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ABSTRACT

Galactic disks in triaxial dark matter halos become deformed by the elliptical potential in the
plane of the disk in such a way as to counteract the halo ellipticity. We develop a technique to
calculate the equilibrium configuration of such a disk in the combined disk-halo potential, which is
based on the method of Jog (2000) but accounts for the radial variation in both the halo potential
and the disk ellipticity. This crucial ingredient results in qualitatively different behavior of the disk:
the disk circularizes the potential at small radii, even for a reasonably low disk mass. This effect has
important implications for proposals to reconcile cuspy halo density profiles with low surface brightness
galaxy rotation curves using halo triaxiality. The disk ellipticities in our models are consistent with
observational estimates based on two-dimensional velocity fields and isophotal axis ratios.
Subject headings: galaxies: kinematics and dynamics — galaxies: halos — galaxies: spiral — galaxies:

structure — methods: numerical — dark matter

1. INTRODUCTION

Galaxies are thought to be surrounded by large dark matter halos. These halos are much more massive than the
visible components of galaxies, and dominate much of the dynamics. Although dark matter halos are often assumed to
be spherical for simplicity, the halos that form in cosmological simulations are quite flattened, with typical intermediate
axis ratios of b/a ∼ 0.8 and minor axis ratios of c/a ∼ 0.6, with some systematic variation depending on the mass of
the halo and the radius at which the shape is measured (Warren et al. 1992; Jing & Suto 2002; Bailin & Steinmetz
2005; Allgood et al. 2006). This non-sphericity is a testable prediction of cosmological models.

Simulations of disk galaxy formation within dark matter halos find that the presence of the disk modifies
the shape of the halo, reducing the halo triaxiality (Dubinski 1994; Kazantzidis et al. 2004; Bailin et al. 2005;
Berentzen & Shlosman 2006). However, as long as the final shape of the halo retains some ellipticity in the plane of the
disk, the dynamics and shape of the disk will be affected by the deviations from axisymmetry (e.g. Gerhard & Vietri
1986; Schoenmakers et al. 1997).

Observations indicate that many disks do indeed have small but non-zero ellipticities. Evidence for elliptical disks
comes from harmonic decomposition of galaxy photometry (Rix & Zaritsky 1995), harmonic decomposition of two-
dimensional velocity fields (Schoenmakers et al. 1997; Simon et al. 2005), and statistical analysis of the distribution
of projected shapes (Ryden 2006). These results qualitatively confirm that galactic dark matter halos are elliptical;
precision measurements could provide direct constraints on the shapes of the halos.

Recently, Hayashi & Navarro (2006, hereafter HN06) proposed that elliptical orbits within the disk produced by the
triaxiality of the halo could reconcile cuspy density profiles that form in cosmological simulations (Navarro et al. 1996,
hereafter NFW) with observed rotation curves of low surface brightness (LSB) galaxies, which often appear to require
halos with constant density cores (e.g., de Blok et al. 2001). This analysis did not take into account the self-gravity
of the disk. In galaxies with massive disks, the gravity of the disk contributes to the net potential and the dynamics
of the disk are determined by a combination of the halo and the disk itself. In order to draw conclusions about the
shape of the halo from the measured dynamics of the disk, we must determine self-consistently both how the disk is
perturbed by the potential and how the perturbed disk contributes to the potential.

An elegant method to carry out these calculations was proposed by Jog (2000) (hereafter J2K; see also Jog 1997,
1999). By assuming a logarithmic halo potential with a small constant elliptical perturbation and an exponential disk
with a small constant elliptical response, J2K solved for the self-consistent response. She demonstrated that the disk
response dilutes the ellipticity of the potential most strongly at 1.42 disk scale lengths.

There are a number of simplifying assumptions in J2K that require examination. The most important assumption is
that both the halo perturbation and the disk response are constant with radius. In contrast, HN06 demonstrated that
a radially-varying perturbation is required to reconcile LSB long-slit rotation curves with cuspy halo profiles. Indeed,
cosmological simulations predict a radially-varying perturbation in the halo potential; even if halos had isodensity
surfaces of constant ellipticity, the shape of the potential would vary with radius, and Hayashi et al. (2007, hereafter
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HNS), who directly measured the shapes of isopotential surfaces of cosmological halos, found even stronger variation
with radius. The response of the disk is also not expected to be uniform in a radially-varying potential.

In this paper, we generalize the method of J2K to the more realistic case of radially varying halo perturbations and
radially varying disk responses. In § 2 we detail the method for determining the disk shape and dynamics. In § 3
we use this method to determine the shapes and dynamics of disks in sample triaxial halos and demonstrate how the
results depend on the properties of the disks and halos. § 4 discusses our results in the context of observations that
directly probe disk ellipticity, and in § 5 we present our conclusions.

2. METHOD

2.1. Outline

Our method, which is based closely on J2K, is as follows:

1. Calculate the axisymmetric component of the potential and the elliptical perturbation in the potential induced
by the triaxial halo (§ 2.2).

2. Calculate the closed orbits and corresponding disk ellipticity for a given net perturbation to the potential (§§ 2.3
and 2.4).

3. Calculate the elliptical perturbation in the potential induced by a given disk ellipticity (§ 2.5).

4. Solve for the form of the net potential perturbation that satisfies all of the above constraints (§ 2.6).

Throughout this procedure, the halo is kept fixed, i.e. it does not respond to the presence of the disk. Therefore, the
potential that should be used in the calculation is the real shape of the halo in which the disk lies, which is less triaxial
than the shape the halo would have in the absence of baryonic processes (Kazantzidis et al. 2004; Bailin et al. 2005;
Berentzen & Shlosman 2006).

The main differences between this work and J2K are:

1. Where J2K assumes a logarithmic potential for the halo, we evaluate the radial form of the potential directly
from a density distribution motivated by cosmological simulations.

2. Where J2K assumes a constant perturbation to the halo potential, we allow the perturbation to vary with radius
and either evaluate it directly from a triaxial density distribution motivated by cosmological simulations or use
parametrizations developed from measurements of halos in cosmological simulations.

3. Where J2K assumes that the disk responds with a constant ellipticity, we allow the disk ellipticity to vary with
radius.

Whenever we carry out numerical calculations in this paper, all radially-varying functions are tabulated on a radial
grid sampled at 100 radii Ri spaced logarithmically between 0.1 and 100 kpc in order to finely sample the inner
region of the disk where the quantities vary most rapidly; 50 grid points lie at R < 1 kpc. The functions are linearly
interpolated between grid points when their values are required at arbitrary radii.

2.2. Axisymmetric potential and halo perturbation

For the perturbative approach, we assume that within the plane of the disk (which we take to be z = 0 for simplicity),
the total potential can be written as

Φ(R, θ)=Φ0(R) + Φpert(R, θ)

=Φ0(R) (1 + fpert(R) cosmθ) , (1)

where R, θ, and z are the cylindrical coordinates. For the purposes of this paper, we will assume an elliptical
perturbation (i.e., m = 2) from now on (see Appendix A for a discussion of the m = 4 mode). We assume that
fpert(R) is small and varies slowly with R. Note that for fpert > 0, isopotentials are elongated along the x axis and
closed orbits in the disk are elongated along the y axis.

Both the disk and halo contribute to both the axisymmetric and m = 2 components of the potential:

Φ0(R) = Φhalo
0 (R) + Φdisk

0 (R), (2)

fpert(R) = fhalo
pert (R) + fdisk

pert(R). (3)

To first order, the m = 2 perturbation in the potential induces an m = 2 perturbation in the surface density
distribution of the otherwise exponential disk (see Appendix A for a justification of our decision to neglect the higher-
order terms):

Σ(R, θ) = Σ0 exp

[

−
R

Rd

(

1 −
ǫdisk(R)

2
cos 2θ

)]

(4)

We assume ǫdisk(R), the ellipticity of the isodensity ellipse, is small and varies slowly with R. The axisymmetric
component of the disk potential is given by

Φdisk
0 (R) = −πGΣ0R [I0(y)K1(y) − I1(y)K0(y)] (5)
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(y = R/2Rd; see Freeman 1970; Binney & Tremaine 1987, eq. 2-168), where I and K are modified Bessel functions.
Given the density distribution of the dark matter halo, both axisymmetric and m = 2 components of the halo

potential can be evaluated. If the isodensity surfaces of the halo are self-similar ellipsoids, then the halo density can
be written as:

ρ(x, y, z) = ρ(s), (6)

where

s2 =
(x

a

)2

+
(y

b

)2

+
(z

c

)2

. (7)

For example, we can use an NFW form for the density:

ρ(s) =
ρ0

s
rs

(

1 + s
rs

)2 (8)

(Navarro et al. 1996; Jing & Suto 2002). We make no assumptions about the relative magnitudes of a, b, and c; they
are simply the relative axis ratios along the x, y, and z axes respectively. Therefore, the disk, which lies in the xy
plane, can be oriented in any of the principal planes of the halo.

We calculate the halo potential along the x axis, Φhalo
x (R) ≡ Φhalo(R, 0, 0), and along the y axis, Φhalo

y (R) ≡

Φhalo(0, R, 0), by numerically integrating eq. (2-99) of Binney & Tremaine (1987) using ρ(s) given in equation (8).
This allows us to calculate Φhalo

0 and fhalo
pert as

Φhalo
0 (R) =

1

2
[Φx(R) + Φy(R)] , (9)

and

fhalo
pert (R) =

1

2Φ0(R)
[Φx(R) − Φy(R)] . (10)

2.3. Closed orbits

In a triaxial potential, dissipative gas settles on stable closed loop orbits when such orbits exist (El-Zant 2001). This
is the case throughout the potential of a centrally-concentrated mass profile such as the NFW profile. Therefore, the
structure of a galactic disk, which consists of gas clouds and stars formed within those gas clouds, is determined by
the form of the closed orbits. These have been examined in detail by Schoenmakers et al. (1997), and simplified into a
convenient form by HN06. These previous derivations have assumed that the perturbation to the potential is constant
over the radial excursion of an orbit, which is not the case for the radially-varying perturbations that we wish to study.
We have therefore rederived the equations for closed orbits within a radially-varying perturbation from the equations
of motion. The orbits follow

R = R0

(

1 −
fpert a12

2
cos 2θ0

)

(11)

θ = θ0 +
a12 + a32

2m
fpert sin 2θ0, (12)

with velocities
VR = Vc fpert a12 sin 2θ0 (13)

Vθ = Vc

(

1 +
fpert a32

2
cos 2θ0

)

, (14)

where R0 and θ0 define the guiding center of the orbit, θ0 = Ω0 t, and the following functions of Φ0(R) are evaluated
at R0:

Ω0(R) =

√

1

R

dΦ0

dR
(15)

Vc(R) = R Ω0(R) (16)

Vesc(R) =
√

2|Φ0| (17)

gm(R) =
1

Ω2
0

d2Φ0

dR2
− (m2 − 3) (18)

a1m(R) =
2

gm(R)

[

1 −
V 2

esc

V 2
c

(

1 +
1

2

R

fpert

dfpert

dR

)]

(19)

a3m(R) = a1m(R) +
V 2

esc

V 2
c

. (20)
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The coefficients a1m and a3m quantify the degree to which the radius R and angular velocity Vθ respectively, which are
constant for a circular orbit, vary for a unit perturbation to the potential. Our expressions differ from those in HN06
for the following reasons: (1) we have taken the radial variation of the perturbation into account in our derivation of
equation (19); (2) we have generalized the expression for gm(R) to be valid for all m, while the expression in HN06 is
specific to m = 2; (3) we have removed the factor of fpert from the definitions of a1m and a3m for convenience later
(note that these quantities still depend implicitly on fpert through its derivative); and (4) we have generalized the
expression for a3m to be valid for all potential profiles, while the expression in HN06 is only valid when g2(R) = −3,
which is not the case in the inner regions of an NFW potential.

Given the tabulated values of Φ0, these functions can be evaluated at the grid points Ri. Because Φ0 has been
calculated from analytic functions, the tabulated values are relatively free of noise and even the numerical second
derivative does not contain large fluctuations. Note that the closed orbits are elongated perpendicular to the isopotential
contours.

2.4. Disk ellipticity

The disk must satisfy the continuity equation. In cylindrical coordinates:

∂

∂R
[R Σ(R, θ)VR(R, θ)] +

∂

∂θ
[Σ(R, θ)Vθ(R, θ)] = 0. (21)

We substitute Σ(R, θ) from (4), VR(R, θ) from (13), and Vθ(R, θ) from (14). To first order in the small quantities fpert,
ǫdisk, and their derivatives:

R

Rd
ǫdisk(R) = fpert(R)

[

a12(R)

(

1 −
R

Rd
+

R

Vc

dVc

dR

)

− a32(R)

]

. (22)

The neglected second-order terms induce small m = 4 perturbations in the disk; see Appendix A for details.6 Equa-
tion (22) provides us with a relationship between the radial profile of the potential (embodied in a12, a32 and Vc), the
strength of the perturbation in the net potential (fpert), and the ellipticity of the disk (ǫdisk).

2.5. Disk perturbation potential

The ellipticity of the disk generates an m = 2 perturbation to the disk potential. We calculate this as follows:

Φdisk
pert ≡ Φdisk − Φdisk

0 = −G

∞
∑

m=−∞

exp(imθ)

∫ ∞

0

Jm(kR) exp(−k |z|) dk

∫ ∞

0

Jm(kR′)R′ dR′

∫ 2π

0

[Σ(R′, θ′) − Σ0 exp(−R′/Rd)] exp(−imθ′) dθ′ (23)

(Binney & Tremaine 1987, eq. 2P-8). We restrict ourselves to the plane z = 0, corresponding to an infinitely thin
disk.

For small perturbations, the perturbed surface density is

Σ(R′, θ′) − Σ0 e−R′/Rd ≈ Σ0 e−R′/Rd
R′

Rd

ǫdisk(R
′)

2
cos 2θ′. (24)

Substituting (24) into (23), we note that the integral over dθ′ vanishes except when m = ±2. Since
∫ 2π

0 cos 2θ′ e±i2θ′

dθ′ = π, eix + e−ix = 2 cosx, and J2(x) = J−2(x), we find

Φdisk
pert(R, θ) = −πGΣ0 cos 2θ

∫ ∞

0

J2(kR) dk

∫ ∞

0

J2(kR′)R′ exp

(

−
R′

Rd

)

R′

Rd
ǫdisk(R

′) dR′. (25)

We can express (R′/Rd) ǫdisk(R
′) in the final integral in terms of fpert, a12, a32, and Vc using (22):

Φdisk
pert(R, θ) = −πGΣ0 cos 2θ

∫ ∞

0

J2(kR) dk

∫ ∞

0

J2(kR′)R′ exp

(

−
R′

Rd

)

fpert(R
′)

[

a12(R
′)

(

1 −
R′

Rd
+

R′

Vc(R′)

dVc(R
′)

dR′

)

− a32(R
′)

]

dR′. (26)

Because we do not know a priori the net perturbation fpert(R), we cannot immediately evaluate these integrals.
However, if we can find a function fproxy

pert whose form is similar to fpert, i.e. if fpert/fproxy
pert is a slowly-varying function

of R, then we can approximate the potential as:

Φdisk
pert(R, θ) ≈ −

fpert(R)

fproxy
pert (R)

πGΣ0 cos 2θ

∫ ∞

0

J2(kR) dk

∫ ∞

0

J2(kR′)R′ exp

(

−
R′

Rd

)

fproxy
pert (R′)

[

a12(R
′)

(

1 −
R′

Rd
+

R′

Vc(R′)

dVc(R
′)

dR′

)

− a32(R
′)

]

dR′. (27)

6 We have also omitted the term in equation (22) that is proportional to R d(fpert a12)/dR; however, its effect is negligible.
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Note that a12(R
′) and a32(R

′) depend implicitly on fproxy
pert (R′) through its derivative. A first approximation can be

obtained by setting fproxy
pert = fhalo

pert , whose values have been tabulated from (10). Because the integral over R′ is
independent of R and the integral over k is independent of R′, the integrals can be evaluated independently on fine
grids of k and R, respectively. Using this technique, we calculate

η(R) ≡
πGΣ0

fproxy
pert (R)

∫ ∞

0

J2(kR) dk

∫ ∞

0

J2(kR′)R′ exp

(

−
R′

Rd

)

fproxy
pert (R′)

[

a12(R
′)

(

1 −
R′

Rd
+

R′

Vc(R′)

dVc(R
′)

dR′

)

− a32(R
′)

]

dR′ (28)

at each grid point Ri. The perturbation potential due to the disk is then given by

Φdisk
pert(R, θ) = −fpert(R) η(R) cos 2θ. (29)

Expressed in this form, the meaning of η(R) becomes clear: it is the magnitude of the disk response to a unit
perturbation in the potential.

2.6. Self-consistent solution

For clarity, we repeat here the important equations:

Φpert(R, θ)=Φ0(R) fpert(R) cos 2θ (30)

=Φhalo
pert(R, θ) + Φdisk

pert(R, θ), (31)

Φhalo
pert(R, θ) = fhalo

pert (R)Φ0(R) cos 2θ, (32)

(see eqs. 1 and 3), and

Φdisk
pert(R, θ) = −fpert(R) η(R) cos 2θ, (33)

(repeated from eq. 29). The physical interpretation of these equations is that the disk response is proportional to
the net perturbation fpert, which is itself the sum of the disk response and the imposed halo perturbation. The disk
response is opposite in sign to the halo perturbation, so fpert in the self-consistent solution must be reduced with
respect to the imposed halo perturbation.

The self-consistent solution can be obtained by collection equations (30) through (33):

fpert(R) = fhalo
pert (R)

1

1 + η(R)/Φ0(R)
. (34)

In other words, the response of the disk causes the overall potential perturbation to be reduced by a factor of 1 +
η(R)/Φ0(R). All terms on the right hand side have been tabulated at the grid points Ri, resulting in a trivial evaluation
of fpert(R).

Armed with this new estimate of fpert, we can reexamine equation (28), substitute fproxy
pert = fpert, and calculate a

new value of η(R) and therefore of fpert(R). We repeat this procedure until the maximum change between iterations
in the quantity fpert/fhalo

pert , which is a robust indicator of the relative error in fpert, is less than 10−3 at all radii; this
is typically achieved in 20–30 iterations. We have confirmed for some specific cases that our solution agrees to within
∼ 2% of the true solution (assumed to have converged after a very large number of iterations) at all radii, and to much
higher precision at most radii (see Figure 1). Adopting a stricter convergence criterion has no effect on our results.
The relatively large number of iterations is required in order to accurately capture the sharp feature where fpert → 0
that is seen in the solutions (see § 3).

Given fpert, the disk ellipticity ǫdisk can be calculated as a function of radius directly from equation (22) and the
forms of the closed orbits can be calculated from equations (11) – (14). This provides a complete description of the
disk.

3. RESULTS

In this section, we demonstrate how the disk dilutes the elliptical potential of the halo, and give examples of the net
ellipticity induced in the disk. In § 3.1, we demonstrate the main features of the disk-halo systems using a halo with
constant axis ratios, while in § 3.2 we investigate how these results are affected by varying disk and halo parameters
such as the halo concentration, axis ratio, disk scale length, and run of halo axis ratio with radius.

3.1. Response for various disk masses

We demonstrate the main features of our models using a fiducial triaxial NFW halo with mass M200 = 1012 M⊙,
axis ratios b/a = 0.8 and c/a = 0.6, and a concentration c200 = 12.7 These values are typical for galaxy-sized dark
matter halos in cosmological simulations (Allgood et al. 2006). The disk rotation axis is aligned with the minor axis of

7 M200 and c200 refer to the mass and concentration relative to the radius r200, defined such that the mean density within r200 is 200
times the critical density. We assume the Hubble parameter h = 0.7.
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Fig. 1.— Maximum change in the solution for fpert/fhalo
pert per iteration (dashed line) and maximum difference between the solution at a

given iteration and the true solution, assumed to have converged after 100 iterations (solid line), for the fiducial halo and 3× 109 M⊙ disk
of § 3.1. The vertical dotted line indicates the point where our convergence criterion is achieved.

the halo, in agreement with the orientation of the halo angular momentum in simulations (Bailin & Steinmetz 2005).
All disks have radial scalelengths Rd = 3.0 kpc, with masses that range from zero up to 1011 M⊙.

Figure 2 demonstrates how the axisymmetric component of the potential, Φ0(R), and the rotation curve, Vc(R),
vary as a function of disk mass. The potential is given in units of V 2

200 ≡ GM200/r200. For disk masses less then
3 × 109 M⊙, the halo dominates the axisymmetric component of the potential at all radii, with the disk becoming
increasingly more important with increasing disk mass beyond this. The non-axisymmetric component of the potential
is demonstrated in Figure 3 for the 3×109 M⊙ disk. Although the ellipticity of isopotential surfaces, ǫΦ, rises to small
radii, the magnitude of the potential perturbation, fhalo

pert , must vanish at small radii because Φx(R = 0) = Φy(R = 0)
while Φ0(R = 0) reaches a finite value.

Figure 4a demonstrates both the initial halo perturbation (fhalo
pert , solid lines) and the net perturbation after including

the self-consistent response of disk (fpert, dashed lines). Note that even though the halo is identical in each case, fhalo
pert

is lower for higher mass disks because the disk contributes to Φ0.
HN06 proposed that a suitable perturbation

fpert = fiso(R) ≈ a x e−x/b (35)

(with x ≡ R/rs, a = 0.1, and b = 0.098) would cause the rotation curve of a perturbed NFW profile to mimic that of a
cored isothermal profile. We denote this as a dotted line in Figure 4a. The form of this perturbation is very different
from the form of the perturbation that we find to be induced by a triaxial halo of uniform axis ratio, particularly once
the self-consistent response of the disk is taken into account.

Figure 4b demonstrates the degree to which the initial halo perturbation fhalo
pert is diluted by the self-consistent

response of the disk. This is equal to fpert/fhalo
pert and is determined from 1/(1 + η(R)/Φ0(R)). The ellipticity in the

potential vanishes in the central region where η(R) ≫ Φ0(R). Even for a negligible disk mass, the potential in the
innermost region is circularized. This region is larger for more realistic disks, which have a significant impact on the
potential out to several disk scale lengths. As the disk mass increases, the form of the disk dominates both η(R) and
Φ0(R), and therefore this function approaches an asymptotic form.

Comparison between Figure 4b and the equivalent figs. 2 and 3 of J2K reveals dramatically different behavior at
small radii: in J2K, the “reduction factor” reaches a minimum at 1.42 Rd (= 4.26 kpc for Rd = 3.0 kpc) and then rises
to unity, while in Figure 4b it falls monotonically to vanish at small radii. This is a direct result of the radial variation
of fpert in a physically realistic elliptical halo. Because η(R) depends inversely on fpert (see eq. 28), which must
vanish at small radii, η(R) must dominate over Φ0(R) in the inner regions and the potential must become completely
circularized.

In Figure 4c we plot the ellipticity of the disk isodensity contours (ǫdisk, solid lines) and of the orbits within the disk
(ǫorbit ≡ fpert a12, dashed lines). For a massless disk, we recover the results of HN06 that the ellipticity rises towards
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Fig. 2.— (a) Axisymmetric component of the potential, Φ0(R), for massless disks (black), and disks of mass 3×108 M⊙ (red), 3×109 M⊙

(blue), 3 × 1010 M⊙ (green), and 1011 M⊙ (purple) within the fiducial halo of § 3.1. (b) Circular velocity curve within the unperturbed
potential. The disk contribution to the rotation curve is denoted with dashed lines. Colors are the same as in (a).

the center of the halo. However, the presence of a massive disk changes the situation dramatically. Because fpert/fhalo
pert

vanishes at small radii (Figure 4b), the equilibrium disk is axisymmetric at small radii. Even very low mass disks,
which contribute negligibly to Φ0, still respond strongly enough to the elliptical potential to cause an important change
in the behavior at small radii. We also note that the ellipticity of disk isophotes are always greater than ellipticity of
orbits within the disk.

3.2. Varying disk and halo parameters

HNS found that the radial variation of the shape of the potential of cosmological N -body halos is not consistent
with self-similar isodensity contours (see also Jing & Suto 2002; Bailin & Steinmetz 2005). They found instead that
the isopotential axis ratios are well fit by the following function:

log(
b

a
or

c

a
) = α

[

tanh

(

γ log
r

rα

)

− 1

]

. (36)

We have recomputed the self-consistent response of disks of varying mass in a potential of this form, with the values of
the parameters taken from halo G4 of HNS, which has a very similar mass and concentration to the halo used in § 3.1.
The results are shown in Figure 5. As noted by HNS, the perturbation in this case contains a peak at intermediate
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Fig. 3.— (a) The solid curves indicate the potential along the x (lower) and y (upper) axis for the disk of mass 3 × 109 M⊙ within the
fiducial halo of § 3.1. The dotted line indicates the axisymmetric component of the potential. The horizontal and vertical lines demonstrate
how the ellipticity of the isopotential surfaces and the magnitude of the perturbation respectively are calculated. (b) The curves indicate
the magnitude of the perturbation, fpert (solid), and ellipticity of the potential, ǫΦ (dashed) for the same halo as in (a).

radius and is much more similar to the form of fiso required by HN06 to fit LSB rotation curves, although unlike
fiso the perturbation remains more prominent to large radius. However, in many cases LSB rotation curves are only
measured out to radii of a few kpc, so it is less clear what the required form of fiso is at larger radii. The disks have
less effect on the perturbation than in § 3.1; in particular, the radius inside which they circularize the potential is
reduced, resulting in significantly more elliptical orbits at 1–3 kpc than for the equivalent disks in a halo with constant
axis ratios. Disk masses higher than ∼ 3 × 109 M⊙ reduce the prominence of the peak in the perturbation and shift
it to larger radii. The peak in fhalo

pert could be moved to smaller radius, and therefore brought further into agreement
with fiso, by reducing the rα parameter in equation (36); however, this is unlikely to be a common situation, as G4
already has by far the lowest rα value of any of the halos studied by HNS.

The effect of the baryonic disk on the shape of the halo is not yet well understood. Simulations suggest that halos
containing baryonic disks are less elliptical than halos composed purely of dark matter, and that the circularization of
the halo occurs most strongly at the center (Kazantzidis et al. 2004). If the intrinsic shape of the pure dark matter
halo is well described by the HNS form, which is most elliptical at the center, baryonic processes may result in a
situation more similar to the constant axis ratio case of § 3.1. We therefore expect that the regions in which these
models differ most strongly, 1–3 kpc, are also the regions where the unknown effect of disk formation introduces the
most uncertainty into our models.
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Fig. 4.— (a) Magnitude of the elliptical perturbation in the potential due to the triaxiality of the halo (fhalo
pert , solid lines), and the net

perturbation after including the self-consistent response of the disk (fpert, dashed lines). Different disk masses are indicated by different
colors as in Figure 1. The dotted line shows the form of fpert proposed by HN06 to produce a rotation curve mimicking a cored isothermal

density profile. (b) Ratio by which the input perturbation fhalo
pert becomes diluted due to the self-consistent response of the disk. (c)

Ellipticity of the disk isodensity contours (|ǫdisk|, solid lines; note that ǫdisk is negative for positive fpert in the sign convention we have
chosen) and of orbits within the disk (ǫorbit, dashed lines).

In order to investigate how other properties of the halo and disk affect our results, we have recalculated the results
of § 3.1 (where the halo axis ratio was assumed to be constant with radius) for the 3× 109 M⊙ disk while varying the
halo concentration, the b/a axis ratio, the halo mass, and the disk scale length. In more concentrated halos (Figure 6),
the strength of the perturbation due to the halo, fhalo

pert , is larger. The disk is also less able to dilute the perturbation in
more concentrated halos. The axis ratio of the halo (Figure 7) has a strong effect on the magnitude of the perturbation
but has virtually no effect on the degree to which the disk dilutes the perturbation. In Figure 8 we compare halos
of different virial mass, M200. In order to facilitate comparison between systems of different mass, we have kept rs

constant by varying c200 in proportion to r200 and kept the relative mass of the disk and halo constant. We find
that the mass of the halo has little effect on the relative strength of the perturbation (either before or after the disk
is taken into account), but that the resulting disk ellipticities are higher in lower mass systems. Finally, although
the equilibrium shape of the potential is similar regardless of the disk scale length (Figure 9), a greater ellipticity is
required to achieve this reduction in the perturbation for less concentrated disks, i.e. those with larger scale lengths.

4. DISCUSSION

4.1. Impact of Triaxial Halos on the Cusp/Core Problem
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Fig. 5.— As in Figure 4 for disks in a halo potential with the same radial variation of its axis ratios as halo G4 of HNS.

In Figure 10, we plot the azimuthal velocities along the major and minor axes of the halo within the disk plane for
disks of different mass in the fiducial sample halo studied in § 3. Full analysis of the velocity fields of these disks will
be presented in a future paper. However, we note that none of these rotation curves shows the linear rise characteristic
of a constant density core, as expected given the dramatic difference between the form of fpert in these disks and the
form of fiso required by HN06.

If we use the radial variation of the shape of the halo potential proposed by HNS (Figure 11), for which fhalo
pert is

much more similar to fiso, we find that for very low disk masses the azimuthal velocity along the minor axis of the
halo is characterized by a much more gradual rise. Observationally, such a rotation curve might be interpreted as
indicating a constant-density core in the dark matter halo. However, for disk masses above 3 × 109 M⊙ (0.3% of the
virial mass of the halo and just 1.8% of the baryonic mass of the system) the response of the disk removes this feature
from the center of the rotation curve. Based on these results, we conclude that simple analyses of the shapes of halos
are therefore not sufficient to determine whether halo triaxiality can reconcile LSB rotation curves with cuspy halo
density profiles, as suggested by HN06; full analyses that take into account the disk response are required. Preliminary
tests on simulated velocity fields constructed using the results of this paper do suggest that triaxiality can produce
apparent constant-density cores, in agreement with HN06, but a more detailed analysis including many halos and lines
of sight is needed before comparing to the observational distribution of density profile slopes (Simon et al. 2005).

We also plot the maximum radial velocity (amplitude of non-circular motions) at each radius in Figures 10 and 11.
Although the radial velocities are much smaller than the azimuthal velocities in all but the lowest mass disks, they are
at a level that can be detected in observations of two dimensional velocity fields. The magnitude of the radial motions,
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Fig. 6.— (a) Magnitude of the net elliptical perturbation in the potential (dashed lines) and the perturbation due to only the halo (solid
lines) for disks of mass 3 × 109 M⊙ in halos with concentrations, c200 = 8 (red), 12 (blue), and 17 (green). The blue lines in these plots
are identical to the blue lines in Figure 4. (b) Ratio by which the input perturbation becomes diluted due to the response of the disk. (c)
Ellipticity of the disk isodensity contours (solid lines) and of orbits within the disk (dashed lines).

which reach 5–35 km s−1 depending on the disk mass and halo properties, are consistent with the magnitude of radial
motions found by Simon et al. (2005), and reproduce the observed trend for the radial motions to be negligible at
small radii and to only become important at larger radii.

4.2. Comparison to Observed Disk Ellipticities

It is interesting to compare the ellipticity of our model disks to observed values. Using two-dimensional velocity
fields, Simon et al. (2005) found lower limits on the orbital ellipticities ranging from 0 up to 0.175, similar to the
orbital ellipticities in our model disks. We note that the orbital ellipticity throughout most of the disk is determined
by the mass of the disk (Figure 4c), the ellipticity of the halo (Figure 7c), and the variation of halo ellipticity with
radius (compare Figures 4c and 5c), with very little dependence on the concentration of either the halo (Figure 6c) or
the disk (Figure 9c), or on the global mass of the system (Figure 8c). We therefore predict that galaxies with large
observed ellipticities such as NGC 4605 either lie in halos that are more triaxial than average near their center, or
contain an unusually low fraction of their mass in their disk. The trends in intrinsic disk ellipticity that we predict
may be tested with further analysis of larger kinematic samples, such as those presented by Ganda et al. (2006).

Ryden (2006) found that the distribution of isophotal shapes of galaxies in the 2MASS Large Galaxy Atlas
(Jarrett et al. 2003), as measured in the near-infrared Ks band (which is a good tracer of the stellar disk mass),
is well fit if the intrinsic disk ellipticity distribution is a truncated Gaussian centered at 0.01 with a width of σ = 0.26.
This corresponds to a median ellipticity of 0.18, with 68% of disks having ellipticities 0.05 ≤ ǫdisk ≤ 0.37. For the disk
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Fig. 7.— As in Figure 6 for halos with axis ratios b/a = 0.7 (red), 0.8 (blue), and 0.9 (green).

parameters we have studied, the 18.8 mag arcsec−2 isophote at which her shapes were measured corresponds to radii
of between 1.5 and 8.5 kpc. Our models naturally produce disk ellipticities in this range at these radii, although the
highest ellipticities can only be produced by our least massive disks in our most elliptical potentials.

Finally, we note that our models only take into account ellipticity in the disk induced by the dark matter halo.
Central regions of the disk, which have high surface density and sit in an axisymmetric potential, may be unstable to
bar formation (Berentzen & Shlosman 2006). This can induce additional ellipticity to the kinematic and photometric
properties of disk galaxies (e.g., Valenzuela et al. 2007).

5. CONCLUSIONS

We have presented a computationally efficient method to self-consistently determine the dynamics of massive disks
in triaxial dark matter halos. Our work extends the study of J2K by allowing the perturbation to the potential to vary
with radius in an appropriate manner and by allowing the ellipticity of the disk to vary with radius self-consistently.
These improvements result in qualitatively different behavior for the ellipticity of disks at small radii: J2K found that
disks counteract the halo ellipticity most strongly at 1.42 Rd and have a negligible effect at small radii; in contrast,
we find that the effect of the disk increases monotonically to small radii, completely circularizing the potential in the
innermost regions.

This self-consistent radially-varying response of the disk to the halo perturbation must be taken into account when
comparing the observed kinematic and photometric properties of galactic disks to those expected in triaxial dark
matter halos, particularly for comparisons at small radii. When this response is calculated for plausible halo values,
model disks have ellipticities consistent with those determined from observations of velocity fields and from isophotal
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Fig. 8.— As in Figure 6 for halos with virial masses M200 = 3 × 1011 M⊙ (red), 1012 M⊙ (blue), and 3 × 1012 M⊙ (green). In order to
facilitate the comparison, the halo scale radius rs is kept constant by varying c200 in proportion to r200, and the ratio between the disk
and halo mass is kept constant.

axis ratio distributions. We also find that the radial variation of the halo axis ratios has a significant impact on the
disk structure. Halos with axis ratios that vary with radius as suggested by cosmological simulations produce much
more elliptical orbits in the inner disk than do halos with constant axis ratios, resulting in potential perturbations
similar to the perturbation required to create apparent cores in galaxy density profiles. Further analysis exploring in
detail the conditions under which core-like rotation curves might be obtained will be necessary to determine if halo
triaxiality can resolve the cusp/core problem.

JB thanks the Australian Research Council for financial support. JDS acknowledges the support of a Millikan
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APPENDIX

SECOND-ORDER TERMS AND M=4 DISTORTIONS

We have assumed that the halo perturbation and the induced distortion in the disk are completely described by the
m = 2 mode. This a direct consequence of only including terms linear in the small quantities fpert, ǫdisk, and their
derivatives.
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Fig. 10.— Azimuthal velocity along the halo major axis (top line) and minor axis (middle line), and the maximum radial velocity at
each radius (bottom line) for disks of varying mass in the halo of § 3.1. NFW and isothermal rotation curves are shown for reference in
the top right panel.

Fig. 11.— As in Figure 10, but for the shape of the halo potential found by HNS for their halo G4.
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Fig. 12.— Magnitude of terms contributing to the m = 4 distortion in the disk compared to ǫ2, the magnitude of the calculated m = 2
distortion for a disk of mass 3 × 109 M⊙ in the fiducial halo of § 3.1.

The validity of this assumption can be tested by evaluating the magnitude of the second-order terms that contribute
to the m = 4 distortion in the disk. If we expand the potential as

Φ(R, θ) = Φ0(R) (1 + f2(R) cos 2θ + f4(R) cos 4θ) , (A1)

the disk surface density as

Σ(R, θ) = Σ0 exp

[

−
R

Rd

(

1 −
ǫ2(R)

2
cos 2θ −

ǫ4(R)

2
cos 4θ

)]

, (A2)

and include all second-order terms, then the m = 4 distortion in the disk, ǫ4, depends on terms of order f4, f2 ǫ2, and
R f2 dǫ2/dR.8 Figure 12 compares the magnitude of these terms to the m = 2 ellipticity for the 3 × 109 M⊙ disk in
the fiducial halo of § 3.1. The higher-order terms are more than two orders of magnitude smaller than the first-order
terms over most of the disk, and are also negligible in the central region where the first order terms vanish, validating
our use of linear perturbation theory.

8 As in the case of the m = 2 mode, there is also a negligible term of order R d(f4 a14)/dR.
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