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Intense star formation within resolved compact
regions in a galaxy at z 5 2.3
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Massive galaxies in the early Universe have been shown to be forming
stars at surprisingly high rates1–3. Prominent examples are dust-
obscured galaxies which are luminous when observed at sub-
millimetre wavelengths and which may be forming stars at a rate
of 1,000 solar masses (M[) per year4–7. These intense bursts of star
formation are believed to be driven by mergers between gas-rich
galaxies8–9. Probing the properties of individual star-forming regions
within these galaxies, however, is beyond the spatial resolution and
sensitivity of even the largest telescopes at present. Here we report
observations of the sub-millimetre galaxy SMMJ213520102 at red-
shift z 5 2.3259, which has been gravitationally magnified by a factor
of 32 by a massive foreground galaxy cluster lens. This magnification,
when combined with high-resolution sub-millimetre imaging,
resolves the star-forming regions at a linear scale of only 100 parsecs.
We find that the luminosity densities of these star-forming regions
are comparable to the dense cores of giant molecular clouds in the
local Universe, but they are about a hundred times larger and 107

times more luminous. Although vigorously star-forming, the under-
lying physics of the star-formation processes at z < 2 appears to be
similar to that seen in local galaxies, although the energetics are
unlike anything found in the present-day Universe.

Strong gravitational lensing—light bent by massive galaxy clusters—
magnifies the images of distant galaxies that serendipitously lie behind
them, offering us a direct way to probe the physical processes occurring
within star-forming regions in high-redshift galaxies. During an 870-mm
observation using the Large Apex Bolometer Camera (LABOCA) on the
Atacama Pathfinder Experiment (APEX) telescope of the massive galaxy
cluster MACSJ2135-010217 (zcluster 5 0.325), we recently discovered a
uniquely bright galaxy with an 870-mm flux of 106.0 6 7.0 mJy (Fig. 1).
The optical and near-infrared counterpart is faint, with magnitude
IAB 5 23.6 6 0.2 and KAB 5 19.77 6 0.07, but is extended along a
roughly east–west direction, consistent with it being a gravitationally
lensed background galaxy. The mid- and far-infrared colours (S24/
S70 5 0.4 6 0.2) and red optical/near-infrared colours also suggest that
the galaxy lies beyond the cluster at z . 1.5 (ref. 10 and Supplementary
Information), and indeed detection of carbon monoxide (CO) J 5 1–0
emission at 34.64 GHz unambiguously identified the redshift as
z 5 2.3259 6 0.0001 (Fig. 2). With source and lens redshifts known,
we used the gravitational lens model of the galaxy cluster (Supplemen-
tary Information) to correct for the lensing distortion, deriving an
amplification factor for the background galaxy of m 5 32.5 6 4.5.

Observations of molecular and continuum emission provide gas
and stellar mass estimates. The observed velocity-integrated flux in
CO(1–0) is fCO 5 2.3 6 0.1 Jy km s21, and the CO(3–2)/CO(1–0)
flux ratio of 5.9 6 0.3 suggest that the molecular gas is subthermally
excited (Fig. 2). Assuming a CO–H2 conversion factor of a 5 0.8
(K km s21 pc22)21 (which is appropriate for the smoothly distributed,
high-pressure, largely molecular, interstellar medium with subthermal
CO excitation9,11,12) we derive a cold gas mass of Mgas 5 M(H2 1 He) 5

aL9CO(1–0) 5 (1.6 6 0.1) 3 1010M[ (where L9CO(1–0) is the CO(1–0)
emission line luminosity). We estimate the stellar mass by fitting
stellar population synthesis models to the rest-frame ultraviolet–
near-infrared spectral energy distribution13 shown in Fig. 3. The best-
fit spectral energy distributions have a range of ages from 10–30 Myr
with significant dust extinction, E(B 2 V) 5 1.0 6 0.1, and a stellar
mass (corrected for lensing) of Mstar 5 3 6 1 3 1010M[. Taken
together, these imply a baryonic mass of Mbary 5 Mgas 1 Mstar 5

(4 6 2) 3 1010M[, with approximately 35% of this in cold molecular
gas.

Rest-frame far-infrared radiation from dust-reprocessed ultraviolet
light provides an extinction-free measure of the instantaneous star-
formation rate of a galaxy. Correcting for lens magnification, the
intrinsic observed-frame 870-mm flux is S870 mm 5 (3.0 6 0.4) mJy,
suggestive of a typical high-redshift ultra-luminous infrared
galaxy1,3,14. Observations at 350mm with APEX/SABOCA and at
434mm with the Sub-Millimeter Array constrain the far-infrared spec-
tral energy distribution (Fig. 3). Using a modified blackbody spec-
trum3 with a two-component dust model (with dust temperature
Td 5 30 K and 60 K) we derive a bolometric luminosity (corrected
for lensing amplification) of Lbol 5 (1.2 6 0.2) 3 1012 solar lumino-
sities (L[), suggesting a star-formation rate of (210 6 50)M[ per year
(ref. 15). If this star-formation rate has been continuous, it would take
just ,150 Myr to build the current stellar mass; the remaining gas
depletion timescale would be a further 75 Myr, suggesting that the
intense star-formation episode we observe may be the first major
growth phase of this galaxy. To set the global properties of the galaxy
in the context of other galaxy populations, it is also possible to cal-
culate the efficiency with which the dense gas is converted into stars.
The theoretical limit at which stars can form16 is given by a star-
formation rate of eMgas/tdyn where e is the star-formation efficiency,
and tdyn is the dynamical (free-fall) time, given by tdyn 5 (r3/
2GMgas)

0.5 (where G is the universal gravitational constant).
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Adopting r 5 1.5 kpc, the star-formation efficiency is e < 0.02, which
is consistent with that derived for local ultra-luminous infrared
galaxies17 and archetypal high-redshift sub-millimetre galaxies9, but
a factor of 20 lower than the most extreme ‘hyper’-starbursts at z < 6
(ref. 18).

Sub-Millimeter Array observations spatially resolve the galaxy’s
870-mm (345-GHz) continuum emission with a 0.299 synthesized
beam, providing a detailed view of the galaxy’s morphology. Figure 1
shows eight discrete components over ,499 in projection. These
represent two mirror images of the source, each comprising four
separate emission regions, reflected about the lensing critical curve.
The map contains a total flux of S850mm 5 (86 6 3) mJy, or (82 6 2)%
of the flux in the LABOCA map, suggesting that the structures in the
Sub-Millimeter Array map contain the bulk of the 870-mm luminosity.
Reconstructing the source-plane image, the galaxy comprises four
bright star-forming regions in the source plane (A, B, C and D), which
are separated by 1.5 kpc in projection (A and B are separated by
,800 pc, C and D by ,450 pc). Assuming the dynamics of the CO
emission trace the virialized potential well of the galaxy, then on these
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Figure 1 | Multi-wavelength images of the galaxy cluster MACSJ2135-
0102. a, Hubble Space Telescope VI-band colour image of the galaxy cluster
with white contours denoting the 870-mm emission from observations with
LABOCA on the APEX telescope. Contours denote 5s, 10s, 15s, 20s, 25s
and 30s (with root-mean-square noise of 3.5 mJy), identifying a sub-
millimetre galaxy with flux 106.0 6 7.0 mJy (the quoted error on the galaxy
flux includes calibration uncertainties) at a 5 21:35:11.6, d 5 201:02:52.0
(J2000), which is associated with a faint optical counterpart with magnitude
IAB 5 23.6 6 0.2. The solid red lines denote the z 5 2.326 radial and
tangential critical curves from the best-fit lens model. b, True-colour IRAC
3.6 mm, 4.5mm, 8.0 mm image of the cluster core with contours denoting the
350-mm emission from observations with the Submillimetre APEX
Bolometer Camera (SABOCA). Contours are spaced at 5s, 10s, 15s and 20s
(with root-mean-square noise of 23 mJy); the 350 mm flux is 530 6 60 mJy.
The mid-infrared counterpart is clearly visible as an extended red galaxy
centred at the sub-millimetre position. The LABOCA and SABOCA full-
width at half-maximum (FWHM) beams are 1999 and 899 respectively. The
origins of both images are on the lensed galaxy with north up and east left.
c, Sub-Millimeter Array 870-mm image of the lensed galaxy. The map shows
eight individual components, separated by up to 499 in projection. The
contours denote the 870-mm emission and start at 3s and are spaced by 1s
(where 1s is 2.1 mJy). The red line is the same z 5 2.326 radial critical curve
as in a and b. The components (A, B, C and D) represent two mirror images
of the galaxy, each comprising four separate emission regions reflected about
the lensing critical curve. The inset shows the 0.3399 3 0.2199 synthesized
beam with position angle of 15u east of north.
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Figure 2 | Carbon monoxide observations of SMMJ213520102 obtained
with the Green Bank Telescope and Plateau de Bure Interferometer. The
redshift of z 5 2.3259 6 0.0001 was derived from observations using
Zpectrometer, a wide-band spectral instrument on the Green Bank
Telescope28. a, Zpectrometer CO(1–0) spectrum, showing a double-horned
profile with a velocity offset of (290 6 30) km s21 between the two peaks.
b, Plateau de Bure observations of the CO(3–2) emission, confirming both
the redshift and the multiple velocity components seen in CO(1–0). The
CO(3–2)/CO(1–0) flux ratio of 5.9 6 0.3 suggests that the molecular gas is
subthermally excited and we therefore derive a cold gas mass of
Mgas 5 M(H21He) 5 aL9CO(1–0) 5 (1.6 6 0.1) 3 1010M[ with a 5 0.8 (we
adopt a cosmology with VL 5 0.73, Vm 5 0.27 and H0 5 72 km s21 Mpc21).
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scales the dynamical mass of the system is Mdyn < (4–8) 3 1010M[, in
good agreement with the gas and stellar mass estimates.

For the most highly amplified components (D1 and D2, Fig. 1), the
source-plane resolution reaches ,90 parsecs, only slightly larger than
the ,60-parsec characteristic size of giant molecular clouds in the
Milky Way19. This is consistent with the black-body radius (Rbb)
estimated from the bolometric luminosity and dust temperature via
the scaling relation Lbol/L[ 5 (Rbb/R[)2(Td/T[)4, where Rbb is the
physical black-body radius and T[ denotes the solar temperature)20.
Taking Lbol 5 (0.6–1.1) 3 1012L[, and assuming characteristic dust
temperatures of Td 5 30–60 K for each of the star-forming regions
within SMMJ213520102, the predicted sizes are Rbb < 100–300 pc.
This is consistent with those measured on the sky at 870mm.

Given that the star-forming regions in SMMJ213520102 are
similar in size to giant molecular clouds in the Milky Way and
Local Group galaxies, it is instructive to see how their luminosities
compare. The constant energy density within typical star-forming
regions produces a correlation between size and luminosity such that
L260 / r3, which appears to hold over a wide range of sizes from
1–100 pc (refs 19–23; Fig. 4). In the star-forming cores within giant
molecular clouds, however, the high luminosities from massive stars
produce luminosity densities about 100 times higher than the average
across the cloud24. We therefore plot two lines in Fig. 4 with slope 3
(meaning a constant energy density), one representing the mean
luminosity density within giant molecular clouds and the other
representing a luminosity density a factor of 100 higher. The star-
forming regions within SMMJ213520102 are about 100 pc across,
two orders of magnitude larger than the one parsec seen for dense
giant-molecular-cloud cores locally, but as Fig. 4 shows, their lumi-
nosities are approximately 100 times higher than expected for typical
star-forming regions of comparable size in the low-redshift Universe.
This means that the variable is most probably the number of star-
forming cores, such that a region in SMMJ2135-0102 that has a size of
,100 pc contains ,107 one-parsec-sized cores24–26. The luminosity
(and therefore star-formation) density of the star-forming regions
within SMMJ2135-0102 are also similar to those found in the highest-
density regions of the local starburst galaxy Arp220, although they are
scaled up by a factor of ten in both size and luminosity27 (Supplemen-
tary Information). Thus, although the energetics of the star-forming

regions within SMMJ2135-0102 are unlike anything found in the
present-day Universe, the relation between their size and luminosity
is similar to local, dense giant-molecular-cloud cores, suggesting that
the underlying physics of the star-forming processes is similar. These
results suggest that the recipes developed to understand star-forming
processes in the Milky Way and local galaxies can be used to model the
star-formation processes in these high-redshift galaxies.
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