
ar
X

iv
:0

80
7.

19
96

v3
 [

as
tr

o-
ph

]
 1

 N
ov

 2
00

8

A multiphysics and multiscale software

environment for modeling astrophysical

systems

Simon Portegies Zwart a Steve McMillan b Stefan Harfst a

Derek Groen a Michiko Fujii c Breanndán Ó Nualláin a

Evert Glebbeek d Douglas Heggie e James Lombardi f Piet Hut g

Vangelis Angelou a Sambaran Banerjee h Houria Belkus i

Tassos Fragos j John Fregeau j Evghenii Gaburov a Rob Izzard d

Mario Jurić g Stephen Justham k Andrea Sottoriva a

Peter Teuben ℓ Joris van Bever m Ofer Yaron n Marcel Zemp o

aUniversity of Amsterdam, Amsterdam, The Netherlands

bDrexel University Philadelphia, PA, USA

cUniversity of Tokyo, Tokyo, Japan

dUtrecht University Utrecht, the Netherlands

eUniversity of Edinburgh Edinburgh, UK

fAllegheny College Meadville, PA, USA

gInstitute for Advanced Study Princeton, USA

hTata Institute of Fundamental Research India

iVrije Universiteit Brussel Brussel, Belgium

jNorthwestern University Evanston, IL, USA

kUniversity of Oxford Oxford, UK

ℓUniversity of Maryland College Park, MD, USA

mSaint Mary’s University Halifax, Canada

nTel Aviv University Tel Aviv, Israel

oUniversity of California Santa Cruz Santa Cruz, CA, USA

Abstract

We present MUSE, a software framework for combining existing computational
tools for different astrophysical domains into a single multiphysics, multiscale appli-
cation. MUSE facilitates the coupling of existing codes written in different languages
by providing inter-language tools and by specifying an interface between each mod-
ule and the framework that represents a balance between generality and computa-

Preprint submitted to Elsevier PreprintAccepted 2008 ???. Received 2008 ???; in original form 2008 ???

http://arXiv.org/abs/0807.1996v3

tional efficiency. This approach allows scientists to use combinations of codes to solve
highly-coupled problems without the need to write new codes for other domains or
significantly alter their existing codes. MUSE currently incorporates the domains of
stellar dynamics, stellar evolution and stellar hydrodynamics for studying general-
ized stellar systems. We have now reached a “Noah’s Ark” milestone, with (at least)
two available numerical solvers for each domain. MUSE can treat multi-scale and
multi-physics systems in which the time- and size-scales are well separated, like sim-
ulating the evolution of planetary systems, small stellar associations, dense stellar
clusters, galaxies and galactic nuclei. In this paper we describe three examples cal-
culated using MUSE: the merger of two galaxies, the merger of two evolving stars,
and a hybrid N -body simulation. In addition, we demonstrate an implementation of
MUSE on a distributed computer which may also include special-purpose hardware,
such as GRAPEs or GPUs, to accelerate computations. The current MUSE code
base is publicly available as open source at http://muse.li.

1 Introduction

The Universe is a multi-physics environment in which, from an astrophysical
point of view, Newton’s gravitational force law, radiative processes, nuclear
reactions and hydrodynamics mutually interact. The astrophysical problems
which are relevant to this study generally are multi-scale, with spatial and
temporal scales ranging from 104 m and 10−3 seconds on the small end to
1020m and 1017s on the large end. The combined multi-physics, multi-scale
environment presents a tremendous theoretical challenge for modern science.
While observational astronomy fills important gaps in our knowledge by har-
vesting ever-wider spectral coverage with continuously increasing resolution
and sensitivity, our theoretical understanding lags behind these exciting de-
velopments in instrumentation.

In many ways, computational astrophysics lies intermediate between observa-
tions and theory. Simulations generally cover a wider range of physical phe-
nomena than observations with individual telescopes, whereas purely theoreti-
cal studies are often tailored to solving sets of linearized differential equations.
As soon as these equations show emergent behavior in which the mutual cou-
pling of non-linear processes result in complex behavior, the computer provides
an enormous resource for addressing these problems. Furthermore simulations
can support observational astronomy by mimicking observations and aiding
their interpretation by enabling parameter-space studies. They can elucidate
the often complex consequences of even simple physical theories, like the non-
linear behavior of many-body gravitational systems. But in order to deepen
our knowledge of the physics, extensive computer simulations require large
programming efforts and a thorough fundamental understanding of many as-
pects of the underlying theory.

2

From a management perspective, the design of a typical simulation package
differs from construction of a telescope in one very important respect. Whereas
modern astronomical instrumentation is generally built by teams of tens or
hundreds of people, theoretical models are usually one-person endeavors. Pure
theory lends itself well to this relatively individualistic approach, but scientific
computing is in a less favorable position. So long as the physical scope of a
problem remains relatively limited, the necessary software can be built and
maintained by a single numerically educated astronomer or scientific program-
mer. However, these programs are often “single-author, single-use”, and thus
single-purpose: recycling of scientific software within astronomy is still rare.

More complex computer models often entail non-linear couplings between
many distinct, and traditionally separate, physical domains. Developing a sim-
ulation environment suitable for multi-physics scientific research is not a sim-
ple task. Problems which encompass multiple temporal or spatial scales are
often coded by small teams of astronomers. Many recent successful projects
have been carried out in this way; examples are GADGET (Springel et al.,
2001), and starlab (Portegies Zwart et al., 2001). In all these cases, a team
of scientists collaborated in writing a large-scale simulation environment. The
resulting software has a broad user base, and has been applied to a wide va-
riety of problems. These packages, however, each address one quite specific
task, and their use is limited to a rather narrow physical domain. In addition,
considerable expertise is needed to use them and expanding these packages
to allow the addition of a new physical domain is hampered by early design
choices.

In this paper we describe a software framework that targets multi-scale, multi-
physics problems in a hierarchical and internally consistent implementation.
Its development is based on the philosophy of “open knowledge” 1 . We call
this environment MUSE, for MUltiphysics Software Environment.

2 The concept of MUSE

The development of MUSE began during the MODEST-6a 2 workshop in
Lund, Sweden (Davies et al., 2006), but the first lines of code were written
during MODEST-6d/e in Amsterdam (the Netherlands). The idea of Noah’s
Ark (see § 2.1) was conceived and realized in 2007, during the MODEST-7f

1 See for example http://www.artcompsci.org/ok/.
2 MODEST stands for MOdeling DEnse STellar Systems; the term was coined
during the first MODEST meeting in New York (USA) in 2001. The MODEST web
page is http://www.manybody.org/modest; see also Hut et al. (2003); Sills et al.
(2003).

3

http://www.artcompsci.org/ok/
http://www.manybody.org/modest

Flow control layer (scripting language)

Gas/hydro

dynamics

Radiative

transfer

Stellar

evolution

 Gravitational

dynamics

Interface layer (scripting and high level languages)

hydro

legacy code

RT

legacy code

stellar/binary

evolution

legacy code

stellar

dynamics

legacy code

MUSE

Fig. 1. Basic structure design of the framework (MUSE). The top layer (flow con-
trol) is connected to the middle (interface layer) which controls the command struc-
ture for the individual applications. In this example only an indicative selection of
numerical techniques is shown for each of the applications.

workshop in Amsterdam and the MODEST-7a meeting in Split (Croatia).

The development of a multi-physics simulation environment can be approached
from a monolithic or from a modular point of view. In the monolithic approach
a single numerical solver is systematically expanded to include more physics.
Basic design choices for the initial numerical solver are generally petrified in
the initial architecture. Nevertheless, such codes are sometimes successfully
redesigned to include two or possibly even three solvers for a different physi-
cal phenomenon (see FLASH, where hydrodynamics has been combined with
magnetic fields Fryxell et al., 2000)). Rather than forming a self-consistent
framework, the different physical domains in these environments are made to
co-exist. This approach is prone to errors, and the resulting large simulation
packages often suffer from bugs, redundancy in source code, sections of dead
code, and a lack of homogeneity. The assumptions needed to make these codes
compile and operate without fatal errors often hampers the science. In addi-
tion, the underlying assumptions are rarely documented, and the resulting
science is often hard to interpret.

We address these issues in MUSE by the development of a modular numerical
environment, in which independently developed specialized numerical solvers
are coupled at a meta level, resulting in the coherent framework as depicted

4

in Fig. 1. Modules are designed with well defined interfaces governing their
interaction with the rest of the system. Scheduling of, and communication
among modules is managed by a top-level “glue” language. In the case of
MUSE, this glue language is Python, chosen for its rich feature set, ease of
programming, object-oriented capabilities, large user base, and extensive user-
written software libraries. However, we have the feeling that Python is not
always consistent and of equally high quality in all places. The objective of
the glue code is to realize the interoperation between different parts of the
code, which may be realized via object-relational mapping, in which individual
modules are equipped with instruction sets to exchange information with other
modules.

The modular approach has many advantages. Existing codes which have been
well tuned and tested within their own domains can be reused by wrapping
them in a thin interface layer and incorporating them into a larger framework.
The identification and specification of suitable interfaces for such codes allows
them to be interchanged easily. An important element of this design is the
provision of documentation and exemplars for the design of new modules and
for their integration into the framework. A user can “mix and match” modules
like building blocks to find the most suitable combination for the application
at hand, or to compare them side by side. The first interface standard be-
tween stellar evolution and stellar dynamics goes back to Hut et al. (2003).
The resulting software is also more easily maintainable, since all dependencies
between a module and the rest of the system are well defined and documented.

A particular advantage of a modular framework is that a motivated scholar
can focus attention on a narrower area, write a module for it, then integrate it
into the framework with knowledge of only the bare essentials of the interface.
For example, it would take little extra work to adapt the results of a successful
student project into a separate module, or for a researcher working with a code
in one field of physics to find out how the code interacts in a multi-physics
environment. The shallower learning curve of the framework significantly low-
ers the barrier for entry, making it more accessible and ultimately leading to
a more open and extensible system.

The only constraint placed on a new module is that it must be written (or
wrapped) in a programming language with a Foreign Function Interface that
can be linked to a contemporary Unix-like system. As in the high-level lan-
guage Haskell, a Foreign Function Interface provide a mechanism by which
a program written in one language can call routines from another language.
Supported languages include low-level (C, C++ and Fortran) as well as other
high-level languages such as C#, Java, Haskell, Python and Ruby. Currently,
individual MUSE modules are written in Fortran, C, and C++, and are inter-
faced with Python using f2py or swig. Several interfaces are written almost
entirely in Python, minimizing the programming burden on the legacy pro-

5

grammer. The flexibility of the framework allows a much broader range of
applications to be prototyped, and the bottom-up approach makes the code
much easier to understand, expand and maintain. If a particular combination
of modules is found to be particularly suited to an application, greater effi-
ciency can be achieved by hard coding the interfaces and factoring out the
glue code, thus effectively ramping up to a specialized monolithic code.

2.1 Noah’s Ark

Instead of writing all new code from scratch, in MUSE we realized a software
framework in which the glue language provides an object-relational mapping
via a virtual library which is used to bind a wide collection of diverse appli-
cations.

MUSE consists of a hierarchical component architecture that encapsulates
dynamic shared libraries for simulating stellar evolution, stellar dynamics and
treatments for colliding stars. As part of the MUSE specification, each module
manages its own internal (application-specific) data, communicating through
the interface only the minimum information needed for it to interoperate with
the rest of the system. Additional packages for file I/O, data analysis and
plotting are included. Our objective is eventually to incorporate treatments
of gas dynamics and radiative transfer, but at this point these are not yet
implemented.

We have so far included at least two working packages for each of the domains
of stellar collisions, stellar evolution and stellar dynamics, in what we call the
“Noah’s Ark” milestone. The homogeneous interface that connects the kernel
modules enables us to switch packages at runtime via the scheduler. The goal
of this paper is to demonstrate the modularity and interchangeability of the
MUSE framework. In Tab. 1 we give an overview of the currently available
modules in MUSE.

2.1.1 Stellar dynamics

To simulate gravitational dynamics (e.g. between stars and/or planets), we
incorporate packages to solve Newton’s equations of motion by means of grav-
itational N -body solvers. Several distinct classes of N -body kernels are cur-
rently available. These are based on the direct force evaluation methods or
tree codes.

Currently four direct N -body methods are incorporated, all of which are
based on the fourth-order Hermite predictor-corrector N -body integrator, with
block time steps (Makino & Aarseth, 1992). Some of them can benefit from

6

Table 1
Modules currently present (or in preparation) in MUSE. The codes are iden-
tified by their acronym, which is also used on the MUSE repository at
http://muse.li, followed by a short description. Some of the modules men-
tioned here are used in § 3. Citations to the literature are indicated in the sec-
ond column by their index 1:Eggleton et al. (1989), 2:Eggleton (2006), 3:Hut et al.
(1995), 4:Makino & Aarseth (1992), 5:Harfst et al. (2007), 6:Barnes & Hut (1986),
7:Lombardi et al. (2003); 8:Rycerz et al. (2008b,a); 9:Fregeau et al. (2002, 2003);
10:Fujii et al. (2007). For a number of modules the source code is currently not
available within MUSE because they are not publicly available or still under de-
velopment. Those are the Henyey stellar evolution code EVTwin (Eggleton, 1971,
2006), the Monte-Carlo dynamics module cmc (Joshi et al., 2000; Fregeau et al.,
2003), the hybrid N -body integrator BRIDGE (Fujii et al., 2007, used in § 3.3) and
the Monte-Carlo radiative transfer code MCRT.

MUSE module ref. language brief description

EFT89 1 C Parameterized stellar evolution

EVTwin 2 F77/F90 Henyey code to evolve stars

Hermite0 3 C++ Direct N -body integrator

NBODY1h 4 F77 Direct N -body integrator

phiGRAPE 5 F77 (parallel) direct N -body integrator

BHTree 6 C++ Barnes-Hut tree code

SmallN C++ Direct integrator for systems of few bodies

Sticky Spheres C++ Angular momentum and energy conserving collision treatment

mmas 7 F77 Entropy sorting for merging two stellar structures

MCRT C++ Monte-Carlo Radiative Transfer

Globus support Python Support for performing simulations on distributed resources

HLA grid support 8 HLA Support for performing simulations on distributed resources

Scheduler Python Schedules the calling sequence between modules

Unit module Python Unit conversion

XML parser Python Primitive parser for XML formatted data

cmc 9 C Monte Carlo stellar dynamics module

BRIDGE 10 C++ Hybrid direct N -body with Barnes-Hut Tree code

7

http://muse.li

special-purpose hardware such as GRAPE (Makino & Taiji, 1998; Makino,
2001) or a GPU (Portegies Zwart et al., 2007; Belleman et al., 2008). Direct
methods provides the high accuracy needed for simulating dense stellar sys-
tems, but even with special computer hardware they lack the performance to
simulate systems with more than ∼ 106 particles. The Barnes-Hut tree-codes
(Barnes & Hut, 1986) are included for use in simulations of large-N systems.
Two of the four codes are also GRAPE/GPU-enabled.

2.1.2 Stellar evolution

Many applications require the structure and evolution of stars to be followed
at various levels of detail. At a minimum, the dynamical modules need to
know stellar masses and radii as functions of time, since these quantities feed
back into the dynamical evolution. At greater levels of realism, stellar tem-
peratures and luminosities (for basic comparison with observations), photon
energy distributions (for feedback on radiative transfer), mass loss rates, out-
flow velocities and yields of various chemical elements (returned to the gas in
the system), and even the detailed interior structure (to follow the outcome of
a stellar merger or collision), are also important. Consequently the available
stellar evolution modules should ideally include both a very rapid but approx-
imate code for applications where speed (enabling large numbers of stars) is
paramount (e.g. when using the Barnes-Hut tree code to follow the stellar dy-
namics) as well as a detailed (but much slower) structure and evolution code
where accuracy is most important (for example when studying specific objects
in relatively small but dense star clusters).

Currently two stellar evolution modules are incorporated into MUSE. One,
called EFT89, is based on fits to pre-calculated stellar evolution tracks (Eggleton et al.,
1989), the other solves the set of coupled partial differential equations that
describe stellar structure and evolution following the Henyey code originally
designed by Eggleton (1971). The latter code, called EVTwin is a fully im-
plicit stellar evolution code that solves the stellar structure equations and
the reaction-diffusion equations for the six major isotopes concurrently on an
adaptive mesh (Glebbeek et al., 2008). EVTwin is designed to follow in detail
the internal evolution of a star of arbitrary mass. The basic code, written in
Fortran 77/90, operates on a single star—that is, the internal data structures
(Fortran common blocks) describe just one evolving object. The EVTwin vari-
ant describes a pair of stars, the components of a binary, and includes the
possibility of mass transfer between them. A single star is modeled as a pri-
mary with a distant, non-evolving secondary. The lower speed of EVTwin is
inconvenient, but the much more flexible description of the physics allows for
more realistic treatment of unconventional stars, such as collision products.

Only two EVTwin functions—the “initialize” and “evolve” operations—are ex-

8

posed to the MUSE environment. The F90 wrapper also is minimal, providing
only data storage and the commands needed to swap stellar models in and
out of EVTwin and to return specific pieces of information about the stored
data. All other high-level control structures, including identification of stars
and scheduling their evolution, is performed in a python layer that forms the
outer shell of the EVTwin interface. The result is that the structure and logic of
the original code is largely preserved, along with the expertise of its authors.

2.1.3 Stellar collisions

Physical interactions between stars are currently incorporated into MUSE
by means of one of two simplified hydrodynamic solvers. The simpler of the
two is based on the “sticky sphere” approximation, in which two objects
merge when their separation becomes less than the sum of their effective
radii. The connection between effective and actual radius is calibrated using
more realistic SPH simulations of stellar collisions. The second is based on the
make-me-a-star (MMAS) package 3 (Lombardi et al., 2003) and its extension
make-me-a-massive-star 4 (MMAMS, Gaburov et al. (2008)). MMA(M)S
constructs a merged stellar model by sorting the fluid elements of the original
stars by entropy or density, then recomputing their equilibrium configuration,
using mass loss and shock heating data derived from SPH calculations. Ulti-
mately, we envisage inclusion of a full SPH treatment of stellar collisions into
the MUSE framework.

MMAS (and MMAMS) can be combined with full stellar evolution models,
as they process the internal stellar structure in a similar fashion to the stellar
evolution codes. The sticky sphere approximation only works with parame-
terized stellar evolution, as it does not require any knowledge of the internal
stellar structure.

2.1.4 Radiative transfer

At this moment one example module for performing rudimentary radiative
transfer calculations is incorporated in MUSE. The module uses a discrete
grid of cells filled with gas or dust which is parameterized in a local density ρ
and an opacity κ, with which we calculate the optical depth (

∫
ρκdx). A star,

that may or may not be embedded in one of the grid cells emits L photons,
each of which is traced through the medium until it is absorbed, escapes or
lands in the camera. In each cloud cell or partial cell a photon has a finite
probability that it is scattered or absorbed. This probability is calculated by
solving the scattering function f , which depends on the angles and the Stokes

3 See http://webpub.allegheny.edu/employee/j/jalombar/mmas/
4 See http://modesta.science.uva.nl/

9

http://webpub.allegheny.edu/employee/j/jalombar/mmas/
http://modesta.science.uva.nl/

parameter. We adopt electron scattering for gas and Henyey & Greenstein
(1941) for dust scattering (see (Ercolano et al., 2005) for details).

Since this module is in a rather experimental stage we only present two images
of its working, rather than a more complete description in § 3. In Fig. 2 we
present the result of a cluster simulation using 1024 stars which initially were
distributed in a Plummer (1911) sphere with a virial radius of 1.32 pc and
in which the masses of the stars ware selected randomly from the Salpeter
(Salpeter, 1955) mass function between 1 and 100M⊙, totaling the cluster mass
to about 750M⊙. These parameters ware selected to mimic the Pleiades cluster
(Portegies Zwart et al., 2001). The cluster was scaled to virial equilibrium
before we started its evolution. The cluster is evolved dynamically using the
BHTree package and the EFT89 module is used for evolving the stars.

We further assumed that the cluster was embedded in a giant molecular cloud
(Williams et al., 2000). The scattering parameters were set to simulate visible
light. The gas and dust was distributed in a homogeneous cube with 5pc on
each side which was divided into 1000 × 1000 × 100 grid cells with a density
of 102 H2 particles/cm3.

In Fig. 2 we present the central 5 pc of the cluster at an age of 120Myr. The
luminosity and position of the stars are observed from the z-axis, i.e. they are
projected on the xy-plane. In the left panel we present the stellar luminosity
color coded, and the size of the symbols reflects the distance from the observer,
i.e., there it gives an indication of how much gas is between the star and the
observer. The right image is generated using the MCRT module in MUSE and
shows the photon-packages which were traced from the individual stars to the
camera position. Each photon-package represents a multitude of photons.

2.2 Units

A notorious pitfall in combining scientific software is the failure to perform
correct conversion of physical units between modules. In a highly modular
environment such as MUSE, this is a significant concern. One approach to
the problem could have been to insist on a standard set of units for modules
incorporated into MUSE but this is neither practical nor in keeping with the
MUSE philosophy.

Instead, in the near future, we will provide a Units module in which infor-
mation about the specific choice of units the conversion factors between them
and certain useful physical constants are collected. When a module is added
to MUSE, the programmer adds a declaration of the units it uses and expects.
When several modules are imported into a MUSE experiment, the Units mod-
ule then ensures that all external values passed to each module are properly

10

Fig. 2. Radiative transfer module applied to a small N = 1024 particle Plummer
sphere. Left image shows the intrinsic stellar luminosity at an age of 120 Myr, the
right image the image after applying the radiative transfer module for the cluster
in a molecular cloud using a total of 107 photon-packages. The bar to the right of
each frame indicates the logarithm of the luminosity of the star (left image) and the
logarithm of the number of photons-packages that arrived in that particular pixel.

converted.

Naturally, the flexibility afforded by this approach also introduces some over-
head. However, this very flexibility is MUSE’s great advantage; it allows an
experimenter to easily mix and match modules until the desired combination
is found. At that point, the dependence on the Units module can be removed
(if desired), and conversion of physical units performed by explicit code. This
leads to more efficient interfaces between modules, while the correctness of the
manual conversion can be checked at any time against the Units module.

2.3 Performance

Large scale simulations, and in particular the multiscale and multiphysics
simulations for which our framework is intended, require a large number of
very different algorithms, many of which achieve their highest performance
on a specific computer architecture. For example, the gravitational N -body
simulations are best performed on a GRAPE enabled PC, the hydrodynamical
simulations may be efficiently accelerated using GPU hardware, while the
trivially parallel simultaneous modeling of a thousand single stars is best done
on a Beowulf cluster or grid computer.

The top-level organization of where each module should run is managed using
a resource broker, which is grid enabled (see § 2.4). We include a provision for
individual packages to indicate the class of hardware on which they operate
optimally. Some modules are individually parallelized using the MPI library,

11

whereas others (like stellar evolution) are handled in a master-slave fashion
by the top-level manager.

2.4 MUSE on the grid

Due to the wide range in computational characteristics of the available mod-
ules, we generally expect to run MUSE on a computational grid containing a
number of specialized machines. In this way we reduce the run time by adopt-
ing computers which are best suited to each module. For example, we might
select a large GRAPE cluster in Tokyo for a direct N -body calculation, while
the stellar evolution is calculated on a Beowulf cluster in Amsterdam. Here
we report on our preliminary grid interface, which allows us to use remote
machines to distribute individual MUSE modules.

The current interface uses the MUSE scheduler as the manager of grid jobs and
replaces internal module calls with a job execution sequence. This is imple-
mented with PyGlobus, an application programming interface to the Globus
grid middleware written in Python. The execution sequence for each module
consists of:

• Write the state of a module, such as its initial conditions, to a file,
• transfer the state file to the destination site
• construct a grid job definition using the Globus resource specification lan-

guage
• submit the job to the grid; the grid job subsequently

- reads the state file,
- executes the specified MUSE module,
- writes the new state of the module to a file, and
- copies the state file back to the MUSE scheduler

• then read the new state file and resume the simulation.

The grid interface has been tested successfully using DAS-3 5 , which is a five-
cluster wide-area (in the Netherlands) distributed system designed by the
Advanced School for Computing and Imaging (ASCI). We executed individ-
ual invocations of stellar dynamics, stellar evolution, and stellar collisions on
remote machines.

5 see http://www.cs.vu.nl/das3/

12

http://www.cs.vu.nl/das3/

Fig. 3. Time evolution of the distance between two black holes, each of which
initially resides in the center of a “galaxy,” made up of 32k particles, with total
mass 100 times greater than the black hole mass. Initially the two galaxies were far
apart. The curves indicate calculations with the direct integrator (PP), a tree code
(TC), and using the hybrid method in MUSE (PP+TC). The units along the axes
are dimensionless N -body units (Heggie & Mathieu, 1986).

3 MUSE examples

3.1 Temporal decomposition of two N-body codes

Here we demonstrate the possibility of changing the integration method within
a MUSE application during runtime. We deployed two integrators to simulate
the merging of two galaxies, each containing a central black hole. The final
stages of such a merger, with two black holes orbiting one another, can only
be integrated accurately using a direct method. Since this is computationally
expensive, the early evolution of such a merger is generally ignored and these
calculations are typically started some time during the merger process, for
example when the two black holes form a hard bound pair inside the merged
galaxy.

These rather arbitrary starting conditions for the binary black hole merger
problem can be improved by integrating the initial merger between the two
galaxies. We use the BHTree code to reduce the computational cost of sim-

13

ulating this merger process. At a predetermined distance between the two
black holes, when the tree code is unlikely to produce accurate results, the
simulation is continued using the direct integration method for all particles.
Overall this results in a considerable reduction in runtime while still allowing
an accurate integration of the close black hole interaction.

Fig. 3 shows the results of such a simulation. The initial conditions are two
Plummer spheres, each consisting of 32k equal-mass particles. At the center
of each “galaxy” we place a black hole with mass 1% that of the galaxy.
The two stellar systems are subsequently set on a collision orbit, but at
a fairly large separation. We use two stellar dynamics modules (see §2.1):
BHTree (Barnes & Hut, 1986), with a fixed shared time step, and phiGRAPE

(Harfst et al., 2007), a direct method using hierarchical block time steps. Both
modules are GRAPE-enabled and we make use of this to speed up the sim-
ulation significantly. The calculation is performed three times, once using
phiGRAPE alone, once using only BHTree, and once using the hybrid method.
In the latter case the equations of motion are integrated using phiGRAPE if the
two black holes are within ∼ 0.55 N-body units 6 (indicated by the horizontal
dashed line in Fig. 3); otherwise we use the tree code. Fig. 3 shows the time
evolution of the distance between the two black holes.

The integration with only the direct phiGRAPE integrator took about 250 min-
utes, while the tree code took about 110 minutes. As expected, the relative
error in the energy of the direct N -body simulation (< 10−6) is orders of mag-
nitude smaller than the error in the tree code (∼ 1%). The hybrid code took
about 200 minutes to finish the simulation, with an energy error a factor of
∼ 10 better than that of the tree code. If we compare the time evolution of
the black hole separation for the tree and the hybrid code we find that the
hybrid code reproduces the results of the direct integration (assuming it to
be the most “correct” solution) quite well. In summary, the hybrid method
seems to be well suited to this kind of problem, as it produces more accurate
results than the tree code alone and it is also faster than the direct code. The
gain in performance is not very large (only ∼ 20%) for the particular problem
studied here, but as the compute time for the tree code scales with N log N
whereas the direct method scales with N2; a better gain is to be expected for
larger N . In addition, the MUSE implementation of the tree code is rather
basic, and both its performance and its accuracy could be improved by using
a variable block time step.

6 see http://en.wikipedia.org/wiki/Natural units#N-body units.

14

http://en.wikipedia.org/wiki/Natural_units#N-body_units

Fig. 4. Evolution of a merger product formed by a collision between a 10M⊙ star at
the end of its main-sequence lifetime and a 7M⊙ star of the same age (filled circles),
compared to the track of normal star of the same mass (15.7 M⊙) (triangles). A
symbol is plotted every 5× 104 yr. Both stars start their evolution at the left of the
diagram (around Teff ≃ 3 × 104 K).

3.2 Stellar mergers in MUSE

Hydrodynamic interactions such as collisions and mergers can strongly affect
the overall energy budget of a dense stellar cluster and even alter the timing of
important dynamical phases such as core collapse. Furthermore, stellar colli-
sions and close encounters are believed to produce a number of non-canonical
objects, including blue stragglers, low-mass X-ray binaries, recycled pulsars,
double neutron star systems, cataclysmic variables and contact binaries. These
stars and systems are among the most challenging to model and are also among
the most interesting observational markers. Predicting their numbers, distribu-
tions and other observable characteristics is essential for detailed comparisons
with observations.

When the stellar dynamics module in MUSE identifies a collision, the stellar
evolution module provides details regarding the evolutionary state and struc-
ture of the two colliding stars. This information is then passed on to the stellar
collision module, which calculates the structure of the merger remnant, return-
ing it to the stellar evolution module, which then continues its evolution. This
detailed treatment of stellar mergers requires a stellar evolution module and

15

a collision treatment which resolve the internal structure of the stars; there is
no point in using a sticky-sphere approach in combination with a Henyey-type
stellar evolution code.

Fig. 4 presents the evolutionary track of a test case in which EVTwin (Eggleton,
1971) (generally the more flexible TWIN code is used, which allows the evolution
of two stars in a binary) was used to evolve the stars in our experiment. A
10M⊙ star near the end of its main-sequence collided with a 7M⊙ star of
the same age. The collision itself was resolved using MMAMS. The evolution
of the resulting collision product continued using EVTwin, which is presented
as the solid curve in Fig. 4. For comparison we also plot (dashed curve) the
evolutionary track of a star with the same mass as the merger product. The
evolutionary tracks of the two stars are quite different, as are the timescales on
which the stars evolve after the main sequence and through the giant branch.

The normal star becomes brighter as it follows an ordinary main-sequence
track, whereas the merged star fades dramatically as it re-establishes ther-
mal equilibrium shortly after the collision. The initial evolution of the merger
product is numerically difficult, as the code attempts to find an equilibrium
evolutionary track, which is hard because the merger product has no hydrogen
in its core. As a consequence, the star leaves the main-sequence almost directly
after it establishes equilibrium, but since the core mass of the star is unusually
small (comparable to that of a 10M⊙ star at the terminal-age main sequence)
it is under luminous compared to the normal star. The slight kink in the evolu-
tionary track between log10 Teff = 4.2 and 4.3 occurs when the merger product
starts to burn helium in its core. The star crosses the Hertzsprung gap very
slowly (in about 1 Myr), whereas the normal star crosses within a few 10,000
years. This slow crossing is caused by the small core of the merger product,
which first has to grow to a mass to be consistent with a ∼ 15.7M⊙ star
before it can leave the Hertzsprung gap. The episode of extended Hertzsprung
gap lifetime is interesting as observing an extended lifetime Hertzsprung gap
star is much more likely than witnessing the actual collision. Observing a star
on the Hertzsprung gap with a core too low in mass for its evolutionary phase
would therefore provide indirect evidence for the collisional history of the star
(regretfully one would probably require some stellar stethoscope to observe
the stellar core in such a case).

3.3 Hybrid N-body simulations with stellar evolution

Dense star clusters move in the potential of a lower density background. For
globular clusters this is the parent’s galaxy halo, for open star clusters and
dense young clusters it is the galactic disc, and nuclear star clusters are em-
bedded in their galaxy’s bulge. These high-density star clusters are preferably

16

modeled using precise and expensive direct-integration methods. For the rela-
tively low density regimes, however, a less precise method would suffice; saving
a substantial amount of compute time and allowing a much larger number of
particles to simulate the low-density host environment. In § 3.1 we described
a temporal decomposition of a problem using a tree code O(N log(N)) and a
direct N -body method. Here we demonstrate a spatial domain decomposition
using the same methods.

The calculations performed in this § are run via a MUSE module which
is based on BRIDGE (Fujii et al., 2007). Within BRIDGE a homogeneous
and seamless transition between the different numerical domains is possible
with a similar method as is used in the mixed-variable symplectic method
(Kinoshita et al., 1991; Wisdom & Holman, 1991), in which the Hamiltonian
is divided into two parts: an analytic Keplerian part and the individual inter-
actions between particles. The latter are used to perturb the regular orbits. In
our implementation the accurate direct method, used to integrate the high-
density regions, is coupled to the much faster tree-code, which integrates the
low-density part of the galaxies. The stars in the high-density regions are
perturbed by the particles in the low-density environment.

The method implemented in MUSE and presented here uses an accurate direct
N -body solver (like Hermite0) for the high density regime whereas the rest of
the system is integrated using BHTree. In principle, the user is free to choose
the integrator used in the accurate part of the integration; in our current
implementation we adopt Hermite0, but the tree-code is currently petrified in
the scheduler. This version of BRIDGE is currently not available in the public
version of MUSE.

To demonstrate the working of this hybrid scheme we simulate the evolution
of a star cluster orbiting within a galaxy. The star cluster is represented by
8192 particles with a Salpeter (Salpeter, 1955) mass function between 1 and
100 M⊙ distributed according to a W0 = 10King model (King, 1966) density
profile. This cluster is located at a distance of 16 pc from the center of the
galaxy, with a velocity of 65 km s−1 in the transverse direction. The galaxy
is represented by 106 equal-mass particles in a W0 = 3 King model density
distribution. The stars in the star cluster are evolved using the MUSE stellar
evolution module EFT89, the galaxy particles have all the same mass of 30M⊙

and were not affected by stellar evolution.

The cluster, as it evolves internally, spirals in towards the galactic center
due to dynamical friction. While the cluster spirals in, it experiences core
collapse. During this phase many stars are packed together in the dense cluster
core and stars start to collide with each other in a collision runaway process
(Portegies Zwart et al., 1999). These collisions are handled internally in the
direct part of BRIDGE. Throughout the core collapse of the cluster about a

17

Fig. 5. Results of the hybrid N -body simulation using a 4th-order Hermite scheme
for the particles integrated directly and a Barnes-Hut tree algorithm for the others.
The top left panel: distance from the cluster to the Galactic center, top right:
evolution of the cluster core radius, bottom left: bound cluster mass, bottom right:
evolution of the mass of a few cluster stars that happen to experience collisions.
The two crosses in the bottom right panel indicate the moment that two collision
products coalesce with the runaway merger.

dozen collisions occur with the same star, causing it to grow in mass to about
700M⊙. Although the stellar evolution of such collision products is highly
uncertain (Belkus et al., 2007; Suzuki et al., 2007), we assume here that the
massive star collapses to a black hole of intermediate mass.

The direct part as well as the tree-part of the simulation was performed on a
full 1 Tflops GRAPE-6 (Makino et al., 2003), whereas the tree-code was run
on the host PC. The total CPU time for this simulation was about half a day,
whereas without BRIDGE the run would have taken years to complete. The
majority (∼ 90%) of the compute time was spent in the tree code, integrat-
ing the 106 particles in the simulated galaxy. (Note again that this fraction
depends on the adopted models and the use of special-purpose hardware to
accelerate the direct part of the integration.) Total energy was conserved to
better than 2 × 10−4 (initial total energy was -0.25).

The results of the simulation are presented in Fig. 5. Here we see how the
cluster (slightly) spirals in, due to dynamical friction with the surrounding
(tree-code) stars, toward the galactic center before dissolving at an age of
about 4Myr. By that time, however, the runaway collision has already resulted

18

in a single massive star of more than 700M⊙.

The description of stellar evolution adopted in this calculation is rather simple
and does not incorporate realistic mass loss, and it is expected that the colli-
sion runaway will have a mass of ∼ 50M⊙ by the time it collapses to a black
hole in a supernova explosion. The supernova itself may be unusually bright
(possibly like SN2006gy (Portegies Zwart & van den Heuvel, 2007)) and may
collapse to a relatively massive black hole (Portegies Zwart et al., 2004). Simi-
lar collision runaway results were obtained using direct N -body simulations us-
ing starlab (Portegies Zwart & McMillan, 2002) and NBODY (Baumgardt et al.,
2004), and with Monte-Carlo (Gürkan et al., 2004; Freitag et al., 2006) stellar
dynamics simulations.

3.4 Direct N-body dynamics with live stellar evolution

While MUSE contains many self-contained dynamical modules, all of the stel-
lar evolution modules described thus far have relied on simple analytical for-
mulations or lookup formulae. Here we present a new simulation combining
a dynamical integrator with a “live” stellar evolution code, following the de-
tailed internal evolution of stars in real time as the dynamics unfolds. A similar
approach has been undertaken by Ross Church, in his PhD thesis. The novel
ingredient in this calculation is a MUSE interface onto the EVTwin stellar evo-
lution program (Eggleton, 2006), modified for use within MUSE (see § 3.2 for
a description).

In keeping with the philosophy of not rewriting existing working code, in
incorporating EVTwin into MUSE, we have made minimal modifications to the
program’s internal structure. Instead, we wrap the program in a F90 data-
management layer which maintains a copy of the stellar data for each star
in the system. Advancing a system of stars simply entails copying the chosen
star into the program and telling it to take a step. EVTwin proceeds with the
task at hand, blissfully unaware that it is advancing different stellar models
at every invocation (see § 3.2).

Figure 6 shows four snapshots during the evolution of a 1024-body system, car-
ried out within MUSE using EVTwin and the simple shared-timestep hermite0

dynamical module. Initially the stars had a mass function dN/dm ∝ m−2.2 for
0.25M⊙ < m < 15M⊙, for a mean mass of 0.92M⊙ and were distributed ac-
cording to a Plummer density profile with a dynamical time scale of 10 Myr,
a value chosen mainly to illustrate the interplay between dynamics and stellar
evolution. (The initial cluster half-mass radius was ∼ 15 pc.) The initial half-
mass relaxation time of the system was 377 Myr. The four frames show the
state of the system at times 0, 200, 400, and 600 Myr, illustrating the early

19

Fig. 6. Evolution of a 1024-body cluster, computed using the hermite0 and EVTwin

MUSE modules. The four rows of images show the physical state of the cluster (left)
and the cluster H–R diagram (right) at times (top to bottom) 0, 200, 400, and 600
Myr. Colors reflect stellar temperature, and radii are scaled by the logarithm of the
stellar radius. 20

mass segregation and subsequent expansion of the system as stars evolve and
lose mass.

The integrator was kept deliberately simple, using a softened gravitational po-
tential to avoid the need for special treatment of close encounters, and there
was no provision for stellar collisions and mergers. Both collisions and close
encounters will be added to the simulation, and described in a future paper.
We note that, although the hermite0 module is the least efficient member of
the MUSE dynamical suite, nevertheless the CPU time taken by the simula-
tion was roughly equally divided between the dynamical and stellar modules.
Even without hardware acceleration (by GRAPE or GPU), a more efficient
dynamical integrator (such as one of the individual block time step schemes
already installed in MUSE) would run at least an order of magnitude faster,
underscoring the need for careful load balancing when combining modules in
a hybrid environment.

4 Discussion

The Multiscale Software Environment presented in this paper provides a di-
verse and flexible framework for numerical studies of stellar systems. Now
that the Noah’s Ark milestone has been reached, one can ask what new chal-
lenges MUSE has to offer. Many of the existing modules have been adapted
for grid use and, as demonstrated in § 2.4, MUSE can be used effectively to
connect various computers around the world. However, there are currently a
number of limitations in its use, and in its range of applications, which will be
addressed in the future. Most of the current application modules remain un-
suitable for large-scale scientific production simulations. The stellar dynamics
codes do not yet efficiently deal with close binaries and multiples, although
modules are under development, and external potentials, though relatively
easy to implement, have not yet been incorporated. Binary evolution is not
implemented, and the diagnostics available to study the output of the various
modules remain quite limited.

Many improvements can be made to the environment, and we expect to include
many new modules, some similar to existing ones, others completely different
in nature. The current framework has no method for simulating interstellar
gas, although this would be an extremely valuable addition to the framework,
enabling study of gas-rich star clusters, galaxy collisions, colliding-wind binary
systems, etc. In addition, radiation transfer is currently not implemented, nor
are radiative feedback mechanisms between stars and gas. Both would greatly
increase the applicability base of the framework. However, both are likely to
challenge the interface paradigm on which MUSE is based.

21

The current MUSE setup, in which the individual modules are largely decou-
pled, has a number of attractive advantages over a model in which we allow
direct memory access. The downside is that MUSE in its present form works
efficiently only for systems in which the various scales are well separated. Com-
munication between the various modules, even of the same type, is currently
all done via the top interface layer. For small studies, this poses relatively
little overhead, but for more extensive calculations, or those in which more
detailed data must be shared, it is desirable to minimize this overhead. One
way to achieve this would be by allowing direct data access between modules.
However, for such cases, the unit conversion modules could not be used, and
consistency in the units between the modules cannot be guaranteed. As a re-
sult, each module would be required to maintain consistent units throughout,
which may be hard to maintain and prone to bugs. In addition, the general
problem of sharing data structures between modules written in different lan-
guages, currently resolved by the use of the glue language, resurfaces.

Acknowledgments

We are grateful to Atakan Gürkan, Junichiro Makino, Stephanie Rusli and De-
jan Vinković for many discussions. Our team meetings have been supported
by the Yukawa Institute for Theoretical Physics in Kyoto, the International
Space Science Institute in Bern, the department of astronomy of the univer-
sity of Split in Split, the Institute for Advanced Study in Princeton and the
Astronomical Institute ’Anton Pannekoek’ in Amsterdam. This research was
supported in part by the Netherlands Organization for Scientific Research
(NWO grant No. 635.000.001 and 643.200.503), the Netherlands Advanced
School for Astronomy (NOVA), the Leids Kerkhoven-Bosscha fonds (LKBF),
the ASTROSIM program of the European Science Foundation, by NASA ATP
grants NNG04GL50G and NNX07AH15G, by the National Science Founda-
tion under grants AST-0708299 (S.L.W.M.) and PHY-0703545 (J.C.L.), by the
Special Coordination Fund for Promoting Science and Technology (GRAPE-
DR project), the Japan Society for the Promotion of Science (JSPS) for Young
Scientists, Ministry of Education, Culture, Sports, Science and Technology,
Japan and DEISA. Some of the calculations were done on the LISA cluster
and the DAS-3 wide-area computer in the Netherlands. We are also grateful
to SARA computing and networking services, Amsterdam for their support.

References

Barnes, J., Hut, P. 1986, Nat , 324, 446
Baumgardt, H., Makino, J., Ebisuzaki, T. 2004, ApJ , 613, 1143

22

Belkus, H., Van Bever, J., Vanbeveren, D. 2007, ApJ , 659, 1576
Belleman, R. G., Bédorf, J., Portegies Zwart, S. F. 2008, New Astronomy, 13,

103
Davies, M. B., Amaro-Seoane, P., Bassa, C., Dale, J., de Angeli, F., Freitag,

M., Kroupa, P., Mackey, D., Miller, M. C., Portegies Zwart, S. 2006, New
Astronomy, 12, 201

Eggleton, P. 2006, Evolutionary Processes in Binary and Multiple Stars, ISBN
0521855578, Cambridge University Press.

Eggleton, P. P. 1971, MNRAS , 151, 351
Eggleton, P. P., Fitchett, M. J., Tout, C. A. 1989, ApJ , 347, 998
Ercolano, B., Barlow, M. J., Storey, P. J. 2005, MNRAS , 362, 1038
Fregeau, J. M., Gürkan, M. A., Joshi, K. J., Rasio, F. A. 2003, ApJ , 593,

772
Fregeau, J. M., Joshi, K. J., Portegies Zwart, S. F., Rasio, F. A. 2002, ApJ ,

570, 171
Freitag, M., Gürkan, M. A., Rasio, F. A. 2006, MNRAS , 368, 141
Fryxell, B., Olson, K., Ricker, P., Timmes, F. X., Zingale, M., Lamb, D. Q.,

MacNeice, P., Rosner, R., Truran, J. W., Tufo, H. 2000, ApJS , 131, 273
Fujii, M., Iwasawa, M., Funato, Y., Makino, J. 2007, Publ. Astr. Soc. Japan

, 59, 1095
Gaburov, E., Lombardi, J. C., Portegies Zwart, S. 2008, MNRAS , 383, L5
Glebbeek, E., Pols, O. R., Hurley, J. R. 2008, A&A , 488, 1007
Gürkan, M. A., Freitag, M., Rasio, F. A. 2004, ApJ , 604, 632
Harfst, S., Gualandris, A., Merritt, D., Spurzem, R., Portegies Zwart, S.,

Berczik, P. 2007, New Astronomy, 12, 357
Heggie, D. C., Mathieu, R. D. 1986, LNP Vol. 267: The Use of Supercomputers

in Stellar Dynamics, in P. Hut, S. McMillan (eds.), Lecture Not. Phys 267,
Springer-Verlag, Berlin

Henyey, L. G., Greenstein, J. L. 1941, ApJ , 93, 70
Hut, P., Makino, J., McMillan, S. 1995, ApJL , 443, L93
Hut, P., Shara, M. M., Aarseth, S. J., Klessen, R. S., Lombardi, Jr., J. C.,

Makino, J., McMillan, S., Pols, O. R., Teuben, P. J., Webbink, R. F. 2003,
New Astronomy, 8, 337

Joshi, K. J., Rasio, F. A., Portegies Zwart, S. 2000, ApJ , 540, 969
King, I. R. 1966, AJ , 71, 64
Kinoshita, H., Yoshida, H., Nakai, H. 1991, Celestial Mechanics and Dynamical

Astronomy, 50, 59
Lombardi, J. C., Thrall, A. P., Deneva, J. S., Fleming, S. W., Grabowski, P. E.

2003, MNRAS , 345, 762
Makino, J. 2001, in S. Deiters, B. Fuchs, A. Just, R. Spurzem, R. Wielen

(eds.), ASP Conf. Ser. 228: Dynamics of Star Clusters and the Milky Way,
p. 87

Makino, J., Aarseth, S. J. 1992, Publ. Astr. Soc. Japan , 44, 141
Makino, J., Fukushige, T., Koga, M., Namura, K. 2003, Publ. Astr. Soc.

Japan , 55, 1163

23

Makino, J., Taiji, M. 1998, Scientific simulations with special-purpose comput-
ers : The GRAPE systems, Scientific simulations with special-purpose com-
puters : The GRAPE systems /by Junichiro Makino & Makoto Taiji. Chich-
ester ; Toronto : John Wiley & Sons, c1998.

Plummer, H. C. 1911, MNRAS , 71, 460
Portegies Zwart, S. F., Baumgardt, H., Hut, P., Makino, J., McMillan, S. L. W.

2004, Nat , 428, 724
Portegies Zwart, S. F., Belleman, R. G., Geldof, P. M. 2007, New Astronomy,

12, 641
Portegies Zwart, S. F., Makino, J., McMillan, S. L. W., Hut, P. 1999, A&A ,

348, 117
Portegies Zwart, S. F., McMillan, S. L. W. 2002, ApJ , 576, 899
Portegies Zwart, S. F., McMillan, S. L. W., Hut, P., Makino, J. 2001, MNRAS

, 321, 199
Portegies Zwart, S. F., van den Heuvel, E. P. J. 2007, Nat , 450, 388
Rycerz, K., Bubak, M., Sloot, P. 2008a, in Computational Science ICCS 2008

8th International Conference (eds. M. Bubak, G.D.v. Albada, J. Dongarra,
P. Sloot), Krakow, Poland, Lecture Notes of Computer Science, Springer
(2008), Vol. 5102, p. 217

Rycerz, K., Bubak, M., Sloot, P. 2008b, in Parallel Processing and Ap-
plied Mathematics 7th International Conference, PPAM 2007, (eds. R.
Wyrzykowski, J. Dongarra, K. Karczewski, J. Wasniewski), Gdansk, Poland,
Lecture Notes of Computer Science, Springer (2008), Vol. 4957, p. 780

Salpeter, E. E. 1955, ApJ , 121, 161
Sills, A., Deiters, S., Eggleton, P., Freitag, M., Giersz, M., Heggie, D., Hurley,

J., Hut, P., Ivanova, N., Klessen, R. S., Kroupa, P., Lombardi, Jr., J. C.,
McMillan, S., Portegies Zwart, S., Zinnecker, H. 2003, New Astronomy, 8,
605

Springel, V., Yoshida, N., White, S. D. M. 2001, New Astronomy, 6, 79
Suzuki, T. K., Nakasato, N., Baumgardt, H., Ibukiyama, A., Makino, J.,

Ebisuzaki, T. 2007, ApJ , 668, 435
Williams, J. P., Blitz, L., McKee, C. F. 2000, Protostars and Planets IV, 97
Wisdom, J., Holman, M. 1991, AJ , 102, 1528

24

	Introduction
	The concept of MUSE
	Noah's Ark
	Units
	Performance
	MUSE on the grid

	MUSE examples
	Temporal decomposition of two N-body codes
	Stellar mergers in MUSE
	Hybrid N-body simulations with stellar evolution
	Direct N-body dynamics with live stellar evolution

	Discussion

