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“The orbit of any one planet depends on the combined
motion of all the other planets, not to mention the actions
of all these on each other. To consider simultaneously all
these causes of motion and to define these motions by
exact laws allowing of convenient calculation exceeds,
unless I am mistaken, the forces of the entire human
intellect.” –Isaac Newton, 1687

We describe the keys to meeting the challenges of N-body
simulation: adaptive potential solvers, adaptive integration,
and volume renormalization. With these techniques and a
dedicated teraflop facility, simulation can keep pace with
observations of the universe. We also describe some problems
in simulating the formation and stability of planetary systems.

Introduction

Astrophysical N-body simulation
Simulations play multiple roles in science. They may
elucidate fundamental phenomena such as why proteins
fold quickly or how astrophysical structures from the solar
system through large-scale structure form and evolve.
Simulations can also be key for data assimilation—from
using isolated weather observations to build a full model
of the state of the earth�s ocean and atmosphere to using
observations of the universe to aid in our understanding of
its nature, including the roles of dark matter and energy.

On the cosmological side, we have epochal surveys
that have thrown down the gauntlet for cosmological
simulation. We want to use those surveys to understand
a variety of questions, the most important one at the
moment being the equation of state of dark energy. For
the solar system, we want to understand how trillions of
small rocky bodies form so few planets and how the inner

solar system is cleansed of small bodies so well that the
last major assault on the earth was when the dinosaurs
became extinct.

We have reached a key point in astrophysical N-body
simulation. N-body simulations were useful for showing
qualitative features in the classic “hypothesis-driven”
mode of science. A wonderful example was the classic
study of bridges, tails, and mergers by Toomre and
Toomre [1]. However, it was exceedingly dangerous to
use simulations in a “discovery science” mode [2], as
most “discoveries” were dominated by numerical artifacts,
leading for example to the belief that it was impossible
to form clusters of galaxies, systems that were bound
and stable with substructures that lasted for many
dynamical times. Simulations had always shown that all
substructure detonated spontaneously, forming a single
overmerged object. This matched galaxies and made
clusters mysterious. With higher-quality simulations, we
have discovered that substructure is preserved at all levels
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in the Cold Dark Matter (CDM) model, making the
observed overmerging in galaxies the mystery instead [3].
This result has been reproduced by a number of groups
and is now recognized as one of the lingering problems in
a theory that has worked extremely well on larger scales
[4]. We have also discovered that galaxies do influence
one another in clusters. When small disk galaxies
experience the tidal shocks of fast fly-by collisions by large
galaxies, they are shaken to elevated star formation for a
few Gyr (billion years) and then beaten into featureless
spheroidal galaxies. We called this galaxy harassment [5].
At the time of the discovery of galaxy harassment, the
consensus was that it had to be wrong because it was such
a big effect that it should not have been missed before.
However, it was easy to miss an effect that transformed
galaxies when the numerical artifacts were completely
destroying them!

In this paper, we describe the techniques that we use to
address these challenges and place them in the context
of cosmology as well as the formation and stability of
planetary systems. With planetary systems, the challenge is
to perform accurate integrations that retain Hamiltonian
properties for 1013 timesteps.

Cosmological N-body simulations
Simulations are required to calculate the nonlinear final
states of theories of structure formation as well as to

design and analyze observational programs. Galaxies have
six coordinates of velocity and position, but observations
determine just two coordinates of position and the line-of-
sight velocity that bundles the expansion of the universe
(the distance via Hubble�s law) together with random
velocities created by the mass concentrations (see Figure 1).
To determine the underlying structure and masses, and
separate the physical structures from those created in
velocity space, we must use simulations. If we want to
determine the structure of a cluster of galaxies, how large
must the survey volume be? Without using simulations
to define observing programs, the scarce resource of
observing time on $2 billion space observatories may be
misspent. Finally, to test theories for the formation of
structure, we must simulate the nonlinear evolution to the
present epoch.

This relationship to observational surveys defines our
goal for the next decade. The Sloan Digital Sky Survey
(SDSS) [6] will produce fluxes and sky positions for
5 � 107 galaxies with redshifts for the brightest 106.
Our ambitious observational colleagues have cut steel
and ground glass to survey a “fair volume” that we must
simulate, but we would need N � 1012 particles to do this
in a simplistic brute-force way. Direct summation of the
gravitational forces using fixed timesteps would take 1010

teraflop-years.

Figure 1

Left panel shows a spatial slice from a simulation of the universe. Clusters and filaments are clearly evident. Right panel shows the same 

slice as seen by an observer at the bottom left corner. The observer sees a position on the sky and measures a “redshift” that bundles the 

expansion of the universe together with peculiar velocities. As a result, all of the clusters show an elongation that points at the observer (a 

phenomenon known as “fingers of God”). With a simulation, we can easily produce either view. The observer sees only the view at the right.

Real space Redshift space

G. LAKE ET AL. IBM J. RES. & DEV. VOL. 48 NO. 2 MARCH 2004

184



We explain why this is a unique time to survey the
universe, as well as describing the technical breakthroughs
required to create a better survey of the cosmos. We then
present the three keys to a realistic floating-point
operation (flop) count:

1. Spatially adaptive potential solvers.
2. Temporally adaptive integrators.
3. Volume renormalizations.

Another goal of this paper is to define “high-quality
simulations” and the niche science that can be done with
N � 108 particles.

The progress of simulations
Over the last 20 years, the N of our simulations has
increased as log10N � 0.3(year � 1973). Figure 2 shows
the relative contributions of hardware and algorithms. The
power of computers has doubled every 18 months (open
circles, log scale to the right), with algorithmic advances
having a slightly more rapid pace (filled circles, log scale
to the left). Together, the doubling time in power is eight
months, accumulating to a trillionfold increase in less than
three decades. We cannot wait to simulate 1012 particles;
we would have to invent algorithms that are a thousand
times faster!

There are two constraints on our choice of N. The cost
of computing a full cosmological simulation is �105.7N4/3

flops. Here, we have scaled N within a fixed physical
volume. The scaling with N4/3 arises from the increased
time resolution needed as interparticle separation
decreases. This extra 1/3 power in the scaling with
resolution elements is an inherent part of nearly all
physical simulation. For example, in a hydro grid code,
one must follow sound waves across an element of the
grid which decreases in size as the number of grid points
to the 1/3 power if the overall physical size is fixed.
Clearly, the scaling would be different if N represented
the number of residues in a simulation of protein
dynamics, so that the physical scales were changing. A
simulation with a particularly large N was the “Hubble
Volume Simulation” done with 109 particles by the Virgo
consortium [7]. Since this simulation used an extremely
large volume (roughly 100 times the size of the Sloan
survey volume), the resolution was very low, and the
timesteps could be large. The size of the dataset made
it particularly difficult to analyze at the time that it was
done, and there were no scientific results that made use
of the larger volume. Clearly, both the resolution and the
sample size are important to the science goals of N-body
simulations.

This means that the “one byte per flop” rule of system
design that applied to gigaflop machines is radically
different for petaflop machines, where one likely needs

only �30 –100 terabytes of memory for most physical
problems.

The memory needed to run a simulation is �102N
bytes. If we fix N by filling memory, the time needed
to run a simulation is 25 days � (bytes/flop rate) �

(N/100 million)1/3. Current machines are well-balanced for
our simulations. With gigaflops and gigabytes, we have run
simulations with N � 107.5. With teraflops and terabytes,
we can simulate the behavior of 1010 particles or that of
fewer particles in more depth. Simulations with N � 1012

require �100 TB and �2 months on a petaflop machine.
If we limit ourselves to runs of about a month, then
�50 TB suffices on a petaflop machine.

There are a variety of problems in which N � 106

represents a minimum ante. For example, clusters of
galaxies are extremely important for determining
cosmological parameters such as the density of the
universe. Within a cluster, the galaxies are 1–10% of the
mass, and there are roughly 103 of them. If the galaxies
have fewer than 102–103 particles [8], they dissolve before
the present epoch owing to two-body relaxation in the
tidal field of the cluster. To prevent this, we need N � 106

particles per cluster. With the advances in machines and
algorithms, these simulations are becoming possible on
inexpensive group servers or small clusters. However, if
we want to get a good sample of clusters within a Sloan
volume, this would require N � 1012 particles.

Gains in hardware and algorithms are compared for the N-body 

simulations. Algorithms are depicted by filled circles with the scale 

on the left, while hardware is depicted by open circles with the 

scale on the right.

Figure 2
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There are �1020 solar masses within the SDSS volume,
so even 1012 particles is a paltry number, since each
particle would represent 108 solar masses. We need ten
times more to represent the internal structure of galaxies.
N will always be far smaller than the true number of
particles in the universe and will compromise the physics
of the system at some level. We can only make sure that

1. The physics being examined has not been compromised
by discreteness effects owing to N-deprivation.

2. Gravitational softening, discrete timesteps, force
accuracy, and simulation volume do not make matters
even worse.

N is not always the figure of merit in simulations, but
it should be! The N-body Constitution [9] provides a set
of necessary but not sufficient guidelines for N-body
simulation.

The main physical effect of discreteness is the energy
exchange that results from two-body collisions. Gravity has
a negative specific heat owing to the total negative energy
(sum of gravitational binding and kinetic energy) of a
bound ensemble, like a star cluster. As a star cluster
evolves, stars are scattered out by close gravitational
encounters, leaving with positive energy. The remaining
stars have greater negative energies, the cluster shrinks,
the gravitational binding energy increases, and the stars
move faster. In galaxies and clusters of galaxies, the
time scale for this to occur is 103 to 106 times the age of
the universe. In many simulations, the combination of
discreteness in mass, time, and force evaluation can make
the time scale much shorter, leading to grossly unphysical
results. Thus, we must use sufficiently large N to ensure
that physical heating mechanisms dominate over numerical
artifacts, or that the numerical heating time scale is much
longer than the time we simulate. We have inventoried
all of the physical heating mechanisms experienced by
galaxies in clusters and discovered a unique new
phenomenon we call galaxy harassment [5].

Parallel spatially/temporally adaptive N-body
solvers with “volume renormalization”
Performance gains of the recent past and near future rely
on parallel computers that reduce CPU-years to wallclock-
days. The challenge lies in dividing work among the
processors while minimizing the latency of communication.

The dynamic range in densities demands that spatially
and temporally adaptive methods be used. Our group has
concentrated on tree codes [10] that can be made fully
spatially and temporally adaptive. These codes use
multipole expansions to approximate the gravitational
acceleration on each particle. A tree is built with each
node storing its multipole moments. Each node is
recursively divided into smaller subvolumes until the final

leaf nodes are reached. Starting from the root node and
moving level by level toward the leaves of the tree, we
obtain a progressively more detailed representation of the
underlying mass distribution. In calculating the force on a
particle, we can tolerate a cruder representation of the
more distant particles, leading to an O(N log N) method.
We use a rigorous error criterion to ensure the accuracy
of forces.

As the number of particles in a cosmological simulation
grows, so do the density contrasts and the range of
dynamical times ��1/�density�. If we take the final state
of a simulation and weight the work done on particles
inversely with their natural timesteps, we find a
potential gain of �50. The leapfrog time evolution
operator, D(�/2)K(�)D(�/2), is the one most often used:

Drift, D�� / 2�; rn	1/ 2 � rn �
1

2
�vn ,

Kick, K���; vn	1 � vn � �a�rn	1/ 2�,

Drift, D�� / 2�; rn	1 � rn	1/ 2 �
1

2
�vn	1 ,

where r is the position vector, v is the velocity, a is the
acceleration, and � is the timestep. This operator evolves
the system under the Hamiltonian

HN � HD � HK � Herr �
1

2
v 2	V(r)	Herr ,

where Herr is of order �2 [11]. The existence of this
surrogate Hamiltonian ensures that the leapfrog is
symplectic (that is, volume-conserving in phase space, so
that total energy is conserved); it is the exact solution of
an approximate Hamiltonian. Herr explores the ensemble
of systems close to the initial system rather than an
ensemble of non-Hamiltonian time evolution operators
near the desired one. Leapfrog is a second-order
symplectic integrator requiring only one costly force
evaluation per timestep and only one copy of the physical
state of the system. These properties are so desirable that
we have concentrated on making an adaptive leapfrog.
Unfortunately, simply choosing a new timestep for each
leapfrog step evolves (r, v, �) in a manner that may not
be Hamiltonian; hence, it is neither symplectic nor time-
reversible. The results can be unmanageable [12]. Time
reversibility can be restored [13] if the timestep is
determined implicitly from the state of the system
at both the beginning and the end of the step. This
requires backing up timesteps, throwing away expensive
force calculations, and using auxiliary storage. However,
we can define an operator A that “adjusts” the timestep
yet retains time reversibility and calculates a force only
if it is used to complete the timestep [14]. This is done
by choosing A such that it commutes with K, so that the
sequence DAKD is equivalent to DKAD. Since K changes
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only the velocities, an A operator that depends entirely
on positions satisfies the commutation requirement. The
“natural definition” of a timestep, 1/�density, is ideal
but difficult to define when a few particles are close
together. Synchronization is maintained by choosing
timesteps that are a power-of-2 subdivision of the
largest timestep, �S . That is, �I � (�S/2 j), where �I is the
timestep at a level of the timestep hierarchy. We are
currently experimenting with this approach and
encourage others to look at variants.

“Volume renormalization” uses a large-scale simulation
with modest resolution to identify regions of particular
interest: sites of galaxy/QSO formation, large clusters of
galaxies, etc. Next, initial conditions are reconstructed
using the same low-frequency waves but adding higher
spatial frequencies. We have achieved 103-parsec
resolution within a cosmological volume of size 108

parsecs to study the origin of quasars [15].
There are methods of calculating potentials that are

advertised as being O(N) rather than O(N log N), such as
the fast multipole method (FMM) [16]. We use a number
of great tricks from FMM (our tree codes now use
multipoles and combine and translate the multipole
expansions). Nonetheless, there are several reasons why
we do not use FMM. The first is that there is no method
that is truly O(N). This can be seen with one-dimensional
gravity that satisfies Gauss� theorem. In this case, the
gravitational force is proportional to the number of
particles to one�s left, minus the number of particles to
one�s right. As a result, gravity is equivalent to a sort
which cannot be reduced to O(N) for arbitrary real
numbers. The one-dimensional gravity is a particularly
useful example, as the scaling is O(N log N) to calculate
the relative positions, but then one performs only one
gravitational interaction per particle [so it is not just
O(N), but truly “N”]. Similarly, the adaptive FMM must
first build a tree which involves a sort [O(N log N)], but
then calculates O(N) gravitational interactions. The
interaction calculation is expensive enough that studies
have generally seen the algorithm scale as O(N). These
arguments are a bit simplistic. We have assumed that the
sort necessary to build a tree is O(N log N). There are
O(N) sorting routines that work as long as the distribution
of points is not pathological, as in a Cantor set. However,
the late stages of cosmological simulations become
progressively more like a Cantor set! Requiring that the
simulation be stably integrated means that particles cannot
move too much, so tree reconstruction after each step
should certainly be faster than a full build and should
scale more like O(N).

Finally, we use a tree code to employ adaptive
timesteps. There is a tendency to focus on reducing the
simple calculation of forces from the “sum over all

particles” N2 scheme to one that is O(N log N) or O(N).
However, we need to solve the full dynamical problem
that is naively N7/3, where the additional N1/3 comes
from the need to take finer steps to implement higher
resolution. With the tree code, one divides work into the
calculation of forces on a particular particle. In this way,
one can employ adaptive timestepping, with each particle
having an individual timestep. In the FMM, work is
effectively divided by scale, and the scales cannot be
decoupled in any way to implement temporal adaptivity.
The best sign of speed and relative efficiencies of the
methods is that the tree build is a large fraction of the
cost of a force evaluation in the tree code with adaptive
timesteps, whereas its scaling can be seen in the FMM
implementations.

One last class of methods is based on fast Fourier
transforms (FFTs) combined with corrected
particle–particle sums on small scales. The adaptive
versions of this code by Couchman [17] with further
refinements by Couchman, Thomas, and Pearce [18, 19]
have powered the large Virgo consortium runs [7]. These
codes use nested meshes with tailored Green functions
with a final particle–particle summation on the smallest
scales. For a single potential evaluation, this method is
somewhat faster than the tree code, with the tree code
winning only when the distributions are heavily clustered
owing to its more efficient use of adaptive timestepping.
There is also a hybrid composed of a particle-mesh code
and a tree code [20]. One pathology of the tree code is
that it requires the use of many more terms when the
distribution of particles is nearly uniform, such as the
early stages of a cosmological simulation. This is just the
condition for which mesh codes are blindingly fast and
accurate. This is one of the motivations for the more
flexible simulation package discussed in the last section.

The distinctions between adaptive mesh, FMM, and tree
code are becoming increasingly blurred. As one last example
of this, our current method of collecting the interactions
for each particle, or “tree-walking,” has been improved
by applying a technique inspired by FMM. Instead of
collecting all interactions for a single particle (or a small
nearby set of particles), we consider which interactions are
common to all subcells of a given cell at each level of the
tree. This is done in a top-down manner, maintaining a
“checklist” structure of cells that remain to be checked
either for inclusion on an interaction list or to be opened
and have their subcells placed on the checklist [21]. This
results in many fewer comparisons in deciding which
interactions to perform, thereby reducing one of the big
integer-operation-limited steps of tree codes. With this
tree-walk and the use of multipoles that are combined and
translated, one could argue that our current code is as
close to being a variant of FMM [16] as it is to the
original tree codes [10, 22].
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Current cosmological challenges
We now have multiple mysteries in cosmology as we
continue on the path set by Copernicus, who showed that
the earth was not the center of the solar system. We now
know that our solar system resides on the outskirts of a
galaxy which is at the edge of a cluster of galaxies, and
that the entire system moves toward a greater attractor
[23]. Not only that, but the universe appears to consist
more of dark matter than of identifiable matter. Still more
of the universe is in dark energy, which has a behavior
entirely different from that of matter [24, 25]. Dark energy
has a negative pressure or tension that makes the universe
expand faster and faster, whereas the gravitational tug of
normal matter slows it down. Strangely, we seem to live
in a special epoch in which dark energy has just become
dominant over normal and even dark matter. We still do
not know what either the dark matter or the dark energy
might be. A first step will be to determine its equation of
state: Does it behave just like Einstein�s cosmological
constant, or differently?

Matching clusters, groups, galaxies, and cosmic flows
has been a sensitive test of cosmological models. The key
data for the next decade will be the Sloan Digital Sky
Survey. Our proposed program to simulate the Sloan
volume has been as follows:

1. Simulate the entire volume (800 Mpc)3 with N � 108,
where Mpc � one million parsecs.

2. “Renormalize” dozens of groups, clusters, etc. and
simulate with 108 particles.

3. Run selected subvolumes that are 10�3 of the total
volume or (800 Mpc)3 with 108 particles to examine the
evolution of groups and follow the early evolution of
“rare objects.”

The first simulation took 1016 floats or �10 petaflop-
seconds and has been run for a few cosmological models.
Like many other groups, we found that matching
structures in the universe required that the universe be
dominated by a dark energy or the cosmological constant

 that was introduced by Einstein. The dark energy was
also needed to fit observations of distant supernovae [26]
and has now been determined to very high precision by
the Wilkinson Microwave Anisotropy Probe (WMAP)
observations of the cosmic microwave background [27].
This satellite mission determined to high precision the
age of the universe, its expansion rate, and the relative
proportions of normal matter, dark matter, and dark
energy. However, these experiments have not been
sensitive to the dark energy equation of state, which will
stimulate a new generation of dynamical probes coupled
with simulations. A recent study [28] finds that there is a
strong sensitivity of the cosmic Mach number [29] (the
ratio of the flow velocity to the local velocity dispersion)

to the equation of state of the dark matter. The next step
for using this sensitivity will be to obtain very accurate
Mach numbers for a variety of flows.

The fate of the solar system
Advances in hardware and numerical methods have finally
enabled us to integrate the solar system over its lifetime.
Such an integration represents a thousandfold advance
over the best, longest, most accurate integration ever
performed [30] and can address numerous questions such
as the following: Is the solar system stable? Do all of the
planets remain approximately in their current orbits over
the lifetime of the solar system, or are there drastic
changes, or perhaps even an ejection of a planet?
What is the stability of other planetary systems?

Integration of the solar system will allow us to address
other questions, such as the following.

What is the effect of orbital changes on the planetary
climates? According to the Milankovich hypothesis,
climatic variations on the earth are caused by insolation
changes arising from slow oscillations in the earth�s orbital
elements and the direction of the earth�s spin [29].
Remarkably, the geophysical data (primarily the volume of
water locked up in ice as determined by the 18O/16O ratio
in sea-bed cores) covers a longer time than any accurate
ephemeris.

How does weak chaos alter the evolution of the solar
system? Why does the solar system appear stable if its
Lyapunov time, that is, the time scale for two nearly
identical trajectories to diverge significantly, is so short?

How are the giant planets related to terrestrial planets in
the “habitable zone” between boiling and freezing of water by
the central star? Without a cleansing of planetesimals from
the solar system by giant planets [30], the bombardment
of the earth by asteroids would be steady and frequent
throughout the main sequence lifetime of the sun [31].
The chaos produced by Jupiter and Saturn may have
played a role in ensuring that planetesimals collided to
form the terrestrial planets, 1 but too much chaos will eject
planets in the habitable zone. While a search for giant
planets is the only technically feasible one today, it may
be the ideal way to screen systems before searching for
terrestrial planets.

Integrating nine planets for 1011 dynamical
times
When Laplace expanded the mutual perturbations of the
planets to first order in their masses, inclinations, and
eccentricities, he found that the orbits could be expressed
as a sum of periodic terms—implying stability. Poincaré
[32] showed that these expansions do not converge
because of the occurrence of resonances. Using the

1 In Ancient Greek, chaos was “the great abyss out of which Gaia flowed.”
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Kolmogorov–Arnold–Moser (KAM) theorem, Arnold [33]
derived constraints on planetary masses, eccentricities, and
inclinations sufficient to ensure stability. The solar system
does not meet his stringent conditions, but this does not
imply that it is unstable. Laskar [34] tested the quasi-
periodic hypothesis by numerically integrating the
perturbations calculated to second order in mass and
fifth order in eccentricities and inclinations, �150,000
polynomial terms. Fourier analysis of his 200-million-
year integration reveals that the solution is not a sum of
periodic terms and implies an instability that is surprisingly
short, just 5 Myr (million years). The second method for
attacking the stability problem is to explicitly integrate
the orbits of the planets (Table 1).

As early as 1965, Pluto�s behavior was deemed
suspicious. In the last ten years, it has become clear that
the solar system is chaotic. However, the source of the
chaos is unclear, because the system of resonances is
complex and the Lyapunov exponents appear to be
sensitive to fine details of initial conditions. Nonetheless,
the solar system is almost certainly chaotic. Laskar [47],
examining the fate of Mercury, estimates that there is a
significant chance of ejection during the lifetime of the
solar system. Our belief in the apparent regularity of the
solar system may be due to our inability to know that
before the last few ejections, there may have been 10,
11, or even 12 planets a few billion years ago. At the very
least, the chaotic motion leads to a horizon of predictability
for the detailed motions of the planets. With a divergence
time scale of 4 –5 Myr, an error as small as 10�10 in the
initial conditions will lead to a 100% discrepancy in
100 Myr. Every time that NASA launches a rocket,
it can turn winter to spring in a mere 10 Myr.

Are the integrations meaningful given this sensitivity to
the initial conditions? We investigate Hamiltonian systems
that are as close to the solar system as possible. KAM
theory tells us that the qualitative behavior of nearby
Hamiltonians should be similar. While the exact phasing
of winter and spring is uncertain after millions of years,
the severity of winter or spring owing to changes in the
earth–sun distance and the obliquity are predictable.

We have started a 9-Gyr integration: 4.5 Gyr into the
past, when the solar system was formed, and 4.5 Gyr into
the future, when the sun becomes a red giant. One basic
requirement is a computer with fast quadratic precision to
overcome roundoff problems. The IBM Power Series* has
been the machine of choice. Our first digital orrery was
an IBM POWER2* workstation that evolved the solar
system �109 times faster than “real time”; this was two
to three orders of magnitude faster than other available
CPUs owing to IBM�s implementation of quadratic
precision. We have now completed a 1-Gyr integration
[46]. To understand any chaos, we will need to see it by an
independent means and devise methods to determine its
underlying source.

A parallel method does not seem promising, since there
are only nine planets to distribute among processors. We
employ a different form of parallelism—the “time-slice
concurrency method” (TSCM) [48]. In this method, each
processor takes a different time slice; the initial conditions
for processor 2 are the final conditions for processor 1,
and so on. The trick is to start processor 2 with a good
prediction for what processor 1 will eventually output, and
iterate to convergence. This is analogous to the waveform
relaxation technique used to solve some partial differential
equations [49]. However, Kepler ellipses are a good
approximation to the orbits for a time scale that is

Table 1 Summary of direct solar system integrations.

Year Team Length
(Myr)

No. of
planets

General
relativity?

Moon? Special
hardware?

1951 Eckert et al. [ 35] 0.00035 5 no no no
1965 Cohen and Hubbard [ 36] 0.12 5 no no no
1973 Cohen et al. [ 37] 1. 5 no no no
1984 Kinoshita and Nakai [ 38] 5. 5 no no no
1986 Applegate et al. [ 39] 217. 5 no no yes
1986 Applegate et al. [ 39] 3. 8 no no yes
1987 Carpino et al. [ 40] 100. 5 yes no no
1988 Sussman and Wisdom [ 41] 845. 5 no no yes
1989 Richardson and Walker [ 42] 2. 9 no no no
1991 Quinn et al. [ 28] 6. 9 yes yes no
1992 Sussman and Wisdom [ 43] 100. 9 partly yes partly
2002 Ito and Tanikawa [ 44] 10,000. 5 no no no
2002 Ito and Tanikawa [ 44] 5,000. 9 no no no
2003 Varadi et al. [ 45] 5,000. 9 no no no
2003 Varadi et al. [ 45] 90. 9 yes yes no
2003 Armstrong et al. [ 46] 1,000. 9 yes yes no
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proportional to the ratio of the mass of the sun to that of
Jupiter. Tests show that it is extremely efficient to iterate
to convergence in double precision (typically 14 iterations,
each costing 10 –15% of a quad iteration), then perform
just two iterations to get convergence in quad. In this way,
the total overhead of the full 16 iterations can be less than
a factor of 4.

There are still many algorithmic issues to be addressed.
For long-term integrations, TSCM has been formulated
in a way that preserves the Hamiltonian structure and
exploits the nearness to an exactly soluble system;
otherwise, errors grow quadratically with time. TSCM
should enable us to integrate �5 Gyr per day on a 512-
node IBM POWER4*, a speedup over real time of 1012.
This should make it feasible to study the instability
of other solar systems. Detailed development and
implementation will be much more challenging than for
previous methods, and our high-quality serial integration
will be required for comparison and validation.

Finally, we use a new technique to gauge the origin of
instabilities (the “tangent equation method”) [50]. In the
past, it was common to integrate orbits from many slightly
different initial conditions. While that works, it is more
rigorous and also more economical to integrate the
linearized or tangent equations—the equations for
differences from nearby orbits. We integrate the tangent
equations along with the main orbit equations.

Cosmology meets cosmogony: Planetary
system formation
Theories of solar system formation are traditionally
divided into four stages [51]: collapse of the local cloud
into a protostellar core and a flattened rotating disk
(nebular hypothesis); sedimentation of grains from the
cooling nebular disk to form condensation sites for
planetesimals; growth of planetesimals through binary
collision and mutual gravitational interaction to form
protoplanets (planetesimal hypothesis); and the final
assembly to planets, with the remaining disk cleansed by

ejections from chaotic zones. Our cosmology code is ideal
for the third stage of solar system formation, particularly
in the inner regions where gas was not a primary
component and gravitational interactions dominated the
evolution. The first stage entails magnetohydrodynamics,
the complicated small-particle physics and gas dynamics of
the second stage is still not well understood, and the
fourth stage is the purview of long-term stability codes.

All that is required for a detailed simulation of the
third stage is a model of the collisional physics and a
code capable of dealing with a large number of particles.
However, previous direct simulations of the planetesimal
stage (summarized in Table 2) fall far short of capturing
the full dynamic range of the problem. Our cosmology
code has the potential to treat as many as 107 particles
simultaneously for 107 dynamical times, a ten-millionfold
improvement that makes us enthusiastic! Only statistical
methods [52] employing prescriptions for the outcomes of
gravitational encounters have been used to take a look at
this regime. We reach an important threshold at N � 107

in our ability to follow planetesimal evolution. At early
times, the relative velocities between planetesimals are
small, and inelastic physical collisions lead to “runaway”
growth of planetary embryos [53]. Eventually, gravitational
scattering increases the planetesimal eccentricities to such
an extent that collisions result in fragmentation, not
growth. The embryos continue to grow owing to their
large mass, but at a slower rate as their “feeding zones”
are depleted [54]. The total mass of our planetary system is
448 times that of the earth (448Mearth) or 3.6 � 104Mmoon,
while the inner planetesimal disk amenable to simulation
had a mass of 102Mmoon. To capture both growth and
fragmentation [52] requires a minimum particle mass
of 10�5Mmoon, leading to our N � 107.

A detailed direct simulation of planet formation can
address a variety of important questions, including the
following: Was there runaway growth of a few embryos, or
a continuously evolving homogeneous mass distribution?
How does the primordial surface density alter the

Table 2 Direct simulations of the formation of the inner planets.

Year Team N t (yr) �a (AU) Giants?

1986 Lecar and Aarseth [ 55] 200 6 � 104 0.5–1.5 no
1990 Beaugé and Aarseth [ 53] 200 6 � 105 0.6 –1.6 no
1992 Ida and Makino [ 56 , 57] 800 5000 0.3 no
1993 Ida and Makino [ 54] 800 5000 0.3 no
1993 Aarseth et al. [ 58] 400 1.2 � 104 0.04 no
1996 Kokubo and Ida [ 59] 5000 2 � 104 0.4 no
1998 Kokubo and Ida [ 60] 5000 2 � 104 0.4 no
1998 Chambers and Wetherill [ 61] 100 108 0.5–2.0 yes
1998 Richardson et al. [ 62] 105 1000 1.2–3.6 yes
2000 Richardson et al. [ 63] 106 1000 0.8 –3.8 yes
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evolution? What fixes the spin orientation and period of
the planets— uniform spin-up from planetesimal accretion
[64], or a stochastic process dominated by the very last
giant collisions [65]? Is it feasible that the earth suffered a
giant impact late in its growth that led to the formation of
the moon [29]? How much radial mixing was there, and
can it explain observed compositional gradients in the
asteroid belt [66]? Finally, what is the dominant physical
mechanism that drives the late stages of growth—are
intrinsic gravitational instabilities between embryos
sufficient, or are perturbations by the giant gas planets
required?

This last point is of key importance to future searches
for terrestrial planets. We strongly suspect that the end
result of our research may be the assertion that one
should concentrate searches for terrestrial planets in those
systems that have giant planets. We have begun to address
these issues with a modified version of the cosmology
code. Collisions are detected (rather than “softened
away”), and the outcomes are determined by the impact
energy, the lowest energies generally leading to mergers
and the highest energies leading to fragmentation. In our
current code, merging and bouncing are implemented,

while fragmentation is in the testing stage. Integrations
are carried out in the heliocentric frame and may include
the giant planets as perturbers. Additional programs are
used to generate appropriate initial conditions and to
analyze the results of the simulation, but the main work
is performed by the modified cosmology code.

Figure 3 shows the mass density (a) and semi-major axis
a vs. both eccentricity e and inclination i (b), respectively,
at the end of a 100-yr run that began with 106 identical
cold planetesimals in a disk from 0.8 to 3.8 AU
(astronomical units) with surface density proportional to
r�3/2. The present-day outer planets were included in the
calculation. The simulation took 60 hours to finish on a
Cray T3E** computer 2 with 128 dedicated processors
using a fixed timestep of 0.01 yr. The effect of Jupiter on
the disk, which extends well into the present-day asteroid
belt, can be seen clearly in the density plot: There is a
large density gap at the 2:1 resonance at 3.2 AU and a
narrow groove at the 3:1 at 2.5 AU, along with spiral
wave patterns and other telltale features. Corresponding
features in Figure 3(b) show how Jupiter stirs up

2 Cray, Inc., Seattle, WA.

Figure 3

(a) Mass density of a 106-particle simulation after 100 years. Bright colors represent regions of high density. The dot at the left is Jupiter. The 

disk extends from 0.8 AU, just inside the earth’s present-day orbit, to 3.8 AU near the outer edge of the asteroid belt. The gaps and spiral 

structures in the disk are associated with Jupiter’s mean-motion resonances. (b) Plot of semi-major axis a vs. eccentricity e and inclination i for 

a 106-particle simulation, showing only every hundredth particle to prevent overcrowding. The peaks in e and i (strongest in e) at specific a 

values correspond to mean-motion resonances with Jupiter. Circle size is proportional to particle radius. The particles are also color-coded by 

size, with the smallest red circles indicating pristine material, larger green circles indicating bodies that have undergone one collision, blue 

circles two collisions, and so on (the color sequence repeats at larger masses). Reprinted from [63], © 2000, with permission from Elsevier.
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planetesimals at the mean-motion resonances. Note that
conservation of the Jacobi integral accounts for the slight
bending of the e peaks toward smaller a. Meanwhile,
planetesimal growth has proceeded unmolested in the
inner region of the disk (under the assumption of perfect
accretion). The largest planetesimal at the end of the run
is eight times its starting size.

As far as we are aware, this is the largest simulation
of a self-gravitating planetesimal disk that has ever been
attempted. The figures show, however, that to reach
the regime of runaway growth (�104–105 yr), a new
timestepping approach is needed. We are currently
developing a technique to exploit the near-Keplerian
motion of the planetesimals. For weakly interacting
particles, we divide the Hamiltonian into a Kepler
component, implemented using Gauss� f and g functions
to step along elliptical rather than linear segments, and a
perturbation component owing to the force contributions
of all of the other particles. In this regime, timesteps
can be of the order of the dynamical (i.e., orbital) time,
resulting in computational speedups of 10–100. For strongly
interacting particles (defined as particles with overlapping
Hill spheres), the Hamiltonian is factored into the
standard kinetic and potential energy components, with
the central force of the sun as an external potential.
In this regime, particles are advanced in small steps,
which allows for the careful determination of collision
circumstances. It also allows the detection of collisions in
the correct sequence even if a single particle suffers more
than one collision during the interval. This new technique
will transfer well to the protein folding problem.

The code that was used to do this simulation has
considerable room for improvement. Nonetheless, we
can compare the time to solution with GRAPE (GRAvity
PipE) computer 3/HARP computer 4 simulations [59, 60].
We found that our code had an order of magnitude faster
time to solution in the host computer used by this group
(a Compaq EV5 Alpha computer 5) than they obtain by
employing the special-purpose hardware back end. Since
all hardware is a moving target, we are working on a new
version of the code that will have a similar relationship to
the current-generation GRAPE-6 (a 64-teraflop computer
for stellar dynamics studies). The gains that we anticipate
are summarized in Table 3.

The challenge is to predict when particles will change
between the regimes of weak and strong interaction. One
method we are considering is to construct a new binary
tree ordered by perihelion and aphelion. Those particles
with orbits separated by less than a Hill sphere are flagged
for further testing. This screening has a cost of N log N
and is performed only once per long Kepler step. Flagged

pairs of particles with phases that are certain to stay
separated over the integration step are reset. The
remaining particles are tested by solving Kepler�s equation
in an elliptical cylindrical coordinate system to determine
the time of actual Hill sphere overlap. Switching between
Hamiltonians is not strictly symplectic, but it occurs
infrequently enough for any given particle that it is not
a concern. Dissipating collisions are inherently non-
symplectic anyway. (There is some skepticism from
colleagues about switching the integration scheme. True
conservatives are also worried that the normal tree codes
are not momentum-conserving. There is a momentum-
conserving variant [67], but it loses this property with
adaptive timestepping.) Once particles separate beyond
their Hill spheres (or merge), they are returned to the
Kepler drift scheme. Although much work remains to
be done, the reward will be the first self-consistent
direct simulation of planetesimals evolving into planets
in a realistic disk. The results can be used to study
related problems, such as the formation of planetary
satellites, orbital migration of giant planets in a sea
of planetesimals, and ultimately the ubiquity and
diversity of extra-solar planetary systems.

To resolve the collisions and their outcomes, we are
testing a scheme in which the particles are replaced by
“rubble piles” when they collide. Rubble piles have little
or no tensile strength; they are assemblages of particles
that are held together only by gravity [68]. This approach
captures the dynamics of gravitational reaccumulation
explicitly without relying on questionable scalings of
strength-regime laboratory experiments to gravity-regime
km-size planetesimals. After a fixed interval, particles
that have accumulated into sufficiently large bodies are
replaced with single large particles, while the remaining
debris is treated as “dust” that slowly accumulates on
larger particles and drags on their orbits over time. We
believe that this mechanism may be responsible for the
low orbital eccentricities of present-day terrestrial planets,
a property that has so far eluded all numerical simulations
of planet formation.

Combining special hardware and advanced
algorithms
In all of the codes that we run, gravity plays an important
role. The calculation of gravitational interactions is
essential and is normally a large fraction of the simulation
cost. The GRAPE consortium has built special hardware
to accelerate the gravitational calculations. We have noted
that our algorithms lead to faster times to solution on
their host machine than would be achieved by using their
special-purpose hardware and simpler algorithms. What
about using both spatially and temporally adaptive
algorithms and their special hardware?

3 RIKEN, Wako, Japan.
4 Sundance Corporation, Reno, NV.
5 HP Compaq Corporation, Palo Alto, CA.

G. LAKE ET AL. IBM J. RES. & DEV. VOL. 48 NO. 2 MARCH 2004

192



The effort involved in creating a typical gravity-based
code comprises the following: 1) tree construction and
traversal (including neighbor list determinations), 20%;
2) computation of pairwise gravitational interactions,
50%; and 3) computation of periodic boundary conditions,
special functions for planetary integrations, SPH (smooth
particle hydrodynamics) gas physics, etc., 30%. To date,
special-purpose hardware has focused on making the
pairwise gravitational interactions blindingly fast. In the
limit that it is infinitely fast, this provides only a factor
of 2 speedup. However, obtaining even half of this gain
is a severe challenge to the I/O designs of the special
hardware. For example, GRAPE was originally designed
for the specific problem of globular cluster dynamics,
where it has had a number of successes [69]. These
systems have �106 stars, so there is no reason to use a
larger N. This sets a very modest limit to the amount of
memory needed in the special box. With a “sum over all
pairs,” it means that for every 24 bytes transferred for the
particle positions (and returned for the particle velocities),
one does �3 � 107 floating-point operations. Thus, the
ratio of the I/O channel speed to the floating-point speed
need be only roughly 2 MB/s for every teraflop, so a

peripheral component interconnect (PCI) bus is sufficient
to connect to a teraflop of hardware. However, in our
simulations, there are typically only a few hundred
pairwise interactions calculated, so the ratio needed to
spend more time on computation than on data transfer is
�10� GB/s for every teraflop, where � is the number of
times that the particle is loaded into the special hardware
(it has to be there every time it appears on an interaction
list, so with efficient traversals and caching, we might keep
� � 10). Thus, it is not straightforward to use special
hardware with aggressive algorithms.

Looking toward the future
The astute reader will notice that the phenomenal
algorithmic progress shown in Figure 2 stopped a couple
of years ago. There are both scientific and social reasons
for this. It is extremely important for the fidelity of the
scientific results to ensure that the integrators are
symplectic. There are many subtle attributes of these
aggressive algorithms that will alter the Hamiltonian
character of the problem. We were surprised to discover
that some of the problems were easy to address, while
others were far more difficult. One example was that

Table 3 Software and hardware for integrating planetesimals.

Gain factors

I. Improved software gain 20
(factors do not all accumulate; adopt 20, with 5 as a reserve factor)
Gravity module (now coding) 4

Improve tree build and walk
Use tensor multipoles for recursion
Enable local expansions

Collision module (testing) 4
New collision-detection scheme
Timestepping (testing) 5–30

Use MVS with collision detection
II. Total hardware gain 240

Use 512 CPUs (available) 4
Run 600 hours (available) 10
Run on current CPUs 10

(special functions used extensively; baseline via CRAY T3E (300 MHz),
boosted via Compaq EV5 Alpha

III. Evolution
Particle number decreases as system evolves 10
Increase initial cross section to accelerate number decrease 3

Total gains 10,000
Emergency reserve factors 15

Total speedup relative to HARP-2 for 106 particles �500,000,000
Alpha EV5/HARP-2 ratio on test case � 10
Algorithmic scaling including HARP-2 efficiency gains 2,000
200� speedup on 512-node machine
10� gain from next-generation CPUs
20� gain from software

Note: In this table, we have included some “optimistic” projections as reserve factors (shown in italics). We think that much of this reserve of 15� speedup is likely to be
realized, but we expect to encounter some problems achieving every goal in the table, so we hold it in reserve to be reasonably conservative.
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all past cosmological simulations had performed the
integrations in noncanonical coordinates [21], resulting in
a strong transient energy change in the early stages of the
integration when the expansion rate of the universe was
high. Since it had been included in every simulation, it
became a “feature.”

We are concerned about a number of other “features”
and have been engaged in extensive tests to understand
them. These derive from the fact that the forces in a tree
code are normally not symmetrical, so that Newton�s law
of equal and opposite forces (which ensures conservation
of global momentum) is not strictly upheld. When a code
explicitly conserves a quantity, it is a bug check. When it
does not, as in this case, it becomes something to monitor
as a reality check on error propagation. We are more
concerned about putting in “switches” to the integrators
that change timesteps in a fixed integration scheme or
completely change the integration scheme, as in the
collisions of planetesimals. This requires extensive testing.

The last section makes it clear that the codes have
enough complexity that when one element is greatly
speeded up, the bottlenecks move elsewhere. This is also
true at a higher level. The simulation code stopped being
the main bottleneck to scientific production. We had a
several-year push to bring the machines and algorithms to
the level at which we could do simulations fairly easily with
N � 107, and it required only mild heroics to run N � 108.
This also meant that N � 106 became a problem for
workstations. This opened up a wealth of scientific
possibilities, which was the main driving force in the first
place. It also meant that we could generate enormous
data sets that require analysis for scientific results.

What we need now is more flexible analysis code and a
greater range of physics represented in the codes. We also
want to create a venue to test and compare codes. There
is demand for using Couchman�s adaptive mesh techniques
for the early stages of cosmological simulation and then
switching to tree methods. In some cases, it would
certainly be useful to incorporate GRAPE or Blue Gene*
hardware [70]. For such cases, we might want to couple
our framework to Blue Matter [71], the molecular
simulation software to be used on Blue Gene. Both of
these are broader community needs and must incorporate
work from multiple groups. To this end, we started the
“Whole NChilada Project” 6 to tackle the simulations, data
handling, and analysis. This process mirrors the evolution
that has occurred in a number of simulation projects and
is reflected in the changes of support from the HPCC
(High Performance Computing and Communications)
projects in multiple agencies to the newer initiatives
such as the NSF (National Science Foundation) ITR

(Information Technology Research), the NASA Earth
System Modeling Framework and its broader Computing
Technologies Project, and the interagency National Virtual
Observatory. It also reflects the success of the first-
generation University of Washington N-body shop; many
of the former students and postdoctoral fellows are now
group leaders at other universities. NChilada is a vehicle
for realizing collective synergies from the efforts of allied
but individual groups.

Summary: Virtual petaflops
Past planetesimal simulations used codes with an
algorithmic complexity that would be similar to the point
labeled “full tune” in Figure 2 and computers with speeds
of �10 Mflops. (Special-purpose “GRAPE” hardware of
�106 Mflops has been used, but such implementations
involve sums over all interactions, and so they are closer
to the direct-sum case in floating-point cost [60].) Our
algorithms result in a collective speedup of �108 for
simulations with N � 107 (with rough accounting for the
reduction in N over the course of the simulation in the
solar system formation runs).

We have emphasized that both hardware and algorithm
improvements are required to achieve the performance
gains that we require. Figure 2 shows that the speedup
factor from algorithms vastly exceeds that of the hardware.
It is not sufficient to simply wait for computers to get
better, nor does it seem to pay to build special hardware.
McMillan et al. [72] asserted that if GRAPE-6 were built,
it could use its petaflop speed to follow 106 planetesimals
by 2003. They claimed that this would offer a seven-year
advantage over general-purpose computers that would
only be able to follow 104 particles by the year 2000.
As of September 2003, a 64-teraflop GRAPE-6 system
has been built, and smaller GRAPE-6 systems garnered
IEEE Gordon Bell prizes in 2000 and 2001.

Our test simulations without the new integrator were
already ten years ahead of their projections [63]. Our
approach has outpaced special hardware efforts over the
last several years, and we believe that it will continue to
do so for the foreseeable future. Sir Isaac would love to
see the enhancement of “the entire human intellect” by
high-performance computing.
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