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ABSTRACT

Galactic spiral shocks are dominant morphological features and believed to be responsible for substructure formation
within spiral arms in disk galaxies. They can also contribute a substantial amount of kinetic energy to the interstellar
gas by tapping the (differential) rotational motion. We use numerical hydrodynamic simulations to investigate
dynamics and structure of spiral shocks with thermal instability (TI) in vertically stratified galactic disks, focusing
on environmental conditions (of heating and the galactic potential) similar to the Solar neighborhood. We initially
consider an isothermal disk in vertical hydrostatic equilibrium and let it evolve subject to interstellar cooling and
heating as well as a stellar spiral potential. Due to TI, a disk with surface density Σ0 � 6.7 M� pc−2 rapidly turns
to a thin dense slab near the midplane sandwiched between layers of rarefied gas. The imposed spiral potential
leads to a vertically curved shock that exhibits strong flapping motions in the plane perpendicular to the arm. The
overall flow structure at saturation is comprised of the arm, postshock expansion zone, and interarm regions that
occupy typically 10%, 20%, and 70% of the arm-to-arm distance, in which the gas resides for 15%, 30%, and
55% of the arm-to-arm crossing time, respectively. The flows are characterized by transitions from rarefied to
dense phases at the shock and from dense to rarefied phases in the postshock expansion zone, although gas with
too-large postshock-density does not undergo this return phase transition, instead forming dense condensations.
If self-gravity is omitted, the shock flapping drives random motions in the gas, but only up to ∼2–3 km s−1

in the in-plane direction and less than 2 km s−1 in the vertical direction. Time-averaged shock profiles show
that the spiral arms in stratified disks are broader and less dense compared to those in unstratified models, and
that the vertical density distribution is overall consistent with local effective hydrostatic equilibrium. Inclusion
of self-gravity increases the dense gas fraction by a factor of ∼2 and raises the in-plane velocity dispersion to
∼5–7 km s−1. When the disks are massive enough, with Σ0 � 5 M� pc−2, self-gravity promotes formation of
bound clouds that repeatedly collide with each other in the arm and break up in the postshock expansion zone.
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1. INTRODUCTION

Spiral arms in disk galaxies are regions of ongoing active
star formation, sharply outlined by bright young star complexes.
They usually span the entire optical disks and sometimes extend
even to outer gaseous disks (e.g., Dickey et al. 1990; Boomsma
et al. 2008; Bertin & Amorisco 2010, and references therein).
Such large-scale spiral patterns may be the manifestation of
spiral density waves which propagate with a constant pattern
speed through stellar disks (Lin & Shu 1964, 1966), or may be
transient features driven, for example, by tidal interactions with
companion galaxies (e.g., Toomre & Toomre 1972; Hernquist
1990; Salo & Laurikainen 2000; Oh et al. 2008; Dobbs et al.
2010). Regardless of the origin of spiral features, it is widely ac-
cepted that the interstellar medium (ISM) is strongly compressed
when it encounters stellar arms, forming narrow dust lanes in
optical images (e.g., Elmegreen et al. 2006; Shetty et al. 2007).
The densest parts of the shocked layers subsequently undergo
gravitational collapse and produce downstream secondary struc-
tures, such as OB star complexes and giant H ii regions (e.g.,
Baade 1963; Elmegreen & Elmegreen 1983), filamentary
gaseous spurs (also referred to as “feathers;” e.g., Scoville et al.
2001; Kennicutt 2004; Willner et al. 2004; La Vigne et al. 2006;
Gordon 2007; Corder et al. 2008), and giant molecular asso-
ciations or atomic superclouds (e.g., Elmegreen & Elmegreen
1983; Vogel et al. 1988; Rand & Kulkarni 1990; Koda et al.
2009).

Since shock compression within the arms is the first step
toward star formation in grand-design spiral galaxies, under-
standing structural and dynamical evolution of these gas flows
is essential to a host of fundamental problems, such as global
star formation rates, the nature of the Hubble sequence, galaxy
evolution, etc. Since the pioneering work of Roberts (1969) who
obtained one-dimensional stationary shock profiles, there have
been numerous studies of the structure of galactic spiral shocks
under the simplifying assumption that the gas remains isother-
mal (e.g., Woodward 1975, 1976; Lubow et al. 1986; Martos &
Cox 1998; Kim & Ostriker 2002; Gómez & Cox 2002, 2004;
Wada & Koda 2004; Boley & Durisen 2006; Kim & Ostriker
2006; Dobbs & Bonnell 2006). In particular, Woodward (1975)
and Kim & Ostriker (2002) showed that the one-dimensional
shock profiles found by Roberts (1969) represent stable equi-
libria when the fluid quantities are allowed to vary only in the
direction perpendicular to the arms. The growth of axisymmet-
ric self-gravitating modes is limited by postshock expansion
(Lubow et al. 1986).

When the direction parallel to the arm is included in models,
on the other hand, isothermal spiral shocks in two dimensions
are prone to various kinds of instabilities. Balbus (1988)
showed that when self-gravity is included, spiral arms are
unstable to transient swing instability. When magnetic fields are
included, spiral arms are subject to magneto-Jeans instability,
in which embedded parallel magnetic fields that exchange
angular momentum limit the stabilizing effect of galaxy rotation,
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encouraging non-axisymmetric perturbations to grow into giant
clouds and other arm substructures (Elmegreen 1994; Kim &
Ostriker 2002, 2006; Shetty & Ostriker 2006). Wada & Koda
(2004) showed that spiral shocks in two-dimensional thin disk
models are unstable to a vorticity-generating wiggle instability
and develop arm substructures (see also Dobbs & Bonnell
2006), although these in-plane modes appear to be suppressed
by embedded magnetic fields (Shetty & Ostriker 2006; Dobbs
& Price 2008) or by vertical shear and mixing when all the three
dimensions are included in models (Kim & Ostriker 2006).

While steady in-plane shock solutions are subject to instabil-
ity, shock models that include the vertical degree of freedom do
not even have steady solutions. Instead, the shock front in verti-
cally stratified disks moves back and forth relative to the mean
position (Kim & Ostriker 2006). These shock “flapping” mo-
tions arise mainly because the vertical oscillation period of the
gas is, in general, incommensurate with the arm-to-arm crossing
time, so that the gas streamlines are not closed. Kim et al. (2006,
hereafter Paper I) showed that the shock flapping is able to feed
random gas motions on the scale of disk scale height that persist
despite dissipation. The induced gas velocity dispersions reach
a sonic level, suggesting that spiral shocks may be a consid-
erable source of the ISM turbulence. Motions driven by shock
flapping motions destroy any coherent vortical structures that
would otherwise grow near the spiral shocks, suppressing the
wiggle instability. Since gravity is a long-range force and insen-
sitive to small-scale density structure, however, magneto-Jeans
instabilities still grow within the arms in three-dimensional disk
models, in spite of non-steady motions induced by shock flap-
ping (Kim & Ostriker 2006).

Phase transitions caused by thermal instability (TI) create
a multi-phase ISM, with important consequences for galactic
star formation. In the classical picture of the ISM, TI changes
an otherwise uniform ISM into warm rarefied material and cold
dense clouds in a rough pressure balance (e.g., Field 1965; Field
et al. 1969; Meerson 1996; Heiles 2001; Wolfire et al. 2003),
while there also exists significant mass in the thermally unstable
temperature range (e.g., Heiles & Troland 2003). Supernova
blast waves create an additional, hot component that is organized
into bubbles or cavities (Cox & Smith 1974; McKee & Ostriker
1977), although the total mass contained in the hot phase is
much smaller than that in the cold and warm phases (e.g., Cox
2005). Cold atomic clouds transform to molecular clouds if their
volume density (to produce molecules fast enough) and column
density (to self-shield molecules against photodissociation) are
sufficiently high (e.g., Elmegreen 1993; Draine & Bertoldi
1996), as in, for instance, shocks in turbulent flows (Glover
& Mac Low 2007; Glover et al. 2010). That the star-forming
molecular clouds strongly correlate with spiral arms (e.g., Stark
1979; Solomon et al. 1985; Kenney 1997; Zimmer et al. 2004;
Shetty et al. 2007) suggests that spiral shocks too should trigger
phase transitions from warm and diffuse to cold and dense
conditions.

Effects of TI on spiral shocks were first studied by Shu
et al. (1973), who calculated one-dimensional shock profiles
consisting of two stable phases in equilibrium. Although they
allowed for phase transitions, they assumed instantaneous ther-
mal equilibrium, which precluded the existence of transitory
thermally unstable gas in their calculations. Using direct time-
dependent numerical simulations including ISM heating and
cooling, Tubbs (1980) and Marochnik et al. (1983) found that
spiral shocks trigger phase transitions if the initial density is
large enough. Because of strong numerical diffusion associated

with insufficient resolution, however, they were unable to cap-
ture TI in the postshock transition zone, which is the thermally
unstable regime.

In Kim et al. (2008, hereafter Paper II), we used high-
resolution one-dimensional simulations to study dynamical and
thermodynamical evolution of gas flows across spiral arms with
ISM heating, cooling, and thermal conduction. We found that
even with TI, a quasi-steady state develops with the following
recurring cycle: both warm and cold phases in the interarm
region are shocked and immediately transform to denser cold
gas in the arm, which subsequently evolves to be TI-unstable
due to postshock expansion in a transition zone, and separates
back into warm and cold phases. For a model with the initial
number density of 2 cm−3, the gas stays in the arm, transition,
and interarm zones for 14%, 22%, and 64% of the arm-
to-arm crossing time, respectively. The gas mass in the TI-
unstable temperature range was ∼25%–30% of the total, and
mostly located in the transition zone, suggesting that postshock
expanding flows are important for producing intermediate-
temperature gas. Paper II also found that TI in association
with one-dimensional spiral shocks can drive random gas
motions at ∼1.5 km s−1 in the interarm and transition zones;
these velocities are ∼5–7 times larger than those from pure
TI alone (e.g., Kritsuk & Norman 2002; Piontek & Ostriker
2004).

In this paper, we extend the one-dimensional models of
Paper II into two dimensions, in order to study the effect
of vertical disk stratification on the dynamics and structure
of multi-phase galactic spiral shocks. The current work also
extends the vertically stratified isothermal models considered in
Paper I to include the effects of the ISM heating and cooling.
Our key objective is to find how the flapping motions of
spiral shocks inherent in stratified disks interact with multi-
phase gas produced by TI, to change the shock structure
and drive random gas motions in each phase. We also study
the internal properties of clouds that form in self-gravitating
models. Although Dobbs & Bonnell (2007, 2008) and Dobbs
& Price (2008) ran smoothed particle hydrodynamics (SPH)
simulations to study shock structure and cloud formation in
three dimensions, they used pre-determined cold and warm
particles and did not allow the transitions between them. Dobbs
et al. (2008) included ISM heating and cooling in the energy
equation and thus handled TI self-consistently, focusing on the
formation of molecular clouds in spiral shocks. Using grid-based
three-dimensional simulations, Wada (2008) studied dynamics
of galactic gas flows under the influence of self-gravity, a spiral-
arm potential, radiative cooling, star formation, and energy
feedback from supernova explosions. Although these three-
dimensional global models are of course more realistic, our
local models are useful for studying the detailed dynamics of
spiral shocks at high spatial resolution, and allow us to isolate
each effect of the physical processes involved.

This paper is organized as follows. In Section 2, we describe
the basic equations we solve and specify the model parameters.
In Section 3, we present the results of one-dimensional solutions
for vertical disk equilibria including heating and cooling, also
providing simple analytic expressions for the mass fractions
and scale heights. In Section 4, we present the overall evolution,
structure, and statistical properties of spiral shock flows with
TI in stratified disks, based on the results of two-dimensional
simulations. The effect of self-gravity is discussed in Section 5.
In Section 6, we summarize our results and discuss their
implications.
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2. NUMERICAL METHODS

The local formulation used in the present study is similar to
that in Papers I and II. In this section, we explain our numerical
method and model parameters.

2.1. Basic Equations

We consider a local region centered on a spiral arm that is
assumed to be tightly wound with a pitch angle sin i � 1
and rotating at a constant pattern speed Ωp. We set up a
local Cartesian frame, centered at the position (R, φ, z) =
(R0, Ωpt, 0), that corotates with the spiral arm. The x- and y-
axes of the local frame are aligned in the midplane parallel
and perpendicular to the local arm segment, while the z-
axis points the direction perpendicular to the galactic plane
(Roberts 1969; Paper I). Our simulation domain is a two-
dimensional rectangular region with size Lx×Lz in the x–z plane
(hereafter XZ plane). We assume that all physical variables are
independent of y (quasi-axisymmetric), while allowing nonzero
velocity in the y-direction in order to handle epicycle motions
associated with galactic rotation self-consistently.

In this local frame, the galactic differential rotation is trans-
lated into the background velocity as

v0 = R0(Ω0 − Ωp) sin ix̂ + [R0(Ω0 − Ωp) − q0Ω0x]ŷ, (1)

where Ω0 = Ω(R0) and q0 ≡ −(d ln Ω/d ln R)|R0 denotes the
local shear rate in the absence of the spiral potential (Kim
& Ostriker 2002, 2006). Under the local approximation (i.e.,
Lx � R0 and |v| � R0Ω0), the equations of hydrodynamics
expanded in the local frame are

∂ρ

∂t
+ ∇ · (ρvT ) = 0, (2)

∂vT

∂t
+vT ·∇vT = − 1

ρ
∇P −q0Ω0v0x ŷ−20 ×v−∇(Φs +Φext),

(3)

∂e

∂t
+ vT · ∇e = − γ

γ − 1
P∇ · vT − ρL, (4)

∇2Φs = 4πGρ, (5)

(e.g., Roberts 1969; Shu et al. 1973; Kim & Ostriker 2006),
where vT ≡ v0 + v is the total velocity in the local frame, Φs

is the self-gravitational potential of the gas, Φext is the external
stellar potential, and ρL(ρ, T ) is the net cooling function. Other
symbols have their usual meanings. We adopt an ideal gas-law
P = (γ − 1)e with γ = 5/3.

The external stellar potential Φext varies in both the x- and
z-directions and is separable into two parts as

Φext = 2πGρ∗z2 + Φsp cos

(
2πx

Lx

)
, (6)

where ρ∗ is the unperturbed midplane stellar density, Φsp is
the amplitude of the spiral potential, and Lx = 2πR0 sin i/m
is the arm-to-arm separation for an m-armed spiral. The first
term in Equation (6) adopts a constant density ρ∗ for the stellar
disk vertically; this is a reasonable assumption given that most
of the gas is located within one stellar scale height of the
midplane. The second term is a local analog of a logarithmic
spiral potential considered in Roberts (1969) and Shu et al.

(1973). To parameterize the spiral arm strength, we employ the
dimensionless parameter

F ≡ m

sin i

( |Φsp|
R2

0Ω2
0

)
, (7)

corresponding to the ratio of the maximum force due to the
spiral potential to the mean radial gravitational force (Roberts
1969).

The interstellar gas is subject to the net cooling ρL ≡
n2Λ[T ] − nΓ, where n = ρ/(μmH) is the gas number density
with μ = 1.27 being the mean molecular weight per particle.
For the cooling rate of the diffuse ISM, we take the fitting
formula suggested by Koyama & Inutsuka (2002),

Λ(T ) = 2 × 10−19 exp

(−1.184 × 105

T + 1000

)

+ 2.8 × 10−28
√

T exp

(−92

T

)
erg cm3 s−1, (8)

with temperature T in degrees Kelvin.
For the gas heating function, we consider two different cases:

(1) a constant heating rate Γ = Γ0 = 2.0 × 10−26 erg s−1 and
(2) a density-dependent heating rate

Γ = Γ0 exp(n/n0)3, (9)

with n0 = 20 cm−3. The first, uniform heating rate corresponds
to the mean heating rate due to the photoelectric effect on
small grains and polycyclic aromatic hydrocarbons (PAHs),
photodissociations of hydrogen molecules, and ionizations by
cosmic rays and X-rays (e.g., Koyama & Inutsuka 2002). The
second, density-modified heating rate that increases stiffly with
n is to treat the effect of star formation feedback in a very simple
way. Without such a feedback, high-density clouds produced
inside spiral arms in our self-gravitating models would undergo
catastrophic collapse, preventing further computation. In the
real ISM, gravitational collapse leads to new-born stars which
will in turn disperse the parent clouds by injecting radiative and
mechanical energies. Investigating the details of star formation
and consequent feedback processes is a very active current
research area. Most previous works have adopted simplified
feedback prescriptions that depend on gas-consumption rate,
star formation efficiency, type of energy injection, etc., with
considerable uncertainties in the parameters (e.g., Springel et al.
2005; Joung & Mac Low 2006; Shetty & Ostriker 2008; Koyama
& Ostriker 2009a). More realistic feedback prescriptions will be
considered in a subsequent paper.

Figure 1 plots the equilibrium cooling curves in the density
versus pressure plane. The solid line corresponds to the uniform
heating rate, while the dashed curve is for the modified heating
rate. The dotted lines indicate isotherms. The modified heating
rate changes the equilibrium curve dramatically only for high-
density gas, while making a negligible difference for low-
density material. The equilibrium pressure has a local maximum
Pmax/kB = 5.0 × 103 K cm−3 at ncrit,1 = 1.0 cm−3 for both
heating rates, while attaining a local minimum at ncrit,2 =
8.7 cm−3 with Pmin/kB = 1.6 × 103 K cm−3 for the constant
heating rate, and at ncrit,2 = 6.9 cm−3 with Pmin/kB = 1.7 ×
103 K cm−3 for the modified heating rate. Under the constant
heating rate, the gas temperature along the equilibrium curve
is a monotonically decreasing function of density, although
it is insensitive to n at the low-density end with n < ncrit,1.
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Figure 1. Thermal equilibrium curves in the density-pressure plane. Solid and
dashed lines correspond to the uniform heating rate and the density-modified
heating rate, respectively, while dotted lines indicate isotherms with T in Kelvin.

This is not the case under the density-modified heating rate
where the equilibrium temperature increases with density when
n > ncrit,3 = (1/3)1/3n0 = 13.9 cm−3 in order to model
feedback. We thus classify the gas into two components based
on its density rather than temperature: rarefied component if
n < ncrit,1 and dense component if n > ncrit,1. Note that
thermally unstable gas with ncrit,1 < n < ncrit,2 belongs to
the dense phase according to our classification.

As Equation (4) indicates, we explicitly ignore the effect of
thermal conduction in the present work. Paper I found that large
translational motions in a finite difference scheme give rise to
numerical diffusion that tends to suppress the growth of TI,
similarly to thermal conduction. The amount of numerical con-
ductivity in our models is typically Kn = 109 erg s−1 cm−1 K−1

for the background velocity v0x = 13 km s−1, grid spacing
Δx = 2.5 pc, and the perturbation wavelength λ = 20 pc.
Inclusion of physical conductivity larger than Kn would resolve
the wavelengths of the most unstable TI. But, this would in turn
reduce the time step greatly, making computation essentially
unpractical.3 We note that by neglecting the thermal conduction
term in the energy equation, some of our results may depend on
the numerical resolution, although the mass fractions appear to
be insensitive to the resolution (Paper I).

2.2. Model Parameters and Numerical Methods

We consider a simulation box located near the Solar neigh-
borhood at galactocentric radius of R0 = 8 kpc. We adopt
the galactic rotational velocity of R0Ω0 = 208 km s−1 with
a flat rotation curve (q0 = 1). The corresponding angu-
lar velocity is Ω0 = 26 km s−1 kpc−1, and orbital period is
torb ≡ 2π/Ω0 = 2.4 × 108 yr, which we use as the time unit

3 We have run some simulations by including density-dependent thermal
conductivity Kn = 108 erg s−1 cm−1 K−1(1 + 0.05 cm−3/n)−1 (Koyama &
Ostriker 2009a), and confirmed that this level of thermal conduction does not
make a significant difference in the results.

Table 1
Models Without Spiral Arms (F = 0%)

Modela Σ0 (M� pc−2) fD (%) fR (%) HD (pc) HR (pc) Have (pc)
(1) (2) (3) (4) (5) (6) (7)

NU.S02 2 0 100 0 126 126
NU.S05 5 0 100 0 119 119
NU.S10 10 71 29 2 125 67
NU.S20 20 86 14 4 127 48
NM.S02 2 0 100 0 126 126
NM.S05 5 0 100 0 119 119
NM.S10 10 69 31 4 125 70
NM.S20 20 85 15 9 130 50
SM.S02 2 0 100 0 121 121
SM.S05 5 0 100 0 107 107
SM.S10 10 82 18 4 100 43
SM.S20 20 94 6 7 84 21

Note. a The prefixes NU refers to the non-self-gravitating models with the
uniform heating rate, NM for the non-self-gravitating models with the modified
heating rate, and SM for the self-gravitating models with the modified heating
rate.

in our presentation. For spiral arm parameters, we take pattern
speed Ωp = 0.5 Ω0, pitch angle sin i = 0.1, and azimuthal
wavenumber m = 2. The corresponding arm-to-arm separation
is Lx = 2πR0 sin i/m = 2.5 kpc, which is set equal to the size
of the simulation box along the x–direction. We fix the spiral
arm strength to F0 = 5%.

Our initial gaseous disks, in the absence of the spiral-arm per-
turbations, are taken to be isothermal and in vertical hydrostatic
equilibrium under the linear stellar gravity gz = −4πGρ∗z
(see Equation (6)). The corresponding density distribution is a
Gaussian profile

ρ(z) = ρ0 exp

(
− z2

2h2
g

)
, (10)

with a scale height

hg = cR

(4πGρ∗)1/2
= 128 pc

( cR

7 km s−1

) (
ρ∗

0.056 M� pc−3

)−1/2

,

(11)
where cR = 7 km s−1 is the isothermal sound speed of the
initial disks and ρ∗ = 0.056 M� pc−3 is the stellar density near
the solar neighborhood (Holmberg & Flynn 2000). We take
Lz = 7.5 hg = 960 pc as the vertical size of the simulation
domain (i.e., |z| � Lz/2).

Tables 1 and 2 summarize the model parameters and some
simulation outcomes for models with and without spiral po-
tential perturbations, respectively. Column 1 labels each run.
The prefixes NU and NM stand for non-self-gravitating mod-
els (“N”) with the uniform heating rate (“U”) and the modified
heating rate (“M”), respectively, while the prefix SM indicates
self-gravitating models (“S”) with the modified heating rate
(“M”). As will be discussed below, Column 2 gives the ini-
tial gas surface density Σ0. Columns 3 and 4 give the mass
fractions, fa ≡ 〈∫ ρadxdz/

∫
ρdxdz〉 (with a = D or R),

of dense and rarefied components, respectively. Here, the an-
gle brackets 〈〉 denote a time average over t/torb = 5–8 for
non-self-gravitating models and over t/torb = 8–11 for self-
gravitating models. Columns 5 and 6 give the scale heights,
Ha ≡ 〈∫ ρaz

2dxdz/
∫

ρadxdz〉1/2, of the dense and rarefied
components, respectively. Column 7 gives the average scale
height of the whole gas Have ≡ (fDH 2

D + fRH 2
R)1/2.
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Table 2
Models With Spiral Arms (F = 5%)

Model Σ0 (M� pc−2) fD (%) fR (%) HD (pc) HR (pc) Have (pc)
(1) (2) (3) (4) (5) (6) (7)

NU.S02 2 11 89 25 129 122
NU.S05 5 62 38 10 130 81
NU.S10 10 81 19 7 130 57
NM.S02 2 12 88 28 130 122
NM.S05 5 60 40 20 132 84
NM.S10 10 81 19 25 135 64
SM.S02 2 26 74 14 124 107
SM.S05 5 91 9 21 121 42
SM.S10 10 95 5 43 123 51

Note. Model name prefixes are as in Table 1.

We integrate the time-dependent partial differential
Equations (2)–(5) using a modified version of the Athena code
(Gardiner & Stone 2005, 2008; Stone et al. 2008; Stone &
Gardiner 2009). Athena employs a single-step, directionally
unsplit Godunov scheme for magnetohydrodynamics in multi-
spatial dimensions. Among the various schemes contained in
Athena, we take a piecewise linear method for spatial recon-
struction, HLLE Riemann solver to compute the fluxes (Harten
et al. 1983; Einfeldt et al. 1991), and van Leer algorithm for di-
rectionally unsplit integration (Stone & Gardiner 2009). Since
our simulations involve strong shocks for the dense medium
(with typical Mach numbers ∼7–10), we adopt the first-order
flux correction when the net mass flux out of a cell exceeds the
initial mass of the cell in order to avoid an occurrence of negative
density (see, e.g., Lemaster & Stone 2009). Our models employ
a 1024 × 512 zones over the simulation box, corresponding to
the resolution of Δx = 2.4 pc and Δz = 1.9 pc.

We adopt the shearing-periodic boundary condition at the x-
boundaries (Hawley et al. 1995). In the z-direction, we use the
outflow condition for the velocity and the vacuum condition
for the gravitational potential (e.g., Koyama & Ostriker 2009a).
For the density and pressure at the z-boundaries, we linearly
extrapolate the logarithmic density, while keeping temperature
fixed, whenever dρ/dz < 0. This produces a balance between
the vertical pressure gradient and the gravitational source term
at the boundaries, similarly to the “conducting” boundary in
Parrish & Stone (2005). When dρ/dz > 0, on the other
hand, we switch to the continuous boundary condition for the
density and pressure to reduce artificial mass inflow due to
the extrapolation. Under our boundary conditions, the gas can
freely escape from the vertical boundary; we have checked
that the total mass is nonetheless conserved within 2% for
all models. Because of the very short cooling time, energy
updates from the net cooling functions are made implicitly based
on Newton–Raphson iterations (Piontek & Ostriker 2004). To
solve for the gravitational potential in our simulation domain,
we adopt a method introduced by Koyama & Ostriker (2009a)
which, by using the fast Fourier transform technique, is much
more efficient than a hybrid method involving Green’s functions
(e.g., Kim et al. 2002).

3. VERTICAL EQUILIBRIA WITHOUT SPIRAL ARMS

While our main objective is to investigate the overall dynam-
ics and structure of spiral shocks in vertically stratified disks
under the influence of TI, in this section we focus on the quasi-
static vertical equilibria with heating and cooling in the absence
of the spiral arm potential (i.e., F = 0). This allows us to

Figure 2. Distributions of number density along the vertical direction for one-
dimensional non-self-gravitating models NU.S10 (solid), NM.S10 (dotted),
and self-gravitating model SM.S10 (dashed) without spiral-arm potential
perturbations. The midplane densities are n(0) = 32, 15, and 20 cm−3 for
models NU.S10, NM.S10, and SM.S10, respectively. The interface between the
midplane dense layer and the surrounding rarefied medium occurs at almost
the same density ntrans ∼ 0.25–0.35 cm−3, corresponding to Ptrans/kB ∼
2000–2200 cm−3 K.

study the effect of TI on vertical disk structure. We run one-
dimensional simulations with physical quantities varying only
with z. We consider an initially isothermal disk with Σ0 = 2, 5,
10, or 20 M� pc−2, and evolve it subject to TI.

For disks with large surface density (models with Σ0 �
10 M� pc−2), TI grows rapidly (�torb), transforming the ini-
tially constant-temperature gas into thermally bistable phases.
The cold, dense gas falls toward the midplane to form a dense
slab, while the warm, rarefied gas rises up buoyantly. The in-
fall is supersonic relative to the dense medium. At early time,
the dense slab surrounded by the upper rarefied gas undergoes
vertical expansions and contractions a few times. As the kinetic
energy dissipates through shocks at the interfaces, the whole
configuration evolves toward vertical hydrostatic equilibrium
typically within ∼0.6torb. Figure 2 shows density profiles for
S10 models with Σ0 = 10 M� pc−2. Solid and dotted lines are
for non-self-gravitating NU and NM models, respectively, while
the dashed line is for the self-gravitating SM models. The dif-
ference between models NU.S10 and NM.S10 is not significant
since the maximum midplane density is not much larger than
n0 = 20 cm−3, below which the heating rate is almost density
independent. For model SM.S10, self-gravity compresses the
midplane slab further at the expense of the rarefied medium at
|z| > HD . Nevertheless, the phase transition between dense and
rarefied components turns out to occur at almost the same den-
sity ntrans ∼ 0.25–0.35 cm−3, corresponding to the transition
pressure Ptrans/kB ∼ 2000–2200 cm−3 K for all models that are
unstable to TI. Note that Ptrans/kB is above the minimum pres-
sure for a cold medium with our adopted cooling and heating
functions, Pmin/kB = 1600–1700 cm−3 K.

Once vertical hydrostatic equilibrium is attained, we measure
the mass fractions fD and fR, and the scale heights HD and HR
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Figure 3. (a) Mass fraction and (b) scale height of the rarefied component
as functions of total surface density Σ0 from one-dimensional simulations
without spiral arms. Symbols represent the numerical results for non-self-
gravitating models NU (asterisks), NM (diamonds), and self-gravitating models
SM (squares). Solid and dashed curves are the theoretical estimates for
two-phase equilibrium with and without self-gravity, respectively, for which
PR(0)/k = Ptrans/kB = 2100 K cm−3 and cR = 7 km s−1 are adopted. Vertical
dot-dashed lines mark Σmin = 2.1 M� pc−2 and Σmax = 6.7 M� pc−2; for
Σmin < Σ < Σmax, both single-phase and two-phase equilibria are possible.

of the dense and rarefied components, respectively; these values
are listed in Table 1. Figure 3 plots fR and HR as functions
of the initial surface density Σ0. The results of NU and NM
models are denoted by asterisks and diamonds, respectively,
while open squares are for SM models. Models with low
surface density (Σ0 = 2 M� pc−2) do not experience TI and
thus establish a single-phase equilibrium consisting only of the
rarefied medium. Since the warm gas is nearly isothermal at
cR ≈ 7 km s−1 and self-gravity is weak in these models, the
equilibrium density profiles in low Σ models are approximately
given by Equation (10), with surface density Σ = ρ0hg

√
2π =

ρ0cR/
√

2Gρ∗. Since the midplane pressure PR(0) = c2
Rρ0 of the

rarefied gas cannot exceed Pmax along the thermal equilibrium
curve shown in Figure 1, the surface density for a single-phase
equilibrium with only a rarefied component is constrained to be
less than Σmax = Pmax/(2Gρ∗c2

R)1/2 = 6.7 M� pc−2. Similarly,
the condition PR(0) = Pmin yields Σmin = 2.1 M� pc−2 as the
minimum surface density for a two-phase equilibrium in which
dense and rarefied components coexist. The two vertical dot-
dashed lines in Figure 3 mark Σmin and Σmax. Below Σmin, only a
rarefied phase is possible, whereas above Σmax, both dense and
rarefied phases must be present.

For Σmin < Σ0 < Σmax, both single (rarefied) phase and two-
phase equilibria can be realized. Which type of equilibrium
emerges depends, of course, on the initial disk conditions.
In the case of our models with Σ0 = 5 M� pc−2, the initial
midplane density and pressure are n(0) = 0.5 cm−3 and
P (0)/kB = 3770 K cm−3, smaller than than ncrit,1 and Pmax/kB.
Since cooling and heating occur almost isobarically, even the

densest gas in these models is unable to overcome Pmax to turn
into the dense component, for this case.

Figure 3 also shows that for the models that reach a two-
phase equilibrium, self-gravity reduces the rarefied-gas fraction
in mass as well as its scale height compared to those in non-self-
gravitating counterparts. Self-gravity also makes the density
profile of the rarefied component deviate significantly from
a Gaussian profile. A thin midplane dense slab, containing
the majority of the gas mass, exerts a uniform gravity on the
rarefied gas lying above it, providing an additional confining
force. In the Appendix, we describe a simple way to estimate
fR and HR as functions of the total gas density, assuming
that the rarefied component can be characterized by a fixed
sound speed cR and that its self-gravity is negligible. The
resulting theoretical predictions, with cR = 7 km s−1, for self-
gravitating and non-self-gravitating cases are plotted in Figure 3
as dashed and solid curves, respectively. These are overall in
good agreement with the numerical results. Small discrepancies
between the theoretical and numerical values of HR for disks
with Σ0 = 5 M� pc−2 arise from the fact that the rarefied
gas in these models has larger midplane pressure than in any
other models.4 In view of the thermal equilibrium curve shown
in Figure 1, this implies that the rarefied medium in S05
models is coldest, corresponding to cR  6.3 km s−1, making
the scale height smaller than the theoretical estimate based on
cR = 7 km s−1.

4. NON-SELF-GRAVITATING MODELS

Now we turn to our main theme, nonlinear gas flows with
TI across spiral arms in a stratified disk. In this section, we
study overall evolution, structure, and statistical properties such
as density and random velocity distributions of spiral shocks
for non-self-gravitating models. Effects of self-gravity will be
discussed in the next section.

4.1. Overall Evolution

We begin by describing evolution of our fiducial models
NU.S10 and NM.S10 with Σ0 = 10 M� pc−2 that employ the
uniform and density-modified heating rates, respectively. We
slowly turn on the spiral potential amplitude such that it attains
full strength F0 = 5% at t/torb = 1.5. Snapshots of volume
density in logarithmic color scale at early epochs t/torb = 1.50,
2.24, and 2.40 are shown in Figures 4 and 5, respectively.
Figure 6 plots the gas distribution in the n-P/kB plane for
both models at t/torb = 2.40. Initially, the disk is in hydrostatic
equilibrium with a constant sound speed of cR = 7 km s−1. Since
the initial disk is out of thermal equilibrium, it quickly evolves
into a two-phase equilibrium configuration, as explained in
Section 3. As F increases, both the dense gas near the midplane
and the rarefied gas at high |z| respond to the growing spiral
potential and form a shock front near the potential minimum.

Since the gas flows at this time are fairly horizontal with-
out much vertical mixing, as evidenced by the instantaneous
streamlines shown in Figures 4(a) and 5(a), the shock profile
at each height is very similar to those of the one-dimensional
cases studied in Paper II. The shock strength and gas phase in
the postshock regions depend on the mean density and temper-
ature at that height. Near the midplane at |z| < HD (= 7 and
25 pc for models NU.S10 and NM.S10, respectively), the dense

4 For example, the midplane pressure of the rarefied component is
PR(0)/kB = 3500 and 2500 cm−3 K for models NM.S05 and NM.S10,
respectively.
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Figure 4. Density snapshots for model NU.S10 at t/torb = 1.50, 2.24, and 2.40.
A few instantaneous streamlines are drawn as solid lines in (a). The shock front
alternates between convex (b) and concave (c) shapes, seen from the upstream
direction, due to quasi-periodic flapping. Three dense condensations located
near x/Lx = −0.3, 0, and 0.14 in (b) have moved to x/Lx = −0.12, 0.14, and
0.35 in (c), respectively. Color bar labels log(n/1 cm−3).

(A color version of this figure is available in the online journal.)

slab is so cold that the shock is very strong with a typical Mach
number M ∼ 10, resulting in a far denser postshock region. In
the high-|z| regions (|z| > 130 pc), on the other hand, the gas is
warm and has a low mean density (<0.1 cm−3) enough to remain
warm even after the shock compression. It is the mid-altitude
rarefied medium (at HD < |z| < 130 pc) that is able to achieve
a postshock pressure larger than Pmax and thus undergoes a
phase transition to the dense component after experiencing iso-
baric cooling (Mufson 1974; Inoue & Inutsuka 2008; Paper II).
Since the shock is stronger at lower |z| in a stratified disk and
since a stronger shock tends to move downstream (e.g., Kim &
Ostriker 2002), the shock front when it first develops is natu-
rally curved in the XZ plane. Figures 4(a) and 5(a) show that
the shock front is concave when seen from the upstream direc-
tion, with mean slopes of |dxsp(z)/dz| ≈ 0.83 at |z| < 130 pc
and 0.13 at |z| > 130 pc, where xsp(z) is the shock location
at z.

The dense gas produced at the shock at moderate z begins
falling toward the midplane under the influence of the external
gravity as it moves downstream. The reduction of the velocity
in the direction normal to the concave shock front also helps
the downward motion of the gas. On the other hand, the dense
gas near the midplane has a large pressure and thus slightly
expands vertically after the shock. The vertical expansion is
more extreme in NM models than in NU models. The falling
gas collides with the expanding gas, reducing the rising motion
of the latter. The streamlines shown in Figures 4(a) and 5(a)
illustrate these motions at early time.

The rarefied gas which crosses the shock at high |z| also
falls toward the midplane as it follows galaxy rotation. This
builds up thermal pressure at low |z|, so the flow rebounds to
high-altitude regions. Since the period of vertical oscillation,

Figure 5. Density snapshots for model NM.S10 at t/torb = 1.50, 2.2, and 2.40.
A few instantaneous streamlines are drawn as solid lines in (a). Compared with
model NU.S10, the density-modified heating rate thickens the dense midplane
layer and prohibits the formation of dense condensations. Color bar labels
log(n/1 cm−3).

(A color version of this figure is available in the online journal.)

∼(Gρ∗)−1/2, is in general not commensurate with the interval
between arm crossings, the streamlines of the rarefied gas are
not closed. This causes the shock front to sway back and forth
around its mean position in the direction perpendicular to the
arm (e.g., Kim & Ostriker 2006; Paper I). During the course
of the flapping motions, the shock front has a convex shape
(seen from upstream) when the postshock regions are maximally
compressed (Figure 4(b)), while it becomes concave when
the gas in the postshock regions is in full vertical expansion
(Figure 4(c)). These flapping motions of the shock front,
alternating between convex and concave shapes, occur quasi-
periodically with a period of ∼0.5 torb and have an amplitude
of Δx/HR ∼ 1 at |z| = HR (= 130 pc in model NU.S10).
The shock flapping motions are able to tap some of the kinetic
energy in galaxy rotation to supply random kinetic energy for
the gas. We will quantify the amplitudes of random gas motions
driven by flapping in Section 4.3.

One of the special features of galactic spiral shocks is
that gas experiences acceleration after the maximum shock
compression, forming a postshock expansion zone (e.g., Balbus
1988; Kim & Ostriker 2006; Papers I & II). Any parcel of
gas becomes gradually less dense as it moves downstream in
the expansion zone. In model NU.S10, the shock compression
and subsequent cooling is so strong that the shocked dense
gas in the midplane can reach n > 103 cm−3 (see also model
SC20 in Paper II). With such a large postshock density, this gas
can still remain dense, with n > ncrit,2, even after emerging
from the expansion zone located at x/Lx ∼ 0–0.3. This TI-
stable dense gas travels almost ballistically in the interarm
region, reenters the arm, and combines with other dense gas
to produce a few condensations. Figures 4(b) at time t/torb =
2.24 shows three large condensations located at x/Lx ∼
−0.3, 0, and 0.14, which are stretched horizontally due to
the expanding background velocity. The condensations move
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Figure 6. Distribution of gas in the density-pressure plane for models (a) NU.S10 and (b) NM.S10 at t/torb = 2.4, with grayscale indicating the mass fraction in
logarithmic scale. The thermal equilibrium curves are the same as in Figure 1.

Figure 7. Mass fractions of the dense (fD) and rarefied (fR) components as
functions of time for models NU.S10 (thick) and NM.S10 (thin). Initially,
fD increases rapidly as the gas cools due to TI and flattens to fD ∼ 0.7 at
t/torb ∼ 0.6 when hydrostatic equilibrium is attained before the effect of the
spiral potential becomes significant. The presence of the spiral arm at full
strength increases this to a saturated value of fD � 0.8 at t/torb � 5. The mass
fractions of model NU (unmodified heating) and NM (modified heating) are
quite similar.

nearly horizontally to appear at x/Lx = −0.12, 0.14, and 0.35
when t/torb = 2.40 (Figure 4(c)). In model NU.S10, the dense
condensations stay in the arm (−0.05 < x/Lx < 0.05) for about
∼0.15 torb, in the expansion zone (0.05 < x/Lx < 0.25) for
about ∼0.30 torb, and in the interarm region for the remainder
(∼0.55 torb) of the cycle. The width and residence time of each
zone are insensitive to the model parameters.

With the density-modified heating rate, on the other hand,
the postshock dense gas in model NM.S10 has a moderate
density (∼30–40 cm−3), so that the postshock expansion is able
to take it to the thermally unstable regime (ncrit,1 < n < ncrit,2).
Subsequently, the expanding dense gas suffers from TI and
separates back into dense and rarefied gas in the interarm region.
The large thermal pressure also prevents the formation of dense
condensations in this model.

Figure 7 plots the temporal evolution of the mass fractions
of dense phase (solid lines) and rarefied phase (dashed lines),
respectively, for models NU.S10 (thick lines) and NM.S10 (thin
lines). At early time, fD increases rapidly as the gas cools
and collapses toward the midplane to form a dense layer that
bounces appreciably at t/torb ∼ 0.1. The mass fractions flatten
at t/torb ∼ 0.6 when vertical hydrostatic equilibrium is estab-
lished, well before the effect of the spiral potential becomes
substantial. As the spiral potential attains its full strength at
t/torb = 1.5, fD increases slightly due to the phase transition
of the rarefied to dense phases occurring at the shock fronts.
Although the flows are fully nonlinear with strong unsteady
motions and phase transitions, there is no noticeable secular
variation in the mass fractions, which remains at fD ∼ 0.8 af-
ter t/torb = 5; the associated temporal fluctuation amplitudes
are about 6%–9% relative to the mean values. We thus con-
clude that in a statistical sense, the spiral shocks in our mod-
els have reached a quasi-steady state at t/torb > 5. Compared
with models without spiral arms discussed in Section 3, the
shock compression and associated phase transitions decrease
the rarefied gas fraction by 46% for S10 models. In fact, all
of the non-self-gravitating models with spiral arms have com-
parable total surface density of rarefied gas, ∼1.9 M� pc−2,
lower than the value ΣR = Ptrans/(cR

√
2Gρ∗) ≈ 2.8 M� pc−2

that would be predicted using a uniform surface density. Note
that both NU and NM models have almost the same dense and
rarefied mass fractions since the modified heating rate does not
affect the rarefied medium much.

The evolution of S02 and S05 models is qualitatively similar
to that of S10 models in that phase transitions occur at the
shock and in the postshock expansion zone, although the
former with low postshock density do not produce much dense
gas even under the uniform heating rate. When the spiral
potential is absent, the equilibrium disks of these models
consist entirely of the rarefied gas with the midplane pressure
P (0)/kB ∼ 3500–4000 cm−3 K for S05 models and P (0)/kB ∼
1500–2000 cm−3 K for S02 models. But, the shock compression
increases the pressure by about a factor of 3, corresponding to
a typical Mach number M ≈ v0x/cR ∼ 2 for the rarefied
medium,5 making the midplane postshock pressure larger than
Pmax. As a result, the dense medium in S05 models comprises

5 For adiabatic shocks, the pressure jump condition is
P2/P1 = 1 + M2(1 − 1/s), where the subscripts 1 and 2 denote preshock and
postshock values, respectively, and s = [(γ + 1)M2]/[2γ + (γ − 1)M2] is the
density shock jump factor.
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Figure 8. Density distributions averaged over t/torb = 5–8 of our non-self-gravitating models. S05 and S10 models contain midplane dense gas in both arm and
interarm regions, while S02 models have the dense phase only in the arm regions. Compared to NU models, the arm regions in NM models are broader and thicker.
Color bar labels log(n/1 cm−3).

(A color version of this figure is available in the online journal.)

about 60% of the total mass, undergoing TI in the postshock
expansion zone. In S02 models, the postshock pressure barely
exceeds Pmax, so that the shocked dense gas, comprising about
10% of the total, easily disperses to return to the rarefied gas
in the interarm region. Flapping motions of spiral shocks are
correspondingly weaker in these models, with Δx/HR ∼ 0.7
and 0.3 for S05 and S02 models, respectively.

4.2. Time-averaged Shock Structure

To visualize spiral shock structure in each model, we construct
a time-averaged distribution of number density 〈n〉. Here, the
angle brackets 〈〉 denote a time average over t/torb = 5–8.
Figure 8 displays 〈n〉 for all the non-self-gravitating models in
logarithmic color scale. It is apparent that S05 and S10 models
possess a thin dense layer everywhere near the midplane, while
the dense gas is found only inside the arm regions in S02
models. The shock compression factors in the time-averaged
density profiles are ∼7–10, which is larger than the adiabatic
shock jump due to enhanced radiative cooling in the shocked
gas (cf., Mufson 1974; Inoue & Inutsuka 2008; Paper II). The
shock transition layer in S05 and S10 models is relatively broad
because of rather strong flapping motions of the shocks, while
S02 models exhibit relatively sharp discontinuities. Compared
to NU models, arms in NM models have larger pressure and
are more expanded vertically, similar to “hydraulic jumps” that
occur when the equation of state is stiffer than isothermal

(e.g., Martos & Cox 1998). Table 2 lists the time-averaged
values of the mass fractions and scale heights of dense and
rarefied components, as well as the overall average scale
height.

Figure 9 plots the mass-weighted probability distribution
functions (PDFs), averaged over t/torb = 5–8, of gas density and
temperature for models NU.S10 and NM.S10. The PDFs are in
general bimodal, as is expected for a bistable cooling function.
For model NU.S10, the dense and rarefied peaks are centered
at (n, T ) ∼ (200 cm−3, 30 K) and ∼(0.2 cm−3, 7100 K), respec-
tively, mostly distributed near the thermal equilibrium curves.
Only a small fraction of the gas is in the thermally unstable
regime. The dense portion of the PDF in model NU.S10 is
well fitted by a lognormal distribution (thin solid line) with a
standard deviation of Δ(ln n) = 1.2, which is one of the char-
acteristics of near-isothermal turbulence (cf., Wada & Norman
2007; Wada 2008). With enhanced heating, on the other hand,
model NM.S10 shows a sharp density cutoff in the density PDF
at n ∼ 50 cm−3 and has a dense peak shifted to n ∼ 20 cm−3.
Because of the stiff equation of state, the dense gas in model
NM.S10 is not as cold as in model NM.S10. This not only
thickens the midplane dense slab, but also sets an upper limit on
the gas density, which in turn prevents the formation of dense
condensations. In model NM.S10, all the postshock dense gas
becomes thermally unstable in the expansion zone and separates
into dense and rarefied gas in the interarm region.
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Figure 9. Mass-weighted density (top) and temperature (bottom) proba-
bility density functions, averaged over t/torb = 5–8, in models NU.S10
(solid) and NM.S10 (dotted). While the broad dense peak centered at
(n, T ) ∼ (200 cm−3, 30 K) in model NU.S10 is compressed and shifted
to ∼(20 cm−3, 180 K) in model NM.S10, the rarefied peak at (n, T ) ∼
(0.2 cm−3, 7100 K) is unchanged. The thin line in the top panel is a lognormal fit
to the dense peak in model NU.S10, with a standard deviation of Δ(ln n) = 1.2.

Paper II showed that for one-dimensional models, the density
profiles of multi-phase spiral shocks are more symmetric and
have a wider arms than isothermal counterparts. This is because
the strength of spiral shocks in the multi-phase models fluctuates
depending on whether the incoming gas is warm or cold,
resulting in slight oscillations of the shock fronts in the direction
perpendicular to the arm. In addition, spiral shocks in the XZ
plane undergo flapping motions, which can further widen the
arms. To see this, we plot in Figure 10 the time-averaged surface
density profiles Σ(x) = ∫ ∞

−∞〈ρ〉dz after taking a boxcar average
with window of 8 pc. The solid and dotted lines are for NU
and NM models, respectively. Shown also as dashed lines are
the density profiles n(x)/n0 from one-dimensional simulations
(i.e., without vertical stratification) under the uniform heating
rate; the initial number density n0 of the one-dimensional
counterpart was chosen equal to the density-weighted mean
density nave = Σ0/(2π1/2μmHHave), with the average disk
thickness Have listed in Column 7 of Table 2. For S05 and S10
models for which the shock flapping motions are appreciable,
the arms are considerably wider and less centrally peaked than in
the one-dimensional models. Due to the flapping motions, dense
condensates formed in the NU.S10 model oscillate slightly in
the x-direction when they pass through the shock, resulting
in broader arms than in the NM.S10 model. For S02 models,
the one-dimensional shock consists only of the warm rarefied
gas, while the two-dimensional shocks contain a small amount
(∼10%) of dense gas due to an additional compression in the
z-direction; the difference in profiles is therefore slight.

In studies of galactic disk structure, it has been the customary
to assume effective hydrostatic equilibrium in the vertical direc-
tion. Using numerical simulations without spiral arms, Koyama

Figure 10. Time-averaged profiles of surface density from our two-dimensional
simulations under the uniform heating rate (solid) and the density-modified
heating rate (dotted) for models with (a) Σ0 = 10 M� pc−2, (b) 5 M� pc−2,
and (c) 2 M� pc−2. Dashed lines give the results of one-dimensional models
(which do not have shock flapping) with the uniform heating rate. Stronger
shock flapping motions in two-dimensional models make the arms broader and
less peaked compared with the one-dimensional counterparts.

& Ostriker (2009b) explicitly demonstrated that turbulent, multi-
phase disks are in effective hydrostatic equilibrium, provided
that the turbulent pressure arising from random gas motions is
taken into account. When a spiral potential is present, the gas
surface density and velocity dispersions depend upon the dis-
tance x from the minimum of the spiral potential. It is interesting
to study whether “local” effective hydrostatic equilibrium is still
established at each x.

From the time-averaged density distribution, we measure the
density-weighted vertical scale height H (x), sound speed cs(x),
and vertical velocity dispersion δuz(x) via

H 2(x) =
∫ 〈ρ〉z2dz∫ 〈ρ〉dz

, c2
s (x) =

∫ 〈P 〉dz∫ 〈ρ〉dz
, and

δu2
z(x) =

∫ 〈ρ[vz − 〈vz〉]2〉dz∫ 〈ρ〉dz
. (12)

In the absence of self-gravity, the “estimated” vertical scale
height is given by

H 2
est(x) = c2

s + δu2
z

4πGρ∗
(13)

for effective hydrostatic equilibrium (Koyama & Ostriker
2009b). Figure 11 plots H (x) (solid lines) and Hest(x) (dot-
ted lines) for NU and NM models as functions of x. The mea-
sured vertical scale height is overall in excellent agreement with
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Figure 11. Vertical scale heights of the time-averaged density distributions in
(a) NU and (b) NM models as functions of x. The simulation results (solid) are
overall in good agreement with the theoretical estimates (dotted) for effective
vertical hydrostatic equilibrium.

(A color version of this figure is available in the online journal.)

the estimated value at all horizontal locations. For all models,
cs is about 5–7 times larger than δuz. This implies that the
disks with spiral arms, in time-averaged sense, are effectively in
vertical hydrostatic equilibrium, with the main support provided
by thermal pressure (in these models without stellar feedback).
Unsteady motions associated with shock flapping and move-
ments of dense condensations are mostly horizontal, affecting
the vertical force balance relatively little. A small mismatch be-
tween H and Hest near x/Lx = −0.1 in S02 models arises from
the fact that shocks in these models exhibit weak flapping mo-
tions and retain sharp discontinuities in the time-averaged con-
figurations. In this case, the ∂〈ρvxvz〉/∂x term in the momentum
equation has a non-negligible contribution to the vertical force
balance, which was ignored in the derivation of Equation (13).

4.3. Velocity Dispersions

Paper I showed that two-dimensional (isothermal) spiral
shocks exhibit strong flapping motions in the XZ plane and
are able to generate a sonic level of random gas motions in the
arm regions. On the other hand, Paper II showed that in one-
dimensional spiral shocks with TI, random gas motions amount
to only ∼1–2 km s−1. In this subsection, we quantify the level
of random gas motions driven by shock flapping motions and
TI in our two-dimensional models.

The velocity field of gas moving across spiral arms is a com-
bination of several different components including streaming
motions, oscillations of the shock fronts themselves, and ran-
dom motions. Since streaming velocities that are ordered and
vary with x are much larger than the true random motions of the
gas, it is important to subtract the former from the total velocity
as cleanly as possible. For this purpose, we first construct time-
averaged templates of the velocity field 〈vi〉 (with i = x, y, or
z) for the dense and rarefied components separately. We then

Figure 12. Temporal changes of the density-weighted velocity dispersions δvx ,
δvy , and δvz of the rarefied (left) and dense (right) components in models
NU.S10 (solid) and NM.S10 (dashed). The large-amplitude fluctuations of the
velocity dispersions, with periods of ∼0.5torb, are due to incomplete subtraction
of the arm streaming motions associated with the shock flapping.

calculate the density-weighted velocity dispersions using

δvi(t) =
[∫

ρ[vi − 〈vi〉]2dxdz∫
ρdxdz

]1/2

. (14)

Figure 12 plots δvi(t) for the dense and rarefied components
in models NU.S10 and NM.S10 as solid and dashed curves,
respectively, for a time span of t/torb = 5–8. Figure 13 plots
the mean values 〈δvi〉 along with their standard deviations
Δδvi = (〈δv2

i 〉 − 〈δvi〉2)1/2 for all the non-self-gravitating
models; the values of 〈δvi〉 and Δδvi are listed in Table 3.

Figure 12 shows that the density-weighted velocity disper-
sions for the dense component exhibit large-amplitude fluctua-
tions, with periods roughly of ∼0.5 torb. The standard deviations
of the fluctuations are Δδvi ∼ (0.2–0.5)〈δvi〉 for the dense com-
ponent; deviations are only Δδvi ∼ (0.1–0.2)〈δvi〉 for the rar-
efied phase. These variations of δvx and δvy are caused mostly
by oscillations of the shock front relative to the mean position.
With large spatial variations of streaming velocities across the
arm, the small offset of the shock position as well as the instan-
taneous locations of dense condensates result in large values of
Δδvi . We thus regard the local minima of δvi , approximately
equal to σi ≡ 〈δvi〉 − Δδvi , as the upper limits to the level of
random gas motions.

Figure 13 shows that for NU models, 〈δvx〉 and 〈δvy〉 increase
with Σ0. This is mainly because the shock compression and as-
sociated phase transition are stronger with larger Σ0, leading to
stronger flapping motions. Nevertheless, σx ∼ σy ∼ 2–3 km s−1

for both dense and rarefied components, insensitive to Σ0. This
indicates that the portion of kinetic energy in the shock flapping
motions that goes into random gas motions is quite limited. The
remaining portion is simply associated with the horizontal shock
oscillations near the midplane. Since the shock flapping motions
at low |z| are mostly horizontal, the random vertical motions of
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Table 3
Induced Random Velocity Dispersions

Model Σ0 Dense Component Rarefied Component

〈δvx〉 〈δvy〉 〈δvz〉 〈δvx〉 〈δvy〉 〈δvz〉
(M� pc−2) (km s−1) (km s−1) (km s−1) (km s−1) (km s−1) (km s−1)

NU.S02 2 3.04 ± 1.53 3.28 ± 1.23 1.44 ± 0.34 2.62 ± 0.58 2.25 ± 0.29 1.61 ± 0.17
NU.S05 5 3.12 ± 0.87 3.20 ± 0.92 0.61 ± 0.14 3.04 ± 0.34 2.75 ± 0.33 1.64 ± 0.14
NU.S10 10 4.26 ± 1.75 3.60 ± 1.89 0.41 ± 0.08 3.47 ± 0.81 2.94 ± 0.41 1.72 ± 0.14
NM.S02 2 3.07 ± 1.24 3.24 ± 1.20 1.52 ± 0.43 2.79 ± 0.40 2.45 ± 0.18 1.82 ± 0.11
NM.S05 5 2.99 ± 0.66 3.20 ± 0.81 1.03 ± 0.29 3.17 ± 0.59 2.69 ± 0.46 1.74 ± 0.11
NM.S10 10 3.18 ± 0.62 3.51 ± 1.08 1.11 ± 0.40 3.07 ± 0.42 2.63 ± 0.33 1.69 ± 0.12
SM.S02 2 4.47 ± 1.33 3.97 ± 1.49 0.72 ± 0.18 3.04 ± 0.50 2.49 ± 0.19 1.85 ± 0.14
SM.S05 5 6.36 ± 1.79 6.95 ± 2.11 0.75 ± 0.10 6.07 ± 1.44 5.50 ± 1.45 2.20 ± 0.14
SM.S10 10 10.52 ± 5.55 8.41 ± 3.91 3.60 ± 1.71 10.60 ± 2.94 7.92 ± 1.78 4.96 ± 1.26

Note. Model name prefixes are as in Table 1.

Figure 13. Mean values (symbols) and standard deviations (errorbars) of the
density-weighted velocity dispersions, averaged over t/torb = 5–8, of the
rarefied (left) and dense (right) components in all non-self-gravitating models
under the uniform heating rate (top) and the density-modified heating rate
(bottom). Allowing for the incomplete subtraction of the arm streaming motions,
the random gas motions are σx ∼ σy ∼ 2–3 km s−1 for both dense and rarefied
components, and σz ∼ 1.7 km s−1 for the rarefied component, insensitive to Σ0,
in both NU and NM models, while σz ∝ Σ−0.8

0 for the dense component in NU
models.

the dense gas in NU models are forced predominantly by the
impact of rarefied gas arriving from high altitudes. The fact that
the rarefied gas has σz ∼ 1.7 km s−1, almost independent of
Σ0, suggests the flapping motions drives more-or-less constant
vertical motions at high |z|; this is because the total mass of
rarefied gas is almost the same in all models, equivalent to a sur-
face density of 1.9 M� pc−2. Since the fraction of the rarefied
component decreases with increasing Σ0 (see Table 2), the ratio
of vertical kinetic energy in the rarefied gas to the mass of dense
gas decreases with Σ0. This causes σz of the dense medium to de-
crease with increasing Σ0, roughly as σz ∝ Σ−0.8

0 in NU models.

For NM models, the dense gas in the immediate postshock re-
gion is overpressured due to the strong heating and thus expands
vertically, enhancing σz compared to those in NU models.

5. SELF-GRAVITATING MODELS

We now explore the formation of self-gravitating clumps
and their internal properties. For NU models, we find that the
inclusion of self-gravity always results in catastrophic collapses
of self-gravitating clouds that form in the postshock region,
preventing us from continuing simulations further. For this
reason, we present the results of self-gravitating models only
with the density-modified heating rate (“SM” models). Instead
of running self-gravitating models from t = 0, we make use of
the “saturated-state” data sets of NM models at t/torb ∼ 4.8 and
restart them by slowly turning on the gaseous self-gravity over
a time interval of 1.5 torb.

Neglecting the effect of the rarefied medium, the gravitational
susceptibility of a midplane dense layer in NM models can be
measured by the average Toomre stability parameter

QD = 1

fD

κcD

πGΣ0
= 0.27

fD

(
Σ0

10 M� pc−2

)−1

, (15)

where cD = 1 km s−1 is the mean sound speed of the dense
gas. With the inclusion of self-gravity, the dense layer in model
SM.S10 has QD = 0.34 and thus is quite unstable, initiating
the collapse of high-density regions. Due to the stiff equation of
state, however, the collapsing clouds soon reach an equilibrium
state with only a moderate central density 30 cm−3, which is
only 1.5 times larger than the average density of the dense gas
in model NM.S10. As these clouds follow galaxy rotation, they
merge together in regions of converging streaming velocities,
eventually resulting in two big condensations. Figure 14 shows
the density snapshots in logarithmic color scale of model
SM.S10 at t/torb = 7.32, 7.48, and 7.69. Two clouds are widely
separated from each other during traversal of the interarm region
(Figure 14(a)). After one cloud enters the spiral shock, it loses
most of its x-momentum, and the second cloud can then collide
with it when it enters the shock at high speed (Figure 14(b)).
Since the two clouds are on their own epicyclic orbits before the
collision, however, they retain quite different vy even after the
collision, preventing them from merging into a single entity. Due
to the Coriolis force, the two clouds subsequently have different
vx, so that the merged entity elongates in the expansion zone
(Figure 14(c)), and separates back into two pieces in the interarm
region.
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Figure 14. Density snapshots of self-gravitating model SM.S10 at t/torb = 7.32,
7.48, and 7.69 in logarithmic color scale. Two clouds are separate from each
other in the interarm regions (a), temporarily merge together at the shock (b),
and then break up back into two pieces in the postshock expansion zone (c).
The boxes surrounding the clouds A and B in (a) are enlarged in Figure 15 to
show the interval velocity structure. Color bar labels log(n/1 cm−3).

(A color version of this figure is available in the online journal.)

The dense layer in model SM.S05 has QD = 0.9 and is thus
marginally unstable. With the aid of shock compression, the
dense gas in the postshock region collapses and eventually forms
two self-gravitating clumps. In this model, the collision of these
clumps at the shock and subsequent break up in the expansion
zone is similar to model SM.S10. With QD = 12, on the
other hand, the dense layer in model SM.S02 is gravitationally
stable and does not form dense clumps. Compared with model
NM.S02, self-gravity in model SM.S02 increases the fraction of
the dense phase by about a factor of 2, which in turn decreases
its vertical velocity dispersion by a similar factor.

The presence of self-gravity leads to stronger shock flapping
motions than in the NU models, increasing the velocity disper-
sion. In model SM.S02, the in-plane velocity dispersions of the
dense component increases by a factor of ∼1.2–1.5 compared
to model NU.S02; for low surface density, the self-gravity is

not sufficiently strong to have a major effect. For the SM.S05
and SM.S10 models, however, the stronger self-gravity make a
larger difference to shock flapping, in turn driving larger veloc-
ity dispersions. Correcting for streaming, the velocity disper-
sions of both dense and rarefied phases in model SM.S05 reach
σx ∼ σy ∼ 4–5 km s−1, about twice larger than those in model
NM.S05. In model SM.S10, the dense gas velocity dispersions
are σx ∼ σy ∼ 4–5 km s−1, while the rarefied gas has the ve-
locity dispersions up to ∼7 km s−1. Note that these in-plane
velocity dispersions in multi-phase, self-gravitating models are
similar to those in the isothermal self-gravitating models with
F = 5% studied in Paper I.

Since the self-gravitating clumps produced in models SM.S05
and SM.S10 move almost ballistically, the position of the largest
surface density at a given time does not always correspond to
the minimum of the spiral potential. In fact, the clumps are near
the potential minimum (|x|/Lx < 0.1) only for Δt/torb = 0.35,
making the definition of the arm regions rather ambiguous. In
addition, due to accretion onto the clumps, the rarefied medium
in these models amounts to less than 10% of the total mass, much
smaller than the observed mass fraction of the warm gas near
the solar neighborhood (Heiles 2001; Heiles & Troland 2003).
For these reasons, these clumps are unlike real self-gravitating
clouds in spiral galaxies. Nevertheless, we believe these model
clouds may provide clues to the internal properties and virial
balance of real interstellar clouds, in that they represent a
limiting situation in which internal turbulent feedback from star
formation is absent.

Keeping in mind the caveats mentioned above, we proceed
as follows to calculate the cloud properties. To define the
boundary of the dense clumps, we choose the threshold density
nth = 21 cm−3, corresponding to Pmax in the thermal equilibrium
curve. Using a CLUMPFIND algorithm (e.g., Williams et al.
1994), we find the interior of each cloud with n > nth. We then
measure the mean density ρcl ≡ ρ, the averaged sound speed
ccl ≡ (P/ρ)1/2 and the mean one-dimensional internal velocity
dispersion σcl ≡ ∑

i(v
2
i − vi

2)1/2/31/2 of each cloud, where
the overlines denote the mass-weighted average. We then count
the total number of pixels Ncl on the XZ plane occupied by
each cloud, and calculate the cloud size Rcl ≡ (NclΔxΔz/π )1/2.
Assuming a spherical shape, we calculate the total mass Mcl ≡
4πρclR

3
cl/3 and the virial ratio of each cloud via

α ≡ 5
(
σ 2

cl + c2
cl

)
Rcl

GMcl
, (16)

Figure 15. Shapes and random velocity fields of the clouds A and B shown in Figure 14(a) for model SM.S10. The velocity vectors are distributed quite randomly,
indicative of (subsonic) turbulent motions within the clouds. The arrow outside the clump in each panel corresponds to the velocity of 5 km s−1. The clouds are
gravitationally bound with virial parameter of α ∼ 2.
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Table 4
Average Properties of Clumps Produced in Self-Gravitating Models

Model ccl σcl Rcl ncl Mcl α

(km s−1) (km s−1) (pc) (cm−3) (106 M�)

SM.S05 3.69 ± 0.67 0.96 ± 0.24 44.9 ± 7.6 27.4 ± 0.8 0.36 ± 0.15 2.34 ± 0.25
SM.S10 5.06 ± 0.63 1.53 ± 0.61 60.7 ± 6.0 29.8 ± 1.6 0.91 ± 0.29 2.31 ± 0.32

which is the ratio of the total kinetic energy to the gravitational
potential energy for a uniform spherical cloud (e.g., Bertoldi
& McKee 1992; McKee & Ostriker 2007); note that central
concentration would decrease α. Figure 15 gives an example
of the shapes and internal velocities of two clumps shown in
Figure 14(a). Note that the velocity vectors are distributed quite
randomly, indicative of (subsonic) turbulent motions within the
clouds.

Table 4 summarizes the average properties of the clouds
that form in models SM.S05 and SM.S10. The typical size
and mass of the clouds are found to be Rcl ∼ 45–60 pc and
Mcl ∼ (4–9) × 105 M�, respectively, with the clouds in model
SM.S05 somewhat smaller and less massive than in model
SM.S10. Overall, α ∼ 2 for all the clouds, suggesting that
they are (marginally) gravitationally bound. The mean sound
speed inside the clouds is ccl = 3.7–5.1 km s−1, ∼3–4 times
larger than the one-dimensional internal velocity dispersions
σcl = 0.9–1.8 km s−1. This indicates that the major support
against self-gravity comes predominantly from the thermal
energy, a consequence of the density-modified heating rate
we adopt. The relatively low value of the internal turbulent
velocity dispersion suggests that the interaction of a dense,
gravitationally-bound cloud with its surroundings can drive only
a modest level of internal turbulence.

6. SUMMARY AND DISCUSSION

While stellar spiral arms in disk galaxies provide smoothly
varying low-amplitude gravitational potential perturbations, the
response of the interstellar gas to them is quite dramatic.
Spiral shocks compress the ISM and the high post-shock
densities may trigger growth of arm substructures and star
formation. In addition, radiative cooling and heating of the
gas makes the ISM inherently inhomogeneous, producing two
phases that differ in density and temperature by about two
orders of magnitude. Moreover, the vertical stellar gravity tends
to produce stratification of the cold and warm gas due to
differential buoyancy; this stratification can be modified by
vertical turbulence, however. Interactions of these processes
may significantly affect the gas flows and shock structures,
compared with results from our previous work (and that of other
groups), which employed an isothermal approximation (Paper I)
or neglected the vertical degree of freedom (Paper II). In this
paper, we have conducted nonlinear hydrodynamic simulations
in a two-dimensional slice perpendicular to a local segment of a
spiral arm that is tightly wound (with a pitch angle sin i = 0.1)
and rotates rigidly (with a pattern speed Ωp/Ω0 = 0.5). To
handle the Coriolis force arising from the galaxy rotation self-
consistently, we allow for gas motions parallel to the arm (i.e.,
perpendicular to the domain of the simulation). We consider
two different forms of gas heating; the usual constant heating
rate (for NU models) and the density-modified heating rate
(for NM and SM models), which mimics the effect of star
formation feedback in a very simple way, to limit runaway
collapse. We start from initially isothermal disks that are in

vertical hydrostatic equilibrium but out of thermal equilibrium.
We slowly turn on the amplitude of the spiral arm potential such
that it attains a full strength at 1.5 orbital times. Magnetic fields
are neglected in the present work.

Our main results and their astronomical implications are as
follows.

1. Two-phase disk equilibria without spiral arms. In the
absence of spiral-arm potential perturbations (and other
sources of turbulence), the vertical structure of equilib-
rium disks depends on the disk surface density Σ0. When
Σ0 > Σmax ≡ Pmax/(2Gρ∗c2

R)1/2 → 6.7 M� pc−2 (for So-
lar neighborhood conditions), the disk experiences TI and
evolves toward an equilibrium configuration with a thin slab
of dense gas (n > 1 cm−3) near the midplane sandwiched
between layers of rarefied gas (with n < 1 cm−3). Here,
Pmax/kB = 5000 cm−3 K is the maximum pressure allowed
for the thermally-stable rarefied gas with our adopted heat-
ing and cooling functions, cR ≈ 7 km s−1 is its density-
weighted sound speed, and ρ∗ = 0.056 M� pc−3 is the
stellar density near the Solar neighborhood. In our models,
the transition between the dense and rarefied phases occurs
approximately at Ptrans/kB ≈ 2100 cm−3 K, insensitive to
Σ0, as long as the disk is unstable to TI. Without self-gravity,
the vertical distribution of the rarefied gas in equilibrium is
well fitted by a Gaussian profile whose surface density is
fixed to ΣR = ΣNG ≡ Ptrans/(2Gρ∗c2

R)1/2 → 2.8 M� pc−2.
When self-gravity is included, the gravity from the mid-
plane dense layer compresses the overlying rarefied com-
ponent further, forcing overpressured rarefied gas to trans-
form to the dense phase. The resulting surface density of the
rarefied gas is reduced to ΣR = FΣNG, with the reduction
factor F defined by Equation (A5). When Σ0 < Σmin ≡
Pmin/(2Gρ∗c2

R)1/2 → 2.1 M� pc−2, the disk has too low
a pressure to produce the dense component; equilibrium
consists only of the rarefied gas. When Σmin < Σ0 < Σmax,
either a single rarefied disk or a two-phase disk is possi-
ble, depending on the initial conditions. Our S02 and S05
models with Σ0 = 2 and 5 M� pc−2, respectively, that start
from a warm isothermal configurations all end up with a
single-component rarefied disk, in the absence of spiral
perturbations.

2. Shock flapping motions in vertically stratified disks. Spiral-
arm potential perturbations lead to spiral shocks in the gas,
which are vertically curved and non-stationary, showing
strong flapping motions perpendicular to the arms. Simi-
larly to the one-dimensional cases studied in Paper II, the
shock compression and postshock expansion in two dimen-
sions allow phase transitions, but only if the gas density
at the shock and/or the postshock expansion zone reaches
the thermally-unstable range (1 cm−3 � n � 7–9 cm−3).
In model NU.S10 with Σ0 = 10 M� pc−2 and the uniform
heating rate, the shocked dense gas has large enough den-
sity that the postshock expansion is unable to return it to
the thermally unstable regime. As a consequence, there is
a large amount of interarm dense gas entering the shock
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in this model, which collides with other dense gas in the
arm, producing dense condensations. In other models with
lower surface density or the density-modified heating rate,
the shocked gas re-expands and becomes thermally unsta-
ble, returning to either the dense or the rarefied phase in the
interarm region.
The shock flapping motions in our models arise due to the
fact that the arm crossing time of gas is incommensurate
with the vertical oscillation period, so that steady flows
are not possible. Seen from the upstream side, the shock
is convex when the postshock regions are maximally
compressed, and concave when the postshock vertical
expansion is strongest. These non-steady motions of shock
fronts are commonly seen in numerical simulations with
sufficient resolution (e.g., Martos & Cox 1998; Gómez &
Cox 2002, 2004; Kim & Ostriker 2006; Paper I; Wada
2008), although simulations with low resolution (Tubbs
1980) or particles (e.g., Dobbs et al. 2008) do not capture
the flapping motions clearly.
It is interesting to note that radio continuum images of
the 5 kpc arm (or the Scutum arm) toward the galactic
longitude l = 30◦–32◦ in the Milky Way shows a bow
shock feature in the warm ionized medium with temperature
∼104 K (Sofue 1985), similarly to a convex shock front seen
in Figure 4(b). The radio emission from the bow shock
is presumably thermal radiations from ionized gas, with
emission measure of ∼7000 pc cm−6. The curvature of the
observed bow shock, as measured by the longitudinal offset
Δl of the shock at latitude b relative to the shock front at
the midplane, is Δl/b ∼ 0.5 for b = 0.◦5. This value is
about a half of the maximum curvature of the shock front
|xsp(HR) − xsp(0)|/HR ∼ 0.85 in our S10 models, where
xsp(z) denotes the shock position at height z. This strongly
suggests that the bow shock associated with the 5 kpc arm
is most likely a cross section of a galactic spiral shock
that is undergoing flapping motions. Velocity information
is needed to determine whether the 5 kpc arm regions are
currently being compressed or expanding in the course of
the flapping motions.
In this paper, for consistency with our local approximation
we have considered tightly wound arms with a very small
pitch angle i ∼ 5.◦8, and a pattern speed Ωp/Ω0 = 0.5.
Observed spiral arms of external galaxies are often more
loosely wound with i ∼ 10◦–30◦ (e.g., Seigar et al.
2008) and span a wide range of galactocentric radii with
differing Ωp/Ω0. For fixed F, a larger arm pitch angle
would imply a larger streaming velocity v0x perpendic-
ular to the arm (see Equation (1)). Spiral shocks would
then become correspondingly stronger and shifted farther
downstream (e.g., Roberts 1969; Shu et al. 1973; Kim &
Ostriker 2002), exhibiting larger amplitude flapping mo-
tions (Paper I). On the other hand, |v0x| is increasingly small
as Ωp approaches Ω0. Consequently, the spiral shock as well
as associated flapping motions would become weaker as one
approaches corotation, where the gas would simply con-
centrate near the potential minimum, without involving a
shock.

3. Time-averaged shock structure. Within a few orbital times
after the development of spiral shocks, gas flows reach
a quasi-steady state in the sense that the mass fractions
of dense and rarefied gas do not change appreciably with
time. For models with Σ0 = 10 M� pc−2, the quasi-steady
mass fraction of the rarefied gas is fR ∼ 19%, which can

be compared to fR ∼ 30% when the spiral potential is
absent. Despite the shock flapping motions, most of the
gas is found close to thermal equilibrium, with a small
fraction thermally unstable. The density and temperature
PDFs are thus bimodal. For model NU.S10, the dense and
rarefied peaks are located at (n, T ) ∼ (200 cm−3, 30 K) and
∼(0.2 cm−3, 7100 K), respectively, and the dense part of
the density PDF is described by a lognormal distribution.
The time-averaged structure can be well represented by
local vertical hydrostatic equilibrium, supported mainly
by the thermal pressure rather than gas random motions.
This indicates that the vertical hydrostatic balance is a
reasonable approximation even in the presence of spiral
shocks. The profiles of surface density perpendicular to the
arm are more-or-less symmetric with a shock compression
factor of ∼7–10, and have broad arm regions whose width
correlates with the strength of the shock flapping motions.
The fractional widths of the arm, postshock expansion zone,
and interarm region are typically 10%, 20%, and 70% of
the arm-to-arm distance, where the gas stays for 15%, 30%,
and 55% of the arm-to-arm crossing time, respectively. The
shock flapping motions in the XZ plane make the arm wider
than in one-dimensional spiral shocks where the arm takes
up only 1% of the arm-to-arm distance (Paper II).
The dense gas produced from TI and shock compression
tends to sink toward the midplane to form a thin slab,
while high-altitude regions are dominated by warm rarefied
gas. The thickness of the dense slab is HD ∼ 10–40 pc,
depending on the total gas content, heating rate, and
presence/absence of self-gravity, while the scale height
of the rarefied gas is HR ∼ 130 pc ≈ cR/

√
4πGρ∗

insensitive to the parameters. For model NM.S10, the
thickness ratio of the dense to rarefied components is
about 5, which is not much different from the results of
Dobbs et al. (2008) who reported that the warm gas extends
vertically up four times more than the cold gas. With high
density and pressure, the dense slab would transform to
molecular clouds if the appropriate chemical reactions for
molecule formation were included (e.g., Dobbs & Bonnell
2007; Dobbs & Price 2008). Thin distributions of the cold
dense gas are in fact common in numerical simulations
of galactic disks with TI where turbulence is driven by
magnetorotational instability (Piontek & Ostriker 2007),
stellar feedback via H ii regions (Koyama & Ostriker
2009a, 2009b), or supernovae explosions (Korpi et al.
1999; de Avillez & Berry 2001; Joung & Mac Low 2006;
Joung et al. 2009). The observed molecular distribution the
Milky Way has a scale height of ∼35 pc within the Solar
circle, somewhat reduced for the most massive clouds (e.g.,
Malhotra 1994; Bronfman et al. 2000; Stark & Lee 2005).
Galactic H ii regions are also within about 30 pc of the
midplane (Lockman 1977). In the inner Galaxy and near
the solar circle, the scale height of the cold H i layer is about
1.5 times smaller than the warm H i gas (e.g., Falgarone
& Lequeux 1973; Crovisier 1978; see also Ferriére 2001),
although the cold and warm phases appear to have a similar
scale height in the outer Galaxy (e.g., Dickey et al. 2009).

4. Random gas motions driven by shock flapping motions. The
flapping motions of spiral shocks stir the gas and supply
random kinetic energy. Allowing for incomplete subtraction
of streaming motions in the arm region, the induced density-
weighted velocity dispersions are σx ∼ σy ∼ 2–3 km s−1

for both dense and rarefied components for the non-self-
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gravitating models, with larger values corresponding to
disks with larger Σ0. Compared with the results of Paper II
where the vertical coordinate was suppressed, these values
are similar to those for the dense gas in the arms and larger
by a factor of ∼2–3 for the interarm rarefied gas. This
implies that it is the rarefied gas that is more efficiently
stirred by the shock flapping motions. The self-gravitating
models have larger velocity dispersions, in the range σx ∼
σy ∼ 4–5 km s−1 for the dense and σx ∼ σy ∼ 4–7 km s−1

for the rarefied gas, indicating that self-gravity enhances
shock flapping and velocity dispersions, especially for
rarefied gas. These in-plane velocity dispersions in the
current multi-phase models are similar to those in the
isothermal models considered in Paper I.
The vertical velocity dispersions of the rarefied gas in NU
and NM models are σz ∼ 1.7 km s−1, insensitive to Σ0.
In NU models, the vertical motions of the dense gas are
excited preferentially by vertical motions of the rarefied
gas. Since the mass fraction of the rarefied gas decreases
with Σ0, the vertical velocity dispersions of the dense gas
in NU models is a decreasing function of Σ0, varying
roughly as σz ∝ Σ−0.8

0 . In NM models, the postshock gas
is overpressured due to enhanced heating and thus expands
vertically, increasing σz compared to NU models.
The level of random gas motions in our models are
generally smaller than the observed velocity dispersions
∼7–10 km s−1 for atomic gas in the solar neighborhood
(e.g., Heiles & Troland 2003) and for the larger molecu-
lar clouds in the Milky Way (e.g., Stark & Brand 1989;
Solomon et al. 1987; Heyer et al. 2009). Thus, we con-
clude that other sources of the interstellar turbulence (e.g.,
Mac Low & Klessen 2004; Elmegreen & Scalo 2004) must
exceed that provided by spiral shocks. One of the dominant
mechanisms is of course supernova explosions (e.g., Korpi
et al. 1999; de Avillez & Breitschwerdt 2005; Joung & Mac
Low 2006; Joung et al. 2009). In outer regions of galax-
ies where star formation activity is low, the magnetorota-
tional instability (e.g., Sellwood & Balbus 1999; Piontek &
Ostriker 2005, 2007) and/or cosmic infall of gas (e.g.,
Santillán et al. 2007; Klessen & Hennebelle 2010) may
play an important role in driving the ISM turbulence.
H ii region expansion and radiation pressure are impor-
tant in injecting energy into the ISM as GMCs are dis-
persed (e.g., Matzner 2002; Murray et al. 2010). At large
scales, self-gravitating instability with galactic rotation and
shear can drive turbulence at near-sonic levels (e.g., Kim &
Ostriker 2002; Wada & Norman 2002; Kim & Ostriker
2007; Agertz et al. 2009).

5. Effect of self-gravity and properties of self-gravitating
clouds. When self-gravity is included, dense gas in SM
models with Σ0 � 5 M� pc−2 suffers from gravitational
instability, eventually forming two large clouds in each
model. These are separate in the interarm regions, tem-
porarily merge in the arm, and then break up into two pieces
in the postshock expansion zone. These clouds have a radii
∼45–60 pc and mass ∼(4–9)×105 M� each, and are grav-
itationally bound with a virial parameter of α ∼ 2. In our
present models, we have not attempted to include realistic
star formation feedback, but instead increase the heating
rate at high density to prevent collapse. As a consequence,
the main support against self-gravity comes from thermal
pressure. The mean thermal sound speed and internal ve-
locity dispersion of the clouds are ccl ∼ 3.7–5.1 km s−1

and σcl ∼ 0.9–1.8 km s−1, respectively. For models with
Σ0 = 2 M� pc−2, self-gravity is insufficient to form bound
clouds. Nevertheless, self-gravity increases the dense gas
fraction by a factor of ∼2 compared to the non-self-
gravitating counterpart of this model, which in turn de-
creases the vertical velocity dispersion of the dense gas by
a similar factor.
Formation of self-gravitating clouds in our two-
dimensional models requires the production of the dense
gas due to TI, and then additional shock compression. Al-
though our present models do not capture the cloud destruc-
tion process, bound clouds created inside spiral arms may be
disrupted before they leave the arms if feedback from star
formation is sufficiently strong (Shetty & Ostriker 2008;
Wada 2008). Nevertheless, the presence of high-density,
self-gravitating clouds in the interarm regions opens an
interesting possibility that the spiral shocks—where the
diffuse gas is strongly compressed—do not necessarily co-
incide with the regions of highest gas density (in gravita-
tionally bound clouds). For example, Patrikeev et al. (2006)
found strongly polarized nonthermal radio emission that
may trace magnetic arms, detected preferentially upstream
of the CO arms in the inner disk of the Whirlpool galaxy
M51 (see also, e.g., Fletcher et al. 2010). We note, however,
that the current unmagnetized models are not yet able to
provide clues to the relation between gaseous and magnetic
arms. It will be interesting to see how TI, spiral shocks, and
realistic star formation feedback conspire with magnetized
self-gravitating instabilities to create bound clouds and arm
substructures (possibly including separate magnetic arms),
and to generate turbulence in the gas.
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APPENDIX

TWO-PHASE DISKS IN HYDROSTATIC EQUILIBRIUM

We consider thermally bistable two-phase disks in which a
cold, dense layer with surface density ΣD with thickness HD
is surrounded by a warm, rarefied medium. Since the scale
height of the dense layer is very small compared to that of the
rarefied gas, we approximate the former as razor-thin (HD ≈ 0).
We further assume that the mass fraction of the rarefied gas is
small, so that its self-gravity is unimportant. Let ρR(z) denote
the density distribution of the rarefied gas. In the presence of the
external gravity from a stellar disk of uniform density ρ∗, the
condition of vertical hydrostatic equilibrium for the warm gas
reads

c2
R

d ln ρR

dz
= −4πGρ∗z − 2πGΣDsign(z), (A1)

where cR is the isothermal sound speed of the rarefied gas,
assumed to be independent of z. Integrating Equation (A1) over
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z, one obtains

ρR(z) = ρR(0) exp

[
− 1

2h2
g

(
z2 +

ΣD

ρ∗
|z|

)]
(A2)

where h2
g = c2

R/(4πGρ∗) is the Gaussian scale height which
the rarefied gas would have in the absence of self-gravity. The
surface density, ΣR , of the rarefied medium is then given by

ΣR = 2
∫ ∞

HD0
ρR(z)dz = ΣNGF(s0), (A3)

where

ΣNG ≡ (2π )1/2hgρR(0) = PR(0)√
2Gρ∗c2

R

(A4)

is the surface density without gas self-gravity,

F(s0) ≡ exp(s0)erfc
(
s

1/2
0

)
(A5)

is the reduction factor, and

s0 ≡ πGΣ2
D

2c2
Rρ∗

, (A6)

measures the strength of gravity due to the dense gaseous slab
relative to the external vertical gravity (see, e.g., Kim et al.
2002). Note that the results of Section 3 suggest that when two-
phase equilibria are established, the interface between dense and
rarefied media has a constant pressure Ptrans, so that we may take
ρR(0) = PR(0)/c2

R = Ptrans/c
2
R since the dense medium has a

very small scale height (e.g., Piontek & Ostriker 2007), such
that

ΣR = PtransF(s0)√
2Gρ∗c2

R

. (A7)

The scale height of the rarefied medium is given by

H 2
R =

∫ ∞
−∞ ρR(z)z2dz∫ ∞
−∞ ρR(z)dz

= h2
g

[
(1 + 2s0) −

√
s0

π

2

F(s0)

]
, (A8)

where Equation (A2) is used.
The condition of mass conservation requires

Σ0 = ΣD + ΣR (A9)

so that

s0 = πG(Σ0 − ΣR)2

2c2
Rρ∗

. (A10)

For self-gravitating cases, we fix ρ∗ = 0.056 M� pc−3 and cR =
7 km s−1, and solve Equations (A7) and (A10) iteratively to find
ΣR and ΣD = Σ0 −ΣR as functions of Σ0. The resulting values of
fR = ΣR/Σ0 and HR are plotted in Figure 3 as dashed lines. For
non-self-gravitating cases, ΣR = ΣNG = PR(0)/(2Gρ∗c2

R)1/2

and HR = hg corresponding to s0 = 0, plotted as solid lines in
Figure 3.

Note that since ΣD < Σ0, s0 � 1 if πGΣ2
0/(2c2

Rρ∗) � 1; for
our models with ρ∗ = 0.056 M� pc−3 and Σ0 < 10 M� pc−2,
πGΣ2

0/(2c2
Rρ∗) < 0.2. When s0 � 1, F(s0) ≈ 1, so that HR ≈

hg → 128 pc and ΣR → 2.8 M� pc−2 for ρ∗ = 0.056 M� pc−3

and Ptrans/kB = 2100 K cm−3.
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