ASTR430 Handout 3: Non-gravitational Forces

$ ho_g = ext{gas density}$ $v = ext{particle speed}$ $\lambda = ext{mean free path of gas}$ $v_0 = ext{thermal gas speed}$
$C_D={ m drag\ coef.}\sim 1$
$T= ext{temperature} \ \Delta T= ext{temp. difference} \ \psi= ext{obliquity}$
$a= ext{particle radius (m)} \ ho= ext{part. density (kg/m}^3) \ r= ext{orbital radius (AU)}$
$L = ext{bolometric luminosity}$ $A = ext{particle x-sect area}$ $Q = ext{correction factor} \sim 1$ $r = ext{orbital radius}$