next up previous
Next: Conservation Laws Up: handout2 Previous: General Equations

Equations for Specific Orbits

Energy determines whether an orbit is bound or not. Circles and ellipses are the only bound orbits; parabolae and hyperbolae are the only unbound ones. Note that $e = 1$ orbits (rectilinear or straight-line orbits) may be elliptical, parabolic, or hyperbolic.

Bound Orbits ($E_B < 0$) Unbound Orbits ($E_B \ge 0$)
  Circle Ellipse Parabola Hyperbola
Semimajor Axis: $a = r$ $a > 0$ $a \rightarrow \pm \infty$ $a < 0$
Eccentricity: $e = 0$ $0 < e \le 1$ $e = 1$ $e \ge 1$
Distance: $r = a$ $r \ge a(1 - e)$ $r \ge a(1 - e)$ $r \ge a(1 - e)$
    $r \le a(1 + e)$ $r \rightarrow \infty$ $r \rightarrow \infty$
Speed: $v = \sqrt{\frac{GM}{a}}$ $v \le \sqrt{\frac{GM(1 + e)}{a(1 - e)}}$ $v = \sqrt{\frac{2GM}{r}}$ $v \le \sqrt{\frac{GM(1 + e)}{a(1 - e)}}$
    $v \ge \sqrt{\frac{GM(1 - e)}{a(1 + e)}}$ $v_\infty = 0$ $v_\infty = \sqrt{- \frac{GM}{a}}$

($v_\infty = v$ in the limit $r \rightarrow \infty$, i.e., speed at ``infinity'')


next up previous
Next: Conservation Laws Up: handout2 Previous: General Equations
Derek C. Richardson 2005-09-16