Professor Alberto Bolatto
Observational Astronomy

ASTR 310
Fall 2009

Introduction to MATLAB

1 Introduction

MATLAB provides a powerful vectorized high level languagémsyntax very similar to C, spe-
cially useful for data analysis and display. MATLAB origited as an extension of the LINPACK
and EISPACK libraries of routines for linear algebra and @asgeloped in the late 80s by Cleve
Moler. It then evolved into a (proprietary) language thatarporates several object-oriented
features as well as powerful graphics ($d8p://www.mathworks.com for more details).
While it has a very large user base in Engineering and PhyisscAstronomy user base is small
and as a result does not have the wealth of legacy softwatedpthrat IDL has. Therefore, on the
one hand, be prepared to program. On the other hand, it isesulasdly more modern, consistent,
cohesive, and overall less clunky (I find) than the alteveati

Vectorized languages like MATLAB and IDL allow operationgeo arrays of numbers using very
simple syntax, essentially the same syntax one would usperate over scalars. MATLAB has a
very flexible implementation of n-dimensional arrays: 3 drdimensional data is very common in
Astronomy, where the 2 spatial dimensions are generallybooad with a 3rd spectral dimension
and maybe a 4th polarization dimension. The display caijpiabilare extremely good: graphics
are automatically resized and the user has complete cootesl a large number of properties,
including extensive annotation. The implementation of 3Bpdics is also very good. Finally,
MATLAB can be easily interfaced with C or FORTRAN routinesitarease its execution speed,
if need be.

2 Starting MATLAB

As for IDL, the computer should be running Linux. Once youéd&gged into your account and
started the X-windows system using ttartx command, open a terminal. The latest version of
MATLAB in the system is v7.8, and can be started by typmgtlab2009 at the prompt. This
will open the MATLAB console.

The main part of the MATLAB console is the Command Window. fEgou will see the prompt
>>. Usually to the left of the Command Window there are a numleruxiliary windows that
are configurable by the user and contain the Command Histdoymation about variables in the
Workspace, etc. Just over the Command Window there areadugtons and pull down menues.
One of the most useful is the little window that is used to &ede indicate the current directory.
That is the default directory where MATLAB will look for or eate files. The same information
can be obtained by enteriqpgvd at the MATLAB prompt.

In fact, pwd is a MATLAB function. It actually produces a string varialae the output, containing
the current work directory. Most commands produce an outpMATLAB. If unassigned, the

result of a MATLAB operation is stored in the MATLAB variabéns (short for answer, it used to
be the default in programable calculators). Unless thetihipe is terminated by a semicolon)
the result will be printed in the screen. So enter8x®b will produce a replyans = 15, while
entering3+*5; will produce no reply but still store the result of the opéyatin the variableans .
To see the contents of a variable, just enter its namep(im@ command necessary... in fact
print is used to obtain hardcopies, more on that later). For exanplsee the output of the last
unassigned operation, entans . If you request to see the contents of a variable that is umelgfi
MATLAB will return an error saying just that. If the variable empty, MATLAB will return the
empty matrix symbo[] if it is numerical, or the empty string symbdl if itis a string. Those
same symbols can be used to define empty variables of themjgieotype.

Although MATLAB has a number of automatically executed ttarfiles that can be editted to
reset the configuration (e.dnelp startup), this is hardly necessary. To see the current search
path, typematlabpath . To add a directory to the search path asklpath once. MATLAB

will remember.

My personal MATLAB code, which may be handy for the lab, carfdaend in
Inffornax1/bolatto/matlab

Add that directory to the path if it isn’t already there usthg addpath command
addpath /n/fornax1/bolatto/matlab

If you are taking ASTR310, there is instead a local directiigt you can use. In the Fall 2009
semester, that directory is

addpath /n/ursa/A310/abolatto/matlab

3 Obtaining Help

The basic online documentation in MATLAB is provided by ttweranandhelp , which will pro-
duce hypertext-linked information on the command tree @nicddividual commands (e.ghelp

exp).

A handy feature of MATLAB is that it is effortless to add hefgermation to your own programs.
In any file containing a user-defined function, MATLAB willterpret the block of comments after
the function declaration as the help corresponding to tiattfon. More on this later.

MATLAB has a full-blown hypertext help facility that is laghed using the commarlpdesk

To look for help on the random number generator, for exampiek on the “Search Results” tab
on the upper-left side of the helpdesk and type “random” endbarch box. Help for many useful
random number functions will become available. Lookrandn in the list, and click on it.

In the description you will see theandn essentially takes one parameter, the size of the array that
you want to generate. Random number generators use a nuaileel‘seed” to prime the pseudo
random sequence. MATLAB keeps different seeds for differandom number generators, and
always initializes them to the same number when it startgjefrate a different random sequence,
we need to change the seed. A handy blind way of doing so isstthescomputer clock, which is
provided by the functiolock() (try help clock for an explanation of the format). Enter

randn(’state’,sum(100 * clock));

at the prompt to randomize the generator.

MATLAB uses different functions (and different generaddrsgenerate the different distributions.
The functionrandn will generate normally-distributed random numbers. Thectionrand will
generate uniformly-distributed random numbers. Try tregrirction

output=randn(1,230);

It will generate 230 normally-distributed random numbensg put them into theutput array.
Just as an example of visualization, try plotting them using

plot(output)

A window, called “Figure 1”, should appear with the plot atiamber of controls in the top bar. By
default,plot() uses blue lines on a white background to join the values irathey, and plots
against the index of the array. To see them plotted with idd&l symbols not joined by lines, try

plot(output,’x’)

4 The Very Basics

In MATLAB, all numerical quantities default to double prsimin numbers unless the variable that
contains them is declared to be of a different type. So to MABL3, 3.0, and 3e0, are all identical
double precision versions of the number 3. This featureiig kandy since it allows one to ignore
variable typing in most situations and permits to just getdo business, with the assurance that
the calculations will be carried out with the best precisawmailable. On the other hand, double
precision numbers take 8 bytes to store, so it is more memmgnsive. When working with
very large arrays, it may be useful to carefully consider liovgtore the data (this will not be a
limitation for us). Sedelp datatypes to get information on the different data types available
in MATLAB as well as the functions that create variables ofi\geg type and to convert between
different types.

Let us start doing simple calculations in MATLAB. Try issgithe command
A=3*5

This will create the double-precision variable A and segjil@ to 15. To see its contents, just enter
A. Try now entering

a=2+4
a==

That will compare the contents afandA, and produce a 1 or a O if they are equal or not.

MATLAB is case-sensitive. Routines (or commands) with tapior mixed case are different
from the lower case version. The same happens to variablesaio obtain information about
the variables in memory you can look at the Workspace windothe MATLAB console, or use
the commandsvho or whos. They will tell you which variables are in memory, and giveuyo
information about them. For just one variable specify iteege.g.whos('A’)).

Try enteringa=5; a=sqrt(a) . This will definea to contain the number 5, then redefine it to
contain its square root. The semicolon allows you to sepatatements within a line (just like in
C), as well as supressing output. If you want to separateratits in a line without suppressing
the output, use the comma)(operator.

Note that by default MATLAB gives you four significant digitsthe output. The calculations are
carried out and kept internally at much higher precisioncafirse. You can change the output
format using thdormat command. The default output is equivalenfdomat short . To see
more digits, speciffformat long . Other (more exotic) format examples doemat rat
format short eng , andformat hex

The syntax for string variables is very straightforward.r Egample,a="Joe’ redefinesa as a
string variable, which is really, deep down, an array of ntioa character codes.

4.1 Vectors, Matrices, and Arrays

Now onto vectors and matrices. The instructions
a=[1,2,3,4,5,6]

or

a=[l 2 3 4 5 6]

create a six-element array containing the values 1 througklATLAB uses commas or spaces
to separate columns in a matrix (our vector is technically>a6 size matrix). To separate rows
MATLAB uses the semicolon

b=[1 2 3;4 5 6]

A shorter way of generating the same array is to use the colpogderator.a=1:6 . This generates
an array of numbers starting with 1, incrementing by oneluatiching the number 6. A more
general construction involves two colons, with the syrg&xt:increment:end. Soc=1:2:6 is
equivalent tac=[1 3 5]

Although MATLAB will dynamically change the size of an arrag new elements are assigned,
it is considerably faster, less accident-prone, and muctemonvenient to predefine large arrays.
The instruction

a=zeros(1,100)
definesa as an array of zeros of 1 row by 100 columns. It also acceptaltbmate syntax
c=[1,100]; a=zeros(c)

Similarly, we could define an array of ones usawpnes(1,100) . Note that these function can
also generate 2D arrays (or in fact nD arrays).

It is frequently useful to generate arrays of running indicEhe instruction
a=[1:10]
ora=1:10 generates an array of 10 numbers from 1 to 10.

Many times it is important to find out the dimensions of an arrsIATLAB uses the function
size() , which returns a vector of dimensions. Sometimes we arentetasted in all the dimen-
sions, but just the longest one (as witkx N arrays): MATLAB provides the handgngth()

to obtain that number.

4.2 Addressing Arrays: Indices and Subscripts

It is straightforward to access individual elements of ateeclry a(1),a(10) to print the first
and last elements of the array More generally, we can refer to the last element of any aasay
a(end) . MATLAB departs from C in the convention for the indexing ofays: indices start from
1 (just like FORTRAN or BASIC) and not from zero. If you wantdee a range of values(3:7)

will print the array elements 3 to 7. For large arrays, MATLA®II automatically indicate the
column range in each line.

There are two mechanisms for accessing data that has maretieadimension: subscripts and
indices. Subscripts are the intuitive mathematical regm&tion. In this picturey(1,2) refersto
the element in the first row, second column of arbayWith b as defined in the first paragraph of
the previous section, the result of that operation should.bEhis can be easily generalized to an
arbitrary number of dimensions, although it can become @rstdime.

Indices, on the other hand, use just one number to addregsd@t) any element of an array. It
actually corresponds to the physical order in which elesang¢ stored in the computer memory.
In MATLAB matrices are stored running through the rows fitegn the columns, thus the fastest
running subscript of a matrix is the first subscript, the ravibscript. So withb defined above,
b(2) will result in the number 4 (the same b&,1)), andb(3) is equivalent tdb(1,2) and

is the number 2.

Since keeping all of this math straight in one’s head can ecoapidly challenging, MAT-
LAB has two handy functions to switch between these two dfié ways of addressing arrays:
sub2ind() andind2sub() . Frequently, the most computationally expedient way ofrasis
ing an array is using indices.

In MATLAB the colon operator, when used to address the cdsteha matrix, stands for “ev-
erything”. So one can obtain all the numbers in the first rownaitrix b by typing b(1,:)
Similarly, all numbers in the 3rd column are obtained by isgi(:,3) , and just plain all num-
bers corresponds ta(:) . As with the example above on the ar@ywe can also specify a range
of indices or subscript€(3:6) or b(:,2:3) are all valid and (almost) equivalent. Note that
the dimensions of the result are different.

4.3 \ectorized Operations

As we mentioned in the introduction, MATLAB is a vectorizexhuage. That means it operates
automatically over each member of an array without the needr explicit loop (which would be
necessary in C or FORTRAN). In fact, it is not only more contpbuat more efficient and faster to
avoid loops if possible.

Try b=sqrt(a) . This will use the square root operator over each elemertefitraya. Sim-

ilarly, c=a."0.5 will apply the “raise to the 0.5 power” operation to each membf the array
a. This should produce the same result as taking the squareVeafy that by issuingp==c. As

you can see, the equality operater is also vectorized.

MATLAB uses the dot-operator construction to distinguighvieeen scalar-vectorized operations
and matrix operations. Dot-operators are meant to repeaftipns on the members of the array,
while for MATLAB using the” operator not preceeded by a dot means to do the proper matrix
operation of raising to a power (this would fail in our casece the matrix “raise to a power”

is only mathematically defined for arrays with the same nundéeows and columns). Other
common dot operators are *¥” to multiply and “./ ” to divide. Note that addition and subtraction
are identical for arrays and matrices, so they do not need-ap&rator.

Most (if not all) MATLAB functions are vectorized. For exatep
max(b-c),min(b-c)

prints the maximum and minimum values of the differenceyarf&ae usual mathematical functions
are also vectorized. Tripg(a) for the natural logarithmsin(a) for the trigonometric sine,
andlogl0(a) for the decimal logarithm. The instruction

d=sin(a/5)./exp(a/50)

for example, defines an arralyin which each element is related to the corresponding eléemen
by the mathematical expresion. Recall that all operatisasarried out in double precision, and
numbers are always assumed to be floating point.

As you saw, the comparisdi¥=c produces an array of the same dimensions asdc, containing

a 1 for each element that is equal and a O for each elementthat equal in both arrays. If the
arrays have different dimensions, it will produce an errdo. ask whether all the elements in a
vector are equal, MATLAB uses thal() function: all(b==c) . Similarly, we could use the
any() function to ask if there are any elements that are equal in Aoays.

Onto more examples of vectorizatios,im(b) calculates the sum of the elements of vedior
There is also an analogopsod function for the product, and the cumulative sum and prodant
be calculated usingumsum(b) andcumprod(b) . More relevant to us, there israedian()
function. In arrays of two or more dimensions, by defauliodlthese operators do the calculations
along the first non-singleton dimension. Saifs a matrix,sum(c) will produce a vector of the
same length as the number of columns in the matrix. Try

d=[1 2 3; 4 5 6]
sum(d)

If this is not the dimension along which you want to operagsthfunctions take a second optional
parameter that specifies which dimension you want to calas

sum(d,2)

will sum the columns and produce a consistently-sized teulou want to sum all the numbers
in d irrespective of their position in the array, do

sum(d(:))

4.4 The All-Important find()

Suppose you have an arrayand you want to identify the indices of that array for whick tie-
ments fulfill some condition. In order to do so, MATLAB proes thefind() function, which
is very similar to thewhere instruction in IDL. Strictly speakingfind returns the indices of
all elements that are non-zero in an array. This turns outetwdyy useful, since all the com-
parisons return 1 when they are true. For examptefind(a>10) will return the indices of
every element o that is larger than 10. Now, we can set them all to 10, for eXamyy doing
a(ix)=10; . No loops necessary!

4.5 Beyond Arrays: Structures

Structures are variables that contain other variablemkibf them as a neat way to organize data.
The different fields of a structure, can contain variabledifiérent types, so if one gives the fields
a meaningful name this becomes a great way to keep track ofttae

In MATLAB one can define a structure as one goes. This is an piaof a structure with 5 fields
of different types:

image.data=[1 2 3; 4 5 6; 7 8 5];
image.date="13-Jan-2008’;
image.blank=NaN;
image.ra=13.3212,;
image.dec=43.3455;

You can operate on the fields as you would with any variabl&atf particular type. For example,
to invert the data matrix, one would us®/(image.data)

4.6 Command-Line Editing

Using the command line requires typing, and typing intrauerrors. To a very good approxima-
tion the MATLAB command-line interface implements tweacs commands that are also available
in a UNIX terminal. Here are the most useful:

backspacedeletes the character behind the cursor

deletedeletes the character under the cursor

insert toggles between insert and overwrite modes

page up and down keygust as you expect, they scroll the Command Window
left and right arrow keys move the cursor on the current line

Ctrl-E or End key move the cursor to the end of the line

Ctrl-A or Home key move the cursor to the beginning of the line

Ctrl-K erase the line from the position of the cursor to the end, oré $n the “paste” buffer
Ctrl-Y paste the “paste” buffer

I escape to the shell (i.e., give an in-line shell command)

There are three very handy features to the command-lindfact

up and down arrow keys allow you to move through the command history, so you canntere
and/or edit old commands.

pattern matching search through history if you start typing the first few charaters of a line you
want to recall and then press tlp arrow key, MATLAB will complete it with the previous
issued command that started with those characters. If yep geessing the up arrow, it will cycle
through the command history presenting you all the linesrigtch your initial characters, if any.
Try typing a= and then pressingp arrow.

line completion if you start typing a line, and press thab key, the interpreter will present several
options available for completion, according to files in th&NLAB path (more on this later).

In the MATLAB graphical interface there is also a Commandtéiig and a Workspace tab avail-
able, where one can simply select and click to repeat comsand obtain information about
variables in memory. Since | became a MATLAB user well befibiese features were available |
tend to not use them and just prefer typing (this is also asigny age).

4.7 Operators
4.7.1 Relational operators

We introduced a number of operators in the previous sectguth as theolon operator. Another
useful operator is thranspose operator {), which switches columns and rows in matrices. MAT-
LAB provides the traditional relational operators= and™= are used to represent “equal” and
“nonequal”. Sedelp relop for a description of the relational operators.

As we mentioned before, MATLAB’s syntax is close to the ttaxhal C syntax (which is fairly
intuitive). Note that the AND operator is the ampersand @)d the OR operator is the vertical bar
(), as in C. Negation is the tilde operatdr)(since the band () employed in C is used to escape
to the shell in MATLAB. The command=(a <b) will produce an array of ones and zeros, 1
wherever the comparison is true, and 0 wherever it is falge, (t is the vectorized version of the
same operation in C). This is very different from the resfith@ same instruction in IDL.

4.7.2 Other operators and useful functions

To request the full list of operators implemented in MATLABy help ops . There are also a
number ofisfunctions that identify particular conditions. This is yeimilar to the approach taken
in the language C. For example, in the IEEE convention ofifiggtoint numerical representation
used in all modern computers there are particular code®tuifg NaNs (not-a-number) or infinity.
MATLAB provides functions that test for these. Some usekaraples are:

isnan(a) Returns 1 for every NaN in arrag.
isinf(a) Returns 1 for every infinite in the input.
isfinite(a) Returns 1 for every finite number in the input.

isreal(a) Returns 1 for every non-complex number in the input.

Try a=1/0 andisinf(a) , for example. Sinc&laNs propagate, it is somethings useful to throw
them out of operations like taking the mean. So a function ithentifies them can be very use-
ful: ix=find("isnan(a)); m=mean(a(ix)); (i.e., find all values that are ndtaNs and

average them).

4.8 Loops: Hating and Loving Them

MATLAB provides the traditional loop functionsfor andwhile , as well as the branching
constructgf-then-else , if-elseif , andswitch . To see a list of the flow control possi-
bilities, try help lang

To repeat the message about vectorized languages: loopsrauiexible but very slow. They also

complicate the code, and make it less compact. They are todigesl whenever it is possible to
use the vectorized features of MATLAB. Programs using loa@salso much much much slower
than the vectorized versions. Try the following comparisdrexecution times of a vectorized
program

u=rand(1,1e6);
tic; ix=find(u >0.5); u(ix)=0; toc

versus one that useda loop to do exactly the same

u=rand(1,1e6);
tic; for i=1l:length(u), if (u(i) >0.5), u(i)=0; end; end; toc

Here the functioriength() returns the longest dimension of the artaythe other dimension
in our case is 1). The syntax of tier loop is straightforward, and you can incremenby
something different from 1 each iteration by using the detd®lon constructtart:increment:end
that we have presented before.

In my machine, the vectorized version is about 23 times fabten the one with the loop and
comparison. It is true that one cannot live without loopg, fatnimizing their use leads to much
more compact, cleaner, and faster code.

5 Input and Output

Without the ability to input and output data, even the mostgrdul calculation engine would be
next to useless. The simplest format for data is text fileses€Hiles are frequently also called
ASCII files (ASCIl — pronounceaski — stands for American Standard Code for Information
Interchange, a standard for numerically representingaddpts developed in the 1960s). You can
read in text files produced with an editor, and write similleditoo. Here is how.

5.1 Writing a File

There is more than one way to save the arrays we created ahtva text file. The simplest (and
least flexible) is to use an option of the commaage . Try the following sequence of commands:

u=1:100; v=rand(1,length(u));
m=[u;v];

save testdata.txt -ascii m
type testdata.txt

The first statement creates a couple of vectarcontains the integers from 1 to 100,is 100
uniformly-distributed random numbers. The second statgmats both vectors in a matrix with
a desirable format. The semicolon tells MATLAB that eachagris to be a row of the matrix
m (of course, this only works because they have the same [engtre apostroph€e () operator
transposes that matrix, so that rows become columns andergge Thus the end result is a matrix
with 100 rows and two columns of numbers. An equivalent stet@ would bem=[u’,v] if
you prefer to think that way. Try looking at the varialigo see the resulting format. The third line
tells MATLAB to save the contents of the variabi@n text format in the filetestdata.txt

The final statement simply shows you what is inside a text ile MATLAB commandtype is

equivalent to the UNIX commancht).

The second option is to use the C-like mechanisrfpahtf . This allows for arbitrary output
formats, so it is infinitely flexible. If you know the C progranmg language, the following lines
will look awfully familiar:

fp=fopen(‘testdata2.txt’,'w’);

fprintf(fp,’%f %f \n’,m’);
fclose(fp)
Here the first line opens the fitestdata.txt for writing (the old contents are erased). The

second instruction is a vectorized version of thipfntf statement: the format string is applied
to all values in the matrixstarting by column order (i.e., the row index is the fastrayiag index.
This is the MATLAB convention.) That is whynhas to be transposed first. The last statement
closes the file, after we finished writing. You can try to outfhe numbers to the screen by using
afprintf instruction withfp set to 1:fprintf(1,'%f %f \n’,m’)

One does not need to use the vectorized featurdsrimitf . A more clunky way of achieving
the same goals is to write an expliédr loop. Replace the middle statement above with the
following:

for i=1:length(original), fprintf(fp,'%f %f \n’,u(i),v(i)); end

You can see again that vectorizing saves a lot of typing, #od/sfor more compact (thus more
easy to debug) code.

5.2 Formatting print statements

The functionfprintf can be used to format the output in almost any conceivablenaraRlease
see the MATLAB help on this routine for a detailed explanatio

5.3 Reading afile in column format

The simplest way of reading a file in column format, such astiewe have just written, is to use
theload command. This command will automatically recognize thedsea text file, read the
columns and rows, and return a matrix. Let us try

m_2=load('testdata.txt’);

Please verify that the file was correctly read. A quick versabthe samdéoad command would
be

load testdata.txt
which will create a variabléestdata with the contents of the file.

To parse more complex file formats MATLAB provides the comasfiscanf andtextscan
The latter is particularly easy to use. Please look at thedp.h

Here we have usddad to read text files created by MATLAB, but it can read text rowd@aolumn
formatted files created in a word processor, as long as they lbeen saved gsain text or ASCII.
As a handy documenting feature, you can insert commentiimie file (i.e., lines that begin with
the MATLAB comment character, the percésign) and they will be ignored bipad . We will

talk more about using comments to document files and the itapoe of documenting below.

5.4 Reading FITS Format Files

Most astronomical data is saved in the FITS (Flexible Imagm3port System) format. FITS was
developed in the 1980s and it is the standard in observatatiearound the world. Basic FITS

files have two parts: a header section (which has informatlmrut when and how the data was
obtained, coordinate systems, units, etc), and a dataosgthie raw data itself, stored as binary
numbers).

MATLAB has a native FITS reader. Request help on the funstiibsread() andfitsinfo()
The first one allows you to read in the data stored in a FITSMilele the second one will retrieve
the information in the FITS header.

The MATLAB reader works fine, but | find it less than ideal. | weany own FITS reader and
writer many years ago, before MATLAB implemented them, senid to prefer my own code. Itis
in my matlab directory, so if you paid attention to what we discussegdryou should already
have it in your path.

To read a FITS file, use théits() function (you can requesielp rfits like for any other
function). Therfits reader will return a structure with many fields, correspogdio the differ-
ent header keyworkd present in the FITS file. To write a FIT& fibu use thevfits command.
See its help too.

After reading an image usindits , the image data itself will be in thdata field. Try the
following commands:

r=rfits('n4254_pr fits’);

imagesc(r.data’);

axis image

set(gca,’ydir’,’nor’);

These instructions will read in a FITS image of NGC 4254 (Mi#®)p MATLAB, display it as an

image, format the axis so that it displays square pixels,aiht it properly so that right is West
and up is North. We will come back to visualization in a moment

6 Visualizing your Data

Enough background, and onto more interesting things. A wepprtant part of the analysis of any
dataset is its visualization. Humans are not very good andgik arrays of numbers and making
sense of them, but they excel at seeing patterns in imagesah4ation allows us to put the data
in terms that are more easily understandable to our senses.

Let us generate something to work with, by using some of theskedge we acquired in the
previous sections. We will generate an array of numbersgusin

t=[0:0.01:10];
We can now calculate a functiof{t), for example:
f=sin(2 *pi *t)./exp(t/5);

Note thatpi is a MATLAB function that returns the number What doesf (¢) looks like?

That is easy to answer using MATLABdot() function. Tryplot(t,f) . As we saw before,
plot() produces a plot of the second parameter against the firgtpolyione parameter is given
it will plot it against the index number. It is easy to changeesal properties of the plot. Skelp
plot for a list of colors, line types, and symbols.

Visualization can serve many purposes. Try

u=t+cos(2 xpi *t);
plot(u,f)

Now we can ask the question, what is the value @fhenw(t) = f(t)? Click on the zoom button
in the control bar of “Figure 1” (the icon with the magnifyiggass and the plus sign). The zoom
into the first intersection af andf, either by repeatedly clicking on it, or by clicking and dgaag

to define a box around it. The answemis= 0.847.

Sometimes we want to specify the range of coordinates in & pistead of letting MATLAB
choose it for us. We can do it using theis() function. It takes a vector of 4 numbers, specifying
the minimum and maximum af andy. For example, tnaxis([0 4 -0.2 0.2]) . The same
function is used to specify some characteristics of the gtot example, sometimes we want the
scales of the axes to be such that circles appear as circesllipses. We can do that by issuing
the commandwis equal in MATLAB. Look at help axis for other features.

Documenting plots is very important. Otherwise we wouldrstmrget what they are about. You
can annotate a plot usindabel() andylabel() . Let us zoom back out by typingxis
auto , moving the scroll wheel in the mouse, or right-clicking twe figure and selecting the “Re-
set Zoom” option. Then issudabel(’u(t)’); ylabel(’f(t)") . MATLAB actually
has a built-in TEX interpreter, so very fancy labels are gwsgif you do not know what TEX or
LATEX are, do not worry... they are fancy editors used in Rtyyand Math).

MATLAB is superb at producing publication-quality grapiim many formats. We showed above
how to produce and annotate a basic plot. There other typpkots that can be produced, just
look at the MATLAB help forgraph2d. For amusement, try clearing producing a polar plot of one
of our functions by sayingolar(t,f)

6.1 Being in Control

Let us erase the polar plot by issuing a “clear figure” commeamdi recreating the previous plot

clf
plot(u,f)

The properties of graphics are manipulated in MATLAB usirigeat handles. MATLAB distin-
guishes between figures and axes. Each figure has a sepandtawwvith the figure number as a
title. If you want to create a new window, issue the commegure . If you want to change the
focus back to the older figure, séigure(1) . Do you want to look at the properties of Figure
1? Issue the commargekt(l) to get a (somewhat overwhelming) list of figure propertiebe T
documentation for all of them can be found in thelpdesk . To change the size of the figure,
for example, one needs to alter the last two elements of #lementPosition array (the first two
are the x-y position in the screen in pixels, the second twotly sizes in pixels). To alter the size
of the current figure, try the following commands:

s=get(gcf,’Position’)
set(gcf,’Position’,[s(1:2) 400 400])

The first command puts into the varialdehe value of the propertiosition for the current figure
(gcf stands for “get current figure”, and it contains the valueha handle of the active figure,
in our case just 1... verify that by issuing the commauél). The second command changes the
value of the propertyPosition in the current figure to an array of 4 numbers. The first two are
the first two elements of. The last two are the new size of the windaW) x 400 pixels. The
graphics are resized automatically.

A figure can have many axes, our plot is just one of them. If yaweht on the screen and the
active figure is the one that contains it, you can see its ptiegdassuing aget(gca) . As with
gcf , gca is a command that returns the handle of the current axestoljedike figures, which
have integer handles, axes have floating point handles thaioa displayed anywhere. $ga is
really handy.

Something really handy in Astronomy is to change the origoneof the x-axis (R.A. decreases to
the right, remember?). To flip it in MATLAB, try

set(gca,’xdir’,’reverse’)

As we have seen in the FITS example above, sometimes one teeégsthe y-axis too. The
instructionset(gca,’ydir’,’normal’) , for example, makes it so that it increases upwards
(the normal mathematical sense).

The default background color of a plot is white. To changestgnething like
set(gca,’Color’,’'y’)

Basic colors in MATLAB are abbreviated with one letter (See help forplot for color and sym-
bol abbreviations). To specify an arbitrary color, give al8ment array with the RGB component
values in the range 0 to 1, for examp#et(gca, Color’,[0.2 0.8 0.6]) . To change
the line width of the box framing the plot, for example, s®t(gca,’ Linewidth’,3)

Similar handles are available for most of the plotting comasa Change the test program to return
a handle in the command pldb=plot(u,f) . Then play with the properties. By the way, the
properties are case insensitive and minimum-patternimeatcScset(gca,’ Linewidth’,3)
andset(gca,’linew’,3) are the same command.

To clean the figure, issue the “clear figure” commatid . To close the window, issudose(1)
The next plot command will create a window with all propestieset to the defaults, if necessary.

6.2 Overplotting

Often you want to plot two graphs in the same plot — compariata é&nd theory is an example.
Usually new plots erase the old plots. To change that behasguehold on . To return to the
old behavior, issubold off . Justissuindnold toggles the behavior.

So, to illustrate this, try the following commands:
clf

plot(t,u)

hold on

plot(t,f,’r--")

this will overplot f on« using a red dashed line.

A very handy command to annotate plots of this typkegend . Look at the help for that com-
mand. Here, we can create a simple legend by issuing the codlegend('u’,’f’)

6.3 2D and 3D Visualization

MATLAB allows you equally gracefully to display 2D and 3D daets. To begin, let us create a
2D function.

[X,y]=meshgrid(-100:2:100,-100:2:100);
g=exp(-(x-25).72/800-(y-35)."2/500);

g=g-2 *exp(-(x+10).”2/700-(y+40)."2/1500);
mesh(x,y,9)

The first line uses thmeshgrid() function to define the coordinate grid. The second and third
line add a couple of 2D Gaussians to define our surface. Thehfone displays it as a mesh plot
in 3D. The color scale corresponds to the “height” of the fiort Saycolorbar to place the
current color scale on the right side of the plot.

MATLAB allows you to explore the 3D surface in real time. Trijc&ing on the icon next to the
hand, on the icon bar of the current figure (it is the one withdhbe and the circular arrow around
it). Now left-click on the mesh graphic and hold the buttornvdowhile moving the cursor: you
can change your viewpoint in real time! The current Azimutil &levation of your viewpoint are
noted in the left bottom corner. Enterew(3) to go back to the default 3D viewpoint. For a
smooth version of thenesh plot, try:

surf(x,y,q)
shading interp

In astronomy we do not use surface plots as these very conyrfaunl data is too noisy or too full
of details for them to be useful). Many times, we use counpdois. Try

contour(X,y,g)

for a simple contour plot. Frequently we want to specify thatours and their color. For that just
include an array with the contours you want to use as anotiranpeter, and add a string parameter
specifying the color of the contours. Try

contour(x,y,g,-2:0.1:2,'k")

You can also produce filled contours very easily

contourf(x,y,g,-2:0.1:2)

To have the same scale in thendy axes, try using thaxis equal command.

All the annotations we described previously can be used 2ittand 3D plots. Contourplots can
also be annotated wittlabel() . Search for its help if you want to use it.

6.4 Visualizing Images

Let us recreate the 2D image of a galaxy

r=rfits('n4254_pr.fits’);
imagesc(r.data’);

axis image
set(gca,’ydir’,’nor’);

Theimagesc() function creates color display of the data using the curcefdr map and the
full data range. It also flips the y-axis by default because it handy for JPEG or PNG images
which are defined row by row starting at the top, sosbH) statement is there to unflip it.

We have been using the standard MATLAB colormap to displayimages, but that is only one
of many choices. Sakelp graph3d to get a list of the 3D graphic functions, including the
available colormaps. Thet colormap is the default. Other popular choiceslaoé , gray , or
hsv . To change the color map and add an intensity bar, try

colormap hot
colorbar

Sometimes one wants to display the negative image. A colprisjast a/V x 3 matrix of numbers
that specifies the RGB color codes for a normalized set ofgities. So, if we flip it, we invert the
color scale and obtain a negative image. We could write our code to flip the rows in a matrix,
but MATLAB already provides théipud() function. Try

colormap(flipud(hsv))

Another simple useful manipulation is to change the rangatehsities in the display. To MAT-
LAB, the intensity is just another axis, called the colorsaxio define its range, it uses the function
caxis() .Sotry

caxis([1900 3000])
now we can see the details of the outer spiral arms, althdughucleus is saturated.

We have already talked about how to zoom into a plot (or an ehaéye can also request informa-
tion about points in the image. Click on the “Data Cursorriéo the Figure Window. Now when
you place the cursor over the image it should look like a cr@gk anywhere in the image. A
small rectangle appears, showing you the image coordimditie point selected, the index (i.e.,
the value of the image at that point), and the correspondi@g Riplet in the current color map.

To see the nucleus and the spiral arms at the same time we omesé tan intensity scale that is
non-linear. To do so we can try to display the logarithm ofithage, instead of the image itself.
Let us try the following commands

m=r.data;
ix=find(r.data<=0);
m(ix)=NaN;
hist(log(m(:)),100);
imagesc(log(m’));
caxis([7.5 8.9))

The first three lines look for pixels that are zero or negatare replace them with harmless not-a-
number values. The logarithm of 0-iso0, which MATLAB will deal with perfectly fine but would
throw havoc into our data ranges. The logarithm of a negativaber is a complex number. Again,
MATLAB will just do the calculations, but trying to display matrix of complex humber would
not be allowed bymagesc() . It turns out that this image does not have problematic \wlse

we could have ignored that. Then we display the histogranm@fagarithm of all pixels in the
image using the functiohist() . The second parameter there indicates the number of bins. Th
is useful to select the range in the color axis. Then we dysftle logarithm of the image using
imagesc() , and we set the intensity range to a good value. Simple,itén’t

Finally, let us overplot something on the image. For examgbenetimes it is useful to mark the
location of something special with a cross. Or sometimes aetwo overplot contour lines. Just
like in the case of the graph, we can uselibéd on command to prevent new plots from erasing
old plots. Therefore

hold on

plot(104,214,+w’,’'MarkerSize’,15)
text(108,223,'Something important here’,’Color’,’'w’)

where the extra “property-value” pairs are simply a shortchéor setting some of the properties of
the symbol (its size) or the text (its color) without havingget a handle to their graphic properties
(and useset()).

6.5 Eye Candy

There is much more that can be done with graphical visuazatlust to give a couple of exam-
ples, | have prepared two scripts that run on a spectraladplatacube. The scripisualize2d

plays a movie of the third dimension of the example dataciibe. scriptvisualize3d does a
3D isosurface rendering of the same datacube, using alpattensparent surface.

6.6 Making a Hard Copy

This is usually done by creating and printing a Postscript MIATLAB has theprint command,
which takes care of this as well as output in other formatsudllg, the most common format
for a graph that will be used as a figure in a document is endaesupostscript. To create an
encapsulated postscript file out of the current figureptigt -depsc2 myplot.eps . This
creates an encapsulated level-2 color postcript file comigithe plot. Look at the help for the
print command for other options. If you are producing reports gi8vord, for example, you
may want to create PNG figures instead ugnigt -dpng myplot.png

MATLAB automatically resizes the figure to fit properly withihe letter paper bounds. Sometimes
this is undesirable, because it may shift around some ofrthetations, resize the axis labels, etc.
To obtain a paper copy that looks identical to the screen,h@seto set a particularly obscure

property of the figure before printinget(gcf,’PaperPositionMode’,’auto’)

7 Writing a Program

To avoid all that command-line typing when one is repeatieiges of commands, one creates a
program. The simplest version of a program is just a batchvitgch is what MATLAB calls a
script. It is essentially the same as if you were typing on the teamibut all the typing can be
repeated with very little effort. To write a script, creatéeat file (a.k.a. an ASCII file) using an

external editor (such as vi or emacs), or even better theynRtATLAB editor. To start it, simply
enteredit at the prompt.

Now we can create a program with the following command lines:

w=sin(([1:200]/35)."2.5);
W=w+2;

t=3 *[1:200];

plot(t,w)

xlabel('Time’)
ylabelCAmplitude’)

It is rare to need a continuation character, but if necesBBEKyYLAB uses the ellipsis (..) as an
indication that a line will continue into the next:

a=[1 2 3 4 ...
6789

will be interpreted as if it was all in one line.

Now, to conclude the program, we need to save the file. MATLABathe extensiam to identify

its files. Click on the “File Save” tab or the floppy disk iconthre editor, or give the keystroke
sequence&Ctrl-x><Ctrl-s> , and save your program with the name “test.m”. To invoke and
execute the program, just entest at the MATLAB prompt.

7.1 Documenting Code

Documentation is good, and programs should be documentiasire written (or else you will
find yourself scratching your head and wondering what thideocmas for in a couple of weeks).
The comment symbol is the percent (%) sign. The remaindehefibe after a % sign will be
ignored by the interpreter. Try including those in the ediend see how the color of the text
changes to green. Use this comment as the first line of the&%4ilefhis file corresponds

to the MATLAB tutorial . Now save the file and trigelp test . Handy, isn’tit?

MATLAB also provides symbols for blocks of comments. Anydsbetween & and a%g will
be ignored by the interpreter. These need to be the first cteasain a line.

7.2 Scripts and functions

The main distinction between batch files (such as the one weewturing this tutorial) and func-
tions is the fact that scripts run in the user environmentlevtunctions run in their own envi-
ronment. What do | mean by environment? Environment refethié contents of the variables
defined. A scripts share the same memory space: your mainspack, the same one you use
when typing at the prompt. Thus altering a variable in on@stras effects on how others exe-
cute. This can be good or bad: variables can be used to passation between scripts, but the
end product depends on precisely what sequence of scrigtssa@ed.

By contrast, every time we execute a function its environhienoreated anew, and the only vari-
ables defined are the parameters passed to the functionn&iiofus are fairly safe and separated
boxes, while scripts share all the same sandbox. Often idsseeeto debug a script, since the

internal variables remain in the user environment and ateleleted after it finishes (so they can
be examined). Another (minor) distinction between batasfdnd functions is that functions can
return one (or more) variables as results.

To define a function in MATLAB, the first instruction in the fiteas to be something like
function y=myfunction(x)

wherex is a parameter (or a list of parameters) passed to the funaiady is a variable (it can
also be a list such dg,z]) returned by the function (and hopefully assigned someevalithin
the function). MATLAB functions do not need to return a valdey transforming the script i§7
into a function.

7.3 | Goofed!

Just like in IDL or the UNIX shell, you can stop the executidragprogram by pressin@trl-C .
This will place you back in the environment from which the gmam was launched and give you
control.

Sometimes, as when one is writing a complex program with nme&syed routines, it is very handy
to have some debugging functions available to figure out wnyething isn’t working as it should.
MATLAB provides several levels of debugging possibilities

Printing values. The simplest debugging is simply looking at how a progrannges a value to
figure out what is going wrong. Since MATLAB prints out the wa$ assigned to variablasless

a semicolon is used to end the line, then the easiest thing i® t remove the semicolons from
strategic statements to see the output information. Maboghte, formatted output can be pro-
duced sprinklingdisp or fprintf commands throughout your prografprintf(1,...)

will write to the standard output (i.e., the screen) and hassame syntax as the C command of
the same name. Check out thelp information on these two commands.

Giving the control back to the user. Sometimes | want more than just seeing a value. | want to
look at several values (or arrays) and do calculations vigmt to figure out whether something is
correct or not. The program flow will be interrupted and thatcol given back to the user when
the interpreter finds the instructideeyboard . Try inserting it in your test program. To continue
with the program flow, just sageturn in the command line.

Full blown debugger. MATLAB includes a very handy debugger: shglp debug to get all the
relevant information. A very useful pair of instructionsabstop on error anddbclear

all . The first one tells MATLAB that, if and when an error occurse tcontrol should be in-
stantly given back to the terminal. It's just like insertindkeyboard statement the moment an
error happens (although you cannot simmyurn to continue the execution, since an error has
happened). The editor will automatically load the offerdfite and a green arrow will indicate
the position of the offending statement. To get back to thekimg environment, sagbquit

You can also insert and remove break points usinglttetop command or the handy buttons on
the editor window, step instruction by instruction, etc.eTclear all statement will simply
clear all break points, and stop the debugger from pestgnigagain.

