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Abstract

The Asteroid Impact & Deflection Assessment (AIDA) targets binary near-Earth asteroid (65803) Didymos. As part of this mission,
the NASA-led Double Asteroid Redirection Test (DART) will make a kinetic impactor collide with the smaller secondary of Didymos to
test kinetic impact asteroid deflection technology, while the ESA-led Hera mission will evaluate the efficiency of the deflection by con-
ducting detailed on-site observations. Research has shown that the larger primary of Didymos is spinning close to its critical spin, and the
DART-impact-driven ejecta would give kinetic energy to the primary. It has been hypothesized that such an energy input might cause
structural deformation of the primary, affecting the mutual orbit period, a critical parameter for assessing the kinetic impact deflection by
the DART impactor. A key issue in the previous work was that the secondary was assumed to be spherical, which may not be realistic.
Here, we use a second-order inertia-integral mutual dynamics model to analyze the effects of the shapes of the primary and the secondary
on the mutual orbit period change of the system. We first compare the second-order model with three mutual dynamics models, including
a high-order inertia-integral model that takes into account the detailed shapes of Didymos. The comparison tests show that the second-
order model may have an error of � 10% for computing the mutual orbit period change, compared to the high-order model. We next use
the second-order model to analyze how the original shape and shape deformation change the mutual orbit period. The results show that
when the secondary is elongated, the mutual orbit period becomes short. Also, shape deformation of the secondary further changes the
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mutual orbit period. A better understanding of this mechanism allows for detailed assessment of DART’s kinetic impact deflection capa-
bility for Didymos.
� 2019 COSPAR. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Binary near-Earth asteroid Didymos is the target of the
Asteroid Impact & Deflection Assessment (AIDA) mission,
which is an international collaboration between NASA and
ESA (Cheng et al., 2016, 2018; Michel et al., 2016, 2018). In
this mission, NASA leads the Double Asteroid Redirection
Test (DART) mission in which a kinetic impactor will be
launched to Didymos. As of May 14, 2018, the launch per-
iod will be opened after June 15, 2021, and the spacecraft
will conduct a flyby of asteroid 2001 CB21 and collide with
the smaller secondary of Didymos on October 5, 2022,
which is the apparition of Didymos. The DART impactor
will have the Didymos Reconnaissance and Asteroid Cam-
era for OpNav (DRACO) visible imager, which will take
high-resolution images of the surface of the secondary right
before the impact (Cheng et al., 2018). On the other hand,
ESA leads the Hera mission, which will send a spacecraft to
Didymos to observe the physical properties of this asteroid.
The currently planned instruments onboard the Hera
spacecraft include the Asteroid Framing Camera (AFC),
a LIght Detection And Ranging (LIDAR) instrument,
and a six-unit CubeSat carrying two instruments: one being
the Asteroid SPECTral (ASPECT) imaging instrument,
and the other being chosen from radio science, seismology,
gravimetry, or volatile detection (Michel et al., 2018). The
planned launch date of the Hera spacecraft is October
2023.

One of the primary goals of the AIDA mission is to
quantify the asteroid deflection capability using a kinetic
impactor. A critical process is the momentum transfer,
which is augmented by impact-driven ejecta (Holsapple
and Housen, 2012). The efficiency of the momentum trans-
fer is described using the so-called b parameter. When
b ¼ 1, the impactor collides with the asteroid without net
generation of momentum-enhancing ejecta so that its
momentum is transferred only to the target. If b > 1, the
target asteroid achieves further acceleration compared to
the b ¼ 1 case because the momentum carried by the ejecta
launched in the opposite direction to the DART impact
direction is added to that of the secondary. On the other
hand, if b < 1 (requiring antipodal spallation, which is
not anticipated for the DART impact), it is accelerated less
than the b ¼ 1 case. In the AIDA mission, the DART mis-
sion demonstrates kinetic impact deflection, determines the
mutual orbit period change of Didymos using Earth-based
observations and images from the DRACO imager, and
attempts to obtain an estimate of the b value (Cheng
et al., 2018). The Hera mission further assesses the b
parameter by determining the physical properties including
the mass of Didymos (Michel et al., 2018).

Determination of the b parameter requires detailed eval-
uation of the mutual dynamics and structural condition of
Didymos. A study that conducted impact experiments with
aluminum spheres hitting pumice boulders showed that the
b parameter ranged between 1 and 1.69 (Walker et al.,
2017). The b parameter is dependent on the surface topog-
raphy (Feldhacker et al., 2017) and surface material condi-
tions such as porosity (Wünnemann et al., 2006; Collins,
2014; Wiggins et al., 2018) and regolith size frequency dis-
tributions (Tatsumi and Sugita, 2018; Stickle et al., 2018).
Such impact conditions likely change the ejecta conditions
such as the speed and direction. Therefore, while a fraction
of the DART-impact-driven ejecta may fall onto the sur-
face of the primary (Yu et al., 2017; Yu and Michel,
2018), its amount is strongly dependent on these impact
conditions. Also, the primary is rotating at a spin period
of 2.26 h (Pravec et al., 2006). Given a top-like shape (an
oblate shape with a raised equatorial ridge), the primary
might be sensitive to failure of the internal structure,
depending on the bulk density and material heterogeneity
(Zhang et al., 2017). If the primary has the reported nom-
inal size and bulk density (Naidu et al., 2016; Michel et al.,
2016), it should have the mechanical strength to hold the
current shape (Hirabayashi et al., 2017). Detailed studies
using Soft-Sphere Discrete Element Methods (SSDEMs)
have been conducted in multiple research groups, which
consistently confirmed the result by Hirabayashi and
Scheeres (2014), who pointed out that given a uniform
structure, a spheroidal shape might have two distinguish-
able deformation modes: horizontally outward deforma-
tion on the equatorial plane and vertically inward
deformation at other locations (e.g. Sánchez and
Scheeres, 2012, 2016; Zhang et al., 2017, 2018).

Considering these uncertainties, Hirabayashi et al.
(2017) hypothesized that if the DART impact induced
shape deformation of the primary, the mutual orbit period
change, which is a key parameter for determination of the b
parameter, would change significantly (the schematics
given in Fig. 1). Using the results from earlier structural
works (e.g. Hirabayashi and Scheeres, 2014) to assume that
the shape deformation process is axisymmetric along the
spin axis of the primary, they investigated how the
primary’s deformed shape would change the mutual orbit
period of the system. They found that the primary’s shape
deformation process might play a significant role in



Fig. 1. Schematics of a scenario of the mutual orbit period change caused by shape deformation of Didymos after the DART impact. The shape of the
primary used is the radar shape model from Michel et al. (2016) and Naidu et al. (2016). In Step 2, the solid line shows the normal case that experiences
neither the DART impact nor shape deformation, the dot-dashed line describes a trajectory after the DART impact without shape deformation, and the
dashed line gives a perturbed orbit after the DART impact with shape deformation.
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changing the mutual orbit period. However, an issue with
their work was that the secondary was assumed to be a per-
fect sphere although lightcurve observations did not rule
out that the secondary would be elongated (Pravec et al.,
2006). In fact, many binary asteroids have elongated secon-
daries (Pravec et al., 2016); therefore, the assumption made
by Hirabayashi et al. (2017) might not have accounted for
the mutual dynamics of Didymos accurately. We hypothe-
size that the secondary’s elongation also contributes to the
mutual orbit period change (Fig. 1) and quantify this prob-
lem in the present work.

The purpose of this work is to use a model that takes
into account the elongation of the secondary to investigate
how the mutual orbit period change would occur in the
Didymos system after the DART impact. In our work,
we employ a second-order inertia-integral mutual dynamics
model in which the shapes of the primary and the sec-
ondary are assumed to be an oblate spheroid (i.e., the long
axis equal to the intermediate axis) and a prolate ellipsoid
(i.e., the intermediate axis equal to the short axis), respec-
tively (Scheeres, 2009; McMahon and Scheeres, 2013). This
model is tested by using three approaches capable of com-
puting the mutual orbit period change, which are given
below:

� The first is a sphere-sphere dynamics approach that
assumes the primary and the secondary to be homoge-
neous spheres (Cheng et al., 2016).

� The second is a mutual dynamics approach that uses a
polyhedron-shape-based gravity model (Werner and
Scheeres, 1997) for the primary and assumes the sec-
ondary to be a homogeneous sphere (Hirabayashi
et al., 2017).

� The third is an inertia-integral-based mutual dynamics
approach that takes into account the detailed shapes
using high-order gravity terms (Hou et al., 2017; Davis
and Scheeres, 2017).
We use the second-order model to analyze how the orig-
inal shape and shape deformation of Didymos affect the
mutual orbit period of the system. The present manuscript
contains the following three components:

� First, we generalize the effects of the primary’s shape
deformation on the mutual orbit period change.

� Second, we investigate how the elongation of the sec-
ondary changes the mutual orbit period of the system.

� Third, we explore how the shape deformation process of
the secondary influences the mutual orbit period change
of the system.

These exercises extend our understanding of the mutual
orbit period change of Didymos due to the DART impact
from the previous work by Hirabayashi et al. (2017), pro-
viding a better capability of quantifying the kinetic impact
asteroid deflection by DART.

We organize our discussion as follows. In Section 2, we
briefly introduce the model used in this work. In Section 3,
we show a deformation process that we consider in the pre-
sent work. Section 4 presents our numerical investigations.
In Section 4.1, we show comparison tests of the second-
order model with other mutual dynamics models. In Sec-
tion 4.2, we discuss how the original shape and shape
deformation of the primary and secondary affect the
mutual orbit period change of the system. Finally, Section 5
gives interpretations of our numerical results into the
mutual orbit period change of Didymos. We note that in
the literature, the smaller and larger components of Didy-
mos have been named in different ways (e.g. Michel et al.,
2018; Cheng et al., 2018; Hirabayashi et al., 2017). The lar-
ger component has been called Didymos, Didymmain,
Didymos A, or the primary; on the other hand, the smaller
component has been called Didymoon, Didymos B, or the
secondary. In this work, we simply call them the primary
and the secondary.
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2. Mutual dynamics modeling

This section introduces the models that are used in this
work. We use mathematical notations defined in Table 1.
Recall the approaches used are a sphere-sphere model, a
polyhedron model, a second-order inertia-integral model,
and a high-order inertia-integral model. For the second-
order model, the interaction is computed between two
biaxial ellipsoids by considering the gravity terms up to sec-
ond order. This is the main approach used for quantifying
the mutual orbit period change due to shape deformation
of the system.

2.1. Sphere-sphere model

Cheng et al. (2016) introduced the sphere-sphere model.
This model considers that both the primary and the sec-
ondary are perfectly spherical. In this case, because these
objects can be assumed to be point masses, we can use
the two-body problem theory. Thus, the rotational motion
is independent of the orbital motion. Because this theory
has an analytical solution, the orbit period change in the
system, dT orbit, can be described as

dT orbit ¼ 2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A3

a

Gðmp þ msÞ

s
� 2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A3

b

Gðmp þ msÞ

s
: ð1Þ

In this form, Ab and Aa are the orbital semi-major axes
before and after the DART impact, respectively. mp and
ms are the masses of the primary and the secondary, respec-
tively. G is the gravitational constant.
Table 1
Notational definitions of key parameters used in this work. Subscript K is rep
secondary. The COM stands for the center of mass.

Parameters

Gravitational constant (¼ 6:674� 10�11)
Orbital semi-major axis
Geometric semi-major axis of a body
Mass
Position of small element in a body relative to its COM
Force
Torque
Inertia tensor
Spin vector
Rotational angle
Speed of synchronous orbit
Moment of inertia along the out-of-plane direction
Ratio of primary semi-minor axis to semi-major axis
Ratio of secondary semi-minor axis to semi-major axis
Position of secondary COM relative to primary COM
Position of small element in secondary relative to one in primary
Position of small element in secondary relative to primary COM
Position of secondary COM relative to primary COM in inertial frame
Total energy
Kinetic energy
Potential energy
Out-of-plane component of system angular momentum
2.2. Polyhedron-shape-based model

This approach uses a polyhedron-shape gravity model
(Werner and Scheeres, 1997) to describe the gravity force
acting on the secondary under the assumption that the sec-
ondary is perfectly spherical (Hirabayashi et al., 2017). The
secondary is considered to have a non-negligible mass; the
rotational motion of the primary evolves due to the orbital
motion of the components. Therefore, it is necessary to
take into account the mutual interaction between the pri-
mary and secondary.

The equation of relative translational motion given in
the frame rotating with the primary is given as (Scheeres
et al., 2006),

€Rc þ 2Xp � _Rc þ _Xp � Rc þXp � ðXp � RcÞ

¼ � 1þ ms

mp

� �
@U
@Rc

; ð2Þ

where Rc is the center of mass (COM) of the secondary rel-
ative to that of the primary, U is the potential energy, and
Xp is the spin vector of the primary. As discussed above,
the rotational state of the primary is coupled with the orbi-
tal motion. Therefore, we describe it as

Ip _Xp þXp � IpXp ¼ sp; ð3Þ
where Ip is the inertia tensor of the primary, and sp is the
torque acting on the primary.

2.3. Second-order inertia-integral model

This model assumes that the primary is an oblate spher-
oid, and the secondary is a prolate ellipsoid, instead of con-
laced with either p or s, where p stands for the primary and s indicates the

Symbols Units

G m3�kg�2�s�2

A m
aK m
mK kg
rK m
f K N
sK N�m
IK kg�m2

XK rad�s�1

hK rad
vsyn m�sec�1

IKz kg�m2

v [–]
n [–]
Rc m
R m
R� m
½Rcx;Rcy ; 0� m
E J
K J
U J
H kg�m2�s�1
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sidering particular shapes (Fig. 2). By an oblate spheroid,
we mean that the object’s semi-major axis is the same as
its intermediate axis. On the other hand, for the prolate
ellipsoid, the semi-minor axis is the same as the semi-
intermediate axis. While this assumption may not be realis-
tic, the proposed model may be useful to quantify the
mutual orbit period change given the fact that there may
remain observational uncertainties of the physical proper-
ties of Didymos after the DART impact.

To describe the mutual gravity force, we use an inertia
integral, which is given as (Hou et al., 2017; Davis and
Scheeres, 2017)

T i;j;k
K ¼

Z
mK

xiKy
j
Kz

k
KdmK; ð4Þ
where subscript K is replaced with either p (primary) or s

(secondary). Also, ðxK; yK; zKÞT is the position vector of a
body element from the COM in its body-fixed frame (see
the details in Fig. 3). For the nth-order inertia integral,
iþ jþ k ¼ n should be satisfied. We expand the gravity
force vector acting on the secondary, f s, which is given as
Fig. 2. Illustration of the formulation. In the second-order model, the pr

Fig. 3. Illustration of the axis orientations of the primary and the secondary.
corresponds to the maximum principal axis of this object, and the x1 and y1 axes
its maximum principal axis and is parallel to the z1 axis. The x2 axis is defined a
principal axis.
f s ¼ �G
Z
p

Z
s

R

R3
dmpdms: ð5Þ

where R is the position vector of a body element in the sec-
ondary with respect to one in the primary, and R is its mag-
nitude. In our model, we consider the inertia integrals up to
second order, i.e., n ¼ 2. Earlier works considered the
moment of inertia, instead of the inertia integrals, to
expand Eq. (5) although these models are fundamentally
equal because of the order of expansion (Scheeres, 2009;
McMahon and Scheeres, 2013).

We focus on the planar motion as the motion in the out-
of-plane direction is expected to be small even after the
DART impact (Cheng et al., 2016; Hirabayashi et al.,
2017). This consideration is also reasonable for the high-
order model. In our problem, the high-order model shows
that the ratio of the z component to the norm of the x and
y components is less than 0.007 % even if we account for
the z component of the DART impact velocity. Using Rc

and f s, we describe the equation of relative translational
motion in the inertial frame as

€Rc ¼ 1

mp
þ 1

ms

� �
f s: ð6Þ
imary has an oblate shape while the secondary is a prolate ellipsoid.

For the primary, the z1 axis is defined in the out-of-plane direction, which
are on the orbital plane. Similarly, for the secondary, the z2 axis is equal to
long the minimum principal axis, and the y2 axis is along the intermediate
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On the other hand, the equation of rotational motion in the
frame rotating with the secondary is described as

Is _Xs þXs � IsXs ¼ ss; ð7Þ
where Is is the inertia tensor, Xs is the spin vector, and ss is
the torque vector acting on the secondary. In the present
model, because the primary is an oblate shape, its rota-
tional motion can be decoupled with our consideration
(see below).

We further discuss our formulation by using the
schematics in Fig. 2. O and O0 are the COMs of the primary
and the secondary, respectively. We also define R� to
describe the position vector from O to a small element in
the secondary. Vector rK describes the position vector of
a body element from the COM. We expand Eq. (5) by
using the following expressions,

R ¼R� � rp; ð8Þ
R� ¼Rc þ rs; ð9Þ

to obtain

R2 ¼R�2 þ r2p � 2R� � rp; ð10Þ
R�2 ¼R2

c þ r2s þ 2Rc � rs: ð11Þ
We then employ the Taylor expansions of these forms with

respect to x� ¼ ðr2p � 2R� � rpÞ=R�2 for Eq. (10) and

xc ¼ ðr2s þ 2Rc � rsÞ=R2
c for Eq. (11).

Applying these formulations, we compute f s and ss. We
first compute the gravity force from the entire mass of the
primary acting on a small element in the secondary. This
force, denoted as df s, is given as

df s ¼ �Gdms

Z
mp

R

R3
dmp: ð12Þ

Using Eq. (10), we expand Eq. (12) with respect to x�. Con-
sidering the terms up to second order, we obtain

df s ¼ �Gdms

R�3

Z
mp

1� 3

2
x� þ 15

8
x�2

� �
ðR� � rpÞdmp: ð13Þ

We integrate Eq. (13) over the entire mass of the primary.
Because the primary is an oblate spheroid, its rotation
around the short axis does not affect the gravity acting
on any elements in the secondary. In other words, the grav-
ity is independent of the spin of the primary. We describe
the motion of the system in the inertial frame. In this

frame, R� is given as ðR�
x ;R

�
y ;R

�
z ÞT , and we obtain

df s ¼�Gmpdms

R�3 R� � 3a2p
10

ApR
�

R�2 þ 3a2p
2

fðR�2
x þR�2

y Þþ v2R�2
z g

R�

R�4

" #
;

ð14Þ

where ap is the geometric semi-major axis of the primary, v
is the primary’s oblateness, i.e., the ratio of the short axis to
the long axis, and Ap is a matrix defined as
Ap ¼
4þ v2 0 0

0 4þ v2 0

0 0 2þ 3v2

2
64

3
75: ð15Þ

The primary’s rotation does not change this matrix.
The next step is to integrate Eq. (14) over the entire mass

of the secondary. It is necessary to consider the attitude of
the secondary. Because we prefer to describe the sec-
ondary’s inertia integrals in the frame fixed on the sec-
ondary, we use a transformation process from the body-
fixed frame to the inertial frame. We obtain the second-
order form of the gravity force acting on the secondary as

f s ¼
R
s df s;

	 � Gmpms

R3
c

Rc þ 3a2pð1�v2Þ
10

URc
R2
c

h
þ 3a2sR

T
c AsRcI

2R4
c

� 3a2s ðdsIþ2AsÞ
10R2

c

n o
Rc

i
:

ð16Þ

where as is the geometric semi-major axis of the secondary,
n is the secondary’s elongation, i.e., the ratio of the inter-
mediate axis to the long axis, I is the identity matrix, ds
is given as ds ¼ 1þ 2n2, and

U ¼
1 0 0

0 1 0

0 0 3

2
64

3
75: ð17Þ

This matrix comes from the fact that the primary is an
oblate body that is symmetric along the in-plane directions.
Thus, it describes a force contrast between the in-plane
components and the out-of-plane component. Also, As is
given as

As ¼
cos2 hs þ n2 sin2 hs ð1� n2Þ cos hs sin hs 0

ð1� n2Þ cos hs sin hs n2 cos2 hs þ sin2 hs 0

0 0 n2

2
64

3
75;
ð18Þ

where hs is the rotational angle of the secondary in the iner-
tial frame. Because the motion of this system is assumed to

be planar, we write Rc as ½Rcx;Rcy ; 0�T , and thus the z com-
ponent is always zero in Eq. (16).

Similarly, the second-order expression of the torque act-
ing on the secondary is computed using Eq. (13), which is
given as

ss ¼
Z
s
rs � df s 	 � 3Gmpmsa2s

5R5
c

Rc � AsRc: ð19Þ

The equation of rotational motion is then given as

Is _Xs þXs � IsXs ¼ � 3Gmpmsa2s
5R5

c

Rc � AsRc: ð20Þ

Because the primary and secondary are axisymmetric, the
rotational motion along the x and y axes is always zero.
Therefore, only the motion in the z axis is a critical compo-
nent in this problem and is given as
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Isz _xs ¼ 3Gmpmsa2s ð1� n2Þ
10R5

c

�2RcxRcy cos2hs þðR2
cx �R2

cyÞ sin2hs
n o

;

ð21Þ
_hs ¼xs; ð22Þ
where I sz ¼ msa2s ð1þ 2n2Þ=5, and xs is the spin rate of the
secondary.

If the spin state is synchronized with the orbital motion,
xs is constant and identical to the rate of the orbital
motion. Considering that the secondary’s long axis points
towards the COM of the primary, we obtain the orbit
speed of the system. Assuming that the mutual gravity
force computed from Eq. (16) is balanced with the centrifu-
gal force, we obtain the relative speed when the secondary’s
rotation is synchronized with its orbit, vsyn, as

vsyn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gðmp þ msÞ

Rc
1þ 3a2pð1� v2Þ

10R2
c

þ 3a2s ð1� n2Þ
5R2

c

� �s
:

ð23Þ
The energy of this system is conserved and described as

E ¼ K þ U ; ð24Þ
where E is the total energy, K is the kinetic energy, and U is
the potential energy of the system. These quantities are as
follows:

K ¼ 1

2

mpms

mp þ ms
ð _R2

cx þ _R2
cyÞ þ

1

10
msa2s ð1þ n2Þx2

s ; ð25Þ

U ¼ �Gmpms

Rc
þ 1

10

Gmpms

R3
c

a2pð2þ v2Þ � 3
10

Gmpms

R3
c

a2p

þ 1
10

Gmpms

R3
c

a2s ð1þ 2n2Þ � 3
10

Gmpms

R3
c

a2sfR2
cxðcos2 hs þ n2 sinhsÞ

þ2RcxRcyð1� n2Þcoshs sinhs þR2
cxðn2 cos2 hs þ sinhsÞ:

ð26Þ

For Eq. (25), the first term and the second term on the
right-hand side are the translational effect of the relative
motion and the rotational effect of the secondary, respec-
tively. We do not consider the rotational effect of the pri-
mary because it is independent of the mutual motion in
this problem. Also, Eq. (26) is obtained by integrating f s
in Eq. (16) with respect to Rc. Also, the angular momentum
in the out-of-plane direction is given as

H ¼ mpms

mp þ ms
ðRcx

_Rcy � Rcy
_RcxÞ þ 1

5
msa2s ð1þ n2Þxs: ð27Þ

Note that this model can only describe the two-
dimensional motion if either v or n has a non-unity value.
The operations regarding inertia integrals from Eqs. (14)–
(16) removed the components for the rotational orientation
in the out-of-plane direction to simplify the present discus-
sion. However, because the out-of-plane mode does not
contribute to the mutual orbit period change (Cheng
et al., 2016; Hirabayashi et al., 2017), we use the derived
forms as the second-order model. Also, when v ¼ n ¼ 1,
this model becomes identical to the sphere-sphere model.
2.4. High-order inertia-integral model

While computational burden increases, including
higher-order terms of the inertia integrals in Eq. (4)
increases the accuracy of the gravity calculation because
this process accounts for the smaller perturbation due to
the gravity variation. The model was developed by Hou
et al. (2017) and applied to the mutual dynamics of Didy-
mos by Davis and Scheeres (2017). Unlike the second-order
model discussed in Section 2.3, this model takes into
account the irregular shapes of Didymos (Davis and
Scheeres, 2017). In this section, we briefly summarize this
high-order gravity calculation technique. We note other
models that describe mutual dynamics of irregularly
shaped objects (e.g. von Braun, 1991; Maciejewski, 1995;
Werner and Scheeres, 2005; Fahnestock and Scheeres,
2006; Richardson et al., 2009; Hirabayashi and Scheeres,
2013; Naidu et al., 2016).

Given the inertia integrals defined in Eq. (4), we obtain
the mutual potential of the system. If we consider an infi-
nite number of the order terms, we can describe the mutual
potential as (Hou et al., 2017)

U ¼ �G
X1
n¼0

1

Rnþ1
c

Un; ð28Þ

where Un is the order term of the mutual potential, which is
given as

Un ¼
Xn

kð2Þ¼n�2½n2�
tnk

X
ði1 ;i2 ;i3Þði41;i5 ;i6Þðj1 ;j2 ;j3Þðj4 ;j5 ;j6Þ

akði1 ;i2 ;i3Þði4 ;i5 ;i6Þb
n�k
ðj1 ;j2 ;j3Þðj4 ;j5 ;j6Þ

ei1þi4
1 ei2þi5

2 ei3þi6
3 T ði1þj1Þ;ði2þj2Þ;ði3þj3Þ

p T 0ði4þj4Þ;ði5þj5Þ;ði6þj6Þ
s ;

ð29Þ

where n is the order, kð2Þ means that k steps up with a size
of 2, and ½n=2� defines the integer part of n=2 (Hou et al.,

2017). tnk ; ak, and bk are recursive parameters. e1; e2, and
e3 are the components of the unit vector of Rc in the rotat-
ing frame. Also, T 0

s means that the inertia integral is given
in the frame rotating with the primary. In addition,P6

q¼1iq ¼ k and
P6

q¼1jq ¼ n� k.
Computation of the inertia integral parameters is

accomplished in a parallel manner to spherical harmonics,
wherein a shape model is decomposed into a set of tetrahe-
dra assumed to have uniform density, and the inertia inte-
gral of each tetrahedron is summed to compute the inertia
integrals for a given shape model (Hou et al., 2017). For
convenience, the resulting inertia integrals are computed
in the rotating frame of each asteroid. Throughout compu-
tation of the mutual gravity potential and torques, the iner-
tia integrals of the secondary are rotated into the frame
fixed on the primary, which requires additional computa-
tion of the inertia integral tensor, T 0

s (Hou et al., 2017).
Also, the mutual gravity torques are computed applying
a technique that takes partial derivatives of the potential
with respect to the components of a direction cosine matrix



1 The DART impactor is planned to hit the center of figure of the
secondary, minimizing the torque acting on it (Cheng et al., 2018).
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and then considers cross products of them with the compo-
nents of a direction cosine matrix (Maciejewski, 1995; Hou
et al., 2017). To describe the mutual motion between the
primary and the secondary, we apply the theory of the full
two-body problem (e.g. Scheeres, 2002; Fahnestock and
Scheeres, 2006).

3. Shape deformation modeling

The goal of this research is to analyze how the shape
deformation process would change the mutual orbit period
after the DART impact as compared to the case without an
impact. We add the shape deformation process into the
mutual orbit dynamics models described in Section 2. A
key issue is that shape deformation highly depends on the
DART impact condition and the physical conditions of
the primary and the secondary. In this work, instead of
proposing the detailed deformation processes, we analyze
the mutual orbit period change considering a possible
deformation scenario of the primary and the secondary.
Importantly, in the following deformation scenario, we
assume that the volume is conserved, considering a con-
stant bulk density.

The primary may experience centrifugal-force-driven
shape deformation that is induced by collisions of
DART-impact-driven ejecta with the surface of the pri-
mary. The primary’s spin period is reported to be 2.26 h
(e.g. Michel et al., 2016), implying that the primary may
be close to structural failure, depending on the density
and strength (Zhang et al., 2017; Hirabayashi et al.,
2017). Once the DART impactor hits the surface of the sec-
ondary, ejecta from the DART impact site orbit the sys-
tem. Some may escape from the system, some may fall
back, and the rest may fall on the primary (Yu et al.,
2017; Yu and Michel, 2018). Under these conditions, the
deformation process of the top-like-shaped primary may
be driven by surface shedding (e.g., Walsh et al., 2008)
and internal deformation (e.g., Hirabayashi and Scheeres,
2014), a combination of which may make the shape more
oblate (Hirabayashi, 2015). Thus, we consider this mecha-
nism to be the main deformation process of the primary. In
the mutual dynamics models, we change the oblateness of
the primary under constant volume. The second-order
model has the oblateness parameter, v, to control this con-
dition, while the polyhedron-shape-based model changes
the aspect ratio of the primary under constant volume.

On the other hand, it is reasonable to consider that the
secondary’s spin state is synchronized with its orbit (Pravec
et al., 2006; Pravec et al., 2016). Because the mutual orbit
period of the system is 11.92 h (Michel et al., 2016), the
spin condition may not contribute to the deformation of
the secondary. Instead, the DART impactor may cause
the secondary to deform. When the DART spacecraft hits
the surface of the secondary, the shock wave propagates
through the interior of the secondary. Here, we consider
the secondary’s deformation only by considering its elon-
gation. In the following discussion, we only use the
second-order model to analyze the effect of the secondary’s
shape deformation on the mutual orbit period change.
Thus, we change the elongation parameter, n, i.e., the ratio
of the secondary’s semi-minor axis to its semi-major axis,
to model the secondary’s deformation. If the secondary
becomes less elongated after the DART impact, n becomes
larger, i.e., closer to 1. If the secondary becomes more elon-
gated, n should be smaller.

We also introduce an assumption that after the DART
impact occurs, the bodies immediately change their shapes
but keep their original spin rate.1 However, this assump-
tion may not be reasonable because it may take some time
for Didymos to deform completely. Thus, the mutual
dynamics interaction during the deformation process may
cause additional effects on the mutual orbit period change.
We leave this analysis as our future work. We also note
that the present work does not take into account the tidal
dissipation effect on the mutual dynamics. Shape irregular-
ity in a binary system causes the secondary’s libration
(Scheeres et al., 2006). The timescale of tidal dissipation
is on the order of million years for a binary system whose
the primary’s size is about a few hundred kilometers
(Goldreich and Sari, 2009); however, it is highly dependent
on the mass ratio of the system and tidal dissipation and
may range from a thousand years to a million years
(Jacobson and Scheeres, 2011).

4. Results

We use the second-order mutual dynamics model as our
main numerical tool to analyze how the shape and shape
deformation of Didymos affect the mutual orbit period
change. Before discussing the results, we conduct three
comparison tests:

� First, we compare the second-order model with the
sphere-sphere model.

� Second, we compare the second-order model with the
polyhedron-shape-based mutual dynamics model.

� Third, we compare the second-order model with the
high-order model. Note that in these comparison tests,
we assume b ¼ 1; in other words, the discussions do
not consider that ejecta delivers additional momentum
to the secondary.

After these comparison tests, we analyze the shape
effects on the mutual orbit period change, considering the
following three cases:

� First, we investigate how the mutual orbit period change
is affected by the b parameter and shape deformation of
the primary.
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� Second, the mutual orbit period change is discussed con-
sidering the shape of the secondary and variations in the
b parameter. In this case, we do not take into account
the shape deformation process of the secondary.

� Third, we study the effects of shape deformation of the
secondary on the mutual orbit period.

The DART impact configuration is given in Fig. 4. The
upper panel describes the DART impact configuration dis-
played from the horizontal view, while the lower panel
illustrates the vertical view. The DART impact angle is
defined as an angle between the DART spacecraft’s incom-
ing direction and the horizontal direction of the mutual
orbit plane. Also, we assume that the secondary’s velocity
direction is opposite to the direction of the DART space-
craft incoming velocity projected onto the mutual orbit
plane. Note that Section 4.1.2 shows another DART
impact case based on the condition introduced by
Hirabayashi et al. (2017).

We introduce how to compute the mutual orbit period
change from our numerical results. We first simulate the
mutual motion before the DART impact for the timespan
that is 10 times as long as the original orbit period. Second,
we compute the mutual dynamics by taking into account
shape deformation of the system for the same simulation
period. Third, we calculate the final true anomalies in these
cases and find a difference between them. Then, we divide
Fig. 4. DART impact conditions. DART impact angle defines an angle
between the spacecraft incoming direction and the horizontal direction of
the mutual orbit plane. The red arrow and the blue arrow show the
velocity vectors of the secondary and the DART impactor, respectively.
Assuming the primary and the secondary to be spheres, we obtain the
speed of the secondary relative to that of the primary as � 17:3 cm�s�1,
which is negligible compared to that of the DART impactor. (For
interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
the difference by 10 to obtain the mutual period change.
Note that when we discuss the mutual orbit period change
due to shape deformation, we use subscripts b and a for the
shapes before and after the DART impact, respectively.
For example, na means the secondary’s elongation after
the DART impact, while vb defines the primary’s oblate-
ness before the DART impact.

4.1. Comparison tests

4.1.1. Comparison of the second-order model with the sphere-

sphere model

This section discusses a case in which the primary and
secondary are spheres. Cheng et al. (2016) analyzed the
mutual orbit period change by considering this condition.
To produce results, we use Eq. (1) and the second-order
model that sets v and n as unity values. In this comparison
test, we first recover the results from Cheng et al. (2016).
The b parameter is assumed to be unity, and other param-
eters from Cheng et al. (2016) are listed in Table 2.

Using the second-order model with v ¼ n ¼ 1, we obtain
the mutual orbit period change as �4:4309 min (Table 2),
which is consistent with Cheng et al. (2016). The minus sign
means that the mutual orbit period after the DART impact
becomes shorter than the original orbit period. The out-of-
plane component of the initial velocity is considered in this
case but does not affect the mutual orbit period change,
which is consistent with earlier works (Cheng et al., 2016;
Hirabayashi et al., 2017). We also use Eq. (1) to obtain
the mutual orbit period change as �4:4393 min, which is
slightly different from the result from the second-order
model. This difference comes from the second-order model
that considers a geometric phase angle, i.e., the true anom-
aly, and averages it over 10 orbit periods to obtain the
mutual orbit period change. The eccentricity is no longer
zero after the DART impact, indicating that the second-
Table 2
Simulation conditions for the case when the primary and the secondary
are spheres. The second-order model is used to derive these quantities. The
second column describes the simulation condition used by Cheng et al.
(2016), while the third column shows the latest impact condition (Cheng,
2018). The minus sign of the mutual orbit period change indicates that the
mutual orbit period becomes short after the DART impact. In Parameters,
‘‘P” stands for the primary while ‘‘S” indicates the secondary.

Parameters Cheng et al. (2016) Latest condition Units

b parameter 1.0 1.0 [–]
Initial speed 1:7281� 10�1 1:7277� 10�1 m�s�1

Initial separation 1.18 1.18 km
P initial oblateness 1.0 1.0 [–]
P initial mass 5:232� 1011 5:23� 1011 kg
P deformation No No [–]
S initial elongation 1.0 1.0 [–]
S initial mass 4:8� 109 4:8� 109 kg
S deformation No No [–]
DART mass 277 558 kg
DART impact speed 7.030 5.975 km�s�1

DART impact angle 27.5 15.803 deg
Orbit period change �4.4309 �8.1832 min



Table 3
Simulation conditions for the comparison test of the second-order model
and the polyhedron-shape-based model.

Parameters Second-order
model

Polyhedron-based
model

Units

b parameter 1.0 1.0 [–]
Initial speed 1:7259� 10�1 1:7278� 10�1 m�s�1

Initial separation 1.18 1.18 km
P initial mass 5:12� 1011 5:12� 1011 kg
P initial bulk density 2100 2100 kg�m�3

P initial spin period [–] 2.26 h
P initial oblateness 0.939 [–] [–]
P initial shape Spheroid Didymos [–]
P deformation Yes Yes [–]
S initial mass 4:76� 109 4:76� 109 kg
S initial bulk density 2100 2100 kg�m�3

S initial spin period [–] [–] h
S initial elongation 1.0 [–] [–]
S initial shape Sphere Sphere [–]
S deformation No No [–]
DART mass 500 500 kg
DART impact speed 6 6 km�s�1

DART impact angle 27.5 27.5 deg

2 The size of 1994 KW4’s secondary is rescaled to fit that of Didymos’
secondary.
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order approach does not correctly provide an accurate
value of the mutual orbit period change. However, because
the difference is less than 0:2%, we consider this error to be
negligible. We confirm that the second-order model used in
this work is consistent with the sphere-sphere model devel-
oped by Cheng et al. (2016) and thus use the second-order
model with v ¼ n ¼ 1 to produce results for the sphere-
sphere model in the following discussion.

We next use the up-to-date values of the DART impact
condition as of May 14, 2018 (Cheng, 2018). The neutral
mass of the DART impactor is 558 kg, the impact speed
is 5.975 km�s�1, and the impact angle is 15.803 deg
(Cheng, 2018). This update mainly results from a new
implementation of an ion engine thrusting system on the
DART spacecraft (Cheng et al., 2018). We use these values
to compute the mutual orbit period change (Table 2).
Applying the second-order model with v ¼ n ¼ 1 to the
present case, we obtain the mutual orbit period change as
�8:1832 min. Therefore, under the assumption of b ¼ 1,
the latest prediction of the magnitude of the mutual orbit
period change is two times as large as the original predic-
tion (Cheng et al., 2016) , which is mainly caused by the
change of the DART impactor’s mass.

4.1.2. Comparison of the second-order model with the

polyhedron-shape-based mutual dynamics model

Here, we compare the second-order model with the
polyhedron-shape-based mutual dynamics model devel-
oped by Hirabayashi et al. (2017). In this comparison test,
to follow the analysis by Hirabayashi et al. (2017), we con-
sider shape deformation of the primary while assuming
that the secondary is perfectly spherical. Hirabayashi
et al. (2017) analyzed two impact cases to test how the
change in the mutual orbit period becomes different due
to the direction of the DART impact on the secondary.
The first case was when the DART spacecraft collides with
the secondary perpendicularly, defined as Case A, (also see
Fig. 7 in Hirabayashi et al. (2017)). The second case was
when the DART spacecraft experiences a nearly head-on
collision, defined as Case B, which is closer to the currently
planned DART impact configuration (also see Fig. 6 in
Hirabayashi et al. (2017)). In both cases, the DART impact
angle is 27.5 deg (Cheng et al., 2016).

To recover the results from Hirabayashi et al. (2017) by
using the second-order model, we set up the simulation
condition (Table 3). Applying the 2100-kg�m�3 bulk den-
sity used by Hirabayashi et al. (2017), we obtain the com-
ponents’ volumes from their masses. We also define the
initial oblateness of the primary, vb, as 0.939
(Hirabayashi et al., 2017). Note that as discussed before,
the second-order model does not consider the out-of-
plane mode when either v or n is not unity; however, this
effect is negligible (Hirabayashi et al., 2017).

To compare our model with the model by Hirabayashi
et al. (2017), we show the mutual orbit period change as
a function of the primary’s oblateness after the DART
impact, va (Fig. 5). The magnitude of the mutual orbit per-
iod change in Case A is smaller than that in Case B.
Because the velocity change in the tangential direction in
Case B further pushes the secondary back, the semi-
major axis of the system decreases, causing the mutual
orbit period to become shorter. These results are consistent
overall although the second-order model deviates from the
model by Hirabayashi et al. (2017) at va ¼ 0:4. This devia-
tion comes from the fact that in contrast to the axisymmet-
ric deformation assumption of the second-order model,
shape deformation of the polyhedron shape model may
no longer be perfectly symmetric. This discrepancy arises
when we compute the true anomalies in these models, pro-
viding different mutual orbit period changes.

4.1.3. Comparison of the second-order model with the high-

order inertia-integral mutual dynamics model

In this comparison test, we use the second-order model
and the high-order inertia-integral mutual dynamics model.
We do not take into account shape deformation of the pri-
mary and the secondary. Using these two models, we ana-
lyze the mutual motion of the system before and after the
DART impact. The simulation settings are defined based
on the high-order model as it is difficult for us to control
the initial conditions due to shape complexity (Table 4).
Before discussing this exercise, we show the mutual orbit
period change when both the primary and the secondary
are spherical. Using the second-order model with
v ¼ n ¼ 1, we obtain the mutual orbit period change as
�7:0622 min.

The high-order inertia-integral mutual dynamics model
takes into account the shape of Didymos’ primary
(Michel et al., 2016; Naidu et al., 2016) and that of 1999
KW4’s secondary (Ostro et al., 2006).2 The inertia integrals



Fig. 5. Comparison between the results from the second-order model and those from the polyhedron-shape-based mutual dynamics model by Hirabayashi
et al. (2017). The x axis is the primary’s oblateness after the DART impact, va. The secondary is considered to be a perfect sphere. The circles are the
results from Hirabayashi et al. (2017). The yellow circles indicate the results in Case A, while the purple circles describe those in Case B. The lines show the
results from the second-order model. The blue line shows Case A, while the red line describes Case B. Hi2017 indicates the model used by Hirabayashi
et al. (2017). Note that the observationally driven orbital period is 11.92 h (Michel et al., 2016). (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

Table 4
Simulation conditions for the comparison test of the second-order model and the high-order model. ‘‘Sphere” means the case when the primary and the
secondary are perfectly spherical, which is recovered by the second-order model with v ¼ n ¼ 1. ‘‘High” means the high-order model. ‘‘Second” means the
second-order model. For the primary’s shape, ‘‘Didymos” means the primary of Didymos (Michel et al., 2016; Naidu et al., 2016). For the secondary’s
shape, ‘‘1999 KW4” means the rescaled secondary of 1999 KW4 (Ostro et al., 2006). In the second-order model, we only consider the horizontal
component of the DART impact velocity to avoid the out-of-plane direction.

Parameters Sphere High Second (Case 1) Second (Case 2) Second (latest) Units

b parameter 0 0 0 0 0 [–]
Initial speed 1:7313� 10�1 1:7313� 10�1 1:7313� 10�1 1:7313� 10�1 1:7278� 10�1 m�s�1

Initial separation 1.183 1.183 1.183 1.183 1.18 km
P initial mass 5:2290� 1011 5:2290� 1011 5:2290� 1011 5:2290� 1011 5:23� 1011 kg
P initial bulk density 2146 2146 2146 2146 2100 kg�m�3

P initial spin period [–] 2.26 [–] [–] [–] h
P initial oblateness 1.0 [–] 0.939 0.965 0.965 [–]
P initial shape Sphere Didymos Spheroid Spheroid Spheroid [–]
P deformation No No No No No [–]
S initial mass 4:9611� 109 4:9611� 109 4:9611� 109 4:9611� 109 4:8� 109 kg
S initial bulk density 2146 2146 2146 2146 2100 kg�m�3

S initial spin period [–] 11.92 11.92 11.92 11.89 h
S initial elongation 1.0 [–] 0.5765 0.65 0.65 [–]
S initial shape Sphere 1999 KW4 Ellipsoid Ellipsoid Ellipsoid [–]
S deformation No No No No No [–]
DART mass 500 500 500 500 558 kg
DART impact speed 6 6 6 6 5.975 km�s�1

DART impact angle 27.5 27.5 27.5 27.5 15.803 deg
Orbit period change �7:0622 �7:9697 �7:2561 �7:2061 �8:4725 min

M. Hirabayashi et al. / Advances in Space Research 63 (2019) 2515–2534 2525
are computed up to fourth order based on the accuracy
analysis performed by Davis and Scheeres (2017). The ini-
tial velocity is selected as the Keplerian orbit velocity. The
rotational states of the primary and the secondary are
assumed to be in the principal axis mode initially; however,
because of the mutual motion, the spin conditions of these
objects immediately deviate from the original states. Based
on the parameters given in Table 4, the high-order model
gives a mutual orbit period change of �7:9697 min.

We compare this mutual orbit period change with the
results from the second-order model. Here, we output the
motion in 20 orbit periods. To recover the mutual motion
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obtained from the high-order model using the second-order
model, we consider two pairs of v and n. The first pair is
determined using the geometric conditions of the primary
and the secondary. The second pair is obtained attempting
to make the mutual motion derived from the second-order
model consistent with that from the high-order model.
Note that as we showed in Section 2, a difference between
these models is that while the second-order model uses
ideal shapes (an oblate spheroid and a prolate ellipsoid),
the high-order model takes into account detailed shapes
of the Didymos system.

We first produce the mutual motion from the high-order
model by using the second-order model with geometrically
determined v and n. Measuring the aspect ratios of Didy-
mos’ primary and 1999 KW’s secondary, we obtain v as
0.939 (Michel et al., 2016; Hirabayashi et al., 2017) and n
Fig. 6. Numerical simulation comparison of the second-order model and the h
and n are determined using a geometric measurement of the shapes and are defi
the position in the x axis in kilometers, and the bottom panel gives the rotationa
while the blue line is the high-order model. Panel (b) provides the difference
references to colour in this figure legend, the reader is referred to the web ver

Fig. 7. Numerical simulation comparison of the second-order model and the h
and n are defined as 0.939 and 0.5765, respectively. The format is the same as
as 0.5765 (Ostro et al., 2006). We compute the mutual orbit
period change as �7:2561 min (Case 1). This result has an
error within 9%, compared to the mutual orbit period
change from the high-order model (Table 4). Compared
to the sphere-sphere model that gave the �7:0622-min
change, the second-order model provides a mutual orbit
period change of �7:2561 min and make it closer to the
estimate by the high-order model, i.e., �7:9697 min.

However, the mutual motion from the second-order
model gradually deviates from that from the high-order
model. Figs. 6 and 7 describe the mutual motion in the
cases before and after the DART impact, respectively. In
each figure, Panel (a) describes the x-component of the
position in the inertial frame (top) and the rotational angle
in the inertial frame (bottom), while Panel (b) shows the
solutions from the second-order model relative to those
igh-order model. This figure shows the motion before the DART impact. v
ned as 0.939 and 0.5765, respectively. In Panel (a), the top panel describes
l angle of the secondary in degrees. The red line is the second-order model,
s between the solutions from the two models. (For interpretation of the
sion of this article.)

igh-order model. This figure shows the motion after the DART impact. v
Fig. 6.
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from the high-order model. It is found that the relative
translational motion and the rotational motion deviate
up to 0.5 km and 40 deg, respectively, after 20 original
orbit periods. The error oscillates, and its amplitude grad-
ually increases (Figs. 6 and 7). We interpret this discrep-
ancy as ignorance of the effects of the detailed shapes on
the mutual motion in the second-order model.

We next find v and n such that the mutual condition
from the second-order model is consistent with that from
the high-order model. Finding proper values of v and n,
we minimize the difference between the second-order model
and the high-order model in the 20-orbit-period simulation
time. This case is denoted as Case 2. We find that when
v ¼ 0:965 and n ¼ 0:65, the deviation becomes minimum.
Figs. 8 and 9 describe the results in Case 2. The format is
the same as for Figs. 6 and 7. The difference of the rota-
tional angle is less than 10 deg after 20 orbit periods, and
Fig. 8. Numerical simulation comparison of the second-order model and the h
and n are obtained finding the minimum deviation between the second-order m
The format is the same as Fig. 6.

Fig. 9. Numerical simulation comparison of the second-order model and the h
and n are defined as 0.965 and 0.65, respectively. The format is the same as F
that of the position is about 0.05 km after that time. Using
this configuration, we obtain the mutual orbit period
change as �7:2061 min, which includes an error of 11%.

The mutual motion in Case 2 is more consistent with the
result from the high-order model than that in Case 1; how-
ever, the mutual orbit period change in Case 1 is closer to
the �7:9697-min change from the high-order model than
that in Case 2. This discrepancy comes from the fact that
the second-order model gradually deviates from the high-
order model in the cases both before and after the DART
impact. These deviations are canceled out when the mutual
orbit period change is calculated. We find that tuning on v
and n does not improve the mutual orbit period change.
This test indicates that the second-order model has an error
of � 10% for the estimate of the mutual orbit period
change. Finally, we observe secular perturbation of the rel-
ative rotation angle in all the cases (Figs. 6–9). The main
igh-order model. This figure shows the motion before the DART impact. v
odel and the high-order model and defined as 0.965 and 0.65, respectively.

igh-order model. This figure shows the motion after the DART impact. v
ig. 6.
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driver is, again, the shapes of the modeled Didymos sys-
tem. A small inconsistency in the shape models causes devi-
ation in the rotational motion, inducing further orbital
perturbation. The sensitivity of the currently used models
to such complex perturbation will be explored in our future
work.
4.2. Analysis using the second-order model

4.2.1. Effects of the primary’s shape deformation and the b
parameter on the mutual orbit period change

This section explores the mutual orbit period change,
taking into account shape deformation of the primary
Table 5
Simulation conditions of the second-order model for Fig. 10. The initial
speed is defined using Eq. (23) to make the secondary’s rotation
synchronized with its orbit.

Parameters Values Units

b parameter 0:5� 2:5 [–]
Initial speed Synchronous m�s�1

Initial separation 1.18 km
P initial mass 5:23� 1011 kg
P initial bulk density 2100 kg�m�3

P initial spin period [–] h
P initial oblateness 0.939 [–]
P initial shape Spheroid [–]
P deformation Yes [–]
S initial mass 4:8� 109 kg
S initial bulk density 2100 kg�m�3

S initial spin period Synchronous h
S initial elongation 1.0, 0.7 [–]
S initial shape Ellipsoid [–]
S deformation No [–]
DART mass 558 kg
DART impact speed 5.975 km�s�1

DART impact angle 15.803 deg

Fig. 10. Mutual orbit period change as a function of the b parameter and the
n ¼ 1:0, while Panel (b) plots the mutual orbit period change of n ¼ 0:7 in co
largest change. (For interpretation of the references to colour in this figure leg
but fixing the elongation of the secondary. This exercise
extends the work done by Hirabayashi et al. (2017). Specif-
ically, we consider that the b parameter and the oblateness
of the primary after the DART impact, va, are free param-
eters, given a constant value of the elongation of the sec-
ondary, nð¼ nb ¼ naÞ. The primary’s oblateness before the
DART impact, vb, is fixed at 0.939. The conditions of the
DART impact are described in Table 5. The range of the
b parameter is between 0.5 and 2.5, covering a prediction
by Walker et al. (2017), which is b ¼ 1:0� 1:69. We also
investigate n ¼ 1:0 and 0.7 to see how the elongation of
the secondary contributes to the mutual orbit period
change.

Fig. 10 plots the mutual orbit period change at a given
elongation of the secondary. Fig. 10(a) describes the case
of n ¼ 1:0. The horizontal axis is the b parameter, while
the vertical axis is va. It is found that the magnitude of
the mutual orbit period change increases when the pri-
mary’s oblateness becomes small, and the b parameter
becomes large. In the considered range (0:5 6 b 6 2:5
and 0:70 6 va 6 0:939), the most extreme case has a
mutual orbit period change of �45 min; therefore, these
parameters always make the mutual orbit period short.

Fig. 10(b) shows the mutual orbit period change of
n ¼ 0:7 in comparison with that of n ¼ 1:0. The general
behavior is that as the elongation of the secondary
increases (n becomes small), the mutual orbit becomes
short. In the considered range of n and b, the magnitude
of the relative change is up to 1.2 min. However, the largest
change does not occur at the bottom-right (va ¼ 0:7 and
b ¼ 2:5) but is located at va ¼ 0:8 and b ¼ 2:5 (Panel
(b)); therefore, the difference of the mutual orbit period
change does not monotonically increases when v decreases
and b increases. This result indicates that the elongated sec-
primary’s oblateness after the DART impact. Panel (a) shows the case of
mparison with that of n ¼ 1:0. The red circle indicates the location of the
end, the reader is referred to the web version of this article.)



M. Hirabayashi et al. / Advances in Space Research 63 (2019) 2515–2534 2529
ondary’s rotation is coupled with its orbit (see
Section 4.2.2).

4.2.2. Effects of the secondary’s elongation and the b
parameter on the mutual orbit period

Here we investigate the effect of the secondary’s elonga-
tion and the b parameter. We do not change the oblateness
of the primary, v, and the elongation of the secondary, n,
before and after the DART impact. vð¼ vb ¼ vaÞ is fixed
at 0.939 through this analysis; on the other hand, we con-
sider the range of nð¼ nb ¼ naÞ being between 0.5 and 1.0.
Again, subscripts b and a indicate the conditions before
and after the DART impact, respectively. At the initial
condition, the secondary’s orbit is synchronized with its
rotation. Table 6 describes the simulation settings in this
exercise. Fig. 11 shows the mutual orbit period change as
a function of the secondary’s elongation. We give four
Table 6
Simulation conditions of the second-order model for Fig. 11.

Parameters Values Units

b parameter 1.0, 1.5, 2.0, 2.5 [–]
Initial speed Synchronous m�s�1

Initial separation 1.18 km
P initial mass 5:23� 1011 kg
P initial bulk density 2100 kg�m�3

P initial spin period [–] h
P initial oblateness 0.939 [–]
P initial shape Spheroid [–]
P deformation No [–]
S initial mass 4:8� 109 kg
S initial bulk density 2100 kg�m�3

S initial spin period Synchronous h
S initial elongation 0.5–1.0 [–]
S initial shape Ellipsoid [–]
S deformation No [–]
DART mass 558 kg
DART impact speed 5.975 km�s�1

DART impact angle 15.803 deg

Fig. 11. Mutual orbit period change as a function of the secondary’s
elongation. The lines show the results at different values of the b
parameter.
cases of the b parameter: 1.0, 1.5, 2.0, and 2.5. It is found
that the mutual orbit period change is almost proportional
to the b parameter.

We see that the difference between the maximum and
minimum orbit period changes at a constant value of b is
always within 1.5 min in the range of n being between 0.5
and 1.0 (Fig. 11). Also, the mutual orbit period change
does not proportionally evolve as a function of the sec-
ondary’s elongation. The general trend is that the mutual
orbit period change is almost constant at n’0:72 and
n/0:68. The mutual orbit period at n/0:68 is slightly
shorter than that at n’0:72. We attribute this trend transi-
tion to the change in the orbital and rotational modes in
these two regions because the secondary’s rotational oscil-
lation (libration) correlates with its orbital motion. We also
observe the peaks of the mutual orbit period change at
n ¼ 0:69. Fig. 12 shows the time evolution of the sec-
ondary’s orientation in three aspect ratio cases, n ¼ 0:55,
0.69, and 0.9, when b ¼ 2:5. The rotation of the secondary
is excited at n 	 0:69. This trend changes the orbital
motion, leading to different mutual orbit period changes.
However, because the secondary’s mass is only 1% of the
primary’s mass (the gravity from the primary is dominant),
the primary’s motion is not affected by the secondary’s
motion. In the considered range of n, therefore, although
perturbation occurs in the system, its magnitude is limited.
A detailed discussion of the mutual motion of a binary sys-
tem was given in earlier works (e.g. Jacobson and Scheeres,
2011).
4.2.3. Effects of the secondary’s shape deformation on the

mutual orbit period change

We finally discuss how the secondary’s shape deforma-
tion affects the mutual orbit period change. In this exercise,
we do not consider shape deformation of the primary; its
oblateness, vð¼ vb ¼ vaÞ, is fixed at 0.939 before and after
the DART impact. On the other hand, the secondary’s
elongation before the DART impact, nb, is not equal to
Fig. 12. Time evolution of the orientation of the secondary in 10 orbital
periods. We consider three cases of n, 0.55, 0.69, and 0.9, under b ¼ 2:5.



Table 7
Simulation conditions of the second-order model for Fig. 13.

Parameters Values Units

b parameter 1.0 [–]
Initial speed Synchronous m�s�1

Initial separation 1.18 km
P initial mass 5:23� 1011 kg
P initial bulk density 2100 kg�m�3

P initial spin period [–] h
P initial oblateness 0.939 [–]
P initial shape Spheroid [–]
P deformation No [–]
S initial mass 4:8� 109 kg
S initial bulk density 2100 kg�m�3

S initial spin period Synchronous h
S initial elongation 0.85, 0.90, 0.95, 1.0 [–]
S initial shape Ellipsoid [–]
S deformation Yes [–]
DART mass 558 kg
DART impact speed 5.975 km�s�1

DART impact angle 15.803 deg
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that after the DART impact, na, in this exercise. Other sim-
ulation parameters are given in Table 7. We choose four
values of nb: 0.85, 0.90, 0.95, and 1.0. Then, we compute
the mutual orbit period change as a function of na in the
range between 0.75 and 1.0 (Fig. 13). In this figure, the hor-
izontal axis is na, while the vertical axis is the mutual orbit
period change. The markers are the initial conditions of the
secondary’s elongation. If na > nb, the secondary becomes
less elongated. On the other hand, if na < nb, shape defor-
mation makes the secondary more elongated.

The results show that the variation in the secondary’s
aspect ratio, n, is a critical parameter that controls the
mutual orbit period change. If the secondary becomes
more elongated, i.e., na becomes smaller than nb, the
mutual orbit period becomes shorter than that in the case
when there is no shape deformation of the secondary. On
Fig. 13. Mutual orbit period change as a function of the secondary’s
elongation after the DART impact. Each line indicates the result for a
given elongation before the DART impact. The markers give the initial
elongation. The black dashed line describes the case when the primary and
the secondary are spheres, which is �8:1832 min from Table 2.
the other hand, if the secondary becomes less elongated,
the magnitude of the mutual orbit period change becomes
smaller. Because non-synchronized rotation triggered by
the DART impact consumes the angular momentum of
the system, this angular momentum exchange influences
the relative translational motion of the secondary, causing
the variations in the mutual orbit period change.

It is found that the slopes of the curves are almost sim-
ilar in all the cases of nb, implying that when the sec-
ondary’s mass is small, the mutual orbit period change
due to shape deformation is almost independent of the ini-
tial elongation of the secondary and is proportional to the
magnitude of shape deformation. From the derived slopes,
we compute that when the elongation changes 0.1 before
and after the DART impact, the magnitude of the mutual
orbit period change becomes � 1 min. Considering the
finding in Section 4.2.1, we see that while the mutual orbit
period change due to the secondary’s shape deformation is
limited compared to that due to the primary’s shape defor-
mation, it may be critical in the DART mission, depending
on the magnitude of the shape deformation process, as the
mission requirement is 7.3 s for the mutual orbital period
change determined by ground observations (Cheng, 2018).
5. Discussion

5.1. Consideration of high-order gravity terms

We used the shape model derived from radar observa-
tions in the high-order model, which we compared with
the second-order model that only took into account the
oblateness of the primary and the elongation of the sec-
ondary. The high-order model used the shapes of Didymos’
primary and 1999 KW4’s secondary (rescaled) and took
into account their gravity terms up to fourth order. Our
analysis showed that the second-order model had an error
of � 10% for calculation of the mutual orbit period change,
compared to the high-order model (Section 4.1.3). In the
present work, we made the mutual motion in the second-
order model reasonably consistent with that in the high-
order model by choosing proper values of the primary’s
oblateness, v, and the secondary’s elongation, n.

However, regardless of this analysis process, the mutual
orbit period change in the second-order model was not
consistent with that in the high-order model. Because the
difference of the mutual motion before and after the DART
impact needed to be taken into account in both the second-
order model and the high-order model, the mutual orbit
period change could not be improved simply by choosing
v and n in the second-order model. This fact implies that
even though the primary is relatively spheroidal and asym-
metric, the mutual motion of Didymos was complex, pro-
viding limited consistency between the second-order
model and the high-order model. Thus, consideration of
high-order terms of the gravity is necessary for the calcula-
tion of the mutual orbit period change.
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A critical issue is that observations planned for the
DART mission may be limited to determine the physical
properties of Didymos such as the size, shape, and bulk
density, leaving uncertainties of the b parameter. This fact
leads to an issue that while consideration of high-order
terms is critical to gravity computation, it may be difficult
to determine the essential parameters for calculation of
high-order gravity terms from the currently planned obser-
vations. Therefore, we emphasize that it is necessary to
develop not only high-order mutual dynamics models but
also simplified models and quantify how such simplified
models can provide the mutual orbit period change under
any circumstances with reasonable accuracy. In this sense,
the second-order model may be a useful tool that achieves
inexpensive computational burden and uses a limited num-
ber of free parameters. Finally, it is essential to observe this
asteroid in detail to give better constraints on its physical
properties. The Hera mission will provide substantial
opportunities to observe Didymos and give constraints
on the b parameter of this object.

5.2. Effects of the secondary’s shape on the mutual orbit

period change

If the secondary has an elongated shape, the orbital
motion correlates with the rotational motion.
Hirabayashi et al. (2017) used the shape model derived
from radar observations for the primary (Naidu et al.,
2016; Michel et al., 2016) but assumed the secondary to
be perfectly spherical. The present work took into account
the elongation of the secondary (Figs. 11 and 13). The
results showed that because the elongation of the sec-
ondary would add a change in the mutual orbit period,
the shape deformation process of the secondary further
influences the mutual orbit period change.

Because the secondary is no longer spherical in the pre-
sent work, the rotational condition is a crucial parameter
to investigate the mutual dynamics of Didymos. In the sim-
ulations performed in this study, the secondary’s rotation is
assumed to be initially synchronized with its orbital state.
Pravec et al. (2016) argued that for binary asteroids with
orbital periods shorter than 20 h, many of them have sec-
ondaries in 1:1 synchronous spin states. Also, most of the
synchronous secondaries showed librations with a small
amplitude (6 20 deg). Therefore, this assumption may be
reasonable for the mutual dynamics of Didymos.

The DART spacecraft is planned to impact the center of
figure of the secondary and provide minimized torque act-
ing on the secondary. Thus, while its orbit period becomes
shorter after the DART impact, the secondary’s rotational
period is not expected to change. Thus, the rotational
motion may be delayed from the orbital motion. This pro-
cess transfers angular momentum from the rotational
motion to the orbital motion, which provides further accel-
eration of the orbital motion. We demonstrated that the
mutual orbit period change would depend on the elonga-
tion of the secondary; however, the magnitude of the elon-
gation is less understood because of limited observational
constraints (Pravec et al., 2006).

The shape deformation process of the secondary con-
trols the mutual orbit period change. When the secondary
deforms, the inertia integrals change. Due to the mutual
interaction between orbit and rotation, the shape deforma-
tion process causes stronger libration than the case when
the secondary has no deformation. When the secondary
becomes less elongated than the original case, the mutual
orbit period becomes longer. On the other hand, when
the secondary becomes more elongated, the mutual orbit
period becomes shorter. These conditions result from a
transfer of the angular momentum between the secondary’s
rotation and its orbit. Unlike the shape deformation pro-
cess of the primary, which is mainly controlled by the cen-
trifugal force, the deformation process of the secondary
may be controlled by the DART impact process under
the assumption that the secondary is tidally locked.

5.3. Necessity of identifying the shape-deformation

scenario’s probability

We address that the present study and the previous work
done by Hirabayashi et al. (2017) do not provide a proba-
bility of whether the DART impact triggers the proposed
scenarios. The probability of this process highly depends
on the deformation process of Didymos. For the primary,
although Zhang et al. (2017) and Hirabayashi et al. (2017)
argued the primary’s sensitivity to structural or surface fail-
ure, these works agreed that this sensitivity would be
dependent on the internal structure. If the structure has
high mechanical strength, it is likely that the primary holds
its original shape (e.g. Rozitis et al., 2014; Hirabayashi and
Scheeres, 2014; Hirabayashi, 2015; Sánchez and Scheeres,
2016; Zhang et al., 2018). However, if the structure is weak,
the internal structure controls the magnitude and mode of
shape deformation.

Investigations require sophisticated skills and knowl-
edge for the impact process to give constraints on the mag-
nitude of the secondary’s shape deformation. Once a
projectile hits a terrestrial surface, the shock wave propa-
gates through the surface and crushes material (Melosh,
1989). A critical issue is that impact conditions highly
depend on the surface topography of a target asteroid
(Bruck Syal et al., 2016; Stickle et al., 2017; Tatsumi and
Sugita, 2018). The Deep Impact mission that demonstrated
an impactor colliding with comet Tempel 1 showed that
impact-generated ejecta on a small body might be depen-
dent on the subsurface porosity and obliquity (A’Hearn
et al., 2005). An experimental study showed that an oblique
impact generated a transient crater normal to the surface
topography, and the surface orientation controls the direc-
tion of its ejecta curtain (Aschauer and Kenkmann, 2017).
Thus, if the DART impactor hits a slope, asymmetric
ejecta may contribute to a change in the angular momen-
tum of the secondary, possibly causing the spin state evolu-
tion. When an impact crater forms on a porous surface,
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strong compaction may occur beneath its transient crater
(Wünnemann et al., 2006; Collins, 2014). Recent work also
considered tensile failure during the impact formation,
proposing that the porosity variation would occur even
in regions far from the impact site (Wiggins et al., 2018).

In addition to proposing the effect of the primary’s
shape deformation on the mutual orbit period change,
our work addresses an issue of possible shape deformation
of the secondary. The DART impact process is a main dri-
ver that causes the secondary to have landslides or shape
deformation. Taking into account the 7.3-s DART require-
ment for ground observations of the mutual orbit period
change (Cheng, 2018), we obtain the minimum thickness
of a surface movement that causes a mutual orbit period
change higher than the 7.3-s requirement as 70 cm. Consid-
eration of shape deformation of the Didymos system
requires a detailed understanding of topographic deforma-
tion processes, as well as information on the physical prop-
erties of Didymos. Sophisticated impact analyses are
necessary to identify the probability of whether Didymos
experiences shape deformation induced by the DART
impact. Such investigations provide constraints on the
mutual dynamics of Didymos, allowing for better estima-
tion of the b parameter.

6. Conclusion

We investigated how the mutual orbit period change of
binary near-Earth asteroid (65803) Didymos would be
affected by the original shape and the shape deformation
process due to the DART impact. In this work, we mainly
used the second-order inertia-integral mutual dynamics
model that assumed the primary and the secondary to be
an oblate spheroid and a prolate ellipsoid, respectively.
This second-order model was compared with a two-body-
problem-based model, a polyhedron-shape-based mutual
dynamics model that took into account the shape of Didy-
mos’ primary and a spherical secondary, and a high-order
inertia-integral mutual dynamics model that adopted Didy-
mos’ primary and 1999 KW4’s secondary. The second-
order model produced results consistent with the sphere-
sphere model and the polyhedron-shape mutual dynamics
model when the primary’s deformation is small. On the
other hand, this model had an error of � 10% for the com-
putation of the mutual orbit period change, compared to
the high-order inertia-integral mutual dynamics model that
considered the gravity terms up to fourth order. We then
analyzed the effects of the shapes on the mutual period
change. The results showed that the mutual orbit period
change was dependent on the shape condition. This study
suggests that the original shapes and shape deformation
due to the DART impact may play significant roles in
changing the mutual orbit period of Didymos, which may
affect the detailed assessment of the b parameter in the
AIDA mission. Further investigation shed light on the
detailed mechanism of the DART impact, providing a bet-
ter estimate of the b parameter.
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