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ABSTRACT

We use numerical hydrodynamic simulations to investigate prestellar core formation in the dynamic environment of
giant molecular clouds, focusing on planar post-shock layers produced by colliding turbulent flows. A key goal is
to test how core evolution and properties depend on the velocity dispersion in the parent cloud; our simulation suite
consists of 180 models with inflow Mach numbers M ≡ v/cs = 1.1–9. At all Mach numbers, our models show that
turbulence and self-gravity collect gas within post-shock regions into filaments at the same time as overdense areas
within these filaments condense into cores. This morphology, together with the subsonic velocities we find inside
cores, is similar to observations. We extend previous results showing that core collapse develops in an “outside-in”
manner, with density and velocity approaching the Larson–Penston asymptotic solution. The time for the first core
to collapse depends on Mach number as tcoll ∝ M−1/2ρ

−1/2
0 , for ρ0 the mean pre-shock density, consistent with

analytic estimates. Core building takes 10 times as long as core collapse, which lasts a few ×105 yr, consistent
with observed prestellar core lifetimes. Core shapes change from oblate to prolate as they evolve. To define cores,
we use isosurfaces of the gravitational potential. We compare to cores defined using the potential computed from
projected surface density, finding good agreement for core masses and sizes; this offers a new way to identify
cores in observed maps. Cores with masses varying by three orders of magnitude (∼0.05–50 M�) are identified
in our high-M simulations, with a much smaller mass range for models having low M. We halt each simulation
when the first core collapses; at that point, only the more massive cores in each model are gravitationally bound,
with Eth + Eg < 0. Stability analysis of post-shock layers predicts that the first core to collapse will have mass
M ∝ v−1/2ρ

−1/2
0 T 7/4, and that the minimum mass for cores formed at late times will have M ∝ v−1ρ

−1/2
0 T 2, with

T being the temperature. From our simulations, the median mass lies between these two relations. At the time we
halt the simulations, the M versus v relation is shallower for bound cores than unbound cores; with further evolution
the small cores may evolve to become bound, steeping the M versus v relation.
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1. INTRODUCTION

Star formation begins with the creation of dense molecular
cores, and understanding how cores grow and evolve is essential
to identifying the origin of stellar properties (Shu et al. 1987;
McKee & Ostriker 2007; André et al. 2008). Through the 1990s,
the prevailing theoretical picture was of slow core formation
and evolution mediated by ambipolar diffusion, followed by
core collapse initiated from a quasistatic, centrally concentrated
state (e.g., Mouschovias 1987; Mouschovias & Ciolek 1999).
Current observations, however, indicate that magnetic field
strengths are insufficient to provide the dominant support of
molecular cores (Troland & Crutcher 2008). In addition, over
the past decade, a conception of star formation has emerged
in which supersonic turbulence drives structure and evolution
within giant molecular clouds (GMCs) on a wide range of scales
(e.g., Ballesteros-Paredes et al. 2007; McKee & Ostriker 2007).
Because supersonic turbulence can compress gas to densities at
which gravitational collapse can rapidly occur, it is likely to be
important in the initiation of prestellar cores. Ultimately, models
of core formation and evolution must take into account both
moderate magnetic fields (with diffusion) and strong turbulence
(Kudoh & Basu 2008; Nakamura & Li 2008). In order to gain
insight into the physics involved, however, it is informative
to focus on individual limiting cases and explore dependence
on parameters. Here, following Gong & Ostriker (2009) but
generalizing to three dimensions, we consider core building and
evolution in the turbulence-dominated, unmagnetized limit.

Observations of dense cores in GMCs have provided detailed
information on individual core properties as well as statistics
of core populations (see, e.g., the reviews of di Francesco
et al. 2007; Ward-Thompson et al. 2007; Bergin & Tafalla
2007; André et al. 2008). These properties, including internal
structure and kinematics, durations of different evolutionary
stages, and distribution of core masses, constrain core formation
theories. In terms of structure, cores are observed to be centrally
concentrated at all stages, with the specific profile fits differing
depending on the stage of evolution. Cores can generally be fit
with a uniform-density inner region surrounded by a power law
∝ r−2 (e.g., Shirley et al. 2000; Bacmann et al. 2000; Alves
et al. 2001; Kandori et al. 2005; Kirk et al. 2005); this shape is
consistent with expectations for both static Bonnor–Ebert (BE)
pressure-supported isothermal equilibria (Bonnor 1956; Ebert
1955), and for collapsing isothermal spheres (Bodenheimer &
Sweigart 1968; Larson 1969; Penston 1969). The center-to-edge
density contrast is frequently larger than the maximum possible
for a stable BE sphere, however, and the inferred temperatures
based on static BE fits are also often larger than observed
temperatures. Although in principle some support could be
provided by magnetic fields (e.g., Ciolek & Mouschovias 1994),
another possibility is that these “supercritical” cores are in
fact collapsing rather than static (Dapp & Basu 2009; Gong
& Ostriker 2009).

In terms of kinematics, dense, low-mass cores generally have
subsonic internal velocity dispersions, whether for isolated cores
or for cores found in clusters (e.g., Myers 1983; Goodman et al.
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1998; Caselli et al. 2002; Tafalla et al. 2004; Kirk et al. 2007;
André et al. 2007; Lada et al. 2008). Some prestellar cores also
show indications of subsonic inward motions throughout their
interiors based on asymmetry of molecular lines that trace dense
gas (e.g., Lee & Myers 1999; Lee et al. 2001; Sohn et al. 2007).
For cores containing protostars, signatures of supersonic inward
motions on small scales (∼0.01–0.1 pc) have been observed
(e.g., Gregersen et al. 1997; Di Francesco et al. 2001); these are
believed to be indicative of gravitationally induced infall. In very
recent work, Pineda et al. (2010) have used NH3 observations
to identify a sharp transition from supersonic to subsonic
velocity dispersion from outer to inner regions in the core B5 in
Perseus.

Several recent statistical studies have reached similar con-
clusions regarding the durations of successive stages of core
evolution (e.g., Ward-Thompson et al. 2007; Enoch et al. 2008;
Evans et al. 2009), with prestellar and protostellar (class 0)
stages having comparable lifetimes. The typical duration for
each of these stages is a few times the gravitational free-fall
time

tff =
(

3π

32Gρ̄

)1/2

= 4.3 × 105 yr

(
n̄H

104 cm−3

)−1/2

(1)

at the mean core density ρ̄ = 1.4mHn̄H, amounting to
∼(1–5) ×105 yr for typical conditions. With prestellar lifetimes
considerably below the ambipolar diffusion time for strong mag-
netic field tAD ≈ 10tff (e.g., Mouschovias & Ciolek 1999), this
suggests that observed cores are trans-critical or supercritical
(see Ciolek & Basu 2001) with respect to the magnetic field.1

This conclusion is also supported by magnetic field Zeeman
observations (Troland & Crutcher 2008), indicating that cores
have mean mass-to-magnetic-flux ratios twice the critical value.
Thus, magnetic field effects appear to be sub-dominant in terms
of supporting cores against collapse, and ambipolar diffusion
does not appear to control the dynamics of core formation and
evolution. As magnetic fields are non-negligible, however, mag-
netohydrodynamic (MHD) stresses may still affect GMC and
core dynamics.

Empirical measurements of core mass functions (CMFs; e.g.,
Motte et al. 1998, 2001; Testi & Sargent 1998; Johnstone et al.
2000, 2001; Onishi et al. 2002; Beuther & Schilke 2004; Reid &
Wilson 2005, 2006; Stanke et al. 2006; Enoch et al. 2006; Alves
et al. 2007; Ikeda et al. 2007, 2009; Ikeda & Kitamura 2009;
Nutter & Ward-Thompson 2007; Simpson et al. 2008; Könyves
et al. 2010) show that CMFs have a remarkable similarity in
shape to stellar initial mass functions (IMFs, see, e.g., Kroupa
2001; Chabrier 2005), with a shift toward lower mass by a factor
of 3–4 (see, e.g., Alves et al. 2007; Rathborne et al. 2009). The
characteristic/turnover mass of observed CMFs ranges from 0.1
to 3 M�, although there are uncertainties in this associated with
lack of spatial resolution at the low-mass end.

Many theoretical efforts have contributed to interpreting the
observed properties of cores. The classic work of Bonnor (1956)
and Ebert (1955) provided the foundation of later studies, by
determining the maximum mass of a static isothermal sphere
that is dynamically stable. In terms of the boundary pressure
Pedge = ρedgec

2
s or mean internal density ρ̄ = 2.5ρedge, this

1 The critical mass-to-magnetic-flux defines the minimum that permits
gravitational collapse in the field-freezing limit (e.g., Mestel & Spitzer 1956;
Mouschovias & Spitzer 1976; Nakano & Nakamura 1978).

maximum stable mass is

MBE = 1.2
c4
s

(G3Pedge)1/2
= 1.9

c3
s

(G3ρ̄)1/2

= 2.3 M�

(
n̄H

104 cm−3

)−1/2 (
T

10 K

)3/2

. (2)

Here, cs = (kT /μ)1/2 is the internal sound speed in the core.
Over many years, numerical simulations have been used to

investigate isothermal collapse of individual, pre-existing cores
(Bodenheimer & Sweigart 1968; Larson 1969; Penston 1969;
Hunter 1977; Foster & Chevalier 1993; Ogino et al. 1999;
Hennebelle et al. 2003; Motoyama & Yoshida 2003; Vorobyov
& Basu 2005; Gómez et al. 2007; Burkert & Alves 2009). These
simulations include initiation from static configurations that are
unstable, and initiation from static, stable configurations that
are subjected to imposed compression, either from enhanced
external pressure or a converging velocity field, or a core–core
collision. A common feature of the results is that the collapse
generally starts from outside and propagates in as the central
density increases. At the time of singularity formation, the
density profile approaches the “Larson–Penston” asymptotic
solution ρ = 8.86c2

s /(4πGr2) and the central velocity is
comparable to the value −3.28cs derived by Larson (1969)
and Penston (1969). However, these previous studies have not
considered core evolution within the larger context, in particular
including the process of core formation. Since the formation
process may affect later evolution, it is important to develop
unified models.

At GMC scales, a number of groups have investigated the
CMFs that result from numerical simulations of turbulent, self-
gravitating systems (see, e.g., Klessen 2001; Gammie et al.
2003; Bonnell et al. 2003; Li et al. 2004; Tilley & Pudritz 2004;
Heitsch et al. 2008; Clark et al. 2008; Offner et al. 2008; Basu
et al. 2009; Smith et al. 2009). These models have shown—for
certain parts of parameter space—features that are in accord
with observed CMFs: mass functions dominated by the low end
with a peak and turnover near 1 M�, and a high-mass power-
law slope (at least marginally) consistent with the Salpeter value.
These simulations have not, however, had sufficient resolution
to investigate the internal properties of individual cores that
form. In addition, these studies have not quantified how the core
masses depend on the large-scale properties of the turbulent
medium (see below).

Taking the previous numerical simulations of individual cores
one step further, Gong & Ostriker (2009) initiated a study of dy-
namically induced core formation and evolution in supersonic
converging flows, focusing on the spherical case. In these sim-
ulations, the density is initially uniform everywhere: no initial
core structure is assumed. Instead, dense cores form inside a
spherical shock that propagates outward within the converging
flow. Over time, cores become increasingly stratified as their
masses grow. Eventually, the core collapses to create a protostar
following the same “outside-in” pattern as in models initiated
from static conditions. Subsequently, the dense envelope falls
into the center via an inside-out rarefaction wave (Shu 1977;
Hunter 1977); this is followed by a stage of late accretion if
the converging flow on large scales continues to be maintained.
The unified formation and evolution model of Gong & Os-
triker (2009) explains many observed core properties, including
BE-sphere-like density profiles, subsonic internal velocities
within cores, and short core lifetimes with comparable prestellar
and protostellar durations. Gong & Ostriker (2009) also found
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that the inflow velocity of the converging flows affects core
lifetimes, masses, sizes, and accretion histories. Realistic super-
sonic inflows in clouds are not spherical, however, while mass
inflow rates are affected by geometry. Thus, the quantitative re-
sults for masses, lifetimes, etc., as a function of Mach number
and ambient density may differ for more realistic geometry.

Numerical results on core formation have not reached con-
sensus on how the characteristic mass in the CMF, Mc, depends
on the bulk properties of the cloud—its mean density ρ0 = 〈ρ〉,
sound speed cs, and turbulent velocity dispersion vturb. Some
have suggested that the Jeans mass of the cloud at its mean den-
sity (MJ = c3

s π
3/2(G3ρ0)−1/2) determines Mc in the CMF (e.g.,

Klessen 2001; Bonnell et al. 2006), while others have found
values of Mc well below MJ (see, e.g., Gammie et al. 2003; Li
et al. 2004). As noted by McKee & Ostriker (2007), the dif-
ference between these conclusions is likely related to the Mach
number of turbulence: the value found for Mc/MJ is lower in
simulations where the Mach number M ≡ vturb/cs is higher.
Indeed, more recent simulations by Clark et al. (2008) provide
some indication that increasing M lowers the value of Mc in the
CMF; they did not, however, conduct a full parameter study.

Supersonic turbulence makes the density in a GMC highly
non-uniform, creating a log-normal probability distribution
function (PDF) in which most of the volume is at densities
below ρ0 and most of the mass is at densities above ρ0 (e.g.,
Vazquez-Semadeni 1994; Padoan et al. 1997; Ostriker et al.
1999). Given that the log-normal PDF allows for a range of
Jeans masses (or BE masses; MBE ∝ MJ ), Padoan & Nordlund
(2002, 2004) proposed that the CMF is set by dividing the
total available gas mass at each density into unstable cores.
Padoan et al. (2007) propose that the peak mass in the CMF
is given by Mc = 3MBE,0/M

1.1
A for MA ≡ vturb/vA the Alfvén

Mach number in a cloud, and MBE,0 the BE mass evaluated
at the mean cloud density n0. Here, vA ≡ B/(4πρ)1/2 is the
Alfvén speed. For realistic mean GMC density n0 ∼ 100 cm−3

and MA ∼ 1–4, from Equation (2) the Padoan et al. formula
in fact yields Mc > 15 M�; only if one chooses a much
higher reference density does this agree with observations.
For the unmagnetized case, Padoan et al. (2007) propose that
Mc = 4MBE,0/M1.7. Hennebelle & Chabrier (2008) point out
that shock compression is underestimated in the magnetized
case by Padoan et al. (2007), and advocate a formula similar to
their unmagnetized one: Mc ∼ MBE,0/M3/2. Since M � 10
in massive GMCs, these formulae yield more realistic values
Mc ∼ M�. Neither the Padoan et al. (2007) or the Hennebelle
& Chabrier (2008) proposal has, however, been tested directly
using self-gravitating numerical simulations.

In this contribution, we present results on core formation and
evolution based on a large suite of three-dimensional (3D) nu-
merical simulations. Each simulation models a localized region
of a turbulent cloud in which there is an overall convergence in
the velocity field. Under the assumption that there is a dominant
convergence direction locally, we choose inflow along a single
axis, so that convergence is planar. With the more realistic ge-
ometry afforded by the current simulations, we are able to check
the results obtained by Gong & Ostriker (2009) for core building
and collapse in supersonic flows. We are also able to explore
how the characteristic core mass is related to the velocity of
the converging flows. Since the speed of converging flow is as-
sumed to reflect the amplitude of the largest-scale (dominant)
motions in a GMC, this relates the characteristic core mass to the
turbulent Mach number in its parent GMC. Although a number
of previous studies of core formation have been conducted, the

present investigation is distinguished by our systematic study of
Mach number dependence, together with our focus on internal
structure and kinematics of the cores that form.

The outline of this paper is as follows. In Section 2, we
provide a physical discussion of self-gravitating core formation
in the post-shock dense layers, identifying the mass, size,
and timescales expected to be important. In Section 3, we
summarize the governing equations and methods used in our
numerical simulations. Section 4 describes the development of
core structure and evolution in our models, paying particular
attention to the influence of Mach number M on the evolution,
and comparing collapse of individual cores with Gong &
Ostriker (2009). Section 5 describes our method of core-finding,
in which the largest closed contour of the gravitational potential
determines the core size. We demonstrate that this method can
be used for both three-dimensional and two-dimensional (2D)
data with similar results, and can thus be applied to find cores in
observed clouds. Section 6 describes the relations between core
properties (core mass, core radius, and core collapse time) and
the large-scale Mach number of the converging flow, relating
to the expectations from gravitational instability discussed in
Section 2. In Section 6, we also quantify core shapes, and
explore the relationship between core structure and kinematics.
Section 7 summarizes our new results and discusses our findings
in the context of previous theories and observations.

2. THE CHARACTERISTIC CORE MASS AND SIZE

Prior to describing our numerical model prescription and
results, it is useful to summarize the scales that are likely to
be relevant for formation of self-gravitating cores in GMCs. We
shall assume approximately isothermal conditions, consistent
with observations (e.g., Blitz et al. 2007). The isothermal sound
speed at a temperature T is

cs = 0.20 km s−1

(
T

10 K

)1/2

. (3)

If the density within clouds were uniform, the spatial scale
relevant for gravitational instability would be the Jeans length

LJ ≡ cs

(
π

Gρ0

)1/2

= 2.76 pc
( nH,0

102 cm−3

)−1/2
(

T

10 K

)1/2

,

(4)
evaluated at the mean density ρ0. The corresponding Jeans mass
is

MJ ≡ ρ0L
3
J = c3

s

(
π3

G3ρ0

)1/2

= 72 M�
( nH,0

102 cm−3

)−1/2
(

T

10 K

)3/2

. (5)

Note that ρ0(LJ /2)3 or ρ04π (LJ /2)3/3 is sometimes used for
the Jeans mass. The BE mass (Equation (2)) for Pedge = P0 ≡
ρ0c

2
s is MBE = 0.22MJ (ρ0). The Jeans time at the mean cloud

density is

tJ ≡ LJ

cs

=
(

π

Gρ0

)1/2

= 3.27 tff (ρ0)

= 1.4 × 107 yr
( nH,0

102 cm−3

)−1/2
. (6)

We shall use the Jeans length, mass, and time at the unperturbed
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density as our code units of length, mass, and time: L0 = LJ ,
M0 = MJ , and t0 = tJ .

Of course, GMCs are highly inhomogeneous, with core
formation taking place in the overdense regions that have the
shortest gravitational times. If the overdense regions within
GMCs are produced by shocks in the turbulent, supersonic flow,
their density, and therefore the mass scale and length scale for
growth of self-gravitating structures, will be related to the shock
strength. Strongly magnetized shocks have less compression
than weakly magnetized shocks (while both will be present in a
turbulent flow), so we concentrate on the latter case.

If gravitationally unstable cores develop only in gas that
has been strongly compressed by shocks, the actual bounding
pressure will be much larger than P0 = ρ0c

2
s . In particular, an

isothermal shock with Mach number M will produce a post-
shock region with pressure Ppost−shock = ρ0v

2 = M2ρ0c
2
s 


P0. Thus, if cores preferentially form in stagnation regions
between shocks of Mach number M, then one can define an
effective BE mass for these core-forming regions within the
turbulent flow by setting Pedge = Ppost−shock in Equation (2):

MBE,post−shock ≡ 1.2
c3
s

(G3ρ0)1/2

1

M
= 2.8 M�

( v

1km s−1

)−1

×
( nH,0

102 cm−3

)−1/2
(

T

10 K

)2

. (7)

The above simple argument suggests M ∝ v−1ρ
−1/2
0 T 2 for the

minimum mass of a star that forms via collapse of a core in a
turbulent cloud with velocity dispersion v, mean density ρ0, and
temperature T.

Equation (7) provides a mass scale for fragmentation within
post-shock regions, but in fact instabilities take some time
to develop. Thus, it is useful to consider the evolution of a
simple system consisting of a planar shocked layer formed by
a converging flow (see, e.g., Elmegreen & Elmegreen 1978;
Lubow & Pringle 1993; Vishniac 1994; Whitworth et al. 1994;
Iwasaki & Tsuribe 2008).

For inflow Mach number M, the surface density of the post-
shock layer at time t is

Σ(t) = ρ0 (vz,+ − vz,−) t = 2ρ0 M cs t, (8)

where vz,+ and vz,− are the upward and downward converging
velocities. If the sheet is not vertically self-gravitating, its half-
thickness is H = Σ(t)/2 ρp where ρp ≈ ρ0M2 is the post-shock
density. The non-self-gravitating half-thickness is thus

Hnsg ≈ 2ρ0 M cs t

2ρ0 M2
= cs t

M
. (9)

As the surface density of the sheet increases, self-gravity will
become increasingly important in confining the gas. In the limit
of hydrostatic equilibrium, the height approaches

Hsg = c2
s

πGΣ
= cs

2πGρ0Mt
. (10)

Note that the transition from non-self-gravitating (Hnsg ∝ t) to
self-gravitating (Hsg ∝ t−1) occurs at a time near

tsg ≡ 1

(2πGρ0)1/2 = 0.22tJ , (11)

defined by the condition Hsg = Hnsg.

The dispersion relation for in-plane modes in a slab, allowing
for non-zero H (e.g., Kim et al. 2002), is

ω2 ≈ c2
s k

2 − 2πGΣk

1 + kH
. (12)

For the critical mode ω2 = 0, so that

kcritH (1 + kcritH ) = 2πH
GΣ
c2
s

= 2π
H

LJ,2D
, (13)

where

LJ,2D ≡ c2
s

GΣ
(14)

is the Jeans length for an infinitesimally thin layer. The solution
to Equation (13) is

kcrit = 2π

LJ,2D

2

1 +
(
1 + 8π H

LJ,2D

)1/2

= 4πGρ0tM
cs

2

1 +
(
1 + 8π H

LJ,2D

)1/2 , (15)

so that

λcrit = LJ,2D

1 +
(
1 + 8π H

LJ,2D

)1/2

2

= cs

2Gρ0tM
1 +

(
1 + 8π H

LJ,2D

)1/2

2
. (16)

The corresponding critical mass (λcrit/2)2Σ is

Mcrit ≡ c3
s

32G2ρ0M

[
1 +

(
1 + 8π H

LJ,2D

)1/2]2

t
. (17)

Note that H/LJ,2D initially increases in time, during the non-
self-gravitating stage (Hnsg/LJ,2D = 2Gρ0t

2), and then ap-
proaches a constant (Hsg/LJ,2D = 1/π ). At any time, all wave-
lengths λ > λcrit have ω2 < 0, so that overdense regions of
the corresponding sizes and masses M > Mcrit grow relative to
their surroundings.

During the non-self-gravitating stage, the critical mass has a
minimum value at time

tcrit,nsg,min =
(

3

16πGρ0

)1/2

= 0.14tJ = 0.61tsg (18)

given by

Mcrit,nsg,min = 3
√

3π

8

c3
s

(G3ρ0)1/2

1

M
(19)

= 3.0 M�
( v

1km s−1

)−1 ( nH,0

102 cm3

)−1/2
(

T

10 K

)2

. (20)

The numerical coefficient in Equation (19) is 1.15; note that this
is almost the same as in Equation (7).

At late time, the critical mass from Equation (17) with
Hsg/LJ,2D = 1/π becomes

Mcrit,sg = c3
s

2G2ρ0Mt
= c4

s

G2Σ
. (21)
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Expressing Mcrit,sg in terms of the virial parameter αvir =
5σ 2

v R/GMGMC of the GMC, and using σv = Mcs and MGMC =
πR2ΣGMC = 4πR3ρ0/3, we have

Mcrit,sg =
(

3παvir

20

)1/2
c3
s

(G3ρ0)1/2

1

M
ΣGMC

Σ
. (22)

Here, σv is the large-scale one-dimensional (1D) velocity
dispersion in GMCs, which will be responsible for the largest-
scale, strongest shocks. Taking αvir = 2, the coefficient in
Equation (22) is 0.97, so this is very similar to Equations (7)
and (19) if Σ ∼ ΣGMC. In dimensional units, the critical mass
(for Σ = ΣGMC) is

Mcrit,sg = 2.5 M�
( v

1km s−1

)−1 ( nH,0

102 cm−3

)−1/2
(

T

10 K

)2

.

(23)
As noted above, Equations (7), (19)–(20), and (22)–(23) all

have a similar form. An important task for numerical simulations
is therefore to test the hypothesis that the characteristic mass
scale of collapsing cores formed in turbulent, self-gravitating
GMCs follows this scaling, i.e.,

Mc = ψ
c4
s

(G3σ 2
v ρ0)1/2

= ψ × 2.6 M�
( σv

1km s−1

)−1 ( nH,0

102 cm−3

)−1/2
(

T

10 K

)2

,

(24)

where ψ is a dimensionless coefficient.
The critical mass given above is the smallest mass that can

collapse, given infinite time. Since the growth rate depends
on scale (and is formally zero for critical perturbations), at
any finite time only cores that have grown sufficiently rapidly
will be nonlinear enough to collapse. It is therefore useful
to consider how much growth has occurred at a given time.
Consider a perturbation of wavenumber k that instantaneously
has d2δΣ/dt2 = −ω2δΣ so that δΣ = δΣinite

Γ where Γ =
ln (δΣ/δΣinit) = ∫

(−ω2)1/2 dt . Using Equation (12),

Γ =
∫ t

tmin

(−ω2)1/2dt =
∫ t

tmin

(
2πGΣk

1 + kH
− c2

s k
2

)1/2

dt, (25)

where tmin is the instant when Σ is large enough that perturbations
of wavenumber k start to grow (−ω2 � 0). With Σ = 2ρ0csMt ,
tmin = csk(1 + kH )/(4πGρ0M). If we assume kH � 1 (see
below), then

Γ = 2
√

2

3
κ1/2(τ − κ/2)3/2, (26)

where κ = kcs/
√

2πGρ0M and τ = t
√

2πGρ0M.
At a given time t (or τ ) during the evolution, the mode km

(or κm) that has grown the most has ∂lnΓ/∂k = 0, which gives

κm = τ

2
, (27)

and Γmax = Γ(km) = √
3κ2

m = √
3πGρ0Mt2/2. The mass of

this most-amplified mode is

Mm ≡
(

λm

2

)2

Σ =
(

2
√

3π

Γmax

)1/2
c3
s

(G3ρ0)1/2

1

M1/2
, (28)

where the time is

t =
(

2Γmax√
3π

)1/2 (
1

Gρ0

)1/2 1

M1/2
, (29)

and km = (Γmax/
√

3)1/2(2πGρ0M)1/2/cs , so that

λm =
(

2
√

3π

Γmax

)1/2
cs

(Gρ0)1/2

1

M1/2
. (30)

With Γmax = 1, the numerical coefficient for Mm in
Equation (28) is 3.30, and Equation (29) gives t =
0.34tJM−1/2, corresponding to τ = 1.5. Note that for low
Mach number, this time exceeds tsg (see Equation (11)), whereas
for high Mach number it does not. Also, note that with H <
cstsg/M ≡ Hmax (see Equations (9)–(11)), kmH < kmHmax =
Γ1/2

max(
√

3M)−1/2. Taking Γmax = 1, kmH < 0.8 for M > 1,
with kmH � 1 for M 
 1. This verifies self-consistency of
the assumption made in obtaining Equation (26).

Written in terms of v, ρ0, and T, the most-amplified mass is

Mm = 19.1 M�
( v

1km s−1

)−1/2 ( nH,0

102 cm−3

)−1/2

×
(

T

10 K

)7/4

(Γmax)−1/2 . (31)

Comparing Equation (31) with Equation (23), we see that a
different dependence on velocity (or Mach number) is ex-
pected for the first core to collapse (Equation (31)), com-
pared with the dependence for a typical core to eventually
form (Equation (23)). Similar results to Equation (28) have
previously been discussed by other authors. Whitworth et al.
(1994) point out that the fastest-growing scale ∼LJ,2D ∼
cs/(Gρ0Mt) will become nonlinear if the time exceeds the
growth time ∼LJ,2D/cs ∼ (Gρ0Mt)−1, which occurs for
t ∼ (Gρ0M)−1/2 (cf. our Equation (29)). This corresponds
to a length scale Lfragment ∼ cs(Gρ0M)−1/2 (cf. our Equa-
tion (30)), and a mass scale Mfragment ∼ c3

s (G3ρ0M)−1/2 (cf.
our Equation (28)). By direct integration of the perturbation
equation of the converging-flow system, Iwasaki & Tsuribe
(2008) find that the fastest-growing mode becomes nonlinear
at time 0.96δ−0.1

0 (Gρ0M)−1/2, for δ0 the initial amplitude (cf.
our Equation (29), which has a coefficient 0.6 if Γmax = 1).

Finally, we note that the characteristic mass scale at late
times given in Equation (24) can be connected to observed
core mass scales using the empirical relationships among
turbulence level, size, and mass for GMCs. In terms of the
viral parameter αvir ≡ 5σ 2

v R/(GMGMC) and the GMC surface
density ΣGMC ≡ 4ρ0R/3, Equation (24) can be re-expressed as

Mc = 1.5ψ
c4
s

α
1/2
vir G2ΣGMC

= ψ × 1 M�

(
T

10 K

)2 (
ΣGMC

100 M� pc−2

)−1

α−1/2
vir . (32)

With αvir ∼ 1–2 and ΣGMC ∼ 100 M� pc−2 for observed clouds
(Solomon et al. 1987; McKee & Ostriker 2007; Heyer et al.
2009), the mass scale is intriguingly similar to the characteristic
(peak) mass of CMFs within nearby molecular clouds. This
relation potentially also offers a prediction for the peak of the
CMF (and ultimately the IMF) when stars form under conditions
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different from those in most Milky Way GMCs. In particular,
high temperature (up to ∼70 K) may hold in starburst regions
where the radiation field is strong and turbulent dissipation rates
are high; since the temperature dependence of Equation (32) is
steeper than the dependence on surface density, this could imply
higher masses under those conditions.

3. METHODS FOR NUMERICAL SIMULATIONS

The numerical simulations we present here are conducted
with the Athena code (Gardiner & Stone 2005, 2008; Stone
et al. 2008; Stone & Gardiner 2009), using the HLLC solver
(Toro 1999) and second-order reconstruction (Stone et al. 2008).
To calculate the self-gravity of our slab domains, which are
periodic in-plane and open in the z-direction, the fast Fourier
transformation (FFT) method developed by Koyama & Ostriker
(2009) is used. We solve the three-dimensional equations of
hydrodynamics,

∂ρ

∂t
+ ∇ · (ρ v) = 0, (33)

∂v

∂t
+ v · ∇v = −∇P

ρ
− ∇Φ; (34)

and the Poisson equation,

∇2Φ = 4πGρ, (35)

where Φ is the gravitational potential. The isothermal assump-
tion P = c2

s ρ is adopted. Pavlovski et al. (2006) found the
isothermal approximation is adequate for simulations of the in-
terstellar medium even with strong turbulence, which implies
strong shocks in GMCs.

The code unit of density ρ0 is a fiducial density representing
the volume-averaged ambient density in a cloud on large scales;
this characterizes the mean density of converging flows. For the
code unit of velocity, we adopt the isothermal sound speed cs
(see Equation (3)). For the unit of length, we adopt L0 = LJ ,
the Jeans length at the fiducial density (see Equation (4)). The
mass and time units for the simulation are then M0 = MJ (see
Equation (5)) and t0 = tJ (see Equation (6)).

In making comparison to observations, the total surface
density integrated through the domain

Σ =
∫

ρ(x, y, z)dz = Σ0

∫
ρ

ρ0

dz

LJ

(36)

is useful, for Σ0 ≡ ρ0LJ = 9.49 M� pc−2(T/10 K)1/2(nH,0/
102 cm−3)1/2. In terms of the column density of hydrogen,

NH = Σ
1.4mp

= N0

∫
nH

nH,0

dz

LJ

(37)

for N0 ≡ n0LJ = 8.51 × 1020 cm−2(T/10 K)1/2(nH,0/
102 cm−3)1/2. The mean line-of-sight velocity is calculated by

〈vlos〉 =
∫

ρvlosds∫
ρds

, (38)

and the corresponding dispersion of 〈vlos〉 is defined as

σ 2
los =

∫
ρ(vlos − 〈vlos〉)2ds∫

ρds
, (39)

where ds = sec θ dz and θ is the tilt angle of the observer with
respect to the z-axis.

Our model prescription consists of a converging flow aug-
mented with turbulent velocity perturbations. In our parameter
survey, the Mach number M of the inflow velocity ranges from
1.1 to 9. Thus, two flows converge toward the central plane
z = 0 from the upper z-boundary (with mean velocity −Mcs)
and the lower z-boundary (with mean velocity Mcs). The initial
density is uniform and set to ρ0, and the density at the inflowing
z-boundaries is also set to ρ0 throughout the simulation. The
boundaries in the x- and y-directions are periodic.

For both the whole domain initially and the inflowing gas
subsequently, we apply perturbations following a Gaussian
random distribution, with a Fourier power spectrum of the form

〈|δvk|2〉 ∝ k−2, (40)

for |kL/2π | < N/2, where N is the resolution and L is the
size of the simulation box in x and y. The power spectrum
is appropriate for supersonic turbulence as observed in GMCs
(McKee & Ostriker 2007). The perturbation velocity fields are
pre-generated with resolution 2563 in a box of size L3. The
perturbation fields are advected inward from the z-boundaries
at inflow speed M cs : at time intervals Δt = Δz/(Mcs), slices
of the pre-generated perturbation fields for vx, vy , and vz are
read in to update values in the ghost zones at the z-boundaries.

In addition to exploring dependence on the mean inflow
Mach number M, we also test dependence on the amplitude
of turbulent perturbations on top of this converging flow. From
the scaling law (see, e.g., Larson 1981; Heyer & Brunt 2004)
of self-gravitating molecular clouds, δv(l) ∝ l1/2, we can
write the velocity dispersion at scale l in terms of cloud-scale
one-dimensional velocity dispersion σv and cloud radius R as
δv1D(l) = σv(l/2R)1/2. The velocity dispersion at the scale of
the simulation box L is

δv1D(L)

cs

= σv

cs

(
L

2R

)1/2

= σv

cs

(
L

LJ

)1/2 (
2R

LJ

)−1/2

. (41)

In terms of the viral parameter αvir ≡ 5 σ 2
v R/(GM), where

M = 4πR3ρ0/3 is the cloud mass, the ratio between σv and cs
is

σv

cs

= 2π
(αvir

15

)1/2 R

LJ

. (42)

Solving Equation (42) for 2R/LJ and substituting into
Equation (41), we have the amplitude of perturbation for the
simulation box:

δv1D(L)

cs

=
(

αvirπ
2

15

)1/4 (
σv

cs

)1/2 (
L

LJ

)1/2

. (43)

Thus, if the size of the simulation box is L = LJ and αvir =
1–2, the perturbation amplitude would be

δv1D(LJ )

cs

≈
(

σv

cs

)1/2

. (44)

If we take the Mach number of the inflow, M, as comparable
to the value σv/cs of the whole cloud, then Equation (44)
implies that higher converging velocities would be associated
with higher amplitudes for the perturbation fields, for a given
simulation box size LJ . To test the influence of the perturbation
amplitude, we conduct two sets of simulations with 10% and
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100% of the value δv1D(LJ ) = (M/3)1/2cs . Hereafter, we
denote these cases as low-amplitude and high-amplitude initial
perturbations, respectively.

For each Mach number M at each amplitude, we run 20
simulations with different random realizations of the same
perturbation power spectrum, in order to collect sufficient
statistical information on the core properties that result. The
whole set of simulations therefore consists of 180 separate
runs. The resolution for low-amplitude perturbation simulations
is Nx × Ny × Nz = 256 × 256 × 96, with domain size
Lx × Ly × Lz/L

3
J = 1 × 1 × 0.375; for high amplitude the

resolution is Nx ×Ny ×Nz = 256×256×160, with domain size
Lx ×Ly ×Lz/L

3
J = 1×1×0.625. The domain in the z-direction

is smaller than in the x- and y-directions since the reversed
shock generated by the inflow only propagates a relatively short
distance and the post-shock dense layer is thin, i.e., the basic
geometry remains planar. The domain in the z-direction is large
enough so that the post-shock layer does not evolve to reach the
z-boundaries.

We note that our assumption of perturbed velocities but uni-
form densities in the inflowing gas is not fully realistic, since the
flow entering a strong shock within a GMC will in general have
internal density structure.2 In fact, the velocity perturbations we
introduce do lead to moderate (order-unity) density fluctuations,
as we have found by conducting comparison simulations with
self-gravity turned off. These density fluctuations are what seed
the growth of self-gravitating structures. The main emphasis
of the current work is to investigate how the development of
self-gravitating structures depends on the inflow Mach num-
ber, which sets the mean density (and hence the gravitational
timescale) in the post-shock layer; previous studies have not
tested the Mach number dependence of gravitational fragmen-
tation. By varying the velocity perturbation amplitudes of the
inflow, we have begun to explore the effect of pre-existing den-
sity structure on self-gravitating core development in shocked
regions. This exploration can be extended and made more re-
alistic (in terms of upstream structure) by investigating internal
evolution of shocked layers within larger fully turbulent clouds
having a range of mean Mach number; we are currently pursu-
ing a numerical study along these lines. The models presented
here may be thought of as investigating self-gravitating structure
growth within the first strong shocks to develop inside a cloud.

4. DEVELOPMENT OF STRUCTURE AND CORE
EVOLUTION

As discussed in Section 1, Gong & Ostriker (2009) proposed
a unified model for core formation and evolution in supersonic
turbulent environments. Based on spherical-symmetry numeri-
cal simulations, four stages were identified: core building, core
collapse, envelope infall, and late accretion. The duration of
each stage, and the structure and kinematics of cores at vary-
ing stages were also analyzed. While the comparison of those
results to observations is very encouraging, the assumption of
spherical symmetry is clearly unrealistic. One of the key goals
of this work is to check if core building and collapse still develop
in a similar manner when the spherical-symmetry assumption is
relaxed. Because the time step becomes very short in late stages,
we halt the simulations; thus the current models do not address
envelope infall and late accretion stages.

2 Other recent simulations of post-shock structure formation in converging
flows have similarly assumed uniform density for the inflow (see, e.g., Heitsch
et al. 2008; Banerjee et al. 2009, and references therein).

Figure 1 shows evolution of the surface density
(Equation (36)) for models withM = 1.1 (left column),M = 5
(middle column), and M = 8 (right column), all with same re-
alization for the perturbation velocities. The top panel of each
column shows the surface density very early on; the patterns
are identical but the amplitudes are different. The bottom panel
shows the surface density when the most evolved core col-
lapses for each case. Hereafter, we shall use tcoll to denote
the total time to reach collapse of the most evolved core, in
terms of the code unit t0 (Equation (6)). The four images from
top to bottom in the same column show the surface density at
four instants: t = 0.001 t0, 1/3tcoll, 2/3tcoll, and tcoll. Note that
tcoll = 0.636t0, 0.280t0, and 0.232t0 for the M = 1.1, 5, and 8,
respectively. These three simulations have low initial perturba-
tion amplitude (cf. Equation (44)).

From Figure 1, two features are immediately apparent. First,
the input perturbation field patterns determine the later structural
evolution and there is a “family resemblance” for the models
at different Mach number. This is because the post-shock dense
layer retains a memory of the perturbation velocity fields in
the direction parallel to the plane of the layer since vx and
vy are unchanged across the shock interface. Comparing the
first plot to the last plot of each column, cores form in regions
where the density perturbation amplitudes are initially higher
than the surroundings as a result of convergence in the x–y
plane. These overdense regions develop into long, thin filaments,
within which cores grow and then collapse.

Second, the specific properties of cores, such as the total
number and individual volumes (as well as their masses),
are determined by M. The dense cores for M = 1.1 are
smoother than the cores for M = 8, and they cover larger areas.
During the middle and late stages of evolution, more small-scale
filamentary structures are evident in the higher Mach number
cases. At a given scale, the input vx and vy perturbations are
higher for larger M, with the resulting compressions making
more prominent “burrs” around cores. The “burrs” are also less
smoothed for the high Mach number cases, because the shorter
free-fall time at the higher post-shock density means that the
core collapses sooner. Thus, as the velocity of the converging
flow and additional perturbations increases, the result is smaller,
denser, more irregular, and more “hairy” cores.

Figure 2 shows evolution of surface density and the mean
in-plane velocities 〈vx〉 and

〈
vy

〉
for the M = 5 model

shown in Figure 1. The mean velocities are calculated by
〈v〉 = ∫

ρvdz/
∫

ρdz with v = vx or vy . The left column
shows surface density, and the middle and the right columns
show 〈vx〉,

〈
vy

〉
, respectively. At early stages, only scattered high

surface density spots appear. The large-scale spatial correlation
of these overdense regions is evident, however, even at early
times. The mean velocities also have small amplitudes at early
stages. The large-scale converging (in-plane) velocity regions
that eventually lead to the most prominent filaments are already
evident from the first frames, however. At late stages, the
overdense regions start to collect into filaments. The converging
(in-plane) velocities grow due to self-gravity of the forming
filaments; in addition, purely hydrodynamic instabilities (such
as the nonlinear thin-shell instability, e.g., Vishniac 1994;
Heitsch et al. 2007) in the shock-bounded layer may enhance
early growth of perturbations.3 When converging in-plane flows
become supersonic, discontinuities in the density and velocity

3 We have conducted comparison tests of selected models without
self-gravity, finding that surface density fluctuations can grow to order-unity
level in high Mach number cases.
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Figure 1. Evolution of surface density projected in the z-direction (color scale logΣ/Σ0 = logN/N0; see Equations (36) and (37)) for converging-flow Mach number
M = 1.1 (left column), M = 5 (middle column) and M = 8 (right column) models with the same initial perturbation patterns. The four panels from top to bottom in
the each column show surface density snapshots at four instants: t = 0.001 t0, 1/3tcoll, 2/3tcoll, and tcoll, with tcoll the duration of the whole simulation. These three
simulations have 10% initial perturbation amplitude (see Equation (43)). The values of tcoll are 0.636t0, 0.280t0, and 0.232t0 for M = 1.1, 5, and 8, respectively (see
Equation (6) for definition of t0). Cores are clearly smaller and more irregular for high-M models. The squares indicate the most evolved cores for M = 1.1 and 5.

(A color version of this figure is available in the online journal.)

develop. These sharp fronts, as well as the collapsing motions
centered on the most evolved cores, are evident in Figure 2 at
t = 11/12 tcoll, tcoll.

Thus, we see that turbulent motions even at sub-parsec
scales seed the growth of structures, and self-gravity reinforces
and amplifies these motions. The growth of dense cores and
larger-scale filaments is simultaneous, both a consequence of
turbulence and self-gravity.

Similar to our results in Gong & Ostriker (2009) for spherical
symmetry, we find that core building lasts most of the time
up to tcoll, while the core collapse itself is rapid for the most
evolved cores. Defining the “supercritical” period as the stage
at which ρcenter/ρedge � 10 for the most evolved core, this first
occurs at 0.589 t0, 0.240 t0, and 0.209 t0, respectively, for the
M = 1.1, 5, and 8 models shown in Figure 1 (we note that
ρedge is close to the post-shock density). Taking the difference
with tcoll, Δtsupcrit/t0 = 0.047, 0.040, and 0.023. From Gong
& Ostriker (2009), the supercritical stage lasts about 10% of
tcoll for cores found in shocked converging spherical flows. For
the three cases shown here, Δtsupcrit/tcoll is 7%, 14%, and 10%,
consistent with our previous results. The core building stage
lasts about 90% of tcoll.

To express Δtsupcrit in terms of observables, we renormalize
using the mean core density ρmean at the instant of collapse. This
quantity, Δtsupcrit/tff(ρmean) = Δtsupcrit/t0 × 3.27(ρmean/ρ0)1/2

is measured to be 0.9, 2.1, and 0.8 for M = 1.1, 5, and
8, respectively; i.e., Δtsupcrit is comparable to tff(ρmean). The
values of Δtsupcrit are 6.6 × 105 yr, 5.6 × 105 yr, and 3.2 ×
105 yr for M = 1.1, 5, and 8, respectively, if we take the
inflowing ambient medium density as nH,0 = 100 cm−3; these
are reduced to 2×105 yr, 1.7×105 yr, and 1×105 yr for nH,0 =
1000 cm−3.

Figure 3 shows the cross-sections of the density and velocity
field across the center of the most evolved cores (the locations
of these cores are indicated in Figure 1) for M = 1.1, 5 during
the late collapse phase. The instants of the plot for M = 1.1, 5
are 0.625 t0 and 0.273 t0, respectively. The top panels show the
x–y cross-section of density and velocity vectors composed of
vx and vy in the same plane. The bottom part shows the x–z
cross-section and velocity vectors composed of vx and vz. The
velocity field clearly shows inward collapse. The amplitudes
of the velocity field are smaller in the outer part and larger in
the inner part, indicating the core is at a very late stage of the
“outside-in” collapse.
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Figure 2. Evolution of surface density (left column, log color scale) and the in-plane velocity components 〈vx〉 (middle column) and
〈
vy

〉
(right column) projected in

the z-direction for the Mach number M = 5 model shown in Figure 1, where 〈v〉 = ∫
ρvdz/

∫
ρdz. The four panels from top to bottom in the each column show four

instants: t = 0.001 t0, 1/2tcoll, 11/12tcoll, and tcoll, with tcoll = 0.28t0 the duration of the simulation (see Equation (6) for definition of t0). In-plane velocity fields are
initially low, but grow to become supersonic, creating filaments that fragment into cores.

(A color version of this figure is available in the online journal.)

Figures 4 and 5 show the evolution of the density and ve-
locity profiles of the cores in Figure 3. The density profiles are
azimuthally averaged over the x–y plane. The velocity profiles
are along each cardinal axis (x̂, ŷ, ẑ) through the core center.
The instants for the four profiles have equal intervals 0.027 t0
for M = 1.1 and equal intervals 0.019 t0 for M = 5, re-
spectively. The first instant for both cases is subcritical (i.e.,
ρcenter/ρedge � 10) and the second instant is close to tsupcrit.
The dramatic increase of the central density during collapse
is clearly evident for both cases, and the collapse develops in
an “outside-in” manner with the maximum in v moving in-
ward in time. The density profile approaches the asymptotic
“Larson–Penston” profile ρ/ρ0 = 8.86(r/LJ )−2/(2π )2 at the
instant of central singularity formation, and the in-plane veloc-
ities vx, vy approach −3.3 cs , which is the “Larson–Penston”
limit. Before the time tsupcrit is reached, the velocity is subsonic
throughout the core region. For all of the simulations we have
conducted, the peak of the velocity profile becomes supersonic
only at the very end of the collapse stage, similar to the results
shown here.

Overall, we conclude that the evolution of individual cores
in these 3D simulations follows a similar progression to the
spherically symmetric 1D simulations of Gong & Ostriker

(2009). The core building stage lasts over 90% of the time
to collapse, and cores become more stratified over time. The
onset of the collapse is in an “outside-in” manner, and leads to a
dramatic increase in the central density. As a central singularity
is approached, the density and velocity profiles approach the
“Larson–Penston” asymptotic solution. These cores form and
collapse within larger-scale filaments that also grow in contrast
over time.

5. CORE-FINDING METHOD

The algorithm adopted for core-finding can either subtly or
more seriously affect the core properties that result (e.g., Pineda
et al. 2009). The most commonly used methods in observa-
tional work are based on contouring column density or emis-
sion intensity (e.g., the popular Clumpfind method of Williams
et al. 1994). For theoretical work, density-contouring meth-
ods, sometimes incorporating further tests to determine if a
structure is gravitationally bound, have frequently been used
(e.g., Gammie et al. 2003). Here we shall instead use the
gravitational potential isosurfaces to identify cores. In very re-
cent work, Smith et al. (2009) took a similar approach, not-
ing that one advantage of the gravitational potential is that

9



The Astrophysical Journal, 729:120 (22pp), 2011 March 10 Gong & Ostriker

Figure 3. Density and velocity field cross-sections at the time tcoll in the most evolved core, for M = 1.1 (left column) and M = 5 (right column). These correspond
to the most evolved cores (as indicated with boxes) in Figure 1 for M = 1.1, 5, respectively. The color scale represents x–y and x–z slices through the volume density
(log ρ/ρ0). The direction and length of arrows indicate the direction and magnitude of the local velocity, with scale as indicated in the upper left. At this stage of
collapse, velocities increase toward the center.

(A color version of this figure is available in the online journal.)

Figure 4. Radial density and velocity profiles during collapse, for the most evolved core shown in Figures 1 and 3 for M = 1.1. The density profiles are averaged
azimuthally in the x–y plane about the center of the core. The dashed line is the Larson–Penston asymptotic density profile ρ/ρ0 = 8.86(r/LJ )−2/(2π )2 (i.e.,
ρ = 8.86c2

s /[4πGr2]). The other three plots show the corresponding velocity profiles versus distance in the x-, y-, and z-direction, respectively. The instants shown
are 0.549 t0, 0.576 t0, 0.603 t0, 0.632 t0 ≈ tcoll, with the most evolved profiles in each case having the largest excursions. The collapse develops in an “outside-in”
manner with the maximum in v moving inward with time. The density profile approaches the Larson–Penston profile with time.

it yields smoother core boundaries than the density. Another
advantage is that the gravitational potential connects more di-
rectly to the fundamental physics that determines core evolu-

tion. During formation stages, self-gravity gathers material to
build up cores, and later it drives the collapse of supercritical
cores.
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Figure 5. Same as in Figure 4 for the most-evolved core of the M = 5 model shown in Figure 1. The profiles are shown at t = 0.219 t0, 0.238 t0, 0.257 t0, 0.276 t0,
with the density at the final time reaching the Larson–Penston solution.

To identify cores via the gravitational potential, we first find
and mark all the local minima of the gravitational potential;
second, we find the largest closed potential contour (or iso-
surface) surrounding each individual minimum. In the second
step, we increase the contour level from the bottom of a given
potential well step by step until it violates another minimum’s
marked territory. We define the region enclosed by the largest
closed contour as a core. The contour interval ΔΦ has negligi-
ble effect on the results as long as it is small enough (typically
�0.03c2

s ). If the distance between two minima is smaller than
10 pixels (corresponding to a physical distance ∼0.03–0.1 pc
for nH,0 ∼ 102–103 cm−3), the regions associated with these
two minima are merged and treated as a single core. Since we
do not continue the simulation after the most evolved core col-
lapses, we apply the algorithm to the last output from each
simulation.

Since gas with sufficient thermal and kinetic energy need not
be permanently (or even temporarily) bound to a given core, the
gravitational potential is not the final word. The lower density
outer parts of a core are the most subject to loss. We can test
this effect on core identification by adding thermal energy to the
gravitational energy, and only assigning a given fluid element
to a core if Eth + Eg < 0. For any fluid element, the specific
thermal energy is taken to be Eth = 3/2c2

s , and the specific
gravitational potential energy is taken to be Eg = Φ − Φmax,
where Φmax is the potential of the largest closed contour that
defines the core.4 Including a thermal energy condition in core
definition decreases the volume (or area in 2D) of the cores.
Of course, the thermal energy can in fact be radiated away,

4 We note that |Eg | for a core embedded within a dense filament (or sheet)
may be much lower than |Eg | for the same core in isolation. In assessing
whether a core is bound, it is crucial to take tidal gravity effects into account. If
these tidal effects are neglected, |Eg | will be overestimated by a factor
∼Σcore/(Σcore − Σfilament), which is quite large if the contrast between a core
and its surroundings is modest.

so that gas that is initially near the largest closed contour
may become more strongly bound after the interior of a core
collapses. In this case, the potential alone could determine the
final core mass. Short of following cores through the final
stages of star formation, we consider it useful to compare
cores with and without a thermal–gravitational energy criterion.
Hereafter, we term our core-finding method “gravitational
identification” (GRID). We refer to the region within the largest
closed gravitational potential isosurface surrounding each local
minimum as a GRID-core. For each GRID-core, the region
which has Eth + Eg < 0 is referred to as a bound GRID-core.

Because volume density data cubes are not directly acces-
sible in observations, three-dimensional gravitational potential
contouring is only applicable to model data from numerical
simulations. It is therefore interesting to explore gravitational
potential contouring of surface density maps, which are di-
rect observables. To identify cores in a surface density map,
we have to calculate the gravitational potential first. For a
layer of half-thickness H, the gravitational potential component
Φk, 2D of surface density component Σk (Fourier transform of
Equation (36)) in phase space is

Φk, 2D = − 2πGΣk

|k|(1 + |kH |) , (45)

where |k| =
√

k2
x + k2

y . Note that for |kH | 
 1, Φk, 2D ∼
−4πGρk/k2, which is the solution of the Poisson equation
in three dimensions, for ρk = Σk/2H . For |kH | � 1,
Equation (45) is the solution of the Poisson equation for an
infinitesimally thin layer. The gravitational potential Φ2D(x, y)
is the inverse Fourier transform of Φk, 2D. Given the 2D
gravitational potential field Φ2D(x, y), we can apply the GRID
procedure as for 3D. In Section 6, we will compare the results
from GRID using Φ(x, y, z) and Φ2D(x, y) (using H = δz).
Hereafter, we use “2D” to denote the results from applying the
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Figure 6. Comparison of GRID-cores defined via the gravitational potential computed from 3D volume density (Φ, left column) and 2D projected surface density
(Φ2D, right column). The top row shows M = 5 and bottom row M = 9. The areas enclosed by yellow curves are the GRID-cores determined by the largest closed
gravitational potential (Φ or Φ2D) contour surrounding a local potential minimum, and the areas enclosed by red curves are the bound GRID-cores. Color scale shows
projected surface density (logΣ/Σ0) in all panels. Cores identified using Φ and Φ2D agree quite well.

(A color version of this figure is available in the online journal.)

GRID method to surface density and “3D” for applying the
GRID method to the volume density.

As an example, Figure 6 shows the comparison of GRID-
cores and bound GRID-cores between 3D and 2D for M = 5
and 9. The top portion shows core areas identified for theM = 5
model using Φ (top left) and Φ2D (top right). The bottom portion
shows the same comparison for M = 9 with cores found from
Φ (bottom left) and from Φ2D (bottom right). (Note that the
M = 5 and M = 9 simulations have the same initial velocity
perturbations patterns, which is why the overall structure is
similar.) In all plots, the areas enclosed by yellow contours are
the GRID-cores and the areas enclosed by red contours are the
bound GRID-cores. The core areas for the 3D plots are the
projection of the 3D core volume onto the z = 0 plane. For
the M = 5 model, the 2D and 3D core-finding procedures
identify 12 and 13 cores, respectively; the cores and the bound
regions are located at nearly the same positions. For the M = 9
model, seven cores are identified for both cases. One bound
core in 2D lacks a 3D counterpart, implying the corresponding
potential well in 3D is too shallow (see discussion of potential
well depths in Section 6).

In addition to finding almost all of the same core centers
(defined by the potential minimum), the areas marked by the
3D and 2D GRID algorithms are almost the same. Figure 7
shows the results of GRID for four simulations for M = 5.
The white contours mark GRID-cores from 3D density and the

green contours mark GRID-cores from 2D surface density. The
red and yellow contours mark the bound GRID-cores for 3D
and 2D respectively. The areas identified for the cores agree
quite well. Over all, we conclude that the 2D GRID algorithm
can give nearly identical core-finding areas as the 3D GRID
algorithm.

In spite of the overall similarity between 2D and 3D GRID-
core finding, there are minor differences in the results. In the
each panel of Figure 7, a few GRID-cores in relatively low-
density regions are identified in 2D but not in 3D. In comparing
core properties between 2D and 3D, we shall apply additional
resolution criteria to eliminate these small, shallow cores.

6. CORE PROPERTIES

To obtain a sufficient statistical sample, we conduct 20
simulations for each value of the Mach number (M =
1.1, 2, 3, 4, 5, 6, 7, 8, 9) and compute GRID-core masses and
radii for each model (180 models total). Each of the 20 simula-
tions for a given M is perturbed by a different realization of the
velocity field. As an example of the differences with different
random realizations of the power spectrum, Figure 7 shows the
snapshots of surface density at a late stage for four different
M = 5 simulations. The 3D GRID-core numbers are 9, 6, 9,
and 7. The corresponding core mass ranges are [0.00151, 0.158]
M0, [0.0051, 0.128] M0, [0.0013, 0.242] M0, and [0.031, 0.250]
M0. The core numbers and core masses from simulations with
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Figure 7. Late-stage surface density (logΣ/Σ0) and GRID-core comparison for four different random perturbation realizations of the M = 5 model. The snapshots
are at t = 0.282t0, 0.304t0, 0.304t0, 0.302t0 from left to right and top to bottom. The corresponding maximum densities are 1.0 × 105ρ0, 1.53 × 105ρ0, 8.18 ×
104ρ0, 1.34 × 105ρ0. The white and green curves are GRID-cores defined by the largest closed contour of the gravitational potential (Φ and Φ2D, respectively)
surrounding each potential minimum. The red and yellow curves are the bound GRID-cores obtained using Φ and Φ2D, respectively. Except for a few small, shallow
cores, the core-finding algorithms in 2D and 3D give quite similar results.

(A color version of this figure is available in the online journal.)

different seeds are in a similar range; the same is true for cases
with other Mach numbers.

The GRID-core masses for 3D and 2D are M3D =∫
ρ dxdydz and M2D = ∫

Σ dxdy, respectively. The GRID-
core radius for 3D is defined as the equivalent radius of a 3D
sphere with the same volume V3D: r3D ≡ (3V3D/4π )1/3. The ef-
fective 2D GRID-core radius is calculated from the area S2D of
the core region as: r2D ≡ (S2D/π )1/2. To ensure that identified
GRID-cores are numerically well resolved, we only retain cores
with effective radii �4 zones. We define a background surface
density as the mean of the bottom 10% of the surface density;
this mean value can be subtracted from the surface density in the
core region when calculating M2D. As mentioned in Section 2,
a more restrictive definition includes only gas with thermal plus
gravitational energy negative; these bound GRID-cores are first
identified by the gravitational potential, and then pixels are ex-
cluded if the sum of thermal energy and gravitational potential
is greater than 0.

Figure 8 shows M2D versus M3D for GRID-cores, for each
Mach number of the low-amplitude perturbation set. Note that
only cores with same center of the local potential minima are
shown here. Both 2D GRID-core masses without background
subtraction (M2D, diamonds in the figure) and 2D GRID-core
masses with background subtraction (M2D,bs, dots in the figure)

are shown versus M3D. For large masses, M2D agrees well with
M3D while M2D,bs is slightly lower than M3D. For small masses,
M2D,bs agrees better than M2D with M3D. Both M2D and M2D,bs
agree with M3D better for high mass than low mass.

Figure 9 shows a similar comparison of bound GRID-cores
for 2D and 3D. The background surface density is subtracted for
2D GRID-core masses, so that we show M2D,bs,th versus M3D,th.
Here, the subscript “th” represents inclusion of a thermal energy
criterion in defining bound GRID-cores, which eliminates most
of the small cores. At high masses, M2D,bs,th agrees with M3D,th
for bound GRID-cores better than M2D,bs agrees with M3D
for the whole set of GRID-cores. This is because only zones
sufficiently near the potential minimum where Eth + Eg < 0
are included in bound GRID-cores; these regions are not
sensitive to projection effects. At low masses, M2D,bs,th exceeds
M3D,th for bound GRID-cores, meaning that imposing the
thermal–gravitational energy criterion affects M3D,th more than
M2D,bs,th.

To understand the difference between the 2D and 3D GRID-
core masses, we consider the shape of the gravitational po-
tential well for surface density and volume density. From
Equation (45), Φ2D,k ∝ −k−1 whereas Φ3D,k ∝ −k−2. At larger
k, corresponding to smaller scales, |Φ3D| decreases faster than
|Φ2D|. That means that the small 2D GRID-cores cover more
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Figure 8. GRID-core mass obtained from 2D (M2D) vs. 3D (M3D). Diamonds are M2D for 2D GRID-cores without background subtraction, and dots are M2D,bs for
2D GRID-cores with background subtraction. The mass unit M0 is given in Equation (5). Solid lines represent M2D = M3D; higher-mass cores are consistent with this.

Figure 9. Bound GRID-core mass for 2D with background subtraction (M2D,bs,th), vs. bound GRID-core mass for 3D (M3D,th). When the condition Eth + Eg < 0 is
included in the core definition, the lowest mass cores are eliminated and M2D,bs,th agrees well with M3D,th down to ∼10−2M0.
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Figure 10. Histograms of all GRID-core masses found in all simulations for each Mach number M for low-amplitude perturbations. Solid lines are for 3D GRID-cores
(M3D) and dashed lines are for 2D GRID-cores with background subtraction (M2D,bs). The 2D and 3D distributions are similar for all Mach numbers.

area than small 3D GRID-cores, evident at the low end of each
panel in Figure 8. Also, gravitational potential wells of middle-
sized 2D GRID-cores are deeper than those of 3D middle-sized
GRID-cores. If the shallow parts of the potential are excluded by
applying a thermal energy requirement, 3D GRID-cores are af-
fected more than 2D GRID-cores. Moderate-mass GRID-cores
that have M2D,bs and M3D comparable will thus have M3D,th
lower than M2D,bs,th, as is evident in Figure 9. As mentioned in
Section 5, we include the term |k|H to allow for the non-zero
thickness of the layer perpendicular to the plane. This can, in
principle, help decrease the gap between the 2D and 3D gravi-
tational potentials. In practice, however, we find that the value
for H to make the central-to-edge value of Φ2D comparable to
that for Φ is smaller than δz. Although the 2D and 3D grav-
itational potentials are not exactly the same, Figure 9 shows
that 2D and 3D bound GRID-cores masses are generally close
down to ∼10−2M0 (which is �1 M� for typical conditions, from
Equation (5)).

Figure 10 shows histograms for the distributions of M2D,bs and
M3D (all GRID-cores) for each M, while Figure 11 shows the
histograms of M2D,bs,th and M3D,th (bound GRID-cores), both
for low perturbation amplitudes. The distributions of M2D,bs
and M3D are quite similar for all M, except slightly more
low-mass cores are identified for 2D at large M. When the
thermal–gravitational energy condition is included in defining
cores, the low-mass end of the distribution is removed; in
Figure 11, the 2D bound GRID-cores have almost exactly the
same distributions as 3D bound GRID-cores.

Figures 12 (all GRID-cores) and 13 (bound GRID-cores)
show the median core mass (squares in figures) versus M from

Figures 10 and 11, respectively. (We do not measure the peak
because some of the histograms are irregular.) Figures 14 (all
GRID-cores) and 15 (bound GRID-cores) show the same me-
dian mass–M relation for high-amplitude initial perturbations.
The breadth of the distributions at each M is indicated by ver-
tical bars: the lower bar is the difference between the median
and the first quartile, and the higher bar is the difference be-
tween the third quartile and the median. In Figures 12–15, we
overlay lines showing the predicted critical mass at late stages
(Equation (22) or (23), dashed line with M ∝ M−1), and the
prediction for the mass that has grown the most at early time
(Equation (28) or (31), dot-dashed with M ∝ M−1/2). The post-
shock BE mass (M ∝ M−1 from Equation (7)) is similar to the
late-stage critical mass.

As the Mach number increases, the post-shock density ρ ≈
ρ0M2 is higher. This lowers the Jeans length (as well as the Jeans
mass and BE mass), permitting smaller (but denser) cores to
form at high M compared to low M. However, high-mass cores
can still form at high M, as is evident in Figures 10 and 11 and
the quartiles shown in Figures 12–15: at high M, the histograms
extend to low mass, but the high-mass part of the distribution
is still present. This is consistent with the expectation that any
scale above the critical scale can grow more nonlinear due to
self-gravity (see Equations (12)–(17)).

Based on Figures 12–15, we also note that the median mass
versus M relations are quite similar whether cores are identified
with the 2D or 3D gravitational potential. This is true for low
or high-amplitude perturbations, for both all GRID-cores and
bound GRID-cores. This evidently shows that 2D cores have
similar statistical properties to the 3D cores. Since the GRID

15



The Astrophysical Journal, 729:120 (22pp), 2011 March 10 Gong & Ostriker

Figure 11. Same as in Figure 10, except for bound GRID-cores (i.e., mass is M3D,th and M2D,bs,th). When the condition Eth + Eg < 0 is applied, most of the low-mass
cores are eliminated, for every Mach number. The 2D bound GRID-cores have almost the same mass distribution as 3D bound GRID-cores.

Figure 12. Median GRID-core mass M vs. Mach number M of the inflow.
The left panel is for 2D GRID-cores (M2D,bs) and the right panel for 3D
GRID-cores (M3D). Vertical bars indicate quartiles of the distribution. Also
shown is the expected mass dependence for early gravitational fragmentation
given by Equation (28) (with M ∝ M−1/2, dot dashed), and late gravitational
fragmentation given by Equation (22) (with M ∝ M−1, dashed). The critical
Bonnor–Ebert mass at the post-shock density (see Equation (7)) is similar to
the late-stage prediction (M ∝ M−1, dashed). The relation between median
core mass and M is quite similar for 2D and 3D cores. Core mass declines with
increasing Mach number M, lying between the M ∝ M−1/2 (early stage) and
M ∝ M−1 (late stage) fragmentation predictions.

algorithm is easy to implement for observational data, it appears
to be a promising method for finding cores.5

Median masses for GRID-cores decline with increasing Mach
number for both low and high-amplitude perturbations (see

5 An IDL implementation of our GRID-core algorithm for use with observed
data (FITS files containing surface density maps) is available from the authors.

Figure 13. Same as in Figure 12, but for bound GRID-cores (Eth + Eg < 0, i.e.,
M is M2D,bs,th or M3D,th).

Figure 14. Median GRID-core mass M2D,bs and M3D, as shown in Figure 12,
but for high-amplitude initial perturbations. The median masses are slightly
smaller than for low-amplitude initial perturbations, but follow a similar trend.
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Figure 15. Median bound GRID-core mass M2D,bs,th and M3D,th (i.e.,
Eth + Eg < 0) as in Figure 13, but for high-amplitude initial perturbations.

Figures 12 and 14). These median masses generally lie above the
values predicted from Equations (7), (19), and (22) (M ∝ M−1)
at late stages and below the values predicted from Equation (28)
(M ∝ M−1/2) at early stages. The median GRID-core masses
for high-amplitude perturbations are slightly smaller than
those for low-amplitude perturbations, and the range of core
masses for a given Mach number is larger. This reflects the fact
that the percentage of small cores is higher when the pertur-
bation amplitudes are higher. GRID-cores are identified based
on the gravitational potential, and this potential reflects density
structure, which arises from both turbulent and gravitational
processes. Even without gravity, smaller-scale masses would be
expected in the higher-Mmodels because of their high turbulent
amplitudes. For our simulations, the input perturbation ampli-
tude at scale l is δv1D(l) = (l/LJ )1/2(M/3)1/2 cs at 100% am-
plitude of perturbation (cf. Equation (43)). Structures at scales
l for which turbulent perturbations are supersonic will, even in
the absence of gravity, be more prominent than those at smaller
scale. For our adopted scaling of input perturbations with M,
the sonic scale varies as lsonic ∝ LJ /M, so that the mass at
the sonic scale varies ∝ Σ(t) l2

sonic. With Σ(t) ∝ Mtcoll and
tcoll ∝ M−1/2 (see Equation (29) and below), this predicts
Msonic ∝ M−3/2. For later time t ∼ tJ (comparable to the
flow crossing time for a cloud with αvir = 1–2), Msonic ∝ M−1.
Thus, the sonic mass scale, and hence the mass scale of non-
linear structures induced purely by turbulence, is expected to
decline with increasing M.

For bound GRID-cores, the median mass versus M decreases
and then increases, for low-amplitude perturbations (Figure 13),
and is nearly flat for high-amplitude perturbations (Figure 15).
The high median mass at high M for bound GRID-cores may be
due to a combination of effects, including numerical resolution
and nonlinearity. The characteristic scale for self-gravitating
perturbations decreases with increasing Mach number (either as
r ∝ M−1/2 for the most-grown core or r ∝ M−1 for critical
perturbations; see Section 2). At high M, this may approach or
fall below the minimum scale rmin = 4 zones = 0.016LJ that
we require for the GRID-core radius to be well resolved. Since
the post-shock density is ∝ M2, the GRID-core mass would
then increase at least ∝ M2r3

min at sufficiently high M. In
addition, larger-scale, higher-mass regions initially have higher
amplitude perturbations than smaller-scale regions, because of
the input power spectrum with δv ∝ l1/2. If this initial “head
start” allows the larger, more massive cores to become highly
nonlinear before more rapidly growing smaller-scale cores,
the more massive cores will collapse (halting the simulation)
before the lower-mass cores become strongly concentrated (with

Figure 16. Median GRID-core radius vs. Mach number M for low-amplitude
initial perturbations. Core sizes are defined using the largest closed contours
of the gravitational potential in 2D (Φ2D, left) and 3D (Φ, right). Vertical
bars indicate quartiles of the distribution. The dotted lines are power-law fits:
reff,2D,bs/LJ = 0.230.29

0.18M−0.95±0.13 and reff,3D/LJ = 0.160.18
0.14M−0.72±0.07.

Figure 17. Same as in Figure 16 but for bound GRID-cores (Eth +Eg < 0). The
power-law fits are reff,2D,bs,th/LJ = 0.150.18

0.12M−0.67±0.10 and reff,3D,th/LJ =
0.110.12

0.10M−0.61±0.08.

Eth < |Eg|) internally. With implementation of sink particles
such that the simulations need not to be halted when the most
evolved core collapses, and |Eg| can grow for low-mass cores, it
will be possible to test whether the median mass of bound cores
decreases with increasing M, similar to Figures 12 and 14.

Figure 16 shows the GRID-core radii (as defined in Section 3)
versus Mach number, and Figure 17 shows the bound GRID-
core radii versus Mach number; these are for cases with low-
amplitude initial perturbations. Overall, the median radii for all
GRID-cores and bound GRID-cores decrease toward higher M.
This is consistent with expectations: high Mach number yields
high post-shock density, and hence a smaller Jeans length; in
addition, the higher amplitude of input turbulence at higher
M makes the sonic scale smaller. The prediction for core
radius based on turbulence alone would be the sonic scale from
Equation (43): reff ∝ lsonic ∝ LJ /M. The first core to collapse
is predicted to have λm ∝ M−1/2 from Equation (30). For late-
time fragmentation, the relevant scale is the Jeans length in post-
shock gas, which varies ∝ M−1. For GRID-cores, the slopes
are between these values, equal to −0.95 ± 0.13 for reff,2D,bs and
−0.72±0.07 for reff,3D, for low-amplitude initial perturbations.
For bound GRID-cores, the power-law fit for median radius
as a function of Mach number gives slope −0.67 ± 0.10 and
−0.61 ± 0.08 for 2D and 3D respectively. These are comparable
to the result λm ∝ M−1/2 from Equation (30). Although the
overall slopes are close to −0.5, we note that the relation flattens
at M � 5, possibly due to our requirement that the effective
radius must exceed four zones, or because the initial power
spectrum favors larger cores.
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Figure 18. Collapse time of the most evolved core, tcoll, vs. inflow Mach
number M for low-amplitude (squares) and high-amplitude (diamonds) initial
perturbations. Each value is the median of tcoll for 20 simulations for each
M. Vertical bars indicate quartiles of these 20 values of tcoll. The solid line
least-squares fits are tcoll/t0 = 0.69M−0.48 (low amplitude) and tcoll/t0 =
0.51M−0.47 (high amplitude). The scaling is comparable to tcoll ∝ M−0.5, as
predicted by Equation (29). The simulation time unit t0, based on the mean
inflow density, is given in Equation (6).

Figure 18 shows the median collapse time of the most
evolved core vs. Mach number, for both low and high-amplitude
initial perturbations. They both follow power laws close to
tcoll ∝ M−1/2, consistent with the timescale (see Equation (29))
predicted for growth of self-gravitating modes up to a given

amplification Γmax. The coefficients for low-amplitude initial
perturbations and high-amplitude initial perturbations are 0.69
and 0.51, respectively, compared to 0.34 from Equation (29)
taking Γmax = 1. With high-amplitude initial perturbations,
cores collapse earlier because the seed perturbations need not
grow as much. Note that the naive expectation based on the
Jeans time, taking ρpost−shock ∝ M−2, would yield a steeper
dependence t ∝ ρ

−1/2
post−shock ∝ M−1. Based on Figure 18, it is

evident that the first cores in higher-M cases collapse when
the layer as a whole is only barely self-gravitating (tcoll/t0 ∼
0.2–0.3, compared to tsg ≈ 0.22t0 from Equation (11)), whereas
the layer is more strongly self-gravitating at the first collapse
for low-M cases.

The shape of a core can be characterized by the eigenvalues
of the moment of inertia tensor Iij ≡ ∫

ρxixjd
3x (e.g., Gammie

et al. 2003; Nakamura & Li 2008). Let a, b, and c be the lengths
of the principal axes and a � b � c. Then a prolate core
has b/a = c/a, and an oblate core has b/a = 1. We have
computed the moment of inertia and aspect ratios for all the
cores identified in our simulations. For example, the aspect
ratios of the most evolved cores shown in Figures 1 and 3
are b/a = 0.39, c/a = 0.25 for the M = 1.1 model and
b/a = 0.28, c/a = 0.25 for the M = 5 model. They are
both (approximately) prolate according to the classification of
Gammie et al. (2003).

Figures 19 and 20 show the distribution of core aspect ratios
for each M for low and high-amplitude initial perturbations,
respectively. Open circles represent GRID-cores, and dots rep-
resent bound GRID-cores. These distributions show a number

Figure 19. Distribution of three-dimensional core aspect ratio for each Mach number for low-amplitude initial perturbations. Cores lying on c/a = b/a are
formally prolate and along b/a = 1 are formally oblate. We subdivide (see diagonal lines) and classify as follows: approximately prolate (between c/a = 1 and
c/a = 1.5b/a − 0.5), triaxial (between c/a = 1.5b/a − 0.5 and c/a = 3b/a − 2), and approximately oblate (between c/a = 3b/a − 2 and b/a = 1). Open circles
are GRID-cores defined by the gravitational potential contours alone. Dots are bound GRID-cores, with the additional requirement Eth + Eg < 0.
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Figure 20. Same as Figure 19 but for high-amplitude initial perturbations.

of interesting features and trends. First, only a small portion of
cores are oblate for each M, for both low and high-amplitude
perturbations. Second, more oblate-like cores appear when the
initial perturbation amplitudes are higher. For low-amplitude
perturbations, at M = 1.1 and 2, c/a and b/a are mostly
�0.5, i.e., approximately prolate. But at larger M for low-
amplitude initial perturbations, and all M for high-amplitude
perturbations, there are many cores in the triaxial and oblate
regions. Also, large and massive cores tend to be more pro-
late. For low-amplitude perturbations, at M = 1.1, almost all
the cores formed are prolate and no small cores form (com-
pared to high Mach number cases). The reason that the distri-
bution is more oblate for higher amplitude perturbation (large
M for low-amplitude initial perturbations, and all M for high-
amplitude initial perturbations) is that more of the cores are at
earlier stages of evolution. Figure 1 shows development of cores
for M = 1.1, 5, and 8. As is particularly clear for the stages
shown in the M = 1.1 model, structures are more oblate during
the core-building stage than during the collapse stage. Cores
evolve to become prolate when they collapse because the col-
lapse happens first in the directions perpendicular to the larger-
scale filaments. For M = 1.1, 2 models with low-amplitude
perturbations, only large cores form and they have evolved to
the collapse stage and become prolate. Models with higher am-
plitude perturbations have a greater percentage of small cores
that have not yet collapsed.

We can also examine the relationship between core structure
and kinematics in our simulations. Figure 21 shows the projected
density field, velocity field and the velocity dispersion field
along the line of sight for the M = 5 model shown in
Figure 6. We “view” the simulation at angles 0◦, 30◦, and 60◦

with respect to the z-axis, tilting toward the x-axis. The white
contours mark the regions identified as GRID-cores, and the
orange contours mark the bound GRID-cores. The projected
density field is smeared as the tilt angle θ increases. Since
〈vlos〉 = 〈vx〉 sin(θ ) + 〈vz〉 cos(θ ), with 〈vz〉 = 0 and the
contribution from 〈vx〉 small at θ small, no obvious pattern
is seen for 〈vlos〉 at θ = 0◦ and 30◦. At θ = 60◦, when
the 〈vx〉 contribution becomes larger, converging-flow patterns
similar to those seen in Figure 2 become apparent, especially
surrounding the diagonal line of small cores. As previously
discussed, converging flows in the x–y plane create this high-
density filament, which then fragments into small cores.

As Figure 21 shows, the dispersions of the line-of-sight
velocity of high-density regions are generally subsonic, and
are even smaller in the cores. Velocity dispersions are low
in high-density regions for two reasons. First, if filaments lie
between supersonic converging flows in the x–y plane, then post-
shock velocities within the filaments will be subsonic. Second,
weighting by density picks out regions that are physically small
along the line of sight. The increase of linewidth with size
means that if a region is smaller than its surroundings along
the line of sight, then the linewidth will be smaller than that of
its surroundings. Thus, from a combination of low post-shock
velocities (in the x–y plane), and spatially limited scale (in the
z-direction), σlos is low in filaments and lower in cores, as seen
in Figure 21.

7. SUMMARY AND DISCUSSION

Stars form in GMCs pervaded by supersonic turbulence, and
core formation theory must take these supersonic turbulent
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Figure 21. Observations of one of the M = 5 models shown in Figure 6 from different angles. The first column shows the surface density (color scale logΣ/Σ0); the
second column shows the line-of-sight velocity and the third column shows the dispersion of the line-of-sight velocity (linear color scale, in units of cs). The three
rows from top to bottom show the observed fields for θtilt = 0◦, 30◦, and 60◦, respectively. The white curves are the GRID-cores, and the orange curves are the bound
GRID-cores. Note that core regions have low internal velocity dispersions.

(A color version of this figure is available in the online journal.)

flows into account. In this work, we explore the physics of
core formation in a dynamic environment, focusing on post-
shock layers generated by collisions of supersonic flows. The
framework we adopt—three-dimensional planar converging
flows containing multi-scale turbulence—enables us to analyze
the internal structure and kinematics of cores, and to investigate
the relation between core properties and the inflow Mach
number M. We consider a range M = 1.1–9, and conduct 180
simulations with different realizations of the initial turbulent
power spectrum, in order to obtain a sizable statistical sample.
In addition to core masses and sizes, we measure aspect
ratios. To define cores, we introduce a new method based on
the gravitational potential, and compare properties of cores
identified using Φ (from the volume density) and Φ2D (from
the plane-of-sky projected surface density).

Unlike previous studies of core evolution that begin with
pre-existing cores, the present models include formation stages.
Our initial density is uniform everywhere, and cores grow, via
self-gravity, from turbulence-induced perturbations within the
post-shock layer; when the Mach number is high, initial growth
of density perturbations is aided by shock-driven hydrodynamic
instabilities. Based on a set of spherically symmetric numerical
simulations, Gong & Ostriker (2009) proposed four stages for
core evolution in dynamic environments: core building, core
collapse, envelope infall, and late accretion. The key features
during core building and collapse described in Gong & Ostriker
(2009) are verified here, for more realistic geometry. As the
supersonic flows converge in a plane, two reversed shocks
propagate outward. With its high mean density, the stagnation
layer between these two shock fronts becomes an incubator
for self-gravitating cores. When these cores become sufficient

stratified, they collapse. We halt the simulations at the instant
of singularity formation in the most evolved core, because the
time step becomes very short.

Based on the analysis of our simulations, our chief conclu-
sions are as follows:

1. Cores with realistic properties are able to form in post-shock
dense layers within turbulent GMCs. For core building
to become supercritical, it takes ∼10 times as long as
the subsequent “outside-in” collapse stage, which lasts a
few ×105 yr. The duration of the supercritical stage is
consistent with observations of prestellar core lifetimes
(Ward-Thompson et al. 2007; Enoch et al. 2008; Evans
et al. 2009).

2. At the time of singularity formation, the radial density pro-
file within cores approaches the Larson–Penston asymptotic
solution ρ = 8.86c2

s /(4πGr2) and the velocity approaches
the Larson–Penston limit −3.28cs . This is consistent with
previous studies of spherical core collapse (see Section 1 for
references). Tilley & Pudritz (2004) also found that ρ ∝ r−2

in their most massive cores, for turbulent simulations. As
in Gong & Ostriker (2009), we therefore conclude that the
Larson–Penston asymptotic solution is an “attractor” for
core collapse, no matter how the collapse is initiated.

3. Prior to collapse, the velocities within dense cores remain
subsonic, in spite of the highly supersonic flows that create
them. This is true both for the ordered inflow, and for the
mean internal velocity dispersion. This result is consistent
with observations that most cores have subsonic non-
thermal velocity dispersions (Myers 1983; Goodman et al.
1998; Caselli et al. 2002; Tafalla et al. 2004; Kirk et al.
2007; André et al. 2007; Lada et al. 2008). The velocity

20



The Astrophysical Journal, 729:120 (22pp), 2011 March 10 Gong & Ostriker

dispersion can increase quite sharply at the edge of the
core in our models (see Figure 21), intriguingly similar to a
sharp transition seen in NH3 observations by Pineda et al.
(2010) for the B5 core in Perseus. From some orientations,
velocity dispersions in filaments containing cores may also
be lower than in the surrounding gas (cf. Figure 21).

4. At sub-parsec scales, turbulent velocity perturbations
(whether super- or subsonic) induce density perturbations
that can grow strongly if the density is high enough for
self-gravity to be important. In post-shock layers, turbu-
lence and self-gravity collect gas into long, thin filamentary
structures at the same time as the highest density regions
within the filaments grow to become centrally condensed
cores. These filamentary structures containing embedded
cores are similar to the structures in the Aquila rift and
Polaris Flare clouds observed by Herschel (André et al.
2010; Men’shchikov et al. 2010).

5. Using the gravitational potential to identify cores is ad-
vantageous because it enables a core definition based on
dynamical principles. For numerical simulations, the gravi-
tational potential may be computed from the volume density
(yielding Φ) or from the projected surface density (yield-
ing Φ2D). We show for our models that cores defined using
Φ and Φ2D are nearly the same, both for GRID-cores (de-
fined by the largest closed potential isosurfaces) and bound
GRID-cores (which additionally require Eth + Eg < 0).
Since Φ2D can be computed for observed clouds, using po-
tential contours offers a promising new core identification
method for application to high-resolution molecular cloud
maps. IDL code implementing our GRID-core algorithm,
suitable for application to observed data, is available from
the authors.

6. We find that the range of core masses that form increases as
the Mach number M increases. Physically, this is because
a larger range of spatial scales has significant perturbations
when the turbulence amplitude is higher, and because the
minimum mass to be gravitationally unstable decreases as
the density in the shocked layer increases. Basu et al. (2009)
also found broader mass distributions when the turbulent
amplitude is increased. At high Mach number, GRID-
core masses range between ∼10−3–1MJ , corresponding
to ∼0.05–50 M� for typical GMC conditions.

7. Analytical arguments (see Section 2) suggest that the first
core to collapse will have mass M ∝ M−1/2, and that at late
times, the minimum mass core will vary as M ∝ M−1. Our
numerical results for median core masses as a function of
M lie between these two relations. When the core definition
includes the condition that Eth + Eg < 0, the median mass
increases at the largest Mach number. This may be due to
the nonlinear “head start” of massive cores, such that lower-
mass cores have not yet become concentrated when the first
core collapses (and the simulation is stopped).

8. Analytical arguments (see Section 2) suggest that the
effective core radius will decline with increasing Mach
number, with powers between reff ∝ M−1/2 and reff ∝
M−1. Our numerical results show a decrease of reff with
M in this range. For bound GRID-cores (Eth + Eg < 0),
the relation is shallower than for GRID-cores defined by
gravitational potential alone.

9. The time for the first core to collapse in our simulations de-
pends on Mach number, with tcoll ∝ M−1/2, and a slightly
smaller coefficient for high-amplitude initial perturbations
(see Figure 18). This scaling is consistent with analytic pre-

dictions for gravitational instability in a shocked converg-
ing flow (see Equation (29)). For high M, as is observed
in GMCs, the first cores could collapse within a few Myr
of cloud formation. For high M, the first cores collapse
when the shocked layer containing them is only barely self-
gravitating; this suggests that collections of stars can begin
to form individually before they collapse together to create
a cluster.

10. A very small portion of cores are oblate, while most cores
are prolate or triaxial. Large cores are preferentially prolate.
The triaxiality of most cores is consistent with previous
results from turbulent hydrodynamic and MHD simulations
(Gammie et al. 2003; Li et al. 2004; Nakamura & Li 2008;
Offner et al. 2008). We also find that core shapes change
as they evolve, from more oblate during early stages to
more prolate during collapse. For high initial perturbation
amplitudes, the distributions have a higher proportion of
oblate cores because small cores are less evolved (at the
time the first core collapses), compared to those in models
with low initial perturbation amplitudes.

As noted above, the current models have provided evidence
that the masses of cores that form depend not just on the
mean Jeans mass in a cloud, but also on the cloud’s level of
internal turbulence at large scales, σv . Equations (22) and (23)
suggest that at late times, the characteristic core mass will follow
Mc ∝ σ−1

v ρ
−1/2
0 T 2, where ρ0 is the mean density in the cloud.

For the current simulations, however, we halt at the instant when
the most evolved core collapses (because the time step becomes
very short). This limits the condensation of small cores; they
are present, but not yet strongly bound. In order to fully test
the dependence of Mc on cloud parameters, it is necessary to
implement sink particles (e.g., Krumholz et al. 2004; Federrath
et al. 2010) so that the simulation can run until all the “eligible”
cores in the post-shock region have had the opportunity to
collapse. Including sink particles, as well as studying shocked
converging flows within larger turbulent clouds via mesh-refined
simulations, represent important avenues for future research.

We are grateful to Lee Mundy and Alyssa Goodman for
stimulating conversations, and to the referee for a helpful
report. This work was supported by grants NNX09AG04G and
NNX10AF60G from NASA.
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