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ASTR 121 – Spring 2016 

Uncertainties and Error Analysis 

 

What is Uncertainty? 

Whether in science class or a real laboratory, a crucial part of understanding 

experimental results is analyzing uncertainty, or error.  In scientific context, ‘error’ does not 

refer to a mistake made during an experiment.  Rather, it describes the unavoidable 

imprecision in measurements.  Though there are exceptions (for example, counting the 

number of people in a room), most measurements will have some amount of uncertainty, 

and quantifying this uncertainty is a necessary part of interpreting experimental results. 

In the context of this lab, we will strive to quantify experimental uncertainties whenever 

possible. Additionally, we will focus on identifying and understanding sources of error, as 

well as trying to minimize them.  

 

Types of Uncertainty 

There are two distinct types of error: random and systematic.  

Random errors (sometimes called statistical errors) are caused by unpredictable 

fluctuations in an experimental setup, either from the environment or the instrumentation 

itself.  Some common random errors encountered in astronomy are the background noise 

signal in CCD electronics or the resolution of a spectrometer.  Because random errors often 

have a normal Gaussian distribution, they can be minimized by using a larger data set. 

Systematic errors, on the other hand are caused by inherent flaws in an experimental 

setup that, unlike random errors, will affect all measurements in a similar way.  This effect 

could either be caused by bad calibration or some scale factor.  In astronomy, some sources 

of systematic errors could be cosmological redshift or the miscalibration of a photometer.  

Because systematic errors cannot be corrected simply by taking more data, scientists must 

either correct their experiment for the source of error, or observe enough of a trend to 

quantify the error.   

 

Accuracy versus Precision 

Though they’re often used interchangeably in everyday conversation, there is an 

important distinction between accuracy and precision in science.   Simply put, the accuracy 

of a measurement is how close it is to the actual value, while precision is how close multiple 

measurements are to each other.  
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Consider, for example, the common analogy of throwing darts.  You can hit the bull’s eye 

with high accuracy (hitting close to the target), high precision (hitting close to the same spot 

repeatedly), neither, or both.  All four examples are illustrated in the figure below.  In science, 

as in darts, we strive for both. 

 

A useful way of thinking of this distinction is noticing that the precision of a measurement 

is limited by the random errors, while the accuracy of a measurement is limited by the 

systematic errors. 

 

Intrinsic Uncertainties 

One common source of random error is the intrinsic precision of a measuring device.  No 

matter how sophisticated an instrument, there is some uncertainty associated with its ability 

to resolve small measurement differences.  For example, if a ruler’s smallest markings are 1 

millimeter apart, the ruler cannot distinguish more than about 0.5 millimeters.  A common 

standard is to assume that the intrinsic precision of an instrument is half of the smallest 

increment the device reports.  So if a scale reads 4.36 kilograms, a conservative estimate of 

the intrinsic uncertainty of the scale is 0.005 kilograms.   The measurement in this case would 
be written (4.360±0.005) kg.   

 

Uncertainty Propagation Theory 

Imagine you are conducting an experiment, make some measurements x and y, and find 

the uncertainty of each.  However, you are not interested in x or y; rather, you are concerned 

with a value z which is the product of the two.  How do you quantify the uncertainty in z? 

For situations like this, propagation of uncertainty is an invaluable tool.  Propagation of 

uncertainty (or propagation of error) is the combined effect of the uncertainty of 

measurements on the uncertainty of a function of those measurements.  It is used to find the 

uncertainty of a calculated value where the values in the calculation have their own errors.  

High precision and 

high accuracy 
High precision, but 

low accuracy 

Low precision, but 

high accuracy 

Low precision and 

low accuracy 
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In general, the equation for propagation of uncertainty of a function 𝜎𝑓 is:  

𝜎𝑓 = √∑ (
∂f

∂x𝑖

)
2

𝜎𝑖
2

𝑛

𝑖=1

 

where 𝑓 is a function of a set of variables x𝑖 with uncertainties 𝜎𝑖.  In this example, we would 
report the quantity 𝑓 as (𝑓 ± 𝜎𝑓). 

As this lab does not require knowledge of partial derivatives, you will not be responsible 

for deriving error propagation equations (but if you are familiar with them, feel free to 

practice!).  Below is a list of some common functions and their propagated uncertainty 

equations that may be used in this class. 

For each function 𝑓, A and B have uncertainties 𝜎𝐴 and 𝜎𝐵, respectively, and a and b are 

exactly known non-zero constants (they have no uncertainty). 

Function Uncertainty 

𝑓 = 𝑎𝐴 𝜎𝑓 = |𝑎𝜎𝐴| 

𝑓 = 𝑎𝐴 ± 𝑏𝐵 𝜎𝑓 = √𝑎2𝜎𝐴
2

+ 𝑏2𝜎𝐵
2 

𝑓 = 𝐴𝐵, 𝑓 =
𝐴

𝐵
 𝜎𝑓 = 𝑓√(

𝜎𝐴

𝐴
)

2

+ (
𝜎𝐵

𝐵
)

2

 

𝑓 = 𝑎𝐴𝑏 𝜎𝑓 = |
𝑓𝑏𝜎𝐴

𝐴
| 

𝑓 = 𝑎 ln(𝑏𝐴) 𝜎𝑓 =
𝑎𝜎𝐴

𝐴
 

𝑓 = 𝑎𝑒𝑏𝐴 𝜎𝑓 = |𝑓𝑏𝜎𝐴| 

 

As an example, consider the distance to a star using parallax.  You measure the parallax 

angle to be 𝑝 = (0.7471 ± 0.0012) arcseconds.   The calculation of the distance is simple 

enough: 

𝑑 =
1

𝑝
= 1.338509 pc 
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Now to determine the uncertainty in this calculated value of d, you propagate the 

uncertainty in p, either using the general formula or the given equation for division: 

𝜎𝑑 = 𝑑√(
𝜎𝑃

𝑃
)

2

= 0.00215 

Now you have calculated the distance as well as the uncertainty in that calculation.  Using 

the convention described in the end of this handout, our calculated distance is reported as:  

𝑑 = (1.338 ± 0.002) pc 

Though we will often use uncertainty propagation, it is important to realize the 

assumptions that it requires.  Uncertainty propagation assumes standard Gaussian 

uncertainties, that is, uncertainties that are symmetrical Gaussian functions.  Though this is 

thankfully the case much of the time, there are exceptions, in which other methods of 

quantifying uncertainty must be used (e.g., using Poisson statistics with a photometer).  

Additionally, this form of uncertainty propagation assumes that the variables are 

uncorrelated.  In the scope of this lab, both of these assumptions will usually be valid.   

 

Descriptive Statistics  

One way of describing a set of data is by using measures of central tendency.  Though 

there are many different measures of central tendency, the most common are arithmetic 

mean, median, and mode. 

Arithmetic mean is the sum of a set of values, divided by the number of values.  Formally, 

the mean 𝜇 of a set of N measurements of 𝑥𝑖  is written as: 

𝜇 =
1

𝑁
∑ 𝑥𝑖

𝑁

𝑖=1

 

The mean is undoubtedly the most common measure of central tendency, though it does 

have its disadvantages, most significantly, how easily it is affected by outliers. 

The median is a measure of central tendency that isn’t as susceptible to influence by 

outliers.  If a set of values is arranged in order, the middle value (or mean of two middle 

values, for a set with an even number of values) is the median.   

Finally, the mode is the most frequent value in a set.  Most useful for discrete sets of data, 

the mode is simply the value that is measured most often. 
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Though useful, measures of central tendency alone can’t fully describe a set of data.  

Consider the two plots below: they both have the same number of data points, range of 

measurements, mean, median and mode.  They are, however, clearly different.  The plot on 

the left has data many points at a single value, while the plot on the right has more evenly 

spread-out points. 

 

 This is where we need to use measures of dispersion.  Measures of dispersion describe 

how scattered a set of data is.  The two most common are variance and standard deviation.  

The variance is the mean of the squares of each easements deviation from the average, 

formally written as: 

𝜎2 =
1

𝑁
∑(𝑥𝑖 − 𝜇)2

𝑁

𝑖=1

 

The standard deviation is simply the square root of the variance: 

𝜎 = √
1

𝑁
∑(𝑥𝑖 − 𝜇)2

𝑁

𝑖=1

 

The standard deviation basically describes how far a typical measurement is from the 

average value.  Additionally, it can be used to find the uncertainty associated with the mean.  

For a set of 𝑁 data points with a standard deviation 𝜎, the uncertainty of the mean is: 

𝜎𝜇 =
𝜎

√𝑁
 

Significant Figures 

Besides correctly calculating and attributing an uncertainty to a given value, it is 

important to report the value correctly, as well.  Imagine a student measures the diameter of 

a circle with a ruler and finds it to be 3.7 cm.  They then use the diameter to calculate the 

circumference: 
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𝐶 = 𝜋𝑑 = 11.6238928216 cm 

Does it make sense that a measurement accurate to one decimal place could yield a 

calculation accurate to ten?  For this reason, we consider something called significant figures.  

A significant figure (or ‘sig fig’) is digit of a number that contributes meaning to the 

measurement.  All digits are significant except for leading zeros (any zeros that come before 

the first nonzero digit) and trailing zeros (zeros that come after the last nonzero digit) in a 

number not containing a decimal. Consider the following examples: 

7.41 - Three sig figs 7041 - Four sig figs 7.4100 - Five sig figs 
74100 - Three sig figs 704100 - Four sig figs 7.4156 - Five sigs figs 

 

In this lab, the convention for reporting values will be to round the uncertainty to one 

significant figure and keep the same number of decimal places in the corresponding value.  

Some examples: 

Raw value: 𝑥 = (7.314 ± 0.2483) cm   Reported value: 𝑥 = (7.3 ± 0.2) cm 

Raw value: 𝑥 = (93.733 ± 11.32) pc   Reported value: 𝑥 = (90 ± 10) pc 

The same rule applies to values in which you use scientific notation, though it’s a can be 

a bit trickier: 

Raw value: 𝑥 = (4.448 × 109 ± 3.18 × 108) yr 

Reported value: 𝑥 = (4.4 ± 0.3) × 109  yr 

 

  


