 =
2CD −BE
B2 − 4AC

(3.43)

y0 =
2AE −BD
B2 − 4AC

(3.44)

We can use these to write down expressions for e and ω. Note that the vector

c = x0x̂+y0ŷ points from periapse to apoapse (given barycentric state vectors) and

has magnitude ae. Thus, we have:

e2 =
x0

2 + y0
2

a2
(3.45)

ω = tan−1

ˆ

−y0

−x0

˙

(3.46)

We can also calculate true latitude u = ω + ν and hence ν:
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u = tan−1

ˆ

y′(tc)

x′(tc)

˙

(3.47)

ν = u− ω (3.48)

Unfortunately, the choice of tc here is ambiguous; given N positions uniformly dis-

tributed between times t0 and tf , we typically choose tc =
t0+tf

2
, i.e., the “middle”

time. (Note that choosing N odd guarantees that tc will always correspond to a

printed time for a fixed output interval, and vice versa for N even.) Nevertheless,

a, e, ω, and ν produce the desired orbital element set.

How many points should we use per fit? This turns out to be a rather complex

question. To keep M − N high, we would like N to be as low as possible, all else

being equal. However, we might expect that with greater N comes lower fit errors;

our task is thus to balance these competing motives. To find such an N empirically,

we generated (x, y) data sets for several 2D rotating ellipses of constant a and

e, used our fitting algorithm to produce orbital element sets of these data, and

calculated the mean errors of the fitted a and e. Using these “fake” orbits over

simulated orbits guaranteed that we knew precisely what the true orbital elements

were at all times, greatly simplifying the task of evaluating how successful the fits

were. Unfortunately, the errors on a and e are complicated functions of N , 9ω, e, and

the number of number of points printed per orbit γ. We show a typical example of

these errors in Fig. (3.1).

A few patterns are apparent in Fig. (3.1). First, the error for both a and e
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Figure 3.1: Typical average eccentricity e error (green) and semimajor axis a error
(red) versus number of points N from our numerical fit using γ = 20, i.e., in which
we print twenty times per orbit. We have normalized the error by the true quantitiy;
that is, we define the error in a quantity x as |xtrue−xcalc|

xcalc
, where xtrue is the true value

of x and xcalc is the calculated value. Ellipse parameters were a = 1 and e = 0.001;
we rotated the periapse point 0.01 radians counter-clockwise each output. We have
marked the N corresponding to the first dip for both sets of errors.

always stays high until N ≈ γ, at which point they oscillate over roughly a factor of

ten around a constant value. Unfortunately, the errors on a and e often have notably

different periods, and even when they are similar, they are often out of phase. This

means there is usually not one single N that minimizes the errors for all elements.
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We have marked the optimal N for minimizing both e and a errors. In the case

of the generated rotating ellipses, the errors are quite small, even for very low N ,

but the differences in fits from different Ns can be considerable when fitting data

simulated with a more sophisticated integrator.

Figure 3.2: Doubly averaged errors on a and e versus output interval (i.e., 1
γ
).

Whereas in Fig. (3.1), each plotted point was the average error over a simulation,
here the point at output interval = 1

20
= 0.05 in the top panel is the average of all

red points from N = 30 to 70 in Fig. (3.1); likewise for the bottom panel and green
points. The other points in each panel are similar averages for different choices of
output interval. All simulations were again performed using a = 1 and e = 0.001
with periapse rotation of 0.01 rad per output. The inset in the bottom panel zooms
in on the output interval from 31.46 to 31.49, showing the large dip in errors there;
this is discussed further in the text.

In Fig. (3.1), we print every “time step”. To obtain similarly low errors for

real simulations, one would have to modify how their simulation printed; instead

of printing a single state vector per output, one would have to print roughly a full

orbit’s worth, increasing the size of their output file by a factor of γ. In general,
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there is no avoiding this. Even absent any secular changes to a or e, if the orbit

nontrivially precesses between each output, the printed positions will be randomly

distributed between the periapse and apoapse distances in time; fitting them to an

ellipse will simply produce a circle of radius ∼ a. We show this in Fig. (3.2).

Interestingly, there are certain output intervals for which the error dips by

several orders of magnitude, as we have showed in the inset in the bottom panel

of Fig. (3.2). Such intervals are integer multiples of the precession period; at

these intervals, the ellipse has precessed exactly 2π radians and returned to its

original orientation, so all printed points effectively lie on the same ellipse. Of

course, printing at these intervals requires very precise knowledge of the precession

frequency, ruins the ω and ν calculations, and is in any case invalid for non-periodic

changes to the elements. This is therefore more a mathematical curiosity than a

reliable method of ensuring low errors for long output intervals.

3.3 Comparisons

In this section, we compare our two schemes to the epicyclic elements of [41]

by simulating orbits around Earth, Uranus, and Saturn (see Table 3.2). In all cases,

we integrate a test particle (m = 10−20 host masses) for ten equatorial orbits using

the symplectic integrator option of HNBody [14]. We print state vectors twenty

times per orbit; for our numerical elements, we always use N = 29. To maximize

the perturbations, we set the geometric periapse distance equal to the host radius.

All integrations begin at r = (1, 0, 0) and v = (0, vcirc + δv, 0) for circular speed vcirc
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and small speed δv. We tested e ≈ 10J2, e ≈ J2, and e ≈ 0.1J2 for each planet and

empirically determined which values of δv corresponded to the desired eccentricities.

Planet J2 (×10−7) J4 (×10−7) J6 (×10−7)
Earth 10826.35854 -16.19331205 5.396484906
Uranus 33412.9 -310 0
Saturn 162905.73 -9353.1 863.4

Table 3.2: Estimates of J2, J4, and J6 for Earth, Uranus, and Saturn. Earth values
taken from [42] and Saturn values taken from [43]. Uranus J2 value taken from [44];
we estimate its J4 value using −J4

J2
= 0.0092 (see their Table 2). We were unable to

find a J6 estimate for Uranus and have set it to 0.

We evaluate our elements based on how tightly they librate around q = 1. Of

course, none of our schemes calculates q directly, so a and e could both be wrong but

produce the correct q by chance. We therefore cannot be truly certain which set of

elements is “best” except in the case of a circle. We guard against this degeneracy

simply by checking that the elements from each algorithm all cluster near each

other; since they are independent calculations, they are unlikely to all have same

wrong values. We show one example of a Saturn orbit in Fig. (3.3) with J2 >> e,

characteristic of close-in ring orbits.

All three sets have low a amplitude, although the a averages differ. By con-

trast, the e averages are quite similar, although the epicyclic and analytic elements

have a higher amplitude. As a result, the numerical elements have the lowest q

amplitude, and their average q error is closest to 0. We therefore consider the fitted

elements to have performed the best in this case. While the analytic and epicyclic e

curves are quite similar, the greater analytic a brings its average q error closer to 0

with a comparable libration amplitude to the epicyclic elements; we therefore deem
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Figure 3.3: The geometric a (top) and e (middle), and q error (bottom) for ten orbits
of a test particle around Saturn. The dark blue curve is the epicyclic elements, the
cyan curve is the fitted numerical elements, and the green curve is the analytic
elements. The dotted lines in the bottom plot are the average q error values. The
numerical elements appear to perform best; their average q error is closest to 0, and
the libration amplitude for both q error and e is lower than that of the other two
sets.

the analytic elements to be “second best.”

We repeated this exercise for our three e regimes at each planet and summarize

our results in Fig. (3.4).

A few patterns are apparent. First, errors are roughly proportional to the

strength of the perturbation, as expected. The perturbation strength appears to

affect the numerical elements considerably more than the others; a factor of ten

increase in J2 increases the errors in the epicyclic and analytic elements by about

a factor of ∼10 to 100, whereas the errors in the numerical elements increase by

a factor of ∼1,000 to 10,000 depending on e. However, the numerical elements
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Figure 3.4: Average q error of analytic (green), numerical/fitted (cyan), and epicyclic
(blue) elements. The sizes of the circles signify the relative q amplitudes but are
NOT to scale. We show results for e ≈ 0.1J2 (top panel), e ≈ J2 (middle panel),
and e ≈ 10J2 (bottom panel). Results for Earth, Uranus, and Saturn are displayed
in the left, middle, and right columns, respectively. The simulation from Fig. (3.3)
is summarized in the top panel’s Saturn column. We logarithmically space the
columns according to the planetary J2. The fitted elements always have the lowest
error and have the lowest amplitude in every case except at Uranus with e ≈ 10J2

and at Saturn with e ≈ J2.
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always have a lower error than the others and usually have a lower amplitude as

well, particularly when e ≈ 0.1J2. In addition, the analytic and epicyclic elements

typically have similar errors; the most notable difference is shown in Fig. (3.3).

3.4 Conclusions

3.4.1 Summary

We have debuted two new sets of geometric orbital elements for two-dimensional

orbits alongside the epicyclic elements of [41]. The first is analytic, in which we de-

rive corrections to the osculating elements from first principles using a corrected

potential. The second is numerical, in which we simply fit sets of points to an el-

lipse. The epicyclic elements account for three-dimensional orbits, whereas the other

two sets do not. However, by design, the epicyclic elements do not smoothly reduce

to the osculating solution in the limit of a spherical host, and our testing shows that

they often do not perform as well as the other elements for two-dimensional orbits.

The analytic elements are the opposite – they do not account for three-

dimensional orbits, but do correctly reduce to the osculating solution and appear

to be about as accurate as the epicyclic elements. Finally, the numerical elements

appear to be more accurate than either of the other two sets for two-dimensional or-

bits and can also be easily adapted to a general perturbation, rather than just those

from host oblateness. However, by design they always produce fewer elements sets

than the number of state vectors and require modifying how the simulation prints

data; instead of a single state vector per output, the numerical elements require
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tens.

3.4.2 Future Work

We have only considered equatorial orbits here; this is a clear problem. For

three-dimensional orbits around an oblate host, the potential varies azimuthally

and so the force is not conservative. This means we would have to rethink our

analytic approach, which relied on conservation of energy and of the magnitude

of the eccentricity vector. For the numerical approach, we could start by simply

calculating the osculating i and Ω and rotating all points into a single plane, but

this would by definition destroy any three-dimensional information. There is no

obvious path forward for either approach.

One alternative method of calculating the elements (Matt Tiscareno, private

communication) could be to determine the periapse and apoapse distances q and

Q numerically by interpolating between the farthest and closest points within a

defined time interval, which would yield a and e, then calculate the other elements

analytically using the corrected ellipse shape. For two-dimensional orbits, such a

hybrid approach could work well; in the case of an ellipse whose a and e do not

change secularly, one could simply pick the two points with the greatest and least

|r| out of all printed positions. For N points uniformly distributed in time on a

circular orbit, we expect the average angular distance from one point to the next

to be 2π
N

. The maximum angular error between rq,est and the true periapse vector

rq,true is then ε = π
N

. Thus, to first order in e, we have:
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|rq,est|
|rq,true|

=
1− e cos(ε)

1− e
≈ 1 +

1

2
eε2, (3.49)

The maximum error on q is therefore O(eε2); one can perform a similar analysis for

Q. For large N , this could be a very computationally inexpensive way of getting

a and e with tolerably low error. Furthermore, this would also work for three-

dimensional orbits, although there is still no obvious path to getting i and Ω without

angular momentum conservation.
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Chapter 4: Self-Confining Narrow Eccentric Rings

The three outermost planets, as well as several small bodies, host very narrow,

eccentric rings that are expected to spread on near-human timescales. Unless we

are observing at an extraordinarily coincidental time, some mechanism must confine

them, but the leading confinement theory can only explain one, possibly two, of the

dozens of known cases. We present our own theory and test it with a specialized N-

body integrator designed for ring simulations that uses the epicyclic elements from

the previous Chapter.

4.1 Introduction

4.1.1 Observations of Narrow Rings

Narrow ringlets are plentiful in the Solar System, encircling Saturn, Uranus,

Neptune, and even some small bodies. Important parameters for specific ringlets

are given in Table 4.1. Saturn’s rings, of course, have been known to exist at least

since the time of Galileo. Modern exploration has included four spacecraft: Pioneer

11, Voyager 1 and 2, and most recently, Cassini. At Saturn, Pioneer 11 discovered

Saturn’s F ring in 1979 [45], while Voyager 2 observed variable ringlet structures
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Host Planet Name e× 10−4 Width (km) Radius (km) Radius (Rp) a de
da

Neptune Adams 4.7 ± 0.2 15-50 62,932 2.5559 –
Uranus ε 79.4 19.8-96.3 51,188 2.0182 0.65
Uranus α 7.8 4.9-10.1 44,758 1.7648 0.27
Uranus β 4.3 5.0-10.6 45,701 1.8019 0.45
Saturn Titan 2.6 13-37 77,871 1.3373 0.44
Saturn Maxwell 3.4 40-88 87,491 1.5025 0.46

Table 4.1: Eccentricity e, width, and radius, and eccentricity gradient a de
da

for se-
lected ringlets. All data for Uranian and Saturnian ringlets taken from [5] via [51].
Data for Adams ringlet taken from [52] (width), [53] (width), and [54] (eccentricity).
Eccentricity gradients taken from [3].

[46]; [47] suggested that Saturn’s magnetic field could be partially responsible for the

formation of the inner ringlets. There are also narrow, eccentric rings in gaps in the

C ring as well as the Cassini division [48]. Observations by the Cassini spacecraft

have yielded hundreds of papers since its arrival at Saturn in 2004.3 [49] and [50]

provide a large survey of observations made of the edge of Saturn’s B ring as well

as the C ring.

The rings of Uranus and Neptune, which have only been visited by the Voyager

2 spacecraft, have a much briefer observing history; most of them were discovered via

stellar occultation. With this method, the observer sees the light from a background

star briefly fade when the planet is close to (but not precisely aligned with) the line of

sight to the star and deduces that a ring is the likely culprit. Occasionally, however,

a moon can also be responsible [52].

The first detection of rings orbiting Uranus was made by [55], who discov-

ered the α-ε rings around Uranus via stellar occultation measurements. Further

observations were made by [56] and [57], who discovered four more rings, again via

3 See http://saturn.jpl.nasa.gov/science/index.cfm?Science\PageID=86 for a list of pa-
pers produced by members of the Cassini team.
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occultation. [58] and [59] reported on further occultation measurements, and [60]

provided updated profiles on all nine known rings. Voyager 2 directly imaged the

Uranian rings for the first time in 1986 and discovered two more [61]. [62] finally

discovered the last two currently known rings, along with two additional moons,

with deep Hubble Space Telescope exposures.

The rings of Neptune were harder to detect; [63], [64], [65], and [66] all did not

find evidence for them. It was not until [67] and [68] that they were discovered via

occultation. [67] noticed that the structure they discovered was not a complete ring

and described it as an “arc” instead; Neptune is currently the only known body to

host such prominent arcs. [69] reported on their stellar occultation observations of

Neptune’s rings from 1983 - 1989 and compared their observations to those made

by Voyager 2, particularly regarding observations made of the so-called Liberty,

Equality, and Fraternity arcs. [70] reported further observations of Neptune’s ring

arcs along with the satellite Galatea and showed that Galatea was unlikely to be

solely responsible for their confinement.

Narrow rings have more recently been discovered around Centaurs, small bod-

ies orbiting the Sun between Jupiter and Neptune. In particular, both 10199

Chariklo [71] and 2060 Chiron [72] are suspected to host ringlets. In addition,

[73] determined that the trans-Neptunian dwarf planet Haumea also hosts narrow

rings. The ability of these ubiquitous structures to exist around such a huge range

of bodies – Chariklo has an equivalent radius of 124 ± 9 km [71] – poses a unique

challenge to attempts to model their evolution and origins.

Due to the high surface mass densities of narrow ringlets, simple estimates

81



predict radial spreading on very rapid timescales – tens to thousands of years – due to

internal collisions that transfer angular momentum but dissipate energy [74]. Their

mere existence, however, argues that they either formed very recently (implying we

are observing at a privileged time) or spread on far slower timescales than expected.

As the former option is highly unlikely, serious attempts have been made to explain

why these ringlets have not spread as quickly as one might initially expect.

4.1.2 Shepherd Satellites

Most models attempt to prevent or slow ringlet spreading by increasing the

system’s energy via the presence of nearby “shepherding satellites” [75, 76, 77, 78,

79, 80, 81, 82]. Eccentric rings should precess differentially due to the oblateness of

the host planet; the inner parts of the ring feel a stronger force from the planet’s

equatorial bulge and therefore precess faster than the outer parts. However, if

the ring is sufficiently massive, self-gravity can maintain rigid precession, in which

the entire ring precesses at the same rate [75]. At periapse, where ringlets are

observed to be narrowest and self-gravity is thus strongest, inner material pulling

on outer material can generate differential precession offsetting that due to the

planet’s oblateness. Such “cancellation” of these two effects is required for a ring

to stay in a stable equilibrium [3], which features approximate periapse alignment

throughout – this is equivalent to rigid precession. However, differential rotation

between inner and outer parts of the ring still leads to particle collisions and hence

energy dissipation [81].

82



In the shepherd satellite scenario, energy lost to collisions is restored to the

system by gravitational interaction with satellites, allowing a long-term steady state

to develop that keeps the ring confined. As long as the shepherds remain in place,

the energy of the ring remains constant, equilibrium is maintained, and the ring

survives over timescales comparable to the age of the satellites. This theory had

two early successes: Uranus’ ε ring, thought to be shepherded by the nearby moons

Cordelia and Ophelia, and Saturn’s F ring alongside the moons Prometheus and

Pandora (although this latter view has recently been questioned [83]). Less promis-

ing, however, are the many additional narrow ringlets without observed attendant

satellites. A Cassini search of eleven gaps in Saturn’s rings for sufficiently large

shepherding moons found none; the likelihood of this happening by chance was

∼ 0.002% [84]. The suggestion that there must be dozens of unseen tiny moonlets

therefore strains credibility enough to justify seeking an alternative explanation.

4.1.3 Our Model - An Internal Energy Source

We suggest rings can self-confine by tapping an internal energy source to bal-

ance the dissipation of energy. As with any two bodies, when ring particles collide,

energy is lost as heat due to friction, internal cracking, etc. However, angular mo-

mentum is still conserved because there is no external torque on the ring. Energy

dissipation determines the amount of spreading: how much fractional energy loss

dE
E

is necessary to spread a ring of mass mr and semimajor axis a by a width 2∆a in

the circular case? If the initial width is 0, then the initial energy E0 is the standard:
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E0 = −GMmr

2a
, (4.1)

where M is the mass of the host. In the limit that all of the ring mass is evenly

distributed at the edges as it spreads (effectively splitting the ring in two), the

energy of a ring of width 2∆a is:

Ef = −GMmr

4

ˆ

1

a+ ∆a
+

1

a−∆a

˙

(4.2)

This gives:

dE

E
=
Ef − E0

E0

≈ −
ˆ

∆a

a

˙2

(4.3)

for semimajor axis a and energy E. For 2∆a = 2 km and a = 50, 000 km (a typical

semimajor axis for a narrow ringlet; see Table 4.1) this gives dE
E
≈ −4×10−10. Even

losing a small fraction of energy can cause a circular ring to spread 2 km, leading

to a very short spreading timescale.

A width change for an eccentric ring gives a similar expression. Typical ringlet

eccentricities are very small (see Table 4.1), and in the limit that e goes to 0, the

expression for energy dissipation in the eccentric case reduces to that for the circular

case by continuity. However, when the ring’s eccentricity is not held constant, this

argument no longer holds. As we discuss below, permitting eccentricity to change

significantly affects energy dissipation.

For an eccentric ringlet of eccentricity e, the angular momentum L is:

84



L2 = GMmra
`

1− e2
˘

. (4.4)

If the ring can arrange itself such that a and e simultaneously decrease, then the

angular momentum can be preserved while energy dissipates. This is possible only

for the eccentric case because of the extra degree of freedom afforded by the p1− e2q

term in Eq. (4.4).

For this confinement scheme to be plausible, we must address two questions.

First, how might a ring arrange itself in this manner? Second, assuming that such

an arrangement is possible, how would it affect the spreading timescale? We address

the second question first.

For an eccentric ring, we can calculate the energy loss due to a decrease in

eccentricity. Combining Eqs. (4.1) and (4.4) gives:

E = − GMmr

2
”

L2

GMmr(1−e2)

ı1/2
= −(GMmr)

3/2

2L

`

1− e2
˘1/2

≈ −(GMmr)
3/2

2L

ˆ

1− e2

2

˙

(4.5)

From Eq. (4.5), we see that E increases roughly by e2, so for a ring with e ∼ 0.01,

dE
E
∼ 10−4. The energy loss associated with circularization therefore dominates

that associated with spreading. Such an eccentric ring can live ∼ 100, 000 times as

long as a circular ring. Thus, assuming that some mechanism can confine rings, this

model naturally explains their longevity. Given this promising development, we now

85



return to the first question posed above and seek a means to prevent spreading.

4.1.4 Self-Confinement

For a ring to stay confined, it must satisfy three criteria: the periapses of its

particles’ orbits must stay aligned, the eccentricity must decrease slowly in unison,

and da
dt

must also be constant with distance across the ring. We address the first two

criteria by invoking the concept of a secular mode. For a physical ring, a secular

mode is a particle arrangement such that the orbits of particles precess together

at a constant rate, their eccentricities keep a fixed ratio, and their apses are either

perfectly aligned or anti-aligned [85]. [85] additionally report that planetary systems

(which are fully analogous to our ring systems) preferentially settle into such a mode

when dissipation is active. Thus, a ring in an aligned secular mode already satisfies

the first two criteria above.

To ensure that da
dt

does not change throughout the ring, we invoke collisions

that remove energy from the innermost section of the ringlet, moving it inward

and creating a gap between it and the rest of the ring (see top left and top right

frames in Fig. 4.1). This section now differentially precesses (bottom right frame),

“twisting” the ring (bottom left frame – the periapse of the innermost section is

noticeably unaligned with the rest of the ring). While the ring is twisted, there is a

new point of closest approach between the innermost section and the rest of the ring.

This provides the internal energy source — at this point, the main ring particles

are moving faster than those in the innermost section. As a result of this unusual
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Figure 4.1: Schematic showing the energy cycle of a non-spreading ringlet. In the
top left diagram (1), pericenter collisions kick the innermost ringlet further inwards.
In (2) and (3), this ringlet then begins to circularize and differentially precess until
the point of closest approach between the ringlet and the rest of the ring is close
enough to begin transferring energy in (4). This leads the ring back to its initial
configuration with a slightly lower eccentricity.
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orientation, energy gets transferred from the main ring, which moves very slightly

inwards but does not spread, and the innermost section returns to its nearly original

configuration. Thus, da
dt

is constant everywhere averaged over long timescales, and

our model can explain both the confinement and the long lifespan of narrow eccentric

rings.

[76] and [3] also discuss the effects of a twist, which they call an “apsidal shift.”

They define a parameter q such that:

q2 =

ˆ

a
de

da

˙2

+

ˆ

ae
d∆

da

˙2

, (4.6)

where a is the semimajor axis, e is the eccentricity, and ∆ is the pericenter phase

lag, assuming the ring follows a Keplerian ellipse. In Eq. (4.6), a de
da

is referred to

as the “eccentricity gradient” of the ring, and d∆
da

is the twist. For a nearly circular

ring, the first term dominates, but for a moderately eccentric ring with a large twist,

the second term can be significant. For q ≥ qcrit ≡
?

3
2

, the ring can stay confined

[76]. In Table 4.1, we have included a de
da

values for selected ringlets orbiting Uranus

and Saturn.

4.2 Ring Integration with epi int

To test our model, we used epi int, an N-body leapfrog integrator with sev-

eral features more commonly associated with hydrodynamic codes [4]. Epi int uses

epicyclic elements (see Chapter 2) rather than the more familiar Keplerian elements

to update the particle positions during the drift step. The key difference between
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the two is that epicyclic elements account for the effects of planetary oblateness

whereas Keplerian elements do not. The distinction is important for this problem

because we are interested in the effects of weak, secular forces, but these effects are

dominated by oblateness and would be difficult to observe using Keplerian elements,

which are designed for the pure two-body problem. The choice of epicyclic elements

sidesteps this problem; rather than treat the effects of oblateness as a separate force

in the kick step, they are neatly accounted for instead in the drift step, preventing

the weak but important secular effects from getting “washed out.”

Epi int simulates a ring by dividing it into N streamlines of M particles each;

the user sets N and M [4]. This is a common abstraction [3, 76], meaning that epi int

can be easily compared to theoretical results. Vertical forces are not considered –

since rings are highly equatorial, simulations in all three spatial dimensions would

likely produce very similar results at the expense of considerably more computational

time. The user can control a number of forces, both internal and external. Both

self-gravity and viscosity are present in and important to the evolution of narrow

rings, so we briefly describe their implementations here.

4.2.1 Self-Gravity

Ring simulation is difficult in general – there are often far too many particles

to attempt a standard N-body integration. One solution is to simplify the problem

by studying only a small patch of a ring (e.g., [86]), but this strategy is unsuitable

for studying ring confinement. Epi int approximates ring self-gravity by considering
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two sources of internal gravitational acceleration – that from nearby sections of other

streamlines, and that from particles within the same streamline.

To calculate the acceleration on a single particle from other streamlines, the

code approximates them as infinitely long, straight wires. Each streamline is as-

signed a linear density λ ∼ M
2πa

, where M is the streamline mass and a is its semi-

major axis, assuming eccentricity e << 1. The gravitational acceleration ag of the

streamline on the particle is then given as [4]:

ag =
2Gλ

∆
, (4.7)

where ∆ is the distance to the nearest part of the streamline. To approximate ∆ to a

perturbing streamline, epi int identifies its three closest particles and fits a parabola

to them. This parabola is then used to extrapolate ∆.

To calculate the net acceleration on the perturbed particle from those in the

same streamline, epi int approximates this particle as sitting in a gap that extends

midway to its neighbors, which dominate the net gravitational force. Since the

streamline is very close to a straight line near the particle of interest, epi int ap-

proximates this force by treating the ring as an infinite line of density λ and removing

a segment of length d = ∆+

2
+ ∆−

2
, where ∆+ and ∆− are the distances to the near-

est neighbors in the leading (+) and trailing (−) directions. The net gravitational

acceleration from nearby particles within the same streamline is then given as:

Ag = a+ + a− = 2Gλ

ˆ

1

∆+

− 1

∆−

˙

, (4.8)
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where a+ (a−) is the leading (trailing) acceleration [4]. This can be derived by

considering the integral
∫∞

∆+
2

GdM
r2 , where dM = λdr. This integral evaluates to 2Gλ

∆+
;

the integral for a− likewise equals −2Gλ
∆−

, where the negative sign is due to integrating

from −∆− to −∞.

4.2.2 Viscosity

There are two types of viscosity — shear and bulk. Shear viscosity is the

inter-streamline friction and is responsible for a radial flux of angular momentum,

and bulk viscosity friction acts to retard the relative motions of particles converg-

ing towards or diverging away from each other, producing an additional momentum

flux. The user provides parameters for the strengths of each type of viscosity; in our

work, the two are set equal to each other. This follows the approach of [4], who note

that [87] find shear and bulk viscosity equal in Saturn’s A ring. The equations for

acceleration due to ring viscosity are given in Section 2.3.4 in [4] (Eqs. 26 through

29); see also Appendices A and B in [4]. To calculate the radial and tangential accel-

erations due to viscosity, epi int must calculate the radial gradients in the angular

and radial velocities in adjacent streamlines [4]. By analogy with the ring gravity

algorithm, the code again uses parabolic fits to determine these velocities. When

calculating the radial gradients, epi int approximates the infinitesimal differentials

as finite differences, discretizing them for simplicity.
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4.2.3 Numerical Error

As noted above, in epi int’s drift step, particles move on an orbit corrected for

Saturn’s oblateness via the epicyclic elements of [41]. Recall from Chapter 2 that

these elements, while improvements to the osculating elements, are still truncated in

eccentricity and inclination and not reversible. Thus, each drift step introduces small

but nonzero errors of O(e3) to the system’s total energy and angular momentum.

We show the growth in angular momentum error in Fig. 4.2.

We are thus afforded a limited number of steps before numerical errors grow

too large. Although epi int is an imperfect code for simulating rings for hundreds

of millions of years – we discuss this further in Section 4.4 – it is still quite suitable

for the shorter proof-of-concept simulations we attempt here. We can also delay the

onset of numerical instability by taking extremely large steps and simulating rings

of very low eccentricities. In most N-body simulations, timesteps are expected to

be ∼ 0.05 orbit periods to ensure accuracy. However, as we are solely integrating

rings here, the orbital timescale is much less important, since rings do not meaning-

fully change that quickly. Instead, we care about the far longer secular timescale;

provided our timesteps are small compared to this timescale, we can still accurately

capture the long-period changes in which we are interested. In practice, this allows

us to take timesteps of ∼ 30 orbit periods, dramatically increasing the number of

orbits we can simulate before numerical errors overwhelm us.
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Figure 4.2: Display of the fractional z component of angular momentum |∆Lz |
|Lz | for

four two-dimensional ring simulations that differ only in their timesteps. The rings
have eccentricity e = 0.005 and density σ = 10−6 in units of MSaturn = 5.6846 ×
1029 g and rring = 1.178145 × 1010 cm. For ease of comparison to theory, we use
two streamlines, each with 250 particles. The initial semimajor axes of the two
streamlines are 1.0005 rring and 0.9995 rring. The initial ∆e is 10−5. There is no
viscosity. The timestep for the simulation corresponding to the dark blue line is
five orbits, while the timestep for the simulation represented by the green line is 0.5
orbits, etc. The green and red lines nearly lie atop each other. Note the linear growth
in angular momentum error as the number of timesteps increases, regardless of the
actual timestep value. Even varying the timestep over several orders of magnitude
does little to change the rate of growth.
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Figure 4.3: Three plots displaying the evolution of a ring that has been slightly
perturbed from its equilibrium. The simulated libration time agrees very well with
that predicted by [3] (see text). Initial conditions are identical to those in Fig.
4.2 – the only forces active are the ring’s self-gravity and the gravity from the
oblate host planet. Our timestep was five orbital periods. From top to bottom, the
panels feature the difference between outer and inner longitudes of periapse, the q
parameter, and the difference ∆a between the center of the ring and its edge, equal
to half the width of the ring.

4.3 Results

4.3.1 Ring Equilibra

To test our internal energy source confinement mechanism, we first found a

set of parameters that defined a ring in equilibrium, i.e., a ring whose streamline

periapses were all in alignment that underwent rigid precession where the only im-

portant simulated forces were the ring’s self-gravity and the gravity of an oblate

central planet. In Fig. 4.3, we have simulated a 2-streamline ring that has been

slightly perturbed from its equilibrium and is consequently librating.

[3] give the libration frequency as:
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Ω =
mr

πM

´ a

∆a

¯2

nH
`

q2
˘

, (4.9)

where n is the ring’s mean motion and H pq2q is given by:

H
`

q2
˘

=
1− p1− q2q

1
2

q2 p1− q2q
1
2

. (4.10)

For q À 0.2, H ≈ 1
2
. The libration time is then 2π

Ω
. We calculate a theoretical

libration time of 3,141.6 orbit periods, very close to the simulated value of 3142.2.

However, we also note that the theoretical result assumes a constant q, which in

turn requires a ring of sufficient mass, and the simulated libration time for a ring of

mass below ∼ 3×10−9 planetary masses will noticeably diverge from the theoretical

libration time (Joe Hahn, private communication). The simulated ring mass in Fig.

4.3 is ∼ 1.26× 10−8 planetary masses.

We simulated several ringlets using various timesteps in order to test the con-

sistency of the libration time across different stepsizes and show our results in Fig.

4.4. Despite a factor of 40 between the shortest and longest timesteps, which varied

from 0.016 to 0.63 orbital periods, we found reasonable agreement of libration time

for all integrations. As expected, however, the shorter the timestep, the quicker the

simulation crashed due to the unphysical exponential amplitude growth present in

all simulations but most prevalent in those with the shortest timesteps.
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Figure 4.4: Five simulations of librating ringlets identical except for timestep. Only
the differences in longitudes of periapse have been plotted. The blue curve has a
timestep of 0.016 orbital periods, green has 0.08 orbital periods, red has 0.16, cyan
0.32, and magenta 0.63. Despite the wide range of stepsizes, all curves maintain
very similar libration periods.
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4.3.2 Addition of Viscosity

We modified the initial conditions from the simulations in Fig. 4.2 to include

viscosity. The results are plotted in Fig. 4.5; we will refer to the top panel as panel

1, the next panel down as panel 2, etc.

Figure 4.5: Several plots describing the evolution of a viscous, self-gravitating, nar-
row eccentric ringlet of two streamlines with sixteen particles per streamline. The
ring is initialized with ∆a = 10−4 rring, e = 10−3, ∆e = 10−5, and sigma = 4.4×10−8

in the units of Fig. 4.2. Both shear and bulk viscosity equaled 2114 cm2 s−1. While
these viscosity values are about an order of magnitude greater than is typical [4],
they permitted us to greatly speed up the simulation while retaining a similar, if
accelerated, evolution. The top panel features the difference between outer and in-
ner longitudes of periapse. The second and third, and fourth panels from the top
feature the q parameter, the eccentricity gradient term a de

da
, and the inner and outer

eccentricities ein and eout, respectively. The fifth panel shows ∆L
L

, which is consis-
tently < 10−7 until the spike at the end indicating the onset of numerical instability.
The bottom panel shows the difference ∆a between the center of the ring and its
edge, equal to half the width of the ring.
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A ring with self-gravity but no viscosity in perfect equilibrium should have

perfect periapse alignment, i.e., ∆$ (panel 1) should stay constant at 0, so this ring

starts out reasonably close to its equilibrium point. However, the center around

which ∆$ librates drifts downwards approximately 1◦. This indicates that the ring

has developed a “twist,” but since panels 2 and 3 are nearly identical, i.e., since

a de
da
≈ q (recalling Eq. 4.6), the twist is unimportant in this case. We also see in the

second panel that the eccentricity gradient begins at ∼ 0.05 but steadily grows to

∼ 0.71 by the conclusion of the simulation, indicating that the eccentricities began

very close to each other and slowly diverged over time, as is supported by panel 3.

The spike at the very end of the ∆$ and ∆L
L

panels indicates the onset of numerical

instability, which is why we chose to end the simulation after 900,000 orbits. Finally,

panel 6 shows that this is an example of a spreading ring, as predicted by energy

losses from viscosity. The width increases by the square root of time, in excellent

agreement with theory [88].

4.3.3 Titan Ringlet

We modified our initial conditions to simulate the Titan ringlet around Saturn;

our results are plotted in Figs. 4.6 and 4.7.

In Fig. 4.6, the ring is moving into its equilibrium; when the twist is small

(between 0 and 110,000 orbits), it spreads, but when it is large (between 110,000 and

150,000 orbits), it contracts. Furthermore, before the ring reaches its equilibrium,

the eccentricities of the inner and outer streamlines diverge. Once the equilibrium
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Figure 4.6: Several plots describing a possible evolutionary path of the Titan ringlet.
In this two-dimensional simulation, the ring spreads until t ∼ 110, but then contracts
until t ∼ 150. The reason for such contraction is easiest to see via panel 1 – the ring
“overshoots” the equilibrium twist value and starts to compensate. After briefly
spreading again, it reaches its equilibrium at t ∼ 300 and remains confined. All
parameters of the host planet (e.g., mass, radius, etc.) are again equal to those
of Saturn. The initial inner and outer semimajor axes are 1 − 1.6 × 10−6 and
1 + 1.6 × 10−6 respectively, using a length unit of 7.7871× 109 cm (see Table 4.1).
The initial eccentricity of the inner streamline is 0.00026, while the initial ∆e is
0. The ring begins with a very small pericenter twist of −0.062◦. Both shear and
bulk viscosity parameters are 63.4 cm2 s−1. Density is 8.93 g cm−2. The ring is in
equilibrium from t ∼ 300 to the end of the integration.
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Figure 4.7: Identical to Fig. 4.6 except run for ten times longer. While the ring is
in equilibrium and the eccentricity is above ecrit, i.e., from t ∼ 300− 1300, the ring
spreads quite slowly, although once it is sufficiently circular, the spreading timescale
shortens considerably.
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is reached, however, the width and twist remain stable and the inner and outer

eccentricities begin slowly decaying together. In Fig. 4.7, we see that the ring

spreads on very long timescales while its inner eccentricity is above ecrit, but once it

gets too low, the equilibrium is lost, and the spreading timescale gets much shorter.

This is in qualitative agreement with our model’s prediction in Section 4.1.3 that

the ring would spread if and only if its eccentricity was sufficiently high; we argued

that the ring would preferentially circularize rather than spread. In addition, the

simulated q stabilizes very close to qcrit while the ring remains confined, in excellent

agreement with the predictions of [76]. We also note that the ring develops a sizeable

twist soon after the integration starts. Our model correctly predicts that when the

twist is too small, the ring spreads (from t ∼ 0− 115); when it is too large, the ring

shrinks (from t ∼ 110− 150); and when it stabilizes, the ring’s width stays constant

(from t ∼ 300− 1300).

4.4 Discussion

4.4.1 Continued Model Testing

We have shown that rings in equilibrium can confine themselves even in the

absence of any perturbing satellite. Our results in Figs. 4.6 and 4.7 qualitatively

agree with several predictions of our model, including the slow circularization, the

spreading and contracting in response to displacement from equilibrium, and the

ring confinement. Nevertheless, there remains disagreement with observations. In

particular, the confinement begins at a de
da
∼ 0.64, but [3] note that the Titan ringlet’s
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observed a de
da

equals 0.44. Furthermore, the simulation depicted in Figs. 4.6 and 4.7

was initialized with the Titan ringlet’s current observed eccentricity, taken from [3]

(see Table 4.1). However, the real ringlet’s initial eccentricity was likely higher than

it is now if our model’s predictions are accurate, so we can investigate how a higher

simulated initial eccentricity affects the integration results. We can also explore

simulating other ringlets around other bodies to evaluate our model’s success in

reproducing other observations.

4.4.2 Different Integrator

4.4.2.1 epi int lite

In order to simulate ring evolution for hundreds of millions of years, we must

use a different integrator. Joe Hahn (private communication) has written epi int lite,

a new version of epi int; there are two main differences between the two codes. First,

the oblateness force is now in the kick step. Second, while epi int lite still corrects

the orbital elements for oblateness, the correction algorithm now features a perfect

inverse; one can transform from state vectors to elements to state vectors again

with no error. Although the new algorithm does not correct the elements to O(e2),

as did the original epicyclic elements, the perfect inverse function rids epi int lite

of the energy and angular momentum errors that plagued its original. The new

code also features self-gravity and viscosity forces that work identically to their

epi int counterparsts, so it can also simulate self-confining rings (Joe Hahn, private

communication).
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4.4.2.2 HNBody

The symplectic integrator HNBody [14] is well suited as a substitute for epi int,

as it already possesses much of that integrator’s functionality. We are currently up-

grading HNBody to simulate self-gravitating, viscous rings approximated as stream-

lines traced by a single particle [89]. Unlike in epi int, HNBody uses the standard

osculating orbital elements, and the additional force due to planetary oblatness is

accounted for in the kick step, as in epi int lite.

We use the same force law to determine the gravity felt between streamlines

as per Eq. (4.7). However, because we only use a single tracer particle, we cannot

use the same means of getting the streamline distances as epi int. Instead, given a

point on one streamline (designated with subscript j), we first estimate the closest

point on another streamline (subscript i) to occur at the (osculating) true anomaly

νi = νj −∆ω −∆Ω, where ∆ω = ωi − ωj, etc. We then define two points to either

side of νi at true anomalies νi− = νi + ε and νi+ = νi + ε; we typically use ε = 0.01

radians. After calculating the three distances li, li+, and li− between the point at νj

and the three points at νi, νi−, and νi+, respectively, we then fit a parabola to these

three “points” in ν − l space. These points have no physical meaning; we are not

fitting the streamline itself. The minimum (νmin, lmin) point of the parabola provides

us a new guess for the true anomaly corresponding to the point of closest approach

(i.e., νmin), along with the distance lmin at that point. We then iterate this process

twice more; further iterations typically do not meaningfully improve the solution.

We have not yet implemented a viscosity force, but the upgraded HNBody
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already compares favorably to epi int. Most importantly, the secular errors in an-

gular momentum and energy no longer appear. Furthermore, HNBody permits full

three-dimensional ring simulations, which are not possible in epi int. Finally, HN-

Body is over one hundred times faster than epi int due to the choice of language

for each – C for HNBody, IDL for epi int. Preliminary tests are encouraging –

HNBody can simulate ringlets in equilibrium and reproduces the correct libration

frequency. The most significant disadvantage is that, as it cannot yet simulate a vis-

cous force, HNBody cannot currently simulate self-confining rings. In addition, the

use of only a single tracer particle per streamline prevents HNBody from simulating

multiple-lobed rings, as are observed in nature.
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Chapter 5: Titan’s Unstable Origins

In the last Chapter, we examined the Titan ringlet while largely ignoring Titan

itself. The moon is fascinating in its own right, however; its mass dominates that

of every other body in Saturn’s satellite system, and its orbit is unusually eccentric

and inclined. The leading theories of satellite formation do not satisfactorily explain

all of Titan’s properties; we think we offer a more compelling model.

5.1 Introduction

5.1.1 Background

Saturn’s largest moon is odd. The origins and evolution of Titan, with its

enormous mass of MT = 2.3670 × 10−4 Mp for Saturn mass Mp [90] and relatively

large eccentricity and inclination of 0.0288 and 0.28◦, respectively, defy conventional

explanation. Its mass, 97% of all mass in orbit around Saturn [91], largely immunizes

it from perturbations due to other moons, and we would expect tidal forces (see

Section 5.2.2) to circularize and un-incline its orbit relative to Saturn’s equatorial

plane. It also occupies a somewhat “lonely” region of Saturn’s satellite system;

only tiny Hyperion is nearby, sitting in a 4:3 mean-motion resonance with its huge
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neighbor. Finally, Titan’s mass, as a percentage of its host planet Saturn, roughly

equals the combined masses of the large moons of Jupiter and Uranus as percentages

of their respective host planets within a factor of a few [92]. No self-consistent

explanation for all of these features yet exists.

All modern approaches to satellite formation around gas giants assume a lim-

ited resemblance to planet formation around stars (e.g., [93]). The analogy is a

reasonable first approximation since both cases concern the formation of nearly

spherical bodies in a gas disk around a far more massive (and luminous, via [94]

and [95]) body whose gravity dominates that of all others. Closer inspection, of

course, reveals differences. Most importantly, gas and planetesimal inflows from the

solar nebula to the circum-planetary (gas) disk (CPD) are fundamental to satellite

formation, whereas the interstellar medium plays a less critical role to planetary

formation.

Several works (e.g., [96], [97], [98], [99], [100], via [91]) have addressed this

issue with the “gas-starved” model of satellite evolution. In this scenario, Saturn

hosted several generations of satellites during its CPD phase, in which the disk was

“fed” gas and dust from the solar nebula. All but the last spiraled into Saturn

due to gas forces that robbed them of energy and shrunk their orbits on timescales

much shorter than the lifetime of the CPD. The final generation survived because

gas inflow ceased, the CPD thinned, and migration halted. While this model has

many appealing aspects and can explain the origins of the physical properties of

Saturn’s satellites, e.g. their masses and densities, we think more investigation is

needed to explain Titan’s orbital properties, i.e. its eccentricity and inclination.
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Furthermore, [101] have recently challenged the gas-starved model, which as-

sumes that satellitesimals (which are to satellites as planetesimals are to planets)

can form purely from dust agglomeration. Via [102], they argue that rapid inward

drift of dust particles makes this highly unlikely. [101] also contend that once the

host planet gets large enough to open a gap in the protoplanetary disk, dust inflow

will drop by approximately an order of magnitude (see references therein), and there

simply will not be enough to form the moons we see today. Instead, following the

approach of [103], [101] invoke the capture and ablation of planetesimals into the

CPD to explain how satellite seeds can form.

Finally, [104] suggest that Titan might have agglomerated out of a very mas-

sive set of rings but then estimate its tidal age to be ∼ 10 Gyr, concluding that

this formation mechanism is unlikely. In addition, Titan is probably not a captured

object (as is likely true for, e.g., Triton [105]). First, the chance that Titan would

happen to capture in its current prograde, low-inclination orbit is ∼ 0.5% - quite

low, given that any inclination between 0 and 45◦ would be equally likely. Further-

more, in this scenario, Titan’s orbit would be very elliptical upon capture. This

would imply that Hyperion formed after Titan’s arrival because otherwise, it would

have been ejected almost immediately following any gravitational interaction with

the much more massive moon.
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5.1.2 Orbital Evolution After Formation

The details of satellite formation within the CPD thus remain hotly debated.

This chapter, however, is agnostic towards any specific model. We assume only that

after the CPD is gone, a group of large satellites in a 1:2:4 mean-motion resonance

remain, analogous to Io, Europa, and Ganymede at Jupiter. They might form in

these resonances [101], or enter them later due to tidal migration in a process similar

to that seen in Chapter 2. We think these moons then merge into a single massive

body, i.e., Titan, following a dynamical instability.

This model can naturally explain all of Titan’s unusual features. First, both its

“loneliness” and its unusually large mass are due to the agglomeration or accretion

of all nearby moons during its formation. In addition, the merging bodies would

likely undergo repeated close approaches that would drive up their eccentricities

prior to the instability, and the final merged body would thus have an anomalously

high eccentricity as well, although it would damp away over time due to tidal forces

(see Section 5.2.2).

The inclination argument is less intuitive – how can a merger of largely equa-

torial satellites yield a non-equatorial body? The answer lies in each satellite’s

Laplace plane, the reference plane about whose axis the satellite’s orbit precesses

and to which the satellite is typically inclined; [106] note that, e.g., Iapetus is in-

clined 7.5◦ to its Laplace plane. This plane can be thought of as a weighted average

of the planet’s equatorial plane and the plane in which the planet orbits the Sun.

The former dominates near Saturn and the latter dominates far therefrom. Mergers
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of satellites inclined from their Laplace planes can thus result in a body inclined

from the planet’s equator due to the Sun’s influence.

Finally, this model can account for Hyperion’s origin as well. Collisions be-

tween Titan-sized objects would throw up considerable debris, most of which would

re-accrete onto the merged body. However, a small fraction would escape, pile up

at a nearby resonance, and eventually agglomerate into a single body. This would

explain both the 3:4 Titan-Hyperion mean-motion resonance as well as Hyperion’s

unusual, sponge-like appearance – low merger speeds would yield a likewise low-

density object. However, we do not simulate this process here.

To our knowledge, this idea was first raised in [107], although they were more

interested in the formation of Saturn’s mid-sized moons than of Titan. Likewise,

[101] briefly discuss a chain instability, but only study the formation of the resonant

satellites, not their post-gas disk evolution. We investigate such evolution here, with

the goal of understanding the circumstances under which satellites can undergo

dynamical instabilities and the physical processes responsible for them. We do

not yet study post-instability evolution. In particular, we examine the effects that

satellite mass distribution and migration speed have on instability likelihood.

5.2 Integration Setup

5.2.1 Initial Conditions

We use the symplectic integrator option within the N-body integrator HNBody

[14] to simulate the motion of Saturn plus three satellites, whose initial orbits we
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include in Table 5.1. We account for Saturn’s oblateness by including the zonal

harmonic coefficients J2 = 16290.573 × 10−6, J4 = −935.314 × 10−6, and J6 =

86.340× 10−6 in its gravitational potential, using a reference radius Rp = 6.0330×

107 m [43]. We also approximate the presence of tidal bulges by assigning all bodies

a k2

Q
value for Love number k2 and tidal dissipation parameter Q. As we shall

shortly see, this ratio governs the tidally induced secular changes to the satellites’

semimajor axes and eccentricities.

Both Saturn’s and Titan’s Love numbers are known to much greater precision

than their Q parameters – we assume our simulated satellites mirror Titan itself and

therefore adopt its k2 and Q values for them. The k2 values for Titan and Saturn

are respectively estimated at k2s = 0.6± 0.2 [108] and k2p = 0.390± 0.024 [109]. [5]

estimate Qs ∼ 100 for Titan to the nearest order of magnitude, while [110] and [111]

predict k2s

Qs
of the mid-sized moons Dione and Enceladus to be of order 10−4, largely

due to a much smaller k2 value. We thus test both k2s

Qs
= 6 × 10−3 and 6 × 10−4

for each satellite. Estimates of Qp at Saturn, meanwhile, span multiple orders of

magnitude, from the traditional lower bound of ∼ 18, 000 [112] to the more modern,

somewhat controversial values of ∼ 1, 700 [109] and even ∼ 100 [113]. [114] have also

suggested that Saturn’s Q may have been larger in the past, reinforcing its already

considerable uncertainty. To account for this, we test k2p

Qp
= 10−3, 10−4, and 10−5

for Saturn.

The resultant migration rates are too slow for convenient integration, so we

speed up our simulations by multiplying k2p and k2s by a speed-up factor C equal
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to either
´

k2p

Qp

¯−1

or 1
10

´

k2p

Qp

¯−1

. Simulations using C =
´

k2p

Qp

¯−1

go for 10 Myr

(equivalent to 10 Gyr), while those using C = 1
10

´

k2p

Qp

¯−1

go for 40 Myr (equivalent

to 4 Gyr). This practice is quite common; in justifying their own similar use of such a

factor, [115] point out that [116], [117], [111], and [110] have all used one as well. The

drawback is that moving too quickly can force the satellites past weak second- and

third-order resonances in which they would otherwise have been captured. Such

resonances would excite our satellites’ eccentricities and/or inclinations, making

them more prone to dynamical instability. We thus may err on the side of generating

too few instabilities with this approach.

We use two different algorithms to get our mass distributions and require that

the total combined satellite mass equal MT in both. Whereas the first algorithm

is designed to produce more evenly distributed masses in most cases, the second

concentrates the satellites’ mass in the innermost body. For the first, we vary the

mass ratios ψ13 = m1

m3
(inner mass to outer mass) and ψ23 = m2

m3
(middle mass to outer

mass), independently assigning each a value of 4, 2
?

2, 2,
?

2, 1, 1?
2
, 1

2
, 1

2
?

2
, or 1

4

for eighty one possible combinations. Using this scheme, the three masses are m1 =

ψ13m3, m2 = ψ23m3, and m3 = MT

1+ψ1+ψ2
. For the second algorithm, we vary the

mass ratios ψ21 = m2

m1
(middle mass to inner mass) and ψ31 = m3

m1
(outer mass to

inner mass) between 1?
2
, 1

2
, 1

2
?

2
, 1

4
, 1

4
?

2
, 1

8
, 1

8
?

2
, and 1

16
. The second algorithm

yields thirty eight new possible combinations1 – we thus test 119 mass distributions

total. We test all distributions for each choice of k2p

Qp
and k2s

Qs
as well as both speed-up

factors, yielding 1,428 simulations total.

1The remaining twenty six are duplicates of combinations from the first algorithm.
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# a (Rp) e i (◦) Ω (◦) $ (◦) λ (◦)
1 6.0 0.01 0.001 0 0 0
2 9.6 0.01 0.001 0 0 0
3 15.0 0.01 0.001 0 0 0

Table 5.1: Initial semimajor axis a, eccentricity e, inclination i, longitude of ascend-
ing node Ω, longitude of periapse $, and mean longitude λ for each of our simulated
satellites in every integration. We designate the inner body as 1, the middle body
as 2, and the outer body as 3.

5.2.2 Tidal Forces

We exclusively study post-disk evolution of our satellites and so ignore gas

forces. However, the mutual tides that Saturn and the satellites raise in each other2

produce important effects that we lose by modeling all bodies as point particles.

In particular, tidal bulges force secular changes to the satellites’ semimajor axes a

and eccentricities e; tides raised in the planet increase a and e, while those raised in

the satellite decrease them [5]. In units of Mp, Rp, and Keplerian circular velocity

vK = na, and ignoring terms of O(e2), the tides raised in the planet produce the

following [118]:

1

a

da

dt
≡ τap

−1 = 3
k2p

Qp

ma−6 (5.1)

and

1

e

de

dt
≡ τep

−1 =
57

8

k2p

Qp

ma−6 (5.2)

while via [119] the tides raised in a tidally locked satellite yield:

2We ignore satellite-satellite tides, which are both much more complex and much weaker.
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− 1

a

da

dt
≡ τas

−1 = 21
k2s

Qs

m−1R5
sa
−6e2 (5.3)

and

− 1

e

de

dt
≡ τes

−1 =
21

2

k2s

Qs

m−1R5
sa
−6 (5.4)

for satellite mass and radius m and Rs, respectively, where τ is the timescale of the

change. We can determine which dominates by taking the ratios τap

τas
and τep

τes
:

τap

τas

= 7
k2s

Qs

ˆ

k2p

Qp

˙−1

m−2Rs
5e2 = 7

k2s

Qs

ˆ

k2p

Qp

˙−1 ˆ
4π

3
ρs

˙− 5
3

m−
1
3 e2 (5.5)

and

τep
τes

=
28

19

k2s

Qs

ˆ

k2p

Qp

˙−1

m−2Rs
5 =

28

19

k2s

Qs

ˆ

k2p

Qp

˙−1 ˆ
4π

3
ρs

˙− 5
3

m−
1
3 , (5.6)

where ρs = 0.7263 is the density (equal to Titan’s current density in units of

Mp Rp
−3) that we assign to all simulated satellites [90]. The lowest possible τep

τes

across all tested m, k2p

Qp
, and k2s

Qs
values is ∼ 2; we thus ignore the +de

dt
from Eq. (5.2)

due to the tide raised in the planet. However, τap

τas
ranges from ∼ 10e2 to ∼ 3×104e2;

outward migration is only guaranteed for e << 0.01 in the latter cases.

In practice, therefore, we can approximate the relative timescales of the da
dt
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and de
dt

by comparing Eqs. (5.1) and (5.4). This gives:

τap

τes
=

7

2

k2s

Qs

ˆ

k2p

Qp

˙−1 ˆ
4π

3
ρs

˙− 5
3

m−
1
3 . (5.7)

The de
dt

thus ranges from ∼ 6 to ∼ 1500 times faster than the da
dt

. As we shall see,

this ratio plays a crucial role in determining the likelihood of instabilities.

Following [115], we include these effects via additional forces per unit mass in

the directions B̂ = (r̂× v̂)× r̂ and r̂ for satellite position and velocity vectors r = rr̂

and v = vv̂, respectively [6]:

fB =
3k2p

2Qp

mr−6v2B̂ (5.8)

and

fr = −21k2s

2Qs

m−1Rs
5r−6v 9rr̂ (5.9)

again working in units of Mp, Rp, and vK. The force fB is responsible for the +da
dt

in Eq. (5.1), while fr yields the −da
dt

and −de
dt

from Eqs. (5.3) and (5.4) [115] (see

also [34] and [120]).
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log2

´

m2

m1

¯

log2

´

m3

m1

¯

C

-2 -0.5 100
-2 1 100
-3 -0.5 1000
-3 -1 1000
-3.5 -0.5 1000
-3.5 -1 1000
-3.5 -1.5 1000
-3.5 -2 1000
-3.5 -2.5 100
-4 -0.5 1000
-4 -1 1000
-4 -1.5 1000
-4 -2 1000
-4 -2.5 1000
-4 -2.5 100
-4 -3 1000
-4 -3 100
-4 -3.5 1000
-4 -3.5 100

Table 5.2: Unique parameters of all simulations in which two or more bodies’ orbits
crossed for at least 1 Myr. In the simulations whose parameter sets are bolded, one
or more satellites was ejected from the system entirely. We include the middle to
inner satellite and outer to inner satellite mass ratio m2

m1
and m3

m1
, respectively as well

as the speed-up factor C. Every simulation used k2p

Qp
= 10−3 and k2s

Qs
= 6× 10−4.

5.3 Results

5.3.1 Overview

We find limited instances of dynamical instability; the overwhelming majority

of the parameter space yielded simulations in which the three satellites migrated

outward with very low eccentricities and did not interact with each other. We give

the parameters of each simulation in which two or more bodies’ orbits crossed for

at least 1 Myr in Table 5.2.

115



Using Table 5.2, we can identify three important criteria that are normally

satisfied before the satellites go unstable. First, we require that τa ∼ τe, which in

turn requires that k2p

Qp
∼ k2s

Qs
. This criterion lies at the very edge of our parameter

space, in which we set k2p

Qp
= 10−3 (for Qp = 100) and k2s

Qs
= 6×10−4 (for Qs = 1000).

Every simulation that featured crossing orbits used these values.

Second, the middle satellite’s mass typically comprises roughly 5-10% of the

total satellite mass. This satellite is usually the one to trigger the instability because

it can be trapped in two eccentricity resonances instead of just one; its eccentricity

can grow rapidly in this case. It needs a sufficiently low mass such that these reso-

nances can quickly grow its eccentricity but a sufficiently high mass to meaningfully

disturb the other satellites upon repeated close approaches.

Third, the inner body’s mass is always greater than those of the other two,

and particularly larger than that of the middle one. This, coupled with a large k2p

Qp
,

permits very rapid migration while the satellites are still close to Saturn; this can

help destabilize the system early. In all of the simulations featuring crossing orbits,

the orbits began crossing almost immediately, when the satellites were close together

and the inner body’s influence was maximized.

5.3.2 Individual Simulations

In this section, we present two of our most noteworthy simulations. In the

simulation shown in Fig. 5.1, the middle body has a very low mass and is quickly

perturbed by its two dominant neighbors. All eccentricity resonances are active (see
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Fig. 5.2), so both the middle and outer bodies’ orbits quickly become very eccentric

and cross each other. This does not immediately lead to dynamical instability,

however; the simulation continues for another ∼140 Myr (scaled to our speed-up

factor C = 1000) before the middle body is ultimately ejected. There is no obvious

trigger for the instability itself; the system appears to be highly chaotic.

In Fig. 5.3, we show a similar system, in which orbits cross very quickly, that

does not go unstable. The reason is likely due to the outer body, whose eccentricity

remains low at the beginning of the integration, preventing crossing orbits between

satellites 2 and 3. The mass distribution between the satellites is similar to that

of the simulation from Fig. 5.1, and via Fig. 5.4, we see that ϕ32,o is librating

at the beginning of the simulation as before. The relatively sedate initial nature

of the outer body compared to Fig. 5.1 is thus somewhat puzzling. Nevertheless,

this illustrates that even under favorable conditions, instability is possible but not

guaranteed.

5.4 Discussion

5.4.1 Review

We have shown that when τa ∼ τe, a system of three satellites in which the

inner mass is largest and the middle is smallest can quickly go unstable while the

satellites are close together. This could have significant implications for the evolution

of Titan – we argue that Titan was formed via such an instability among a resonant

chain of satellites similar to the Galilean moons at Jupiter. To get such an instability
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Figure 5.1: Dynamical instability among an initially resonant chain of satellites.
We plot semimajor axis a (blue), periapse distance q (red), and apoapse distance Q

(green) for all three bodies. We used k2p

Qp
= 10−3 and k2s

Qs
= 6 × 10−4 with a mass

distribution of log2

´

m2

m1

¯

= −4 and log2

´

m3

m1

¯

= -1.5 and a speed-up factor C of

1000. The middle satellite’s orbit almost immediately crosses both of its neighbors’,
and it is ejected at ∼ 140 Myr. We have scaled the time axis accordingly with our
speed-up factor.
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Figure 5.2: Five notable resonant arguments for the simulation in Fig. 5.1. From
top down: the Laplace resonance argument ϕL, the inner and outer eccentricity reso-
nance arguments ϕ21,i and ϕ21,o, respectively, between bodies 1 and 2, and the inner
and outer eccentricity resonance arguments ϕ32,i and ϕ32,o, respectively, between
bodies 2 and 3. All resonances are active for most of the simulation, as denoted by
the libration of their arguments around fixed values. In particular, both the outer
eccentricity resonance between bodies 1 and 2 and the inner eccentricity resonance
between bodies 2 and 3 are active, rapidly forcing up the eccentricity of the middle
satellite.
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Figure 5.3: Crossing orbits, but no dynamical instability, between an initially res-
onant chain of satellites (compare with Fig. 5.1). We again used k2p

Qp
= 10−3 and

k2s

Qs
= 6×10−4 but with a mass distribution of log2

´

m2

m1

¯

= −4 and log2

´

m3

m1

¯

= -2.5

and a speed-up factor C of 100. The middle satellite’s orbit almost immediately
crosses that of the inner body, but not the outer body, and the system does not
go unstable. Again scaling our time accounting for the speed-up factor, we inte-
grated for 4 Gyr. We show only the time up to 700 Myr to highlight the interesting
behavior at the beginning of the integration.
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Figure 5.4: The same resonant arguments as plotted in Fig. 5.2, now for the sim-
ulation presented in Fig. 5.3. All resonances are initially active, but following a
significant perturbation at ∼250 Myr, ϕ32,o permanently ceases libration even as
the others eventually recover.
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with only three satellites, we require somewhat exotic values for both Saturn’s and

Titan’s Q parameter; we only observed instabilities for Qp = 100 and Qs = 1000.

[113] has argued that such a value for Qp could be possible, although it is over

a hundred times smaller than the commonly accepted value. Titan’s Q has been

estimated to be 100 [5]; we are unaware of any claim it could be as high as 1000.

However, these values are ill-determined even for the contemporary bodies; there is

far greater uncertainty regarding what they may have been several Gyr ago.

One might ask how the Galilean chain has remained stable if dynamical in-

stabilities are possible. We can answer this via our criteria from Section 5.3.1. We

find that instability requires a large inner mass and very small middle one, but the

largest Galilean moon, Ganymede, is the outermost of the chain, and the middle

moon, Europa, is a third of Ganymede’s mass (Io is half). This mass distribution is

thus ill-suited for instability. Furthermore, Jupiter’s k2
Q

is estimated to be ∼ 10−5

[121], which is likely too small to produce the rapid migration we argue is necessary

for instability.

5.4.2 Future Work

Here we only study systems of three satellites; perhaps adding a fourth or fifth

could lead to greater likelihood of instability. In particular, we envision a system

in which the inner mass is comparatively large while the two middle masses are

comparatively small; this is similar to the configuration that yielded instabilities in

this work, where the middle mass was subjected to two eccentricity resonances.
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Furthermore, we must show that the mergers from dynamical instabilities

can produce a body that then evolves into Titan, i.e., reproduces Titan’s observed

eccentricity, inclination, etc. This will require several sets of integrations: the initial

set to produce the instability, a new set that starts using the final conditions of the

previous set with a newly merged body and explores pathways to Titan’s modern

orbit, and finally, start-to-finish simulations that begin with a resonant chain of

satellites and end with Titan.

In addition, future work can study Hyperion’s origin. This model predicts that

Hyperion was formed from agglomeration of material kicked up during a merger that

did not re-settle onto the new body but instead escaped into orbit around Saturn

and piled up at a nearby resonance. With a suitable upgrade, HNBody will be able

to simulate this process.
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Chapter 6: Conclusions

6.1 Summary of Results

This thesis studied the role that resonances play in the origin and evolution of

rings, moons, and planets. Unsurprisingly, their role is a major one. We found the

7:6 MMR occupied by the Kepler 36 planets to be a crucial clue to its origins, which

we have studied extensively in Chapter 2. We find that a model in which the two

planets migrate inward through a swarm of lower-mass bodies while in resonance

can reproduce the two most puzzling features of the system; the planets’ close radial

spacing and their massive density contrast.

Next, in Chapter 3, we offered a new set of geometric orbital elements that

attempt to correct for perturbations due to oblateness, as parameterized by the J2,

J4, and J6 zonal harmonic coefficients. Unlike the standard epicyclic elements, our

elements correctly reduce to the osculating solution in the limit that the Ji are all

0. We compare both sets of elements to a simple numerical fit and find that our

analytic elements can perform at least as well as the epicyclic ones, depending on

the relative values of J2 and eccentricity e.

In Chapter 4, we turn to the confinement of narrow, eccentric rings, which

are known to orbit Saturn, Uranus, Neptune, and at least three small bodies. The
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standard “shepherd satellite” confinement theory cannot actually explain the con-

finement of many known narrow rings that are believed to be shepherdless. Instead,

we argue that these structures can confine themselves in the absence of any perturb-

ing satellite by arranging themselves such that they circularize rather than spread

upon losing energy due to internal collisions. We support our theory with numerical

simulations of Saturn’s Titan ringlet, which we show can confine itself so long as its

eccentricity remains above some critical value.

Turning from the Titan ringlet to Titan itself in Chapter 5, we investigate

whether dynamical instability amongst a resonant chain of ancient satellites at Sat-

urn could be responsible for its unusual modern-day features, i.e., its aberrantly

large eccentricity, inclination, and mass. We find that such instabilities are possible,

but unlikely for typically assumed values of k2
Q

for both Saturn and Titan.

6.2 Future Directions

While the Kepler 36 project initially aimed only to explain the origins of a

single system of planets, we could broaden the scope to attempt to explain the

overall distribution of resonances found in exoplanet systems, a problem that has

attracted attention for years. Furthermore, the elements we calculate in Chapter

3 only apply to two-dimensional systems; extension to three dimensions is a clear

next step. We also calculate eccentricity to zeroth order in e, which seems somewhat

paradoxical; a better approach could yield a more mathematically sound – and

accurate – expression for e.
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Most of the remaining work, however, lies in the rings and Titan projects. To

properly simulate narrow eccentric rings for hundreds of millions of years, we will

need to complete our HNBody upgrade to include a viscosity force for streamlines

and then verify that it can simulate self-confining ringlets as could epi int. Even

after the upgrade is complete, this will require a good deal of testing to ensure that

HNBody agrees with theoretical results.

We discussed the remaining work for the Titan project at the end of the pre-

vious chapter and briefly repeat it here for completeness. We can broaden our

parameter space to include simulations of four, possibly five satellites; we can per-

form start-to-finish simulations that begin with a resonant chain of satellites and

finishes with the modern Titan; and we can upgrade HNBody to simulate the origins

of Hyperion.

There is clearly no shortage of further work to be done. I can only hope that

this is a good start.

6.3 Facilities and Software used in this Thesis

1. HNDrag, Chapters 2, 3, and 5 [14]

2. epi int, Chapter 4 [4]

3. exoplanet.eu catalog, Chapter 2

4. Deepthought2, the UMD High Performace Computing Cluster, Chapters 2

and 5
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S. Pérez-Hoyos, R. Hueso, J. C. Guirado, V. Peris, and R. Iglesias-Marzoa.
The size, shape, density and ring of the dwarf planet Haumea from a stellar
occultation. Nature, 550(7675):219–223, October 2017.

[74] Larry W. Esposito. Planetary rings. Reports on Progress in Physics,
65(12):1741–1783, December 2002.

133



[75] P. Goldreich and S. Tremaine. Towards a theory for the Uranian rings. Nature,
277:97–99, January 1979.

[76] N. Borderies, P. Goldreich, and S. Tremaine. Sharp edges of planetary rings.
Nature, 299:209–211, September 1982.

[77] Nicole Borderies, Peter Goldreich, and Scott Tremaine. Nonlinear density
waves in planetary rings. Icarus, 68(3):522–533, December 1986.

[78] N. Borderies, P. Goldreich, and S. Tremaine. The formation of sharp edges in
planetary rings by nearby satellites. Icarus, 80(2):344–360, August 1989.

[79] Ignacio Mosqueira. Local Simulations of Perturbed Dense Planetary Rings.
Icarus, 122(1):128–152, July 1996.

[80] Ignacio Mosqueira, Paul R. Estrada, and Leigh Brookshaw. Hydrodynamical
Simulations of Narrow Planetary Rings. I. Scaling. Icarus, 139(2):260–285,
June 1999.

[81] E. I. Chiang and P. Goldreich. Apse Alignment of Narrow Eccentric Planetary
Rings. ApJ, 540(2):1084–1090, September 2000.

[82] Ignacio Mosqueira and Paul R. Estrada. Apse Alignment of the Uranian Rings.
Icarus, 158(2):545–556, August 2002.

[83] J. N. Cuzzi, A. D. Whizin, R. C. Hogan, A. R. Dobrovolskis, L. Dones, M. R.
Showalter, J. E. Colwell, and J. D. Scargle. Saturn’s F Ring core: Calm in
the midst of chaos. Icarus, 232:157–175, April 2014.

[84] Joseph N. Spitale. Saturn’s Misbegotten Moonlets. In AAS/Division of Dy-
namical Astronomy Meeting #48, AAS/Division of Dynamical Astronomy
Meeting, page 400.04, June 2017.

[85] Ke Zhang, Douglas P. Hamilton, and Soko Matsumura. Secular Orbital Evo-
lution of Compact Planet Systems. ApJ, 778(1):6, November 2013.

[86] D. C. Richardson. Tree Code Simulations of Planetary Rings. MNRAS,
269:493, July 1994.

[87] Matthew S. Tiscareno, Joseph A. Burns, Philip D. Nicholson, Matthew M.
Hedman, and Carolyn C. Porco. Cassini imaging of Saturn’s rings. II. A
wavelet technique for analysis of density waves and other radial structure in
the rings. Icarus, 189(1):14–34, July 2007.

[88] J. Salmon, S. Charnoz, A. Crida, and A. Brahic. Long-term and large-scale
viscous evolution of dense planetary rings. Icarus, 209(2):771–785, October
2010.

134



[89] Thomas Rimlinger, Douglas Hamilton, and Joseph M. Hahn. Ringing in an
HNBody Upgrade. In AAS/Division of Dynamical Astronomy Meeting #48,
AAS/Division of Dynamical Astronomy Meeting, page 205.05, June 2017.

[90] R. A. Jacobson, P. G. Antreasian, J. J. Bordi, K. E. Criddle, R. Ionasescu, J. B.
Jones, R. A. Mackenzie, M. C. Meek, D. Parcher, F. J. Pelletier, Jr. Owen,
W. M., D. C. Roth, I. M. Roundhill, and J. R. Stauch. The Gravity Field
of the Saturnian System from Satellite Observations and Spacecraft Tracking
Data. AJ, 132(6):2520–2526, December 2006.

[91] Yasuhito Sekine and Hidenori Genda. Giant impacts in the Saturnian
system: A possible origin of diversity in the inner mid-sized satellites.
Planet. Space Sci., 63:133–138, April 2012.

[92] Robin M. Canup. Origin of Saturn’s rings and inner moons by mass removal
from a lost Titan-sized satellite. Nature, 468(7326):943–946, December 2010.

[93] J. I. Lunine and D. J. Stevenson. Formation of the galilean satellites in a
gaseous nebula. Icarus, 52(1):14–39, October 1982.

[94] Jr. Graboske, H. C., J. B. Pollack, A. S. Grossman, and R. J. Olness. The
structure and evolution of Jupiter: the fluid contraction stage. ApJ, 199:265–
281, July 1975.

[95] P. Bodenheimer, A. S. Grossman, W. M. Decampli, G. Marcy, and J. B.
Pollack. Calculations of the evolution of the giant planets. Icarus, 41(2):293–
308, February 1980.

[96] Robin M. Canup and William R. Ward. Formation of the Galilean Satellites:
Conditions of Accretion. AJ, 124(6):3404–3423, December 2002.

[97] Y. Alibert, O. Mousis, and W. Benz. Modeling the Jovian subnebula. I. Ther-
modynamic conditions and migration of proto-satellites. A&A, 439(3):1205–
1213, September 2005.

[98] Robin M. Canup and William R. Ward. A common mass scaling for satellite
systems of gaseous planets. Nature, 441(7095):834–839, June 2006.

[99] Y. Alibert and O. Mousis. Formation of Titan in Saturn’s subnebula: con-
straints from Huygens probe measurements. A&A, 465(3):1051–1060, April
2007.

[100] T. Sasaki, G. R. Stewart, and S. Ida. Origin of the Different Architectures
of the Jovian and Saturnian Satellite Systems. ApJ, 714(2):1052–1064, May
2010.

[101] T. Ronnet and A. Johansen. Formation of moon systems around giant planets.
Capture and ablation of planetesimals as foundation for a pebble accretion
scenario. A&A, 633:A93, January 2020.

135



[102] Yuhito Shibaike, Satoshi Okuzumi, Takanori Sasaki, and Shigeru Ida. Satel-
litesimal Formation via Collisional Dust Growth in Steady Circumplanetary
Disks. ApJ, 846(1):81, September 2017.

[103] P. R. Estrada, I. Mosqueira, J. J. Lissauer, G. D’Angelo, and D. P. Cruikshank.
Formation of Jupiter and Conditions for Accretion of the Galilean Satellites,
page 27. 2009.

[104] A. Crida and S. Charnoz. Formation of Regular Satellites from Ancient Mas-
sive Rings in the Solar System. Science, 338(6111):1196, November 2012.

[105] Craig B. Agnor and Douglas P. Hamilton. Neptune’s capture of its moon
Triton in a binary-planet gravitational encounter. Nature, 441(7090):192–194,
May 2006.

[106] Scott Tremaine, Jihad Touma, and Fathi Namouni. Satellite Dynamics on the
Laplace Surface. AJ, 137(3):3706–3717, March 2009.

[107] Erik Asphaug and Andreas Reufer. Late origin of the Saturn system. Icarus,
223(1):544–565, March 2013.

[108] Luciano Iess, Robert A. Jacobson, Marco Ducci, David J. Stevenson,
Jonathan I. Lunine, John W. Armstrong, Sami W. Asmar, Paolo Racioppa,
Nicole J. Rappaport, and Paolo Tortora. The Tides of Titan. Science,
337(6093):457, July 2012.
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