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ABSTRACT

The claimed discovery of a Jupiter-mass planet in the close triple star sys-

tem HD 188753 poses a problem for planet formation theory. A circumstellar

disk around the planet’s parent star would be truncated close to the star, leav-

ing little material available for planet formation. In this paper, we attempt to

model a protoplanetary disk around HD 188753A using a fairly simple α-disk

model, exploring a range of parameters constrained by observations of T Tauri-

type stars. The disk is truncated to within 1.5 to 2.7 AU, depending on model

parameters. We find that the in situ formation of the planet around HD 188753A

is implausible.

Subject headings: stars: individual (HD 188753) — planetary systems: proto-

planetary disks — planetary systems: formation

1. Introduction

Recently, Konacki (2005) has claimed the detection of a short-period Jupiter-mass planet

in the close triple system HD 188753. The most luminious member, HD 188753A (1.06 M⊙),

hosts the planet, and its companion, HD 188753B, orbiting at a semi-major axis of 12.3

AU, is actually a spectroscopic binary itself, with total mass 1.63 M⊙. While the planet is

a typical “hot Jupiter,” with a minimum mass of 1.14 MJ and orbital period of 3.35 days,

its existence in such a close binary system is exceptional. With an eccentricity of 0.5, the

B component is 6 AU from the A component at closest approach, which would severely

truncate a protoplanetary disk around A. A study of test particle orbits indicates that the

disk should be truncated at 1.3 AU (Pichardo et al. 2005; Konacki 2005). However, analysis

of Lindblad resonances in gaseous disks in eccentric binary systems suggest that the disk

might extend somewhat further out, depending on the disk’s Reynolds number (Artymowicz
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& Lubow 1994, henceforth AL). In any case, the circumstellar disk will be truncated well

within 6 AU. Given such a small disk, could the 1.14 MJ planet around HD 188753 have

formed in situ?

For the purposes of this paper, we adopt an α-disk model that includes heating both

from viscous accretion and stellar irradiation from the central star. The advantage of using

such a model is that the properties of the disk are controlled by a handful of parameters,

even though the microphysics of the processes are not fully modelled. In the case of a

circumstellar disk around an isolated star, these models provide good fits to observed SEDs

(D’Alessio et al. 2001). In a binary system, the companion object can substantially distort

the disk, creating non-axisymmetries and spiral structures. Adequately modelling these

phenomena requires high resolution hydrodynamic simulations, which are time-consuming

and computationally intensive. The objective of this paper is to establish limits on the

feasibility of in situ planet formation in HD 188753 without resorting to such simulations,

hence we adopt a simple α-disk model, exploring a range of disk parameters to put limits

on the possibility of planet formation. Shock heating from the generation of spiral structure

in the disk is likely to inhibit rather than encourage planet formation (Nelson 2000; Mayer

et al. 2005), so showing that planet formation cannot occur in the more quiescent α-disk

model puts a strong constraint on planet formation in HD 188753.

Other workers have studied the possibility that HD 188753 formed in a crowded stellar

environment and that the planet’s presence around the A component is a result of dynamical

interactions. Pfahl (2005) and Portegies Zwart & McMillan (2005) agree that the most

likely scenario is that the planet formed around A, which then swapped into a pre-existing

hierarchical triple system. In this paper, we support this scenario by ruling out in situ

formation of the planet.

Although there is some debate about exactly how planets form, whether by core accre-

tion (e.g. Pollack et al. 1996; Chambers 2004) or disk instability (e.g. Boss 1997, 2000, 2001),

it is generally accepted that planets form out of disks of circumstellar material accreting onto

the star. A truncated disk around HD 188753A puts severe limits on the amount of material

that could be available for planet formation. In this paper, we explore the possibilities of

planet formation in such a disk. The disk models used in this paper are based on established

α-disk models for T Tauri stars, which are the prototypes for protoplanetary disks (Calvet

et al. 1991; D’Alessio et al. 1998, 1999; Jang-Condell & Sasselov 2004).

In §2, we summarize the disk model we adopt for this paper and describe the range of

parameters we will explore. In §3, we present the results of the parameter study, describe the

calculation of truncation radii for the disks, and describe the calculation of the particulate

content of the disks. In §4, we discuss our results in the context of both the core accretion
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and disk instability models for planet formation, including effects that might enhance the

possilibity of planet formation. In §5, we present our conclusions.

2. Model Description

The calculation for the disk models analyzed in this paper is described in detail in

Jang-Condell & Sasselov (2003, 2004), and summarized in the appendix. We assume an

α-disk model, where the viscosity ν is given by ν = αcsH where cs is the sound speed,

H is the thermal scale height of the disk, and α is a dimensionless parameter (Shakura &

Sunyaev 1973; Pringle 1981). The temperature of the disk is set by stellar irradiation at the

surface and viscous heating at the midplane. The radial and vertical density and temperature

structure of the disk is calculated iteratively to achieve self-consistency. We adopt stellar

parameters of mass M∗ = 1 M⊙, temperature T∗ = 4280 K, and radius R∗ = 2.6 R⊙,

corresponding to a 1 Myr old star with metallicity Z = 0.02 (Siess et al. 2000).

The two remaining free parameters for our disk models are the mass accretion rate onto

the star, Ṁ , and the viscosity parameter, α. Accretion rates of T Tauri stars are calculated

by subtracting template spectra from the observed spectra and assuming that the excess

optical and near-ultraviolet continuum flux comes from the accretion shock caused by disk

material falling onto the stellar surface (Gullbring et al. 1998). Typical accretion rates are

around Ṁ ∼ 10−9−10−7M⊙ yr−1. Values for α are calculated by fitting α-disk models to dust

emission from disks at millimeter wavelengths, with a typical value of α ∼ 0.01 (Hartmann

et al. 1998). The D/H ratio in the outer solar system suggests that the early solar nebula

may have experienced accretion rates as large as 10−5M⊙ yr−1 (Hersant et al. 2001). FU Ori

objects may accrete as much as 10−4 M⊙ yr−1, but these are transient phenomena, lasting

at most 100 years, so these high accretion rates are not expected to be sustainable in the

long run (Calvet et al. 2000; Hartmann & Kenyon 1996). For the sake of argument, we will

include an accretion rate of 10−4 M⊙ yr−1 in our suite of models, bearing in mind that this

would be an extreme system, not representative of planet-forming disks in general. Given

these observational constraints, we calculate a grid of disk models, with α set to 0.001, 0.01

or 0.1, and Ṁ set to 10−4, 10−5, 10−6, 10−7, 10−8 or 10−9 M⊙ yr−1. We calculate the models

out to 256 AU, but consider only the material interior to the truncation radius to be available

for planet formation. We shall refer to a given disk model by the coordinate pair (α, Ṁ), so

that Model (0.01, 10−7) refers to the run with α = 0.01 and Ṁ = 10−7 M⊙ yr−1.
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3. Results

3.1. Mass Profiles

The mass profiles of our set of models are shown in Figure 1. The total disk mass is

defined as the mass interior to the given radius. Solid, dotted, and dashed lines correspond

to α = 0.001, 0.01, and 0.1, respectively. Accretion rates are indicated by symbol shape and

color: orange hexagons for 10−4, red circles for 10−5, green triangles for 10−6, blue squares

for 10−7, cyan stars for 10−8, and magenta asterisks for 10−9 M⊙ yr−1. The points mark the

truncation radii of each disk model, as will be discussed in §3.2.

The overall mass of the disk increases with increasing accretion rate and decreasing α.

Models (0.1, 10−8), (0.1, 10−9), and (0.01, 10−9) contain less than 10 MJ within 100 AU, so

we can rule out these disks as having too little mass to form a Jupiter-mass planet and ignore

them for the remainder of this study.

3.2. Disk Truncation Radius

The disk around a protostar will be disrupted by the orbit of a close stellar companion.

For the purposes of this paper, we will assume that the pair of stars composing HD 188753B

act dynamically as a single object. Supposing that planet formation takes place with the

stars in their current orbital configuration, how much will a disk around HD 188753A be

truncated? One way to approach the problem is to calculate orbits of test particles to look

for stable orbits (Pichardo et al. 2005). This method gives a truncation radius of 1.3 AU,

regardless of disk model parameters.

Another method is to analyze resonant torques and approximate the size of the disk to

be where resonant and viscous torques balance (AL). In this case, the disk size depends on the

Reynolds number, Re ≡ [(H/r)2α]−1, where r is the disk radius. We take H/r = cs/(rΩp),

where Ωp =
√

GM⋆/r3 is the orbital angular speed of the planet. Figures 7 and 8 of AL show

truncation radii versus eccentricity and Reynolds number for binary mass ratios of µ = 0.1

and 0.3, where µ is the ratio of the stellar mass to the total binary mass. HD 188753A has

an eccentricity of e = 0.5 and µ = 0.4. Reading off values from Figures 7 and 8 of AL,

we can determine the variation of truncation radii with Reynolds number for e = 0.5 and

µ = 0.1 or 0.3. We can then extrapolate between these two curves to find truncation radii

versus Reynolds number for µ = 0.4.

The Reynolds number in each disk model depends on the input parameters, but stays

fairly flat with radius, as shown in Figure 2. The lines are labelled in the same way as in
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Figure 1. The dependence of truncation radius on Reynolds number as calculated above

is also plotted as a long-dashed line. The apparent break in slope is a result of sampling

in Re value: AL calculated truncation radii for integral values of log(Re), so intermediate

values need to be interpolated. From the intersection of this line with each model profile,

we determine a unique truncation radius for each disk model. These radii and the enclosed

disk masses (Mdisk) are tabulated in Table 1.

These truncation radii are systematically larger than those of Pichardo et al. (2005), so

we adopt the larger values to be conservative. We have marked the truncation radii for each

model on Figure 1 so we can read off the mass of disk material within the truncated disk.

Only disks with accretion rates of at least 10−7 M⊙ yr−1 contain more than 1 MJ within their

truncation radii, ruling out at least half the models. Planet formation is not 100% efficient,

so we can probably even rule out accretion rates of less than 10−6 M⊙ yr−1.

We shall assume that the disks are dynamically truncated and that irradiation from the

stellar companion is negligible compared to heating from viscous accretion and the central

star. Inclusion of this irradiation would most likely only further decrease the likelihood of

planet formation since it would provide an additional heat source at the outer edge of the

disk, inhibiting planet formation by either core accretion or disk instability. In the absence

of additional accretion of material past the companion’s orbit onto the disk, the disk should

be viscously spreading both inwards and outwards. The calculated truncated disk masses

should be considered upper limits because of these considerations.

3.3. Disk Characteristics

Table 1 summarizes some of the characteristics of out truncated disk models. For each

disk model, we list its truncation radius rtr, the mass of the truncated disk Mdisk, the disk

lifetime tdisk ≡ Mdisk/Ṁ , and the minimum value for the Toomre Q parameter Qmin.

Disk lifetime decreases with increasing α and increasing accretion rate. However, all the

disk lifetimes are less than 2×105 years, whereas core accretion takes several millions of years

(Pollack et al. 1996; Inaba et al. 2003; Hubickyj et al. 2005). The presence of a circumbinary

disk may provide a reservoir that replenishes the circumstellar disk and extends its lifetime

(Artymowicz & Lubow 1996; White & Ghez 2001). AL predict that accretion of circumbinary

material should proceed faster onto the smaller-mass star, but observations of binary T Tauri

stars appear to refute that (White & Ghez 2001).

The Toomre Q parameter is a measure of whether or not a gaseous disk is locally stable
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to axisymmetric perturbations. It is defined as

Q =
csκ

πGΣ
(1)

where κ is the epicyclic frequency, G is the gravitational constant, and Σ is the local gas

surface density of disk (Binney & Tremaine 1987). In a disk with approxmate Keplerian

rotation, κ ≈ ΩK . In our α-disk models, Q decreases with radius, so Qmin is evaulated at

rtr. We also find that Qmin is inversely correlated with Mdisk – the most massive disks have

the lowest values of Q. The criterion for stability against fragmentation is Q & 1, so all our

disks are stable.

3.4. Solid Formation

In order to form a planet by core accretion, there must be sufficient mass of solid material

to coagulate into a dense core which can then accrete gas. We use the results of Pollack

et al. (1994) for sublimation temperatures and mass fractions of olivines, orthopyroxene, iron,

water, troilite, refractory organics and volatile organics, which compose the bulk of the dust

in the protoplanetary disks. We take into account the variation of sublimation temperatures

with gas density and calculate the total amount of solid material available in the disk as a

function of disk size. These results are plotted in Figure 3. The line types correspond to the

same models as the line types in Figure 1. The disk models were calculated at intervals of

∆ log(r) = log
√

2, which is evidenced as apparent breaks in slope in the disk profiles. The

steepening of the slopes toward small r is due to the sublimation of solids with increasing

temperature. Truncation radii are indicated by points whose size indicate the relative total

masses of the disks. Filled symbols mark those disks with more than 1 MJ total mass, open

symbols (and asterisks) mark those below 1 MJ in total mass.

In general, disks with higher accretion rates and lower α are hotter. The disks with the

highest accretion rates are therefore depleted in solids, even though they are overall more

massive. Lower values of α favor both more massive disks as well as more solid condensation.

Models (0.001, 10−7) and (0.001, 10−6) are the most favorable for planet formation under the

core accretion scenario, but even they contain just a few M⊕ of material. Given that at

least 10 M⊕ are required to form a Jupiter-mass planet, this amount of solid material is

insufficient for planet formation (Pollack et al. 1996; Inaba et al. 2003; Hubickyj et al. 2005).
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4. Discussion

There are two main paradigms of planet formation – core accretion and disk instability.

In core accretion, solid particles grow and aggregate until a body with sufficient mass to

accrete gas forms. In disk instability, the disk fragments into gas giant planets. In this

section, we address the likelihood of either mechanism taking place in the suite of disk

models we have calculated.

4.1. Core Accretion

As discussed in the previous section, none of our disk models contain enough solids

within rtr to form a sufficiently massive core to accrete gas. In addition, the lifetimes of the

disks are too short for core accretion to occur. However, observations of young binary stars

indicate that their disks are often replenished by a circumbinary reservoir of material (Monin

et al. 2006). Here, we will attempt to salvage core accretion by extending the disk’s lifetime

via replenishment and allowing additional solid material filter through the disk. Can a 10

M⊕ planet core still be assembled under these conditions?

Solid particles can cross the gap between a circumbinary disk and a circumstellar disk

if they are small and coupled to the gas. Otherwise they do not lose angular momentum

efficiently enough to be captured by the star. This rules out the addition of large planetesi-

mals (& 1 km) to the circumstellar disk that could be precursors to a large planet embryo –

planetesimals must be built up from small dust particles.

As particle sizes increase, they experience drag forces that move them through the

disk and may allow local enhancements in solid particle densities (e.g. Youdin & Shu 2002;

Youdin & Chiang 2004). When the surface density of particles reaches a critical value, Σc,

the particles may be able to undergo gravitational instability to quickly form planetesimals.

This is not be confused with disk instability, which is when the gas in the disk fragments

into gravitationally bound clumps. Disk instability will be discussed later in this paper. We

will follow the formalism of Youdin & Shu (2002), ignoring turbulent stresses, for simplicity.

Weidenschilling (2003) argues that turbulent stresses would inhibit particle accumulations,

which would only further strengthen our result. On the other hand, Youdin & Chiang

(2004) find that turbulent stresses should hasten accumulations rather than inhibit them,

but since we will be calculating steady state particle densities, our results will not be affected

qualitatively.

We define Σp as the surface density of solids. When Σp reaches a certain critical thresh-

old, turbulent mixing can no longer prevent particles from settling out to the midplane. At
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this point, the midplane particle density formally goes to infinity and gravitational instability

of the particle layer can result in the rapid formation of large bodies (Sekiya 1998; Youdin

& Shu 2002). This critical surface density is

Σc = 2
√

Ricηrρgs(ψ) (2)

where Ric ≈ 1/4 is the Richardson number at the onset of Kelvin-Helmholtz instability, ρg

is the density of the gas at the midplane, η is fractional velocity differential between the gas

and Keplerian rotation

η ≡ − ∂P/∂r

2ρgrΩ2
K

, (3)

where P is the gas pressure and

s(ψ) = (1 + ψ) ln[(1 + ψ +
√

1 + 2ψ)/ψ] −
√

1 + 2ψ, (4)

where ψ = 4πGρg/Ω
2
K .

In Figure 4, we plot Σc versus radius for our models as dotted lines. For comparison,

we also plot the unperturbed surface density of solids (Σp,0) as solid lines. The models are

sorted column-wise by α as labelled at the top, and row-wise by accretion rate as labelled on

the right. We have omitted (0.001, 10−5) and (0.01, 10−5) because the temperatures in those

disks are everywhere too hot inside of 2.5 AU for any solids to remain. In all our models,

Σp,0 is at least an order of magnitude below the threshold for gravitational instability to

operate.

A particle of radius a is subject to a headwind as it decouples from the gas and tries to

orbit at the Keplerian velocity rather than the gas velocity, which is slower due to pressure

support (Weidenschilling 1977; Youdin & Shu 2002). The radial drift of the particle can be

described by the Epstein drag law:

vEp = −tst
ρg

∂P

∂r
= 2ηtstΩ

2
Kr (5)

where the stopping time is defined as

tst =
ρsa

ρgcs
(6)

where ρs is the bulk density of the particle.

Does Σp ever exceed the critical density for gravitational instability to operate? To

answer this question, we need to calculate how Σp evolves according to the drift rates calcu-

lated above. We will assume that the gas, which composes the bulk of the mass in the disk,
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is unperturbed by the movement of the solid particles. Our assumptions will be as gener-

ous as possible toward the onset of gravitational instability in order to put firm constraints

on core formation. We calculate the evolution of Σp in each of our disk models interior to

2.5 AU, and assume that the amount of solids at the outer boundary is held constant by

replenishment from some external reservoir, such as a circumbinary disk.

The continuity equation for Σp can be written as

r
∂Σp

∂t
=

∂

∂r
(rΣpvr). (7)

where vr is the inward radial velocity of the particle. In steady state, the left side of equation

(7) vanishes. In principle, the time evolution of Σp may result in significant transient increases

locally in the disk. However, for the following analysis, we have calculated both the time-

dependent and steady-state Σp and find that the time for relaxation to steady state is shorter

than the calculated disk lifetimes, and there are no significant transient spikes in the density

profile.

The constant of integration for the right side of equation (7) is essentially the mass

flow rate of solids through the disk, which is set by the boundary condition of the rate of

replenishment of solids at the outer edge of the disk, dMp/dt ≡ 2πrvrΣp. However, we also

need to take into account the sublimation of solids as they fall inwards into regions of higher

temperatures and pressures. If we define f(r) to be the equilibrium mass fraction of solids

to total disk material at the midplane temperature and density, then

Σp =
f(r)

2πrvrf(ro)

dMp

dt
. (8)

where ro = 2.5 AU is the outer radius of the disk.

If we assume that the steady state particle inflow rate is given by holding Σp(ro) constant

and setting vr = vEp, then

Σp,d =
rovEp(ro)

rvEp

f(r)Σ(ro). (9)

where the subscript d indicates that we have assumed that vr = vEp. The quantity vEp(ro)/vEp

is independent of a, so the total pileup particle density integrated over a depends only on the

characteristics of the unperturbed disk, not on the size distribution of particles. In Figure 4,

we plot Σp,d for each of our models as a dot-dashed line. Although there is some steepening

of the density profile toward smaller radii, it is not enough to raise the surface density of

solids above the critical threshold for any disk model at any radius.

A different way to treat the boundary condition is that the disk is being replenished at

a rate equal to that accretion rate, so dMp/dt = f(ro)dM/dt. In this case, we need to take
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into account the radial velocity of the gas itself, which is being accreted onto the star. The

smaller particles remain coupled to the gas, and leaving out the gas velocity would result in

an unphysical accumulation of the smallest particles at the disk’s outer edge. For a constant

accretion rate, the radial velocity of the gas is

vgas =
dM/dt

2πrΣ
(10)

and the total radial velocity of the particles is vr = vgas + vEp. The equation for the steady-

state surface density of particles of size a is

Σp,g(a) =
f(r)

2πr(vgas + vEp)

dM

dt
m(a) (11)

where m(a) is the normalized mass distribution of particles of size a and the subscript

g refers to the gas velocity being accounted for. If we assume the bulk density of the

particles is constant and the number density of particles with radii between a and a+ da is

n(a)da ∝ a−pda, then

m(a) =
(4 − p)a3−p

a
(4−p)
max − a

(4−p)
min

≈ (4 − p)a3−p

a
(4−p)
max

(12)

for p < 4 and amax ≫ amin. The parameters for our dust model are p = 3.5 with amax = 1mm

and amin = 5 × 10−3 µm. Then,

Σp,g(r) =
f(r)Ṁ

2πr
[vgasvEp(amax)]

−0.5

[

arctan

√

vEp(amax)

vgas
− arctan

√

vEp(amin)

vgas

]

. (13)

In Figure 4, we plot Σp,g for each of our models as a dashed line. For the higher accretion

rates, Σp,g differs little from Σp,0. This is because the radial velocity of the gas is higher than

the radial velocity of the dust, so the movement of the gas dominates the flow. At lower

accretion rates, Σp,g actually falls below Σp,0 because the dust is being swept in ahead of

the gas. This is accompanied by a slight steepening of the profile. Although there is some

transient accumulation of solids as the density profile evolves to steady state, it is small

and never approaches Σc. This analysis omits many important physical processes such as

magnetic fields, grain growth beyond 1 mm, and radiation pressure, but any process that

would allow for gravitional instability to occur would have to increase the surface density by

more than an order of magnitude.

Alternatively, kilometer-sized planetesimals can form via grain-grain collisions in about

104 years at 1 AU in the early solar nebula, assuming perfect sticking in collisions (Weiden-

schilling & Cuzzi 1993). This also assumes that they grow quickly past 1-100 cm in size,

because particles of that size spiral into the star on the order of 100 years (Weidenschilling
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1977). In this scenario, planetesimals form out of the dust that is carried in with the gas

from the outer reservoir. Once they reach about a kilometer in size, they decouple from

the gas. As more material comes in from the the circumbinary reservoir, the population of

kilometer-sized bodies grows. They collide with each other and coaslesce until a planet core

is built up. However, growth of this planet core is limited by the size of the feeding zone

and by the amount of solids available. Most simulations of giant planet core formation in

the early solar nebula are set at 4-5 AU because the feeding zone is sufficiently large and the

solid abundance is enhanced by ice formation at those distances (e.g. Pollack et al. 1996).

This is well outside the disk truncation radius for HD 188753A. Moreover, stirring by the ec-

centric binary companion will raise relative velocities between planetesimals, increasing the

likelihood that collisions will result in disruption of bodies rather than coalescence (Thébault

et al. 2006). A detailed simulation of this process is outside the scope of this paper, so we

will rule planet formation in HD 188753 via core accretion unlikely, but not impossible.

4.2. Disk Instability

Since disk instability can occur within a thousand years, perhaps this is a more plausible

mechanism for planet formation (e.g. Boss 2001). If Q . 1, disk instability can operate –

that is, the disk needs to be sufficiently cold and/or massive in order for gravitationally

bound clumps to form. The minimum Q is shown for our various disk models in Table 1.

For all the disk models, Q is above the stability threshold of Q & 1.

Boss (2001) shows that disk instability can act in disks that are only marginally stable,

with Q ≈ 1.5, which the disk model (0.001, 10−4) achieves at its outer edge. In Figure 5, we

plot the variation of Q with distance from the star for the disk models with the lowest values

of Q. Note that Q increases rapidly as the gas moves inward as the disk gets accreted by

the star. As discussed before, accretion rates of 10−4 M⊙ yr−1 are observed only as transient

phenomena in young stars, lasting less than 100 years. Simulations show disk instability

acting in several hundreds of years, so even disk instability may not proceed fast enough to

create a giant planet (Boss 2001). This disk model has a lifetime of only 3000 years, which

also limits the timescale for planet formation. The parts of the disk that are marginally

unstable at the outer edge accrete inward rapidly to where Q is well above the stability

threshold.

The eccentric stellar companion to HD 188753 could excite spiral density waves in the

disk, increasing the surface density in parts of the disk. Since Q varies inversely with Σ, local

enhancements of the surface density may make parts of the disk unstable to gravitational

collapse. The most massive disk models also have the smallest values of Q, so planets may
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be able to form if density waves can create sufficient density enhancements. On the other

hand, shock heating raises the temperature of the disks, which in turn raises Q.

A number of simulations of triggered planet formation in binary disks have been carried

out. Boss (2006) shows that a binary companion can trigger disk fragmentation, whereas

Nelson (2000) finds that shock heating inhibits disk fragmentation. The difference between

these results is in cooling times – short cooling times lead to clump formation while long

cooling times inhibit it. Mayer et al. (2005) examine a range of cooling times for their

simulations and conclude that shock-heating inhibits fragmentation in general, except for

the shortest cooling times. All these simulations were carried out in disks that were already

only marginally stable, with Q ∼ 1.4, and were subject to fragmentation even in isolation,

being cooler and larger than the ones we have modelled here. Moreover, Mayer et al. (2005)

find that fragmentation is inhibited by the presence of a binary companion in more massive

disks, even if they form clumps in isolation. All the disks considered in this study are above

the stability threshold of Q ∼ 1.4. The disks with the lowest values of Q are also the most

massive, so we conclude that the presence of the binary companion does not enhance disk

fragmentation, but may even do the opposite. Thus, we can rule out planet formation by

disk instability.

5. Conclusions

The in situ formation of HD 188753’s planet appears to be unlikely according to current

models of planet formation. Assuming a simple truncated α-disk model for the protoplane-

tary disk around HD 188753A, we have studied a range of disk parameters that are repre-

sentative of observed protoplanetary disks and found that even if we can model a disk with

sufficient total mass within the disk truncation radius, its timescales are too short, it contains

insufficient solids, and it is too hot for planets to form by generally accepted mechanisms.

A steady-state disk around HD 188753 does not contain enough solids to form a massive

enough core to accrete a gaseous envelope. If the disk is replenished by a circumbinary reser-

voir, enough solids could be delivered to the circumstellar disk to assemble a protoplanetary

core, in principle. However, the temperature of the disk and the sitrring by the eccentric

binary make it a hostile environment in which to assemble this core.

Disk instability not well-favored either. The only disk model that is even marginally

unstable to fragmentation has an accretion rate of 10−4 M⊙ yr−1, which is only seen in

extreme, transient systems, namely FU Ori outbursts. The instability is favored only in

the outer reaches of the disk, which are most subject to perturbation and disruption by the
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eccentric companion.

Admittedly, an α-disk model is a very simple system and real disks are likely to be much

more complex than the model predicts. However, it is still a useful tool for analyzing some

of the properties of protoplanetary disks. A close stellar companion will create additional

complexity to the disk model, introducing highly non-axisymmetric structures such as spiral

waves which cannot be adequately modelled by a simple α-disk. Excitation of spiral density

waves is more likely to disrupt planet formation than enhance it through shock heating,

which will sublimate dust particles and elevate Q. The eccentric stellar companion is also

likely to stir up any forming planetesimals and destroy them by smashing them into each

other. To adequately model these effects, however, requires a high-resolution hydrodynamic

simulation, which is beyond the scope of this paper.

Many thanks go to John Chambers, Dimitar Sasselov, Alan Boss, and Alycia Weinberger

for helpful discussions and comments in the preparation of this paper. This research was sup-

ported by the NASA Astrobiology Institute under Cooperative Agreement NNA04CC09A.

A. Detailed Disk Structure

The disk model has been described in detail in Jang-Condell & Sasselov (2003, 2004),

but a summary is provided in this section. We adopt the formalism developed by Calvet

et al. (1991) and D’Alessio et al. (1998, 1999), with some simplifying assumptions. We use

the opacities from D’Alessio et al. (2001) using a dust model with parameters amax = 1 mm,

T = 300 K, and p = 3.5, assuming that the dust opacities are constant throughout the

disk. The values for the opacities (in cm2g−1) are as follows: the Rosseland mean opacity is

χR = 1.91, the Planck mean opacity at disk-temperature (300 K) wavelengths is κP = 0.992,

and the Planck mean opacities at stellar-temperature (4000 K) wavelengths are χ∗

P = 5.86

and κ∗P = 1.31. The fraction of stellar radiation that is absorbed is represented by the

absorption coefficient, αabs = κ∗P/χ
∗

P , while the scattered fraction is σ = 1 − αabs.

We assume that the disk is locally plane parallel to decouple the radial and vertical

dependencies of the disk properties. For a given radius r, the vertical structure is calculated

as follows. The optical depth is given by

τd(z) =

∫ z∞

z

χRρ(z
′)dz′. (A1)

The density and temperature are calculated assuming hydrostatic equilibrium,

dP

dz
= −ρGM∗z

r3
. (A2)
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We assume the ideal gas law, P = ρkT/m̄, where k is the Boltzmann constant and m̄ is the

mean molecular weight of the gas, which we assume to be primarily molecular hydrogen.

The temperature in the disk as a function of optical depth and angle of incidence of

stellar radiation µs can be expressed as

T (τd, µs) = [T 4
v (τd) + T 4

r (τd, µs)]
1/4 (A3)

where Tv and Tr are temperatures due solely to viscous heating and stellar irradiation,

respectively.

We assume that viscous flux is generated at the midplane and transported radiatively

in a grey atmosphere so that

Tv =

[

3Fv

8σB
(τd + 2/3)

]1/4

(A4)

where σB is the Stefan-Boltzmann constant. The viscous flux Fv at a distance r for a star

of mass M⋆ and radius R⋆ accreting at a rate Ṁa is

Fv =
3GM⋆Ṁa

4πr3

[

1 −
(

R⋆

r

)1/2
]

(A5)

(Pringle 1981).

Since we have assumed that the opacities are constant throughout, the optical depth to

stellar frequencies is related to the optical depth to disk frequencies as τs = (χ∗

P/χR)τd. The

equation for Tr is
σBT

4
r

π
=
αabsFirrµs

4π

[

c1 + c2e
−τs/µs + c3e

−βτs

]

, (A6)

where we define β =
√

3αabs to get

c1 =
6 + 9µsχR/χ

∗

P

β2
− 6(1 − χR/χ

∗

P ) (3 − β2)

β2(3 + 2β)(1 + βµs)
(A7)

c2 =

(

χ∗

P

µsκP

− 3µsχR

χ∗

P

)

(1 − 3µ2
s)

(1 − β2µ2
s)

(A8)

c3 =

(

βχ∗

P

κP

− 3χR

χ∗

Pβ

)

(2 + 3µs)(3 − β2)

β(3 + 2β)(1 − β2µ2
s)
. (A9)

The upper boundary condition is set so that P (z∞) = 10−10 dyne, and we integrate the

equations for τd, ρ, and T down to the midplane using some initial guess for z∞. The other

boundary condition is that we match the total integrated surface density

Σ =

∫ z∞

−z∞

ρ dz′ (A10)
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with the surface density given by a steadily accreting viscous disk

Σ =
Ṁ

3πν

[

1 −
(

R⋆

r

)1/2
]

(A11)

(Pringle 1981). We adopt a standard Shakura-Sunyaev viscosity with ν = αcsH (Shakura

& Sunyaev 1973). Depending on the difference between equation (A10) and equation (A11),

we adjust our guess for z∞ until the values for Σ converge.

The angle of incidence, µs, depends on slope of surface dzs/dr, where zs is the “surface”

of the disk, where τs/µs = 2/3. To get a self-consistent answer for µs we iteratively calculate

the vertical structure of the disk at intervals of ∆ log r = 1
2
log 2, calculating the slope of the

surface between intervals of r. For completeness, the disk models are calculated out to 256

AU, even though only the inner few AU are relevant for this study.

REFERENCES

Artymowicz, P. & Lubow, S. H. 1994, ApJ, 421, 651

—. 1996, ApJ, 467, L77

Binney, J. & Tremaine, S. 1987, Galactic dynamics (Princeton, NJ, Princeton University

Press, 1987, 747 p.)

Boss, A. P. 1997, Science, 276, 1836

—. 2000, ApJ, 536, L101

—. 2001, ApJ, 563, 367

—. 2006, ApJ, 641, 1148

Calvet, N., Hartmann, L., & Strom, S. E. 2000, Protostars and Planets IV, 377

Calvet, N., Patino, A., Magris, G. C., & D’Alessio, P. 1991, ApJ, 380, 617

Chambers, J. E. 2004, Earth and Planetary Science Letters, 223, 241

D’Alessio, P., Calvet, N., & Hartmann, L. 2001, ApJ, 553, 321

D’Alessio, P., Calvet, N., Hartmann, L., Lizano, S., & Cantó, J. 1999, ApJ, 527, 893
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Table 1. Calculated values for the disk models

α Ṁ rtr Mdisk tdisk Qmin

(M⊙ yr−1) (AU) (M⊙) (yr)

0.001 10−4 2.0 3.0 × 10−1 3.0 × 103 1.5

0.001 10−5 1.9 7.0 × 10−2 7.0 × 103 4.1

0.001 10−6 1.8 1.6 × 10−2 1.6 × 104 11

0.001 10−7 1.7 3.8 × 10−3 3.8 × 104 30

0.001 10−8 1.6 8.7 × 10−4 8.7 × 104 83

0.001 10−9 1.5 1.9 × 10−4 1.9 × 105 300

0.01 10−4 2.3 5.8 × 10−2 5.8 × 102 6.3

0.01 10−5 2.2 1.3 × 10−2 1.3 × 103 17

0.01 10−6 2.0 3.0 × 10−3 3.0 × 103 48

0.01 10−7 1.9 7.0 × 10−4 7.0 × 103 130

0.01 10−8 1.8 1.6 × 10−4 1.6 × 104 380

0.1 10−4 2.7 1.1 × 10−2 1.1 × 102 26

0.1 10−5 2.5 2.6 × 10−3 2.6 × 102 72

0.1 10−6 2.3 5.9 × 10−4 5.9 × 102 200

0.1 10−7 2.2 1.3 × 10−4 1.3 × 103 560
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Fig. 1.— Enclosed disk mass versus radius for the suite of calculated disk models, in units of

Jupiter masses. The accretion rate is indicated by color and symbol type: orange hexagons

for 10−4, red circles for 10−5, green triangles for 10−6, blue squares for 10−7, cyan stars for

10−8, and magenta asterisks for 10−9 M⊙ yr−1. Models with α of 0.001, 0.01 and 0.01 are

indicated by solid, dotted and dashed lines, respectively. The locations of the points mark

the truncation radius for each disk model.
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Fig. 2.— Reynolds number versus disk radius for our calculated disk models. The lines are

labelled in the same way as Figure 1. The black long-dashed line illustrates the dependence

of the truncation radius (horizontal axis) varies with Reynolds number (vertical axis) as cal-

culated following AL for the parameters relevant to the HD 188753 system. The intersection

of this line with the line corresponding to each of the disk models is the truncation radius

for that model.
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Fig. 3.— Total amount of solid material, in earth masses, available for core formation versus

enclosing radius. The lines are labelled in the same way as Figure 1. The points mark the

truncation radius for each disk model, with the size of the triangle indicating the relative

overall disk mass. Filled (open) triangles mark disks containing more than (less than) 1 MJ .
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Fig. 4.— Surface densities of solids as a function of distance from the star for planetesimal

formation via disk instability, for each model disk as labelled. In each plot, the solid line

shows the initial surface density of solids, Σp,0. The dotted line shows Σc, the critical surface

density required for disk instability to occur. The dot-dashed line shows Σp,d, the steady-

state surface density of solids assuming that all the particles spiral in with a drift rate of

dr/dt = vEp. The dashed line shows Σp,g, the steady-state surface density of solids assuming

that particles drift inward as dr/dt = vgas + vEp. The models (0.001, 10−5), (0.01, 10−5), and

all those accreting at 10−4 M⊙ yr−1 are too hot for any solids to form inside of 2.5 AU.
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Fig. 5.— Toomre Q parameters versus radius for those disk models with the lowest values

of Q.


