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ABSTRACT

Galactic disks consist of both stars and gas. The gas is more dynamically responsive than the stars, and strongly non-
linear structures and velocities can develop in the interstellar medium even while stellar surface density perturbations
remain fractionally small. Yet, the stellar component still significantly influences the gas. We use two-dimensional nu-
merical simulations to explore formation of bound condensations and turbulence generation in the gas of two-component
galactic disks.We represent the stars with collisionless particles, follow their orbits using a particle-mesh method, and
treat the gas as an isothermal, unmagnetized fluid. The two components interact through a combined gravitational
potential that accounts for the distinct vertical thickness of each disk. Using stellar parameters typical of mid-disk
conditions, we find that models with gaseous Toomre parameterQg < Qg;crit � 1:4 experience gravitational runaway
and eventually form bound condensations. ThisQg;crit value is nearly the same as previously found for razor-thin, gas-
only models, indicating that the destabilizing effect of ‘‘live’’ stars offsets the reduced self-gravity of thick disks. This
result is also consistent with empirical studies showing that star formation is suppressed when Qgk 1 2. The bound
gaseous structures that form have mass 6 ; 107 M� each, representing superclouds that would subsequently fragment
into GMCs. Self-gravity and sheared rotation also interact to drive turbulence in the gas when QgkQg;crit. This tur-
bulence is anisotropic, withmore power in sheared than compressivemotions. The gaseous velocity dispersion is�0.6
times the thermal speed whenQg � Qg;crit. This suggests that gravity is important in driving interstellar turbulence in
many spiral galaxies, since the low efficiency of star formation naturally leads to a state of marginal instability.

Subject headinggs: galaxies: ISM — galaxies: structure — instabilities — ISM: kinematics and dynamics —
solar neighborhood — stars: formation — stars: kinematics

1. INTRODUCTION

Large-scale galactic disk evolution is governed by the interaction
between self-gravity and other reinforcing and/or countervailing
forces. Some of these forces are associated with sheared galacto-
centric rotation, and others are associated with random velocities
(thermal and turbulent) of the gas and stars. Under certain circum-
stances, gravitational instabilities may grow and radically alter the
disk structure as they develop nonlinearly. This is believed to
be how giant molecular clouds (GMCs), and subsequently star-
forming H ii regions, originate. Under other circumstances, the
overall diskmorphology is not changed, but self-gravitatingmodes
grow and interact in such a way that significant energy is trans-
ferred from ordered to disordered forms. This ‘‘disk heating’’
may in turn affect the system’s subsequent susceptibility to self-
gravitating instabilities.

Because the gas component is much cooler than that of the stars
and because gas can radiate energy as it is nonlinearly compressed,
the effects of self-gravitating instabilities are much more pro-
nounced in the interstellar medium (ISM) than in the stellar disk.
The stellar component can nevertheless be quite important to the
initial growth of self-gravitatingmodes (orwaves), because it con-
tains so much of the disk’s mass (�75%–90%, compared to
�10%–25% in gas).While the stars are essentially collisionless,
most previous work on gravitational instability in two-component
disks has treated both stars and gas as two isothermal fluids with
different sound speeds. This approachwas taken by Jog&Solomon
(1984a, 1984b), Elmegreen (1995b), and Jog (1996) in studying
axisymmetric self-gravitating modes, and by Jog (1992) and Bertin
&Romeo (1988) in studying nonaxisymmetric self-gravitating

modes for combined star/gas disks (see also Bertin & Lin 1996).
Adopting a full kinetic treatment for the stellar component in two-
component disks, on the other hand, Lin et al. (1969) and Rafikov
(2001) used linear perturbation theory to derive dispersion relations
for nonaxisymmetric WKB waves and axisymmetric modes, re-
spectively. These linear theory analyses cannot capture, however,
the ultimate outcomes—including GMC formation and turbulent
driving—which result when localized, self-gravitating structures
grow; quantifying this development requires nonlinear numeri-
cal simulations.
Themain class of self-gravitating instability that develops under

conditions of strong sheared rotation (in outer galaxies, away from
spiral arms) is the swing amplifier (Goldreich & Lynden-Bell
1965b; Julian & Toomre 1966; Toomre 1981). In Kim&Ostriker
(2001, hereafter Paper I), we identified the basic requirements for
swing to occur and reported on the results of extensive numerical
simulations of swing amplification in gaseous disks with or with-
out magnetic fields. Although in linear theory the amplification
magnitude varies continuously with respect to the Toomre param-
eter Qg (see eq. [6] for definition), Paper I showed that nonlinear
interactions among swing-amplified density filaments or wavelets
lead to a threshold phenomenon. Disks with Qg > Qg;crit remain
stable, while disks withQg < Qg;crit experience gravitational run-
away, forming bound condensations. For the razor-thin diskmodels
of Paper I, we found that Qg;crit � 1:2 1:4, with the largest value
resulting frommodels with subthermal magnetic fields. Given the
similarity between the numerically obtainedQg;crit values and ob-
servationally inferred thresholds for active star formation in ex-
ternal galaxies (Quirk 1972; Kennicutt 1989; Caldwell et al. 1991;
Martin&Kennicutt 2001;Wong&Blitz 2002), Paper I supported
the notion that self-gravitating instabilities define the star formation
‘‘edges’’ of disks.
While successfully demonstrating the nonlinear threshold

behavior of the swing amplifier and quantitatively yielding good
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agreement with observations, the models considered in Paper I
suffered from two important drawbacks. First, by assuming infin-
itesimally thin disks they overestimated self-gravity, which tends to
overestimate Qg;crit; second, they did not allow for a dynamically
active stellar disk, which tends to underestimateQg;crit. Subsequent
simulations of pure-gas disks in three dimensions confirmed the
basic nonlinear threshold behavior, but also showed that for real-
istic disk temperatures the nonzero thickness of the disk can indeed
significantly lower the value of Qg;crit to <1 (Kim et al. 2002).

In this paper we address the second limitation of Paper I by
studying nonlinear evolution of gravitational instabilities in two-
component galactic disks consisting of both stars and gas. We
distribute collisionless particles to represent stars and follow their
orbits using a directN-bodymethod, while adopting a hydrody-
namic approach for gas. The two components are allowed to in-
teract with each other through the combined gravitational potential
(calculated on a single mesh). We also allow for nonzero (and dif-
fering) vertical thickness of both stellar and gaseous disks in solv-
ing the Poisson equation for each component.

Given that finite-thickness effects tend to reduce Qg;crit values
below observed star formation thresholds in gas-only models, a
compelling question is whether allowing for an active stellar disk
compensates for this effect. Thus, one of our primary objectives
is to quantify the criticalQg value for gravitational runaway when
both a live stellar component and a thick disk are explicitly consid-
ered. A second important goal is to understandwhat happenswhen
Qg is sufficiently large that gravitational runaway does not occur.
In particular, the large-scale flows that are driven when gravity is
strong (but not too strong) may be a key to powering turbulence
within the disk.

Many processes may contribute to turbulence in the diffuse gas.
In addition to self-gravitating instabilities, other candidate mech-
anisms that have been proposed include thermal instabilities, the
Parker and magnetorotational instabilities, dynamical instabili-
ties in spiral shocks, stellar winds, and expanding stellar H ii re-
gions and supernova blast waves (see Mac Low & Klessen
2004; Elmegreen & Scalo 2004 for recent reviews). Traditionally,
stellar processes have been presumed to be the dominant turbu-
lence drivers, but the lack of observed spatial correlation between
velocity dispersions of H i gas and regions of high-mass star for-
mation (Dickey et al. 1990; van Zee&Bryant 1999) suggests that
other sources must be important as well. In particular, Elmegreen
(2002) and Elmegreen et al. (2003) have suggested that the swing
amplifier generates large-scalemotions that cascade to produce tur-
bulence and structure on small scales as well as large scales. Initial
numerical studies of this process have been pursued byWada et al.
(2002), who performed two-dimensional, thin-disk galactic simu-
lations with ISM cooling. They found that a cloudy medium de-
velops, with a velocity dispersion �v � 2 5 km s�1. On the other
hand, Kim et al. (2003) found via three-dimensional isothermal
simulations, with sound speed cg ¼ 7 km s�1 andQgk 1:7, that
turbulence was driven to levels less than 1 km s�1. Based on just
these fewmodels, it has not yet been clear how important ‘‘swing-
driven’’ turbulence is more generally.

In the present work we determine how the turbulent velocity
amplitude of the gas, �v, varies as a function ofQg and also assess
how the presence of a live stellar component affects �v. By run-
ning a number of modelswith a range of particle numbers and also
performing controlmodelswith ‘‘passively evolving’’ stars, we are
able to subtract out the contribution to �v due to Poisson noise in
the particle distribution.We show that quite highparticle resolution
is in fact necessary for accurate determination of �v in the case
whenQg is nearQg;crit; this is of practical importance because real
disks naturally evolve toward near-critical states.

This paper is organized as follows. In x 2 we present the basic
equations we solve for gas and stars, introduce ‘‘thick-disk’’ grav-
ity, and describe our model parameters. In x 3 we revisit the linear
theory for axisymmetric gravitational instability in two-component
disks with an emphasis on the stabilizing effect of nonzero disk
thickness (omitted in previous studies). In x 4 we describe numer-
ical methods we employ for our simulations and present results of
code tests. We demonstrate that large Poisson noise in the stellar
particle distribution can lead to spurious results for N-body sys-
tems that are nearly or marginally gravitationally unstable. In x 5
we report on our simulations of two-component disks. We pre-
sent numerical results on Qg thresholds for (nonaxisymmetric)
gravitational runaway and quantify the overall level and spectral
properties of gravity-driven turbulence whenQgkQg;crit. Finally,
we summarize our results and discuss their astronomical impli-
cations in x 6.

2. EQUATIONS AND MODEL PARAMETERS

2.1. Basic Equations and Thick-Disk Gravity

In this paper we investigate the dynamics of local galactic disks
composed of gas and stars. We follow the evolution of the gas by
solving the hydrodynamic equations, while employing anN-body
method for the stars. The gas is assumed to be isothermal and un-
magnetized, and we assume that all physical variables other than
the gravitational potential are independent of the vertical height.
As in Paper I, we consider a patch of the disk orbiting the galaxy
with a fixed angular frequency60 ¼ �0ẑ, and set up a local Car-
tesian frame with x and y referring to radial and azimuthal coor-
dinates, respectively.We consider a simulation box with size L ;
L. The equilibrium background velocity arising from galactic ro-
tation relative to the center of the box at x ¼ y ¼ 0 is given by
v0 ¼ �q�0xŷ, where q � �d ln�/d ln R denotes the dimension-
less local shear rate. The basic dynamical equations we solve for
the gaseous part in the local frame are identical to those presented
in Paper I, except that we adopt here a ‘‘thick-disk’’ gravitational
kernel in solving the Poisson equation (see below).

To follow the evolution of the stellar component, we use col-
lisionless particles. Restricting particle motions to be in-plane,
the shearing sheet equations of motion relative to the center of the
box are given by

r̈ ¼ 2q�2
0xx̂� 260 < ṙ�:(�g þ �s); ð1Þ

where r ¼ xx̂þ yŷ is the position vector of a particle, the dots de-
note derivatives with respect to time (e.g., Julian & Toomre 1966;
Wisdom & Tremaine 1988), and �g and �s are the gravitational
potentials from gas and stars, respectively. The spatial distribution
of the particles at any given time will give the stellar surface den-
sity �s, which in turn yields �s via

92�s ¼ 4�G�shs(z); ð2Þ

where hs(z) represents the vertical distribution of the stellar den-
sity and satisfies the normalization condition

R1
�1 hs(z) dz ¼ 1.

The Poisson equation for the gas takes the same form as equa-
tion (2) with subscripts changed appropriately.

Studies of disk dynamics often assume h(z) ¼ �(z) for sim-
plicity. This thin-disk approximation would be valid as long as
perturbations of interest do not critically rely on the vertical di-
mension and their wavelengths k are much larger than the disk
scale heightH. For waves with k approaching 2�H , however, the
thin-disk approximation overestimates self-gravity at the diskmid-
plane. This can be particularly severe in a two-component system
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in which the characteristic length scales and disk scale heights for
gas and stars are quite different from each other. For instance, the
criticalwavelengths for axisymmetric gravitational instability under
solar neighborhood conditions are�10kpc for stars (e.g., Binney&
Tremaine 1987) and �1 kpc for gas (e.g., Elmegreen 1995a; Pa-
per I). The stellar scale height Hs � 330 pc (Chen et al. 2001) is
nonnegligible compared with the wavelength of the most vulner-
able modes in the combined system. Moreover, as perturbations
grow via swing amplification they form thin overdense filaments
with widths comparable to the gas disk’s scale height (Paper I;
see also x 5.1), so that the thin-disk gravity may potentially lead
to spurious fragmentation. It is thus desirable to allow for finite
disk thickness in solving equation (2).

Suppose that hs(z) does not vary with time and that �s is pe-
riodic in x and y (or linear combinations of coordinates; see x 4.1).
Using the Green’s function method, one can show that equation (2)
yields the solution at z ¼ 0 (omitting the subscript s)

�(k) ¼ � 2�G�(k)

jkj

Z 1

�1
h z0ð Þe� kz 0j j dz0; ð3Þ

where�(k) and�(k) refer to the Fourier components with wave-
vector k. When h(z) ¼ e�jzj/H /(2H ), equation (3) simply becomes

�(k) ¼ � 2�G�(k)

jkj(1þ kj jH )
; ð4Þ

which we refer to as ‘‘thick-disk’’ gravity, as opposed to thin-disk
gravity, for which H is set equal to zero. This result was obtained
through a different technique by Elmegreen (1987) and has been
shown to be quite a good approximation for the reduction of self-
gravity in disks with various density profiles (e.g., Romeo 1992;
Kim et al. 2002). By direct numeral integration, one can see that
equation (4) slightly underestimates the real potential for purely
self-gravitating disks, but not more than 14%.3 Kim & Ostriker
(2006) further found that when equation (4) is used to calculate
self-gravity, simulations of gas flow across two-dimensional spi-
ral shocks produce results very similar to fully three-dimensional
models. In what follows, we shall use equation (4) to compute
the self-gravity of gas and stars with scale heights Hg and Hs,
respectively.

2.2. Model Parameters

As initial models we consider a composite disk of gas and stars
with uniform surface densities �g0 and �s0. The gaseous disk is
set to remain isothermal throughout the entire evolution with an
effective speed of sound cg ¼ 7 km s�1, corresponding to a
mean Galactic thermal pressure P /k � 2000 4000 K cm�3

(Heiles 2001) and mean midplane density nH � 0:6 cm�3

(Dickey & Lockman 1990), similar to solar neighborhood values.
For the stellar disk, we initially distribute particles according to the
Schwarzschild distribution function

f (vx; vy) ¼
�s0

2��s;x�s;y
exp � v2x

2�2
s;x

� (vy � v0;y)
2

2�2
s;y

" #
; ð5Þ

where �s;x and �s;y are the x- and y-components of the particle
velocity dispersion, respectively. The values of �s;x and �s;y will
vary over time as the particles respond to the perturbed gravitational

potential. Note that�s0 ¼
R
f dvx dvy and�s;y /�s;x ¼ (1� q/2)1/2

in equilibrium. We initially adopt �s;x ¼ 30 km s�1 and �s;y ¼
2�1/2�s;x , corresponding to solar neighborhood conditions with a
flat (q ¼ 1) rotation curve (Binney & Tremaine 1987).
Whenwritten in dimensionless form, the basic dynamical equa-

tions are characterized by the parameters

Qg ¼
�0cg

�G�g0
; Qs ¼

�0�s;x

3:36G�s0

; ð6Þ

nJ ¼
G�g0L

c2g
; X ¼ �2

0L

4�2G�s0

; ð7Þ

together with Hg /L and Hs /L. The Toomre Q parameters defined
by equation (6) give the surface densities relative to the critical
values atQg ¼ Qs ¼ 1 for axisymmetric gravitational instability
in a razor-thin, gas-only or star-only disk (Toomre 1964; Binney
& Tremaine 1987). In equations (7), the nJ (X ) parameter is the
ratio of the simulation box size L to the critical wavelength kg;crit ¼
c2g /G�g0 (ks;crit ¼ 4�2G�s0/�

2
0 ) for axisymmetric gravitational in-

stability in a razor-thin, nonrotating gaseous (rotating, cold stellar)
disk.
Since the parameter space is very large and sincewe are primarily

interested in the dynamical evolution of the gaseous component in
combined disks, we vary onlyQg (or equivalently�g0) and fix all
the other disk properties. For the stellar part, we adopt solar neigh-
borhood values�0 ¼ 36 kms�1 kpc�1 (Binney&Tremaine 1987),
�s0 ¼ 35 M� pc�2 (Kuijken & Gilmore 1989), and Hs ¼ 330 pc
(Chen et al. 2001; Karaali et al. 2004). This givesQs ¼ 2:1, so that
in our model disks the stellar component alone, even in the razor-
thin limit, would be immune to axisymmetric instability.We adopt
Hg ¼ 170 pc for the effective scale height of the local ISM (e.g.,
Boulares & Cox 1990). For the box size, we adopt X ¼ 2 or L ¼
9:2 kpc, which is large enough to resolve the most susceptible
modes of the swing amplifier in stellar disks (Toomre 1981); test
simulations we have performed confirm that results are insensi-
tive to X as long as X � 2.
Our fiducial model has Qg ¼ 1:4 corresponding to �g0 ¼

13 M� pc�2 for the gas disk (e.g., Holmberg & Flynn 2000), but
we also allow for various values ofQg in the range of 1–3. These
models will allow us to determine the critical Qg value for grav-
itational runaway and to study the characteristics and level of
turbulence driven by self-gravity when QgkQg;crit. Since equa-
tions (6) and (7) give nJ ¼ 3:7X�s;x /(cgQgQs) � 15/Qg for the
adopted set of parameters, we see that our simulation box is large
enough to contain at least five Jeans wavelengths of the gas-
eous medium.We define the orbital period torb � 2�/�0 ¼ 2:4 ;
108 yr (�0 /26 km s�1 kpc�1)�1 and use it as the time unit in our
presentation.

3. AXISYMMETRIC STABILITY

The gravitational stability of two-component disks to axisym-
metric perturbations was first analyzed by Jog& Solomon (1984a),
Romeo (1992), Elmegreen (1995b), and Jog (1996), who treated
the stellar disk as an isothermal fluid.While a fluid description of
stellar particles is a good approximation for a range of wavenum-
bers in disks near the threshold, it generally fails when disks are
further from instability or when thewavelengths of perturbations
are small compared to the epicyclic excursions of stars (e.g., Binney
& Tremaine 1987). Rafikov (2001) instead used a collisionless
description of the stellar population and derived a dispersion re-
lation for axisymmetric waves in star-gas disks assuming that the
disk is razor-thin. In this sectionwe revisit axisymmetric instability
with a particular emphasis on the effect of nonzero disk thickness.

3 When eq. (4) is used to obtain an axisymmetric dispersion relation for a disk
with Hg ¼ c2g /(�G�g) (i.e., Hg determined by gas self-gravity alone), the re-
sultingQcrit ¼ 0:65 is very close to the valueQcrit ¼ 0:68 obtained by Goldreich
& Lynden-Bell (1965a) as an exact criterion for axisymmetric instability.
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The results of this section will be used to check our numerical
technique in x 4.2.

We refer the reader to Rafikov (2001) for a detailed derivation
leading to the thin-disk dispersion relation for two-component
disks. We follow the same steps, except we use thick-disk equa-
tion (4) for the potential and density pairs in place of Rafikov’s
equation (14). The resulting dispersion relation for axisymmetric
modes in a two-component disk of finite vertical extent reads

2�Gk�g0

(�2 þ k 2c2g � !2)(1þ kHg)

þ
2�Gk�s0F (!=�; k 2�2

s;x=�
2)

(�2 � !2)(1þ kHs)
¼ 1; ð8Þ

where ! and k are the frequency and radial wavenumber of per-
turbations, respectively, and F is the stellar ‘‘reduction factor’’
defined by equation (6-45) of Binney & Tremaine (1987), which
accounts for the effects of the stellar velocity dispersion. A sim-
ilar relation was presented by Romeo (1992), who introduced a
single effective scale height for the combined disk instead of us-
ing different heights Hg and Hs for each component. In the limit
of Hg ¼ Hs ¼ 0, equation (8) recovers the thin-disk dispersion re-
lation ofRafikov (2001). Note that although a combined thick disk
can bemapped to a razor-thin counterpart with lower surface den-
sity, the density reduction factors of the gaseous and stellar com-
ponents differ from each other and cannot be determined a priori,
since they depend on the perturbation wavenumber.

We determine the marginal stability condition by solving equa-
tion (8) with !2 ¼ 0 and plot the results in Figure 1 for selected
values of R � cg /�s;x. Thick lines are for thick disks with scale
heights Hg ¼ 170 pc and Hs ¼ 330 pc. Results from Rafikov
(2001) for razor-thin disks are also plotted as thin lines for com-
parison. The parameter domain below each marginal line corre-
sponds to the stable regime. It is apparent that axisymmetric
gravitational instability is mainly determined by the gaseous com-
ponent for small R andQsk 1.When R is small, the characteristic
unstable length scales in (stand-alone) gaseous disks are much
smaller than those of the stellar disk. In this case, the relative
dominance of the gaseous to stellar components changes rather
abruptly asQg andQs vary along a givenmarginal stability line,
as manifested by the cusp in the R ¼ 0:1 line. As R increases, the
distinction between the characteristic length scales in the gas and
stars becomes smaller, and the marginal line bends smoothly. A
systemwith solar neighborhood parameters, marked by the filled
circle at (Qs;Qg) ¼ (2:1; 1:4), is highly stable to axisymmetric
modes when treated as thick, while it would be marginally stable
under the thin-disk approximation.

For varying disk thicknesses, Figure 2 plots the Qg;crit values
and the corresponding marginal wavelength of perturbations,
kmarg (k < kmarg modes are stable). Self-gravity weakens when
Hg, Hs, or Qs increases, tending to require lower Qg;crit. A razor-
thin gas-only disk has Qg;crit ¼ 1:0. This value increases to
Qg;crit ¼ 1:27 if the contribution froma thin stellar componentwith
Qs ¼ 2:1 is considered. For disks with thicknessesHg ¼ 0:87cg /�
and Hs ¼ 0:4�s;x /� with Qs ¼ 2:1 (similar to the solar neigh-
borhood conditions), however, we haveQg;crit ¼ 0:67 at kmarg �
2:3 kpc, asmarked by filled circles in Figure 2. This indicates that
the stabilization caused by finite disk thickness is considerable,
even larger than the destabilizing effect of stars. Solutions of
equation (8) show that whenHg ¼ 0:87cg /� andHs ¼ 0:4�s;x /�
are fixed, thick disks with Qg > 1:4 are stable to axisymmetric
perturbations unlessQs < 0:8 (which is a very unrealistic range).
Therefore, the naive expectation that including a stellar component

increases Qg;crit over unity fails in disks with realistic thickness.
The fact that Qg;th � 1:4 for observed star formation thresholds in
disk galaxies has often been attributed to gravitational instabilities
in two-component systems (e.g., Kennicutt 1997). However, our
results show that axisymmetric modes cannot be providing the
needed instability when disk thickness is properly considered.We
will show in x 5 that instead, swing amplification of nonaxisym-
metric perturbations are in fact able to drive two-component thick
disks with QgP1:4 into eventual gravitational runaway.

4. NUMERICAL METHOD AND CODE TESTS

4.1. Numerical Method

Wehave run a number of two-dimensional simulations for star
plus gas systems, varying Qg and the number of stellar particles
while fixing Hg, Hs, and Qs. All the models have 256 ; 256 res-
olution. We follow the nonlinear evolution of the gaseous part us-
ing the same version of the ZEUS code (Stone&Norman 1992) as
in Paper I; the reader is referred to Paper I for a detailed description
of the code and the boundary conditions we adopt. In this sub-
section we describe the numerical methods mainly for the stellar
part.

We use up toNptl ¼ 2 ; 106 particles to represent a stellar disk
and evolve them based on a particle-mesh (PM) algorithm.With
its high velocity dispersion, the stellar component has a charac-
teristic Jeans scale much larger than that of gas, so the resolution
limit imposed by the PM method is entirely tolerable. In addi-
tion, the relaxation time of the particles amounts to tR ¼ �3

s;x�x/
(�G2�s0m) � 1 ; 103 torb for the parameters we adopt, where�x
is the grid size and m is the mass of individual particles (Rybicki
1971). This time is long enough to ensure that the evolution of the

Fig. 1.—Marginal stability lines in the Qs-Qg plane for axisymmetric grav-
itational instability in two-component disks with R � cg /�x. The thick lines cor-
respond to thick disks with Hg ¼ 170 pc and Hs ¼ 330 pc, while the thin lines
are for razor-thin disks. The regions below each marginal line represent condi-
tions for which two-component disks are axisymmetrically stable. The filled
circle at (Qs;Qg) ¼ (2:1; 1:4)marks solar neighborhood parameter values which
are very stable when the disk is treated as thick, but would be barely stable if the
disk were assumed razor thin.
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stellar system in our PM code is not seriously influenced by par-
ticle noise and relaxation (e.g., White 1988).

The initial distribution (eq. [5]) of the particle positions and
velocities are realized using a pseudorandom number generator.
At each time step, the stellar surface density�s is calculated on a
256 ; 256mesh via the triangular-shaped-cloud assignment scheme
(Hockney & Eastwood 1988). We solve equation (4) by employing
the fast Fourier transformmethod on a sheared coordinate grid in
which the surface density is perfectly periodic (Gammie 2001).
The calculated potential is differentiated to give the gravitational
force field at Cartesian mesh zone centers, which is then inter-
polated back to the particle locations. We integrate equation (1)
using a modified predictor-corrector scheme that is second order
accurate in time (e.g., Monaghan 1989). To handle the kinematics
of the background shear self-consistently, we apply the shearing
box boundary conditions in which y-boundaries are perfectly pe-
riodic and the x-boundaries are shearing periodic (Hawley et al.
1995; Huber & Pfenniger 2001). These boundary conditions are
fully consistent with our local models; particles leaving the sim-
ulation box fromone x-face reenterwith shifted y-positions through
the opposite x-face.

4.2. Code Tests

We have checked our numerical methods on a number of test
problems: one-dimensional or two-dimensional waves in gaseous
or stellar disks separately or in combination. In this subsection we
present the results of three tests that not only verify the accuracy of
our numerical code, but also provide information on the necessary
number of stellar particles to prevent numerical artifacts in the
evolution of a self-gravitating stellar system.

Figure 3 plots the test results of axisymmetric density waves in
razor-thin stellar disks. For these testswe consider one-dimensional,

Fig. 2.—CriticalQg values (left ) and themarginal perturbationwavelength kmarg (right) as functions of the gaseous scale heightHg. RegionswithQg < Qg;crit or k > kmarg

correspond to an unstable parameter set. The solid lines correspond to the gas-only systems, while other lines are for combined disks withQs ¼ 2:1. The filled circles in both
panels represent the solution for solar neighborhood parameters.

Fig. 3.—Oscillation frequencies of axisymmetric stellar density waves. The
abscissa is the wavenumber k normalized by ks;crit � �2 /(2�G�s). One-dimensional,
razor-thin, star-only disks withQs ¼ 1:1 are adopted, andNptl ¼ 104 particles are
used. Open circles and filled triangles are from the X ¼ 2 and 1 models, respec-
tively, both of which are in good agreement with the analytic solutions (lines) of
eq. (8).
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star-only disks with Hs ¼ 0, q ¼ 1, Qs ¼ 1:1 (close to the mar-
ginal state), and X ¼ 1 or 2. For each run, Nptl ¼ 104 particles are
used. Frequencies obtained from the spatial and temporal Fourier
analyses of the surface densities are given as filled triangles and
open circles for theX ¼ 1 and2 cases, respectively. The numerical
results are within �2.5% of the analytic predictions (solid lines)
from equation (8) for the chosen set of disk parameters. This con-
firms the stellar code’s performance.

The second test addresses axisymmetric gravitational instability
of a two-component disk, for which we choose Qg ¼ 1:2, Qs ¼
1:5, q ¼ 1, Hg ¼ 0:05cg /�, Hs ¼ 0:1�s;x /�, and cg /�s;x ¼ 0:4.
The linear theory in x 3 predicts that such a combined disk is un-
stable with a maximum growth rate of�0:894�0, which occurs at
kmax ¼ 3:53�s;x /�. Setting the one-dimensional box sizeL ¼ kmax

and assuming the gas is adiabatic with index � ¼ 5/3, we have run
two models with differing Nptl. Figure 4 plots the resulting time
histories of themaximum surface densities in both gaseous and stel-

lar components. The dotted and solid lines correspond to Nptl ¼
104 and 105 cases, respectively. Poisson noise in the stellar distri-
bution immediately imposes (via gravity) strong density pertur-
bations in the gaseous disk, which would otherwise be uniform.
The perturbations in stars and gas soon become coherent and grow
exponentially. ThemodelwithNptl ¼ 104 has larger Poissonnoise;
hence, unstable modes grow sooner. Note that the growth rate of
stellar surface density in bothmodels is in good agreement with the
theoretical estimate for the fastest growingmode, as represented by
the long-dashed line in Figure 4. The gaseous component, already
driven nonlinear, has slightly faster growth.

Finally, we report on the results of an important two-dimensional
test. Evolution of linear waves in two-dimensional, shearing disks
in principle would provide stringent tests for the current purposes,
but we are unaware of test problems that have analytic solutions
for comparison with numerical results. Swing amplification in a
combined diskwould also be a useful test, but it is difficult to accu-
rately measure the amplification magnitude from numerical simu-
lations. Propagating nonaxisymmetric waves in a shearing disk
also would be an excellent test problem for the gas component
(e.g., Paper I ), but because of the Lagrangian character it does
not work as well for a stellar disk. We thus consider evolution of
nonaxisymmetric perturbations in nonshearing disks, for which
equation (8) still holds true if q ¼ 0 and k ¼ (k 2

x þ k 2
y )

1/2 are
used.We have run a set of numerical simulations for stable/unstable
waves in various types of nonshearing disks and confirmed that
numerical results are consistent with the analytic predictions, ver-
ifying again the accuracy of our numerical code.

Of particular interest is the effect of Poisson noise on gravita-
tional instability in a stellar (or combined) system near the mar-
ginal state. Figure 5 plots the snapshots of surface density (in
logarithmic scale) at t /torb ¼ 7:0 in a razor-thin, rigidly rotating,
star-only diskwith q ¼ 0,Qs ¼ 1:2, andX ¼ 2. Although the lin-
ear theory suggests that a disk with these parameters should be
stable, the maximum surface density in a model with Nptl ¼ 104

grows secularly, prompting the formation of four clumps, as the
left panel of Figure 5 shows. The growth of perturbations in amodel
with Nptl ¼ 105 is slower, displaying overdensity honeycomb
structures (Fig. 5, middle), while a model with Nptl ¼ 106 has a
stable density field oscillating mildly (Fig. 5, right). The mass
assignment scheme in our two-dimensional PM code yields Pois-
son noise at the level ��s0 /�s0 ¼ 1:44(Nptl /104)

�1/2, asmeasured
by the standard deviation ��s0 of the initial surface density �s0.
Some fraction of this noise may add to �s0, decreasing the effec-
tive value ofQs. In caseswhenNptl is small andwhenQs is slightly
larger than unity, Qs;eA can be smaller than the critical value and

Fig. 4.—Time evolution of maximum surface densities of gas and stars in a
combined disk with q ¼ 1, Qg ¼ 1:2, Qs ¼ 1:5, Hg ¼ 0:05cg /�, Hs ¼ 0:1�x /�,
and cg /�x ¼ 0:4. An adiabatic equation of state with � ¼ 5/3 is assumed for the
gas. The long-dashed line gives the theoretical growth rate of�0:894�0, which is
in good agreement with the results of numerical simulations.

Fig. 5.—Snapshots of surface density at t /torb ¼ 7:0 in nonshearing, star-only systems withQs ¼ 1:2, X ¼ 2,Hs ¼ 0, but with differing particle numbers:Nptl ¼ 104

(left);Nptl ¼ 105 (middle); andNptl ¼ 106 (right). Grayscale bars give log (�s /�s0). It is apparent that large Poisson noise associated with smallNptl effectively increases
the surface density locally, lowering Qs and thus destabilizing systems that would otherwise remain stable.
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perturbationsmay grow artificially.4This implies that Poisson noise
can erroneously alter the fate of a numerically modeled stellar sys-
tem, especially when it is close to being marginal.

This point has sometimes been overlooked in previous N-body
simulations of disks. For example,Griv et al. (1999) simulated dy-
namics of nonshearing, local stellar disks using about 6500 par-
ticles and found that diskswith 1 < Qs0P 1:5 were unstable. They
argued that the apparent discrepancy between the numerical and
theoretical results might be partly because theWKB theory of Lin
& Shu (1966) for density waves is incomplete and partly because
their method for computing self-gravity is not very accurate. We
suggest that large Poisson noise alone, simply associated with a
small number of particles, can explain their numerical results. Ade-
quate resolution is particularly an issue for global disk models,
since the Poisson noise on a given spatial scale is proportional to
the linear size of the disk. Some of the global simulations of Li
et al. (2005, 2006; with 0:2 1:2 ; 106 star particles for the whole
disk), for example, may be affected by amplification of noise.

5. NONLINEAR SIMULATIONS

To investigate nonlinear evolution of two-component differen-
tially rotating disks with a range of gas mass fractions, we have run
a number of nonaxisymmetric models. We fix q ¼ 1, Qs ¼ 2:1,
X ¼ 2, �Hs /�s;x ¼ 0:4, �Hg /cg ¼ 0:87, and varyQg in the range
of 1–3. For these parameters, axisymmetric perturbations are sta-
ble. Solutions for self-consistent vertical equilibria show thatHg de-
creases only by�20% as Qg decreases from 1.4 to 1.0 (Kim et al.
2002), so that we expect using a fixed value of Hg will not sig-
nificantly impact our quantitative results.

We set up initially uniform gaseous and stellar disks and apply
density perturbations only to the gaseous component. Because of
randomness in particle locations, the stellar part already haswhite-
noise density perturbations with amplitudes of�10%whenNptl ¼
2 ; 106 which will be immediately transmitted into the gaseous
disk. In order to keep the Poisson noise from dominating the
evolution of the gaseous disk, we impose rather strong gaseous
density perturbations using a Gaussian random field with a power
spectrum hj�2

g; k ji / k�8/3 for 1 � kL/(2�) � 256 inFourier space.
This corresponds to a two-dimensional Kolmogorov spectrum if
wavemotions obey a sonic dispersion relation (Paper I).Wemea-
sure the standard deviation of the gas surface density in real space
and fix it to 10%. Although this level of density fluctuations is
chosen as a compromise between maintaining the initial pertur-
bations in the linear regime and reducing the effect of Poisson noise
on the simulation outcomes, it may in fact well represent initial
conditions for the highly turbulent ISM observed in real disk
galaxies.

5.1. Threshold for Gravitational Runaway

Webeginwith a high-resolutionmodelwithQg ¼ 1:0 andNptl ¼
2 ; 106. For this model, the combined gravity of gas and stars in-
duces efficient swing amplification, leading to gravitational run-
away. Because disk thickness dilutes self-gravity, each disk (i.e.,
purely gaseous or purely stellar) in isolation would have remained
stable both to axisymmetric and nonaxisymmetric perturbations.
Figure 6 plots as dashed lines the evolution of the maximum gas-
eous surface density and the spatially averaged, stellar Toomre
parameter Q̄s of this model (together with those of other models).
Figure 7 displays snapshots of gas and stellar surface density
in this model at three time epochs, while Figure 8 shows the ini-
tial modal growth of perturbations in the gas surface density over
time.

Fig. 6.—Evolution of themaximumgaseous surface density (left) and the spatially averaged stellar Toomre parameter Q̄s (right), formodelswith variousQg. All themodels
are two-dimensional and employ 2 ; 106 stellar particles withQs;init ¼ 2:1. Models withQg � 1:2 experience gravitational runaway, while models withQg � 1:7 are stable;
the Qg ¼ 1:4 model is marginal with a rapidly fluctuating density field. For unstable or marginal models, Q̄s increases considerably over time due to the gravitational in-
teractions of stellar particles with both gaseous and stellar concentrations.

4 If a half of ��s0 contributes directly to �s0, the effective Toomre parameter
becomes Qs;eA ¼ Qs(1þ ��s0 /2�s0)

�1. When Qs ¼ 1:2, Qs;eA ¼ 0:70, 0.98,
and 1.12 for Nptl ¼ 104, 105, and 106, respectively, which is roughly consistent
with the results of our numerical experiments.
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Initially, density perturbations (a superposition of modes with
different wavenumbers) adjust by launching sound waves in the
gas and redistributing stellar particles on their epicyclic orbits.
During this relaxation phase, which lasts�0:2 torb, coherent per-
turbations in stars and gas begin to develop through gravitational
interactions. Because of the uniform background shear, the ra-
dial wavenumber kx(t) of perturbations increases linearly with
time as

kx(t) ¼ kx(0)þ q�0kyt; ð9Þ

where ky denotes the y-wavenumber and kx(0) is the initial x-
wavenumber of perturbations. This kinematic shift of kx(t) causes
wave fronts to swing from leading to trailing. Epicyclic motion of
both stellar particles and gaseous fluid elements has the same ro-
tational sense as the wave fronts, extending their exposure to self-
gravity as they linger in wave crests. Perturbations keep growing
until the radial wavenumber becomes large, forming overdense,
trailing wavelets (Goldreich & Lynden-Bell 1965b; Julian &
Toomre 1966; Toomre 1981; Paper I ).

The modal growth of density perturbations via swing amplifi-
cation in theQg ¼ 1:0model is well illustrated in Figure 8 where
we plot the evolution of power spectra of the gaseous surface den-
sity as functions of the normalized wavenumber nx(t) � Lkx(t)/
(2�). Only the modes with ky ¼ 2�/L and jnx(0)j � 3 that have
large amplitudes are shown. Note that a unity increment of nx(t)
along each line corresponds to a time elapse of�t ¼ (2�)�1torb.
It is apparent that swing amplification is active only when waves
are loosely wound with jnx(t)jP 3 4, above which sonic oscil-

lations quench the perturbation growth. The nx(0) ¼ 1mode that
happens to have the largest initial power grows and emerges first,
as manifested by the trailing modes with nx(t /torb ¼ 0:3) � 3
shown in the top row of Figure 7. However, it is the modes with
nx(0) < 0 that eventually dominate the initial swing amplification,
since they have longer time for growth.

As Figures 6 and 8 show, the initial swing amplification in the
Qg ¼ 1model saturates at around t /torb ’ 0:7.At this time, the gas-
eous surface density reaches �g;max /�g0 ¼ 18:7, while the stellar
component reaches only�s;max /�s0 ¼ 2:5. The stellar component’s
density increases less due to its larger initial values ofQs andHs and
the steady heating associated with particle scattering off shearing
wavelets. While the maximum gas surface density is rather high
when the swing amplifier saturates, the gas filaments are very thin.
Reduction of self-gravity due to finite disk thickness prevents these
filaments from immediately undergoing gravitational collapse. The
filaments expand slightly, reducing their surface density. Some fil-
aments have sufficient perturbed velocities to offset the tendency
forwave rotation of the background shear. Consequently, the pitch
angles of these high-density filaments vary little; they can be
viewed as transient (swing-generated) spiral density waves in a
two-component disk.

Figure 9 plots sample cut profiles of various quantities along
the x/L ¼ �0:14 dotted lines in the snapshot shown in the mid-
dle row of Figure 7. The gas filament has a pitch angle i ¼ 16�

and is almost corotatingwith the center of the box; it coincideswith
a local stellar enhancement such that the composite may be con-
sidered a transient, local spiral arm segment. As the gas at�0:18 <
x/L < �0:2 enters the arm, it is decelerated and compressed, anal-
ogous to a supersonic de Laval flow. This in turn increases the
velocity parallel to the arm due to the constraint of potential vor-
ticity conservation (e.g., Hunter 1964; Balbus & Cowie 1985;
Gammie 1996; Kim et al. 2002). Note that the gravitational po-
tential is dominated by the gaseous component, which tends to
symmetrize the density profile with respect to the peak (Lubow

Fig. 7.—Snapshots of gaseous (left ) and stellar density (right) in logarithmic
color scale for theQg ¼ 1:0model. Dotted lines in black in themiddle row indicate
the x-position atwhich slices of various physical quantities are taken in Fig. 9. Strong
filaments develop in the gas, and weaker filaments in the stars, due to swing ampli-
fication (t ¼ 1:0 orbits). The gaseous filaments subsequently gravitationally fragment
into clumps (t ¼ 2:0 orbits).

Fig. 8.—Modal growth of power spectra j�g;k j2 of the gaseous surface den-
sity against the normalized wavenumber nx(t) � Lkx(t)/(2�) in the Qg ¼ 1:0
model for t /torbP1:1. A few selected modes with ky ¼ 2�/L and jnx(0)j � 3 are
shown. These loosely wound waves exhibit growth via swing amplification, then
saturation. Note that nx(t) increases linearly with time, with �t ¼ �nx(t)torb /
(2�). The t ¼ 0 point is the farthest left on each line.
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et al. 1986). The structure of this filament persists until t /torb � 1:2
when collisionswith other filamentsmake it highly self-gravitating.

Paper I found that formation of bound clouds in swing-amplified
disks occurs generically through one of the three secondary insta-
bilities. In order of decreasing self-gravity, these are (1) parallel frag-
mentation of filaments, (2) gravitational collisions of shearing
wavelets, and (3) rejuvenated swing amplification preceded by
nonlinear wave interactions. As explained above, high-density fil-
aments in the Qg ¼ 1:0 model do not immediately fragment due
to thick-disk gravity. Only after several collisions with neighbor-
ing filaments is the density high enough to form gravitationally
bound condensations. As Figure 7 shows, the Qg ¼ 1:0 model
forms 14 bound gaseous clouds, the averagemass of which is�6 ;
107 M�, roughly 10 times larger than the Jeans mass MJ;2D ¼

c4g /(G
2�g0) in the corresponding gas-only, razor-thin disk. For

comparison, in theQg ¼ 1models of Paper I, the condensations
that formed hadM /MJ;2D � 0:5 1, suggesting that the effect of
finite disk thickness (combined with an active stellar disk) is non-
negligible in setting the cloud masses that form.
We note that the bound condensations that form in our models

may represent H i superclouds observed in many disk galaxies
(e.g., Elmegreen & Elmegreen 1983; Knapen et al. 1993). In our
models (isothermal, without feedback), these superclouds keep
collapsing in a runaway fashion to the resolution limit. An artificial
consequence of the runaway cloud collapse, at highly nonlinear
stages, is the formation of loose stellar aggregates, as Figure 7
displays. Note that all the stellar clumps coincide with the mas-
sive gaseous clumps. In realistic situations, however, gaseous su-
perclouds would presumably fragment into lower mass GMCs
when appropriate physical processes such as internal turbulence
are included. If Msc and Rsc denote the mass and size of super-
clouds, respectively, stars would be drawn in strongly only if
Rsc < GMsc /�

2
s;x � 300 pc for Msc ¼ 6 ; 107 M� and �s;x ¼

30 km s�1. This corresponds to a supercloud surface density
�sc > 200 M� pc�2, comparable to the typical surface density of
a GMC. As long as GMCs are destroyed by star formation before
the whole supercloud reaches a density as large as that of an in-
dividualGMC (which is observationally true), stellar clumpswould
not be produced in reality.
As shown in the right panel of Figure 6, the stellar velocity

dispersion in this model continually increases as individual stars
scatter off stellar and, more importantly, gaseous filaments formed
via swing amplification. This process is somewhat analogous to
heating of a stellar disk by transient spiral density waves (e.g.,
Barbanis & Woltjer 1967; Sellwood & Carlberg 1984; Carlberg
& Sellwood 1985; Fuchs 2001; De Simone et al. 2004; Minchev
&Quillen 2006), although the runaway fragmentation and collapse
of gaseous fragments in our two-component models cause the
stellar velocity dispersions to rise more rapidly than in star-only
systems.
Figure 6 shows that a model with Qg ¼ 1:2 also becomes un-

stable, but with weaker gaseous gravity it takes longer to reach
gravitational collapse. Thefirst-generation filaments formed in this
model do not fragment directly, and unlike in the Qg ¼ 1 model,
collisions do not yield merger-induced fragmentation. Instead, the
structures nonlinearly interact with each other and supply fresh,
small-jkxj modes that undergo subsequent swing amplification
(Paper I; see also Fuchs et al. [2005] for its stellar analog). Four
successive stages of ‘‘rejuvenated’’ swing amplification (from in-
teractions of filaments of order unity amplitudes) are required to
drive theQg ¼ 1:2model into eventual gravitational runaway. The
average mass of gaseous clouds that form is again �10MJ;2D.
When we further reduce the gas surface density so that Qg ¼

1:4, the initial swing amplification yields a moderately self-
gravitating state that never forms bound clumps over the course
of the simulation. As Figure 10 shows, the gaseous component in
this model is dominated by shearing wavelets (and the related ve-
locity field). Mild rejuvenated swing amplification allows the
peakgaseous surface density and velocities to grow steadily, reach-
ing the nonlinear regime. The stellar velocity dispersions also grow,
but the net increase is less than 10% at t /torb ¼ 8 (see Fig. 6); the
stellar disk also remains virtually uniformwith only very low fluc-
tuations in density.We regard this model as ‘‘marginal’’ because it
would almost certainly end upwith bound condensations if evolved
over a sufficiently long time. In other models with Qg � 1:7,
growth is so weak that perturbed surface densities remain in the
linear regime at the saturation of the first swing amplification.
Rejuvenation of swing is almost absent in these models, so that

Fig. 9.—Profiles of gaseous surface density, gaseous velocities, and gravita-
tional potentials across a filament at x/L ¼ �0:14 when t /torb ¼ 1, for the Qg ¼
1:0 model. The profiles are qualitatively similar to those in galactic spiral shocks
when both gas and stars are present (e.g., Lubow et al. 1986).
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the combined systems can be considered nonlinearly stable. We
conclude, therefore, that the threshold for gravitational instability
in combined gas-star disks has Qg near 1.4.

5.2. Gravity-driven Turbulence

We now examine the properties of turbulence generated by
swing amplification in two-component disks. We define �Ekin �
1
2

R
�g(v� v0)

2 dx dy/�g0, representing the specific kinetic energy
associated with turbulent velocities in the gas.5 We have shown
in x 4.2 that large Poisson noise in a particle distribution effectively
increases themean surface density of stars in local regions and can
even incur spurious gravitational instability. Similarly, random
particle noise can artificially—and possibly significantly—enhance
the saturated state value of �Ekin.

We want to measure �Ekin in a way that minimizes the effect of
particle noise. To this end we take the following steps. (1) Run a
two-component model in which both stellar and gaseous disks
evolve under the total (gaseous plus stellar) self-gravity and
measure the resulting kinetic energy, which we denote by �ESG

kin.
(2) Run a control model with the same set of parameters as in step
(1), but evolving the stellar component kinematically [i.e., omit-
ting the:(�s þ �g) gravity terms in eq. (1)], while evolving the
gaseous component including both self- and stellar gravity. In runs
of type (2), no initial perturbation is applied to the gas, but the
gas responds to the Poisson noise of the stars. The energy result-
ing from runs of type (2) are denoted �ENG

kin . (3) Calculate the gas-
eous velocity dispersion �v � (2h�ESG

kini�2h�ENG
kin i)

1/2, where the

brackets h	 	 	i denote a temporal average over some time in-
terval (typically over 1–6 orbits). (4) Finally, varyNptl and repeat
steps (1)–(3) to check the convergence of �v with increasingNptl.

Figure 11 displays evolutionary histories of �Ekin forQg ¼ 1:4
models that differ in the number of particles and the treatment of
gravity for the stellar component. The thick lines correspond to
runs following (1) above, while thin lines correspond to runs fol-
lowing (2). In the cases with full gravity, the systems relax after
the initial swing amplification, with �ESG

kin decreasing temporar-
ily as some of the gaseous kinetic energy is transferred via sound
waves and/or weak shocks into thermal energy that dissipates
under the isothermal prescription. The continuous input from stel-
lar perturbations as well as nonlinear feedback from the shearing
wavelets cause a resumed increase in �E SG

kin . After t ¼ 2 orbits,
models with gravitating stars show a secular increase of �ESG

kin.
On the other hand, in models where the stars evolve passively,
the initial swing is weak enough that �ENG

kin simply saturates at a
constant ( low) value. Other models (not shown) with Qg � 2:0
show that both �ESG

kin and �ENG
kin are more or less constant after

t /torb ¼ 2, because swing amplification is very mild.
Figure 12a plots the results for �v against Nptl as filled circles

for various Qg. In computing �v, we take time averages of �Ekin

over t /torb ¼ 1 6 for all the models except the unstable model
with Qg ¼ 1:2. For Qg ¼ 1:2, time averages are taken only over
t /torb ¼ 1 4, since afterward the velocity field ismainly a response
to discrete high-density filaments. For comparison, Figure 12a also
plots values of �̃v � h2�ESG

kini
1/2

as open circles for selected values
of Qg. The figure shows that for Qg < 1:7, �v and �̃v are in close
agreement. More generally, it is clear that there are progressively
smaller differences between �v and �̃v asQg decreases, indicating
that the contribution from swing-amplified Poisson noise to �̃v

becomes increasingly unimportant at lower Qg.

Fig. 10.—Snapshots of gaseous (left) and stellar density (right) in logarithmic
color scale for the Qg ¼ 1:4 model. Note that nonlinear shearing wavelets are
prevalent in the gaseous disk, while density fluctuations in the stellar disk are very
weak.

Fig. 11.—Evolutionary histories of the random kinetic energy of the gas,
�Ekin ¼ 1

2

R
�g(v� v0)

2dx dy/�g0, in two-component disks with Qg ¼ 1:4 and
Qs ¼ 2:1. Three cases with different Nptl are shown. The thick lines are for the
models where the both stellar and gaseous components are fully self-gravitating,
while the thin lines correspond to the cases in which the combined gravity ap-
plies only to the gaseous disk. The stellar disk in the latter case evolves pas-
sively, but still imposes gravitational forcing from Poisson noise on the gas disk.

5 Note that the total perturbed kinetic energy also contains other terms; �Ekin

is ( half of ) the mass-weighted mean-squared turbulent velocity dispersion.
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Even after �ENG
kin , embodying the kinetic energy directly in-

duced in the gaseous disk by the stellar Poisson noise, has been
subtracted, Figure 12 shows that �v still depends on Nptl. This is
because the gas responds to swing-amplified perturbations in the
stars that partly originate as noise in the initial stellar distribution.
Note, however, that �v clearly converges with increasingNptl, im-

plying that this secondary noise effect becomes negligible. The
convergence study suggests that �v at Nptl ¼ 2 ; 106 provides a
clean measure of the turbulent energy that is uncontaminated by
effects of Poisson noise. Our results also imply that numerical
simulations ofmarginally unstable galactic disks are not reliable if
insufficientlymany particles are employed for the collisionless part.

Fig. 12.—Amplitudes of mean fluctuating gaseous velocities�v in two-componentmodels withQs ¼ 2:1,Hg ¼ 0:87cg /�, andHs ¼ 0:4�x /�, to test numerical resolution
effects. (a) Filled circles show �v as a function of stellar particle number Nptl after subtracting the random kinetic energy induced by Poisson noise in the stellar distribution,
while open circles give �̃v, the gas velocity dispersion without this correction. (b) Filled circles give �v forNptl ¼ 2 ; 106, and filled triangles are for gas-only systems. See
text for details.

Fig. 13.—Amplitudes of the power spectra along the kx- and ky-axes of (a) compressive and (b) shearing parts of the gaseous velocity in a two-component model with
Qg ¼ 1:4 at t /torb ¼ 2:5. Solid, dotted, dashed, and dot-dashed lines indicate the modes with kyL/(2�) ¼ 0, 1, 2, 3 as a function of kx (thick lines) and the modes with
kxL/(2�) ¼ 0, 1, 2, 3 as a function of ky (thin lines), respectively. The velocity power is clearly anisotropic, and the shearing part dominates at large scale. Both compressive and
shearing parts along the kx-axis show a break near kxL/(2�) � 8 10 below which the power flattens.
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Figure 12b plots �v for two-component disks with Nptl ¼ 2 ;
106 as well as the velocity dispersion for gas-only disks. For sta-
ble systemswithQgk 2:0, the stellar component enhances the am-
plitudes of the gaseous random velocities by about a factor of 2
compared to the gas-only counterpart, although velocity disper-
sions are small overall in this regime. When the disk is marginal
or unstable (Qg ¼ 1:2 or 1.4), �v becomes comparable to the ef-
fective speed of sound, and is�4–5 times larger than the value ob-
tained for a gas-only disk. This suggests not only that the stellar
disk can significantly affect driving of gaseous turbulence, but also
that self-gravity combined with galactic shear is capable of induc-
ing sonic-level gaseous turbulence under realistic disk conditions.

To characterize the turbulence generated by swing amplification,
we plot in Figure 13 Fourier power spectra of the compressive and
shear components of gaseous velocities defined by

Pcomp ¼ k̂ = �vk
�� ��2; Pshear ¼ k̂ < �vk

�� ��2; ð10Þ

respectively, where �vk denotes the Fourier transform of the
perturbed velocity, v� v0. Data at t /torb ¼ 2:5 of a fully gravitat-
ing two-component model withQg ¼ 1:4 and Nptl ¼ 2 ; 106 are
used for Figure 13. We have also calculated the density power
spectra and confirmed that they follow the compressive velocity
power spectra very closely.

The velocity power spectra are clearly anisotropic, as is typical
of turbulence in systems with strong background shear (e.g.,
Hawley et al. 1995; Kim et al. 2003). Comparisons of Fig-
ures 13a and 13b reveal that the ratio of total power in the shear-
ing to compressive parts is about 1.5. This value is quite small
compared to �4–10 found in recent simulations of hypersonic
turbulence (e.g., Boldyrev et al. 2002; Vestuto et al. 2003), pre-
sumably reflecting the facts that (1) our models are subsonic or
weakly supersonic at best, so that compressions are not strongly
dissipated, and (2) driving by self-gravity favors pumping of com-
pressive motions. Although the power spectra vary too much at
low k to yield clean power-law indices and are affected by numer-
ical dissipation at high k (e.g., Kim & Ryu 2005), our results are
consistent with P / k�4:5

y in the inertial range. The cuts along the
kx-axis exhibit a break near kxL/(2�) � 8 10, below which the
power flattens and above which Pcomp / k�4

x and Pshear / k�6
x .

About 85% of the turbulent power is in large-scale modes with
k � L/10, suggesting that the small-scale turbulent velocity disper-
sion is a small fraction of the total; this proportion could, however,
differ in three-dimensional models. The flattening of power spectra
at small kx and steepening at large kx in our models makes sense,
considering that in turbulence driven predominantly by swing am-
plification the background shear tends to increase the kx value of
any structure over time. In quasi–steady state, nonlinear interactions
of shearing wavelets evidently supply fresh power into small-jkxj
modes at just the rate needed to compensate for the kinematic shift
of kx due to shear, such that the shape of the power spectrum is
nearly flat.While turbulent energy cascades to small scales appear
to shape power spectra along the ky-direction, shear and nonlinear
feedback clearly dominate energy flows in the kx-direction.

6. SUMMARY AND DISCUSSION

6.1. Summary

In this paper we have analyzed the nonlinear dynamical evo-
lution of two-component galactic disks.One primary goal has been
to extend our previous work (Paper I), which modeled gas-only
disks, to evaluate thresholds for runaway gravitational instability

and formation of bound clouds. The other primary goal has been to
quantify the generation of gaseous turbulence in caseswhere grav-
itational runaway does not occur. The gaseous medium is isother-
mal and evolved by a hydrodynamic technique as in Paper I,
whereas the newly implemented stellar component is represented
by anN-body system evolved by a particle-meshmethod. The two
components interact through their respective gravitational poten-
tials. Our simulations are two-dimensional, but incorporate (impor-
tant) finite disk thickness effects in an approximate fashion (see
x 2.1). The local framework we employ incorporates galactic ro-
tational shear, tidal gravity, and Coriolis forces. The present models
do not include effects of magnetic fields or externally driven stellar
density waves.

Our main results are as follows.

1. Allowing for nonzero disk thickness significantly stabilizes
axisymmetric modes in two-component disks (see x 3). For solar
neighborhood conditions with Qs ¼ 2:1, the critical Toomre pa-
rameter of the gaseous component would beQg;crit ¼ 1:27 if both
the disks were razor thin. Usingmore realistic scale heightsHg ¼
170 pc andHs ¼ 330 pc for the gaseous and stellar disks, respec-
tively, the critical value is reduced to Qg;crit ¼ 0:67, well below
the observed value. Two-component thick diskswithQg ¼ 1:4 are
axisymmetrically stable unlessQs < 0:8, which is again inconsis-
tentwith observed galactic conditions. Star formation thresholds at
Qg;th � 1:4 observed in the outer regions of external massive disk
galaxies (Kennicutt 1989; Martin & Kennicutt 2001) are therefore
not a consequence of axisymmetric gravitational instability.

2. Our two-dimensional simulations show that two-component
disks undergo gravitational runway when Qg < Qg;crit (see x 5.1).
For stellar parameters representing the solar neighborhood (Qs ¼
2:1 and Hs ¼ 330 pc), this nonlinear threshold occurs at Qg;crit �
1:4. Disks with Qg below this threshold experience nonaxisym-
metric gravitational instability, forming bound condensations of
mass�6 ; 107 M� each. These condensationmasses are 10 times
larger than those that form in razor-thin, gas-only disks, because
larger scales are required for gravitational instability in thicker disks.
We note that the critical value ofQg for nonaxisymmetric instability
is larger than that for axisymmetric instability by more than a
factor of 2.

3. In addition to forming bound condensations, swing ampli-
fication is able to generate a significant level of gaseous turbulence
(see x 5.2). The active stellar component is important to this, with
velocity dispersions a factor 2–5 larger than in the equivalent gas-
only disks. Our simulation results show that whenQg ¼ 1:2 1:6,
corresponding to disks near the stability threshold, the density-
weighted velocity dispersions of the gas amount to�v � (0:3 1)cg.
This suggests that swing amplification can serve to tap rotational
and gravitational energy in feeding random motions in the ISM.
The turbulence in ourmodels is anisotropic and has slightlymore
energy in the shearing than the compressive motions. Below kx L/
(2�)P 8 10, the power spectrum is relatively flat, while it steep-
ens at larger k. Most (�85%) of the total power is contained
in large-scale modes with k � L/10, although in fully three-
dimensional models the relative power in small and large scales
could potentially change.

4. Poisson noise in the positions of randomly placed particles
produces initial density fluctuation amplitudes ��/� � 1:4(Nptl /
104)�1/2 for two-dimensional particle-mesh simulations with grid
resolution 2562. For near-marginal systems we show that these
density variations can lead to spurious local instabilities and arti-
ficial fragmentation (x 4.2). Poisson noise can also lead to over-
estimates of turbulent velocity fluctuations produced by swing.
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Insufficient particle numbers can therefore seriously compromise
the results of N-body disk simulations. Care must be taken to test
numerical convergence. Here, we find that Nptl ¼ 1 2 ; 106 is
needed to avoid contamination by Poisson noise.

6.2. Discussion

In this work we have found that the threshold for formation of
gravitationally bound gas clouds occurs at Qg;crit � 1:4. This re-
sult is in fact nearly identical to the nonlinear threshold value
Qg;crit ¼ 1:3we found in Paper I (for unmagnetizedmodels), due
to compensation between two effects that were not accounted for
in Paper I. The current models allow for a (stabilizing) nonzero
disk thickness and include a (destabilizing) active stellar compo-
nent; although each effect by itself makes a significant difference
in Qg;crit, in net they nearly cancel each other. While the present
models do not include magnetic fields, we expect that inclusion of
magnetic effects would not significantly change the results; in Pa-
per I, therewas only a 10%change inQg;crit evenwith equipartition-
strength large-scale magnetic fields.

An open question is how sensitive Qg;crit is to the precise pa-
rameters characterizing the stellar disk. To define a manageable
parameter space, we have fixed the value ofQs to 2.1, the (initial )
ratio of the stellar velocity dispersion to the gas sound speed to
4.3, and the ratio of stellar to gas disk thicknesses to 1.9. The val-
ues chosen for these parameters are based on solar neighborhood
observations and, thus, are representative of conditions in themid-
dle of the Galactic disk for a late-type spiral. Although the stellar
component’s parameters surely vary from the deep interior to the
outer reaches of a galactic disk, constraining the relevant quantities
observationally is in fact quite challenging. Extragalactic studies
(van der Kruit & Searle 1981, 1982; de Grijs & Peletier 1997) are
consistent with the stellar disk thicknesses being independent of
radius at least for late-type spirals. In this case, a (self-gravitating)
stellar disk with a constant ratio of vertical to radial velocity dis-
persion will have �x / �1/2

s0 . For an exponential stellar surface
density �s0 / exp (�R/Rd) with scale length Rd , this would im-
ply that the variation of Qs over 1 < R/Rd < 4 is less than 30%.
Furthermore,Qs varies over only a small range from one galaxy to
another; Bottema (1993) found that Qs ¼ 2 2:5 fits the data well
(consistent with theoretical predictions of, e.g., Sellwood &
Carlberg 1984). Thus, although we obtained the resultQg;crit � 1:4
for a specific set of stellar parameters, the modest variation in these
parameters among and within real galaxies suggests that there
would be a correspondingly modest variation in Qg;crit.

It is interesting to note that measured values of Qg at the ob-
served threshold radii for star formation are around Qg;th � 1 2
(Kennicutt 1989; Martin & Kennicutt 2001). Unless the stellar
properties at these threshold radii differ dramatically from those
we have adopted, the results of our work, showing Qg;crit within
the same range, quantitatively support the possibility that star for-
mation thresholds and (nonaxisymmetric) gravitational instability
thresholds are likely to be one and the same. A similar conclusion
was reached very recently by Li et al. (2005) who performed
global SPH +N-body simulations and found that a critical ‘‘com-
bined star-gas’’ Toomre parameter ofQsg ¼ 1:6 defines the limit
between gravitationally stable and unstable disks. Of course, tur-
bulence driven by swing amplification could change the effective
value ofQg if it contributes a stabilizing pressure in a manner sim-
ilar to the microphysical randommotions and if the turbulent am-
plitudes are large. Since the threshold radii are by definition where
disks become stable, however, thenQg > Qg;crit in those locations,
and therewould not be a significant contribution from swing-driven
turbulence.

We note that many physical processes not included in the cur-
rentmodelsmaypotentially changeQg;crit for gravitational runaway.
These include turbulence pervasive in the ISM and thermal and
other dynamical instabilities. For instance, Kim et al. (2003) found
that nonlinear density fluctuations driven bymagnetorotational in-
stability in gas-only, three-dimensional disks enhance Qg;crit by
about 50% relative to those in unmagnetized counterparts. It is
especially important to explore the effects of turbulent motions
and magnetic fields in multiphase systems, because the thermal
velocity dispersion of cold gas is so low. The usual assumption is
that an effectiveQ can be defined by appropriate weighting of var-
ious contributing effective pressures and surface density com-
ponents (e.g.,Wada et al. 2002); an important direction for future
research is to test this idea rigorously.6 In future work, it will be
interesting to test whether realistic turbulent, multiphase models
(in three dimensions or with thick-disk two-dimensional gravity)
show nonlinear threshold behavior for a suitably defined Qg;eA

and how a live stellar component quantitatively affects criticalQ
values.
The fact that the stellar disk plays a significant role in destabi-

lizing the gas disk may help explain the very low star formation
rates in late-type, low surface brightness (LSB) galaxies. While
LSB galaxies are often comparable in total gasmass to normal gal-
axies (e.g., Matthews et al. 2005), most of them have gas surface
densities below the threshold values�g;th corresponding toQg ¼
1:4, such that low star formation rates and weak stellar disks are
easily explained (e.g., van der Hulst et al. 1993; de Blok et al.
1996; Uson & Matthews 2003). However, some LSB galaxies
withQg < 1:4 still evidence little star formation (Pickering et al.
1997, 1999;O’Neil et al. 2000a, 2000b; see alsoElmegreen 2002).
In part, this is probably because Qs is so large that the stellar disk
does little to encourage instability in the gas disk; we found that
pure-gas disks are still quite stable when Qg ¼ 1:2. In addition,
without the vertical gravity of a massive stellar disk, the gas disk
thickness will increase by a factor of 1.5–2 (e.g., Kim et al. 2002)
compared to that in a normal galaxy. A larger value ofHg dilutes
gravity, which tends to further lowerQg;crit. Together, these effects
will reduce Qg;crit below 1 for LSB galaxies, making them more
stable than previously thought.
Galactic differential rotation represents a bountiful store of ki-

netic energy (e.g., vonWeizsäcker 1951), and we have shown that
swing amplification in two-component disks is able to transform
this energy into ISM turbulentmotionswith appreciable amplitudes.
Other mechanisms that can channel sheared rotation into turbu-
lence in the diffuse ISM include the magnetorotational instability
(Sellwood & Balbus 1999; Kim et al. 2003; Piontek & Ostriker
2004, 2005) and interactions with spiral arms (Martos & Cox
1998; Gómez & Cox 2004; Kim & Ostriker 2006; Kim et al.
2006). Our current simulations show that provided that the disk
is marginal or unstable, swing amplification is at least as efficient
as the magnetorotational instability under conditions of compar-
able surface density. Two-phase self-gravitating hydrodynamic
models (Wada et al. 2002) and self-gravitating dissipative cloud-
fluid models (Huber & Pfenniger 2001) have similarly concluded
that self-gravity coupled with galactic rotation can produce ISM
turbulence that is sustained over many galactic rotations.
Driving of turbulence at levels �vk 0:6cg requires a disk to

be at least marginally unstable. Because the outer, low surface

6 Single-phase models such as the present one are not useful for evaluating the
idea or quantifying the value of Qg;eA, since naive inclusion of the radial turbulent
velocities that are present (<0:5cg) at both small and large scales increases Qg by
<10%.

KIM & OSTRIKER1244 Vol. 660



density regions of disks are quite stable, this mechanism cannot
drive turbulence there.7 But in the inner parts of disks, self-
gravitational stirring in some regions (having slightly lower
density)may go hand-in-handwith the formation ofmassive, star-
forming clouds in other regions (having slightly higher density).
Because the fraction of gas converted to stars per cloud formation
epoch is quite small (P10%), the rate of reduction in the mean gas
surface density—and hence rate of increase in Qg—is very low.
As Qg increases over time, the timescale for cloud formation via

gravitational instability also increases. The overall evolution is to-
ward an asymptotic state in which Qg approaches Qg;crit. Gal-
axies may naturally ‘‘fine-tune’’ their parameters in such a way
that self-gravity can help stabilize small scales—by generating
turbulence—even as it forces large scales into collapse.
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