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We present results from direct N-body simulations of collisions
between gravitational aggregates of varying size as part of a study
to parameterize planetesimal growth in the Solar System. We find
that as the ratio of projectile to target mass departs from unity, the
impact angle has less effect on the outcome. At the same time, the
probability of planetesimal growth increases. Conversely, for a fixed
impact energy, collisions between impactors with mass ratio near
unity are more dispersive than those with impactor mass ratio far
from unity. We derive an expression for the accretion probability as
a function of mass ratio. For an average mass ratio of 1 : 5, we find
an accretion probability of ∼60% over all impact parameters. We
also compute the critical specific dispersal energy Q∗

D as a function
of projectile size. Extrapolating to a projectile size of 1 m with a
1-km target, we find Q∗

D = 103–104 J kg−1, in agreement with several
other collision models that use fundamentally different techniques.
Our model assumes that the components of each gravitational ag-
gregate are identical and indestructible over the range of sampled
impact speeds. In future work we hope to incorporate a simple frac-
ture model to extend the range of applicable speeds and we plan
to implement our results in a large-scale planetesimal evolution
code. c© 2002 Elsevier Science (USA)
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1. INTRODUCTION

aggregates with no tensile strength (Richardson et al. 2002). We

1 Q∗
D is the energy per unit mass necessary to create a postcollision remnant

of 50% the mass of the system (see Section 4.1).
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This paper is part of a larger project to investigate plan-
etesimal evolution in the context of Solar System formation
(Leinhardt et al. 2000). In order to create an accurate numerical
model of Solar System formation it is necessary to understand
how the planetary building blocks, namely, kilometer-sized plan-
etesimals, evolve and grow into larger bodies. In the research
presented here we find conditions necessary for planetesimal
growth. Our goal is to provide a recipe for planetesimal evolu-
tion that can be used in Solar System formation models.

Over the past decade evidence has been mounting that small
bodies several hundreds of meters to tens of kilometers in size
are gravitational aggregates (Leinhardt et al. 2000; Richardson
et al. 2002 and references therein). Accordingly, we model our
planetesimals as 0.25 to 1 km rubble piles—gravitational
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assume that planetesimal evolution in the early Solar System
is dominated by slow (a few m s−1) orbit-crossing collisions
between planetesimals. Thus, our simulations focus on slow col-
lisions between rubble-pile planetesimals.

In this paper the study of planetesimal evolution is split into
two experiments. In the first experiment we quantify which
collisions cause planetesimal growth or erosion (Sections 3.1
and 3.2). We consider collisions between planetesimals of dif-
ferent masses over a range of impact parameters and speeds. We
derive accretion/erosion probabilities on the basis of this exper-
iment (Section 3.3). In the second experiment we determine the
critical dispersal energy (Q∗

D)1 as a function of the mass ratio
of the larger rubble pile to the smaller rubble pile (Sections 4.1
and 4.2). This allows us to compare our results directly with
those of other groups (Section 4.3).

It is useful to define accretion and erosion as they pertain to
this paper. Accretion is the permanent retention of new mass,
whereas erosion is the permanent loss of mass. In our simu-
lations the largest initial rubble pile is said to have accreted
material if it has gained mass at the end of the simulation and to
have eroded if it has lost mass. A simulation is ended when the
collision event has terminated. In our simulations termination of
the collision event is reached when less than 10% of the system
mass is accreting or orbiting the largest postcollision remnant
(Section 2.2).

The remainder of this paper is divided into three sections. In
Section 2 we summarize our numerical method. In Sections 3
and 4 we present the results of the accretion/erosion and critical
dispersal simulations, respectively, and we compare these results
to previous experiments. In Section 5 we discuss the limitations
of our method and plans for future work.

2. METHOD

A detailed description of the numerical method used in these
simulations is given in Leinhardt et al. (2000). In this section
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FIG. 1. Visualization of a simulation. The yellow object is one third the mass of the red object. The impact parameter in this example is 0.75 and the initial

relative speed is 1vcrit = v2 + v1.

we present a summary of the numerical method and identify
differences in the methodology.

2.1. Planetesimal Model

Typical initial conditions used in the collision simulations
are illustrated in Fig. 1. A Cartesian coordinate system is used
with the origin at the center of mass. Initially, each simulation
begins with two rubble piles set 2.5 Roche radii apart (in the
±x direction) to ensure that tidal forces are small. In most sim-
ulations presented here one rubble pile is significantly smaller
than the other (less than half the mass of the larger rubble pile).
In these cases we consider the smaller rubble pile the projec-
tile (yellow rubble pile in Fig. 1) and the larger rubble pile
the target (red rubble pile in Fig. 1). However, it should be
noted that, unlike in laboratory collision experiments, the pro-
jectile is a significant fraction of the target’s mass. We define
the mass ratio as MP/MT , that of the mass of the projectile
to the mass of the target. In all cases presented here, MP/

MT ≤ 1.0.
Each rubble pile is built with identical spherical particles of

3.5 g cm−3 bulk density using a hexagonal close-packed form
(Leinhardt et al. 2000). The target has either ∼1000 particles
(Sections 3.1 and 3.2) or ∼2000 particles (Sections 4.1 and 4.2).
The projectiles have between 27 and 955 particles depending on
the mass ratio (1 : 64 to 1 : 1) and the experiment type (accretion/
erosion (Section 3.1) or critical dispersal (Section 4.1)). Our
rubble piles have a packing efficiency of ∼55%, yielding a bulk
density of ∼2 g cm−3. The impact parameter b is defined at
impact in units of the sum of the radii RP + RT , so b = 0 is a
head-on collision and b = 1 is a glancing collision. Although
the trajectories of the projectile and target will be affected by
gravitational focusing, for simplicity we assume that trajectory
deflection is zero; therefore,

b = sin φ, (1)
where φ is the impact angle in the absence of deflection
(between the line of centers and the x-component of the line
of centers). In the simulations presented here b ranges from 0
to 0.75. For b > 0.75, there is little or no mass exchange between
the projectile and the target (Leinhardt et al. 2000); thus, we do
not investigate scenarios in this regime. Both the projectile and
the target are given initial speeds between 1 and 20 m s−1 in the
direction of the other body (Fig. 1) such that the center of mass is
stationary. The speed of the encounter is limited on the low end
by the assumption that both objects are initially on hyperbolic
orbits. The largest initial speeds are limited in magnitude by re-
quiring that they not greatly exceed the threshold for significant
fracturing of rock (Leinhardt et al. 2000).

The collisional behavior of each particle is governed by nor-
mal and tangential coefficients of restitution, εn and εt , respec-
tively. For most particle collisions εn is set to 0.8, which allows
dissipation during a collision, and there is no surface friction;
i.e., εt = 1.0. However, if the relative speed of two colliding par-
ticles is less than 10% of their mutual escape speed, εn is set to
unity to prevent excessive bouncing (Richardson 1994).

In Leinhardt et al. (2000) collision outcome as a function of
impactor spin was explored. It was found that oppositely oriented
spins reduced mass dispersal in general, while aligned spins, de-
pending on the orbital angular momentum, enhanced mass dis-
persal. In addition, asymmetries introduced by spin momenta
often resulted in asymmetric remnant shapes. These effects are
not explored in the present study, which concentrates solely on
the effect of varying impactor mass ratio. However, we expect
that the results would be analogous to the original findings if spin
were introduced, though presumably the smaller the projectile,
the less effect its spin would have on the outcome. Also, an ex-
periment varying εn was performed in Leinhardt et al. (2000),
with the result that smaller values of εn (greater dissipation) gave
rise to larger, more numerous, reaccreted remnants. Similarly,
we would expect smaller values of εn to enhance remnant pro-
duction in the present study, but we do not explore this here.
We note that since energy dissipation in an inelastic collision
goes as ∼1 − ε2

n , the effective binding energy could be adjusted

by a similar factor to take into account a different dissipation
parameter. Testing this possibility is deferred to future work.
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2.2. Numerical Code

Our simulations were performed using a modified version of
the cosmological N -body code pkdgrav, which uses a low-
order leap-frog integrator (see Richardson et al. (2000) and
Leinhardt et al. (2000) for details). In our implementation of
pkdgrav, inelastic bouncing is the only allowed outcome of
particle collisions; there is no merging or fracturing of particles.

The run time for our simulations was initially about five times
the free-fall time,

t f ∼
√

x3

G M
, (2)

where x is the initial separation of the rubble piles along the
x-axis, M is the combined mass MP + MT , and G is the
gravitational constant. Typically, t f ∼ 40 h. In most cases this is
sufficient time for the postcollision system to reach steady state.
Simulations are run longer (by a factor of 2 to 4) if the mass
accreting onto and/or orbiting the largest postcollision remnant
is greater than 10% of the total mass of the system.

The time step for each run was set to t0 ∼ 50 s (�10−5 year/2π )
times a speed-dependent scaling factor 1/(2v + 1), where v is in
units of vcrit, a convenient measure (Leinhardt et al. 2000) found
by equating the initial total kinetic energy to the binding energy
of a rubble pile made up of a homogeneous mixture of both the
projectile and the target:

vcrit = M

√
6G

5µR
. (3)

Here µ is the reduced mass MP MT /M , and R is the radius of a
sphere of mass M , assuming the same bulk density:

R = (
R3

P + R3
T

)1/3
. (4)

The scaling term results in smaller time steps for simulations
at higher speed, which reduces the chance of missing a colli-
sion between particles that would otherwise result in an error
condition. Since v is of order unity, t0 is about two orders of
magnitude smaller than the dynamical time ∼1/

√
Gρ̄ ∼ 1 h for

an object with a bulk density ρ̄ ∼ 2 g cm−3. We have chosen an
output frequency of 200 outputs per simulation in order to pro-
duce enough data for analysis without taking up an impractical
amount of disk space.

2.3. Hardware

Most of the simulations were run on a local Beowulf clus-
ter consisting of 24 machines with 1-GHz Athlon CPUs us-
ing the High Throughput Computing environmentcondor (see
Leinhardt et al. 2000; http://www.cs.wisc.edu/
condor) under RedHat Linux 7.1. One set of simulations was

run on a Beowulf cluster of 32 machines with 1.2-GHz Athlon
CPUs at the University of California, Santa Cruz.
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3. ACCRETION/EROSION SIMULATIONS

3.1. Accretion/Erosion: Method

In the first experiment we conducted four parameter-space
studies, each with a different mass ratio (1 : 1 from Leinhardt
et al. 2000, 1 : 3, 1 : 6, and 1 : 9). In all of these studies the target
had a mass of 8 × 1012 kg, a radius of ∼1 km, and contained
955 particles. For each mass ratio we explored the parameter
space of b and v (impact parameter and speed, respectively)
near the transition between accretion and erosion. The range
of b for each study was from 0 to 0.75 in steps of 0.15. The
range of velocity changed from study to study in order to follow
the accretion/erosion transition (Fig. 2), which depends on the
mass ratio. The initial speeds ranged from 2.1 to 3.4 m s−1

(1.00 to 1.60 vcrit), 2.5 to 3.8 m s−1 (1.00 to 1.50 vcrit), and 2.8
to 3.6 m s−1 (0.90 to 1.30 vcrit) in steps of 0.10 for mass ratios
1 : 3, 1 : 6, and 1 : 9, respectively.

For each mass ratio we ran between 24 and 28 simulations to
resolve the transition between accretion and erosion. The tran-
sition was deemed resolved at a given b if there was at least
one simulation that resulted in erosion and one simulation that
resulted in accretion. The collision speed at the transition, Vtrans,
was determined by a linear interpolation between the minimum
collision speed that resulted in erosion and the maximum colli-
sion speed that resulted in accretion.

3.2. Accretion/Erosion: Results

Figure 2 summarizes the results of the accretion/erosion sim-
ulations (Fig. 1 gives snapshots of one simulation). Each grid
shows the parameter space explored in b and v for a given mass
ratio. The shape traced in each box is the cross section of the
largest post-collision remnant along its longest axis. The objects
in boxes bounded with dashed lines have been eroded as a result
of the collision. In other words, the largest post-collision remnant
has a mass that is less than the original target. The objects in the
boxes bounded with solid lines have accreted mass. The largest
post-collision remnant has a mass larger than the original target.
The accretion/erosion curve v∗(b) is the function that describes
the transition between the erosion and accretion events. In order
to resolve the accretion/erosion curve more clearly, Vtrans was
determined using the method described in Section 3.1 at each
b for each mass ratio. Vtrans is shown in Fig. 3 along with fits
for the accretion/erosion curve. The error bars, which are half
of the difference between the speed of the simulation above the
transition and the speed below the transition, approximate the
error in the linear interpolation used to find Vtrans. The fit for the
accretion/erosion curve for mass ratio 1 : 1 (Fig. 3) is a Gaussian,

v∗(b; ξ ) = α exp

[
− (b − β)2

γ

]
+ δ, (5)

where ξ = MP/MT is the mass ratio (1 : 1 in this case), and

α, β, γ , and δ are determined by a nonlinear least-squares fit
(Leinhardt et al. 2000). Mass ratios 1 : 3, 1 : 6, and 1 : 9 are well
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FIG. 2. Parameter space of accretion/erosion simulations. The mass ratios are 1 : 3, 1 : 6, and 1 : 9 for the grids shown at the top left, top right, and bottom,
respectively. The results of the 1 : 1 simulations are shown in Leinhardt et al. (2000). The x-axes are impact parameter b in units of the sum of the radii. The
y-axes are speed in units of vcrit. Each grid box filled with a cross section represents one simulation. The cross section is a slice through the largest post-collision
t
remnant along its longest axis. The boxes with a dashed outline are erosion even
accretion/erosion curve.

characterized by progressively shallower linear functions,

v∗(b; ξi ) = mi b + ci , (6)

where ξi = 1 : 3, 1 : 6, 1 : 9, and the slope and intercept, mi and
c respectively, are determined using a weighted linear least-
i

squares fit. From Fig. 3 it is clear that as the mass ratio departs
s. Those with solid lines are accretion events. The transition between them is the

from unity, b becomes less and less important to the collision
outcome.

3.3. Accretion/Erosion: Discussion

Given the data presented above we can calculate the proba-

bility that for a given mass ratio a collision will result in growth
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FIG. 3. The accretion/erosion curve plotted for four different mass ratios.
The y-axis is speed in units of vcrit. The x-axis is impact parameter in units of
the sum of the radii of the impactor and the projectile. The accretion/erosion
curve on the far left (mass ratio of 1 : 1) was fit by a Gaussian (Leinhardt et al.
2000). All other mass ratios (1 : 3, 1 : 6, and 1 : 9) were fit with linear functions:
the slopes are −0.79 ± 0.08, −0.14 ± 0.08, and −0.08 ± 0.08, respectively.

of the target. In order to do this we need to assume both an
impact parameter and velocity distribution. If we assume that
the velocity distribution is Maxwellian with vrms equaling the
escape velocity ve from the target and that the impact parameter
distribution is uniform, the probability of planetesimal growth
from a collision is

P

[
f (b, v) ≥ MT

M

]
= 1

π
∫ 1

0 b db
π

∫ 1

0
b db

∫ v∗(b)
v0(b) g(v) dv∫ ∞
v0(b) g(v) dv

, (7)

where f (b, v) is the mass fraction of the largest postcollision
remnant, v∗(b) is the critical dispersal fit described above
(we have dropped the ξi to simplify the equation), g(v) is the
normalized Maxwellian distribution of relative speed,

g(v) dv = 1

2
√

πv3
e

exp

(
− v2

4v2
e

)
v2 dv, (8)

and v0(b) is the minimum initial speed, in units of vcrit, for a
hyperbolic encounter (v∞ > 0). The expression for the speed at
infinity is

v∞ =
(

v2 − 2G M cos φ

xvcrit

) 1
2

, (9)

where the second term is due to gravitational focusing (x is the
initial separation along the x-axis; cf. Eq. (2)). If v∞ = 0, then
v = v0 and

v0 =
√

2G M cos φ

xv2
crit

. (10)

Substituting for φ from Eq. (1), we find v0 as a function of b:

v0(b) =
√

2G M
√

1 − b2

xv2
crit

. (11)

From our simulations, we find the probability that a colli-

sion between two rubble-pile planetesimals will result in the
RICHARDSON

growth of one of the planetesimals is 37 ± 3, 46 ± 1, 73 ± 1,
and 76 ± 1% for mass ratios of 1 : 1, 1 : 3, 1 : 6, and 1 : 9, respec-
tively. Figure 4 shows the probability of an accretion event as a
function of mass ratio fit with a power law of slope −0.47 ± 0.05.

Next we find the probability of an accretion event for the mean
mass ratio,

ξ̄ =
∫ ξ2

ξ1
ξη(ξ ) dξ∫ ξ2

ξ1
η(ξ ) dξ

, (12)

where ξ1 is the mass ratio with the largest difference in mass be-
tween projectile and target, ξ2 is the mass ratio with the smallest
difference in mass, and η(ξ ) is the distribution of ξ . We assume
that the planetesimals have a power law distribution of size

d N ∝ R−α d R, (13)

where N is the number of planetesimals, R is the radius of a
planetesimal, and α is the power law index. Assuming constant
bulk density, we can express d N in terms of mass,

d N ∝ M−(α+2)/3 d M. (14)

The mass ratio distribution function then has the same form,

η(ξ ) = ξ−(α+2)/3. (15)

Since η(ξ ) is a power law, it will diverge as ξ approaches zero

FIG. 4. Probability of an accretion event as a function of mass fraction.
intercept of −0.55 ± 0.04. The error bars represent the error in the v∗(b) fits.
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FIG. 5. Plots of the largest and second-largest post-collision remnants as a function of impact energy. The crosses, filled hexagons, and open squares are from
mass ratios 1 : 3, 1 : 6, and 1 : 9, respectively. All data points are averaged over b;
(that is, as the mass ratio gets large); thus we define ξ1 to be the
mass ratio where the probability of an accretion event is unity.
From the fit in Fig. 4, ξ1 ∼ 0.06. The upper limit ξ = 1 since
MP ≤ MT . If we take α = 3, then ξ̄ = 0.22 or ∼1 : 5. From Fig. 4
the probability of an accretion event for MP/MT = ξ̄ is then
∼57%, which means on average the target will grow. The more
interesting question is how does the mean mass ratio and its
corresponding probability for an accretion event change with
time. This is complicated because the population changes after
each collision, which means that ve and vrms will also eventually
change. This coupling suggests that a numerical approach is
needed to determine the evolution, a project we defer to future
work.

It is also interesting to examine how the size of the projectile
affects the efficiency of collision. Figure 5 shows the mass of the
largest (primary) and second-largest (secondary) post-collision
remnant as a function of impact energy,

E = µv2

2
, (16)

where v is the relative speed in m s−1. To identify the primary
and secondary, we used the clump-finding algorithm described
in Leinhardt et al. (2000). Notice that for the same impact energy
the mass of the primary from the 1 : 3 simulations (crosses) is
less than that for 1 : 6 (filled hexagons), which is less than that
for 1 : 9 (open squares). In addition, the secondary from the 1 : 3
simulations is significantly larger than the secondaries from the
1 : 6 and 1 : 9 simulations. These results show that for a given
impact energy, a larger projectile is more efficient at disrupting
the target than a smaller projectile. Basically, the larger projectile
hits more particles but imparts less energy to them than a smaller
projectile. Similar results were found by Benz and Asphaug
(1999) and Benz (2000). In addition, the mass distribution of

the post-collision remnants is more shallow for a large projectile
than for a small projectile.
the error bars are the rms.

4. CRITICAL DISPERSAL SIMULATIONS

4.1. Critical Dispersal: Method

In this experiment we computed the critical dispersal energy
(Q∗

D) as a function of impactor mass ratio. Q∗
D is defined as

the minimum kinetic energy per unit total mass necessary to
create a postcollision remnant equal to 50% of the mass of the
total system while the rest of the mass is dispersed to infinity
(Durda et al. 1998). In these simulations we kept the impact
parameter fixed at b = 0 (head-on collision) and ran five mass-
ratio models (1 : 8, 1 : 9, 1 : 16, 1 : 32, and 1 : 64). Each model
was run for at least 10 collision speeds in order to bracket Q∗

D .
Because the mass ratios are far from unity in these simulations,
we approximately doubled the resolution (number of particles)
by using a target of ∼2000 particles. However, the smallest pro-
jectiles (1 : 32 and 1 : 64 the mass of the target) still had relatively
few particles and were therefore not very spherical. This meant
that the orientation of the projectile had a significant effect on the
collision outcome. In order to take this into account each mass-
ratio system was run eight times at the same speeds with the
projectile in different orientations. The critical dispersal speed
Vdis (the speed necessary for critical dispersal) was found using
linear interpolation with a method similar to that used to find
Vtrans (Section 3.1).

4.2. Critical Dispersal: Results

Figure 6 shows Vdis for each mass ratio averaged over all
orientations. The error bars are the rms of the distribution of Vdis

at any given mass ratio. The solid line is a least-squares power-
law fit with a slope of −1.9 ± 0.1. Figure 7 shows the critical
dispersal energy necessary to disperse 50% of a 1-km target. For
this figure we converted the Vdis values to Q∗

D using

µV 2
Q∗
D = dis

2M
. (17)
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The error bars are propagated from the Vdis data. The fit is a power
law of slope −1.1 ± 0.3 and intercept 3.5 ± 0.7. For a 1-m pro-
jectile this fit gives Q∗

D ∼ 102.8–104.2 J kg−1, which is consis-
tent with those found by Love and Ahrens (1996) and Benz and
Asphaug (1999), for example, but disagrees with that found by
Ryan and Melosh (1998).

4.3. Critical Dispersal: Discussion

In many respects our simulations were conducted in a similar
way to those of Love and Ahrens (1996). Using a 3D smoothed
particle hydrocode with a Tillotson equation of state for granite
without strength or fracturing, they ran several simulations at
various target diameters (10–1000 km) and speeds (3, 5, and
7 km s−1) to find Q∗

D as a function of target diameter. For each
target size they found Q∗

D by changing the projectile size and
interpolating or extrapolating to find the energy necessary to
produce a primary of 50% the mass of the system. They placed
their data on the Q∗

D vs D plot first constructed by Holsapple
(1994) without correction for different projectile sizes. Our re-
sults from Section 3.2 suggest that projectile size is important in
determining Q∗

D . However, although the projectile size changed
by two orders of magnitude, over half of their simulations used a
projectile that was <1/100 the mass of the target—small enough
that changes in the projectile size may not be important. Benz
and Asphaug (1999) found results similar to those of Love and
Ahrens (1996) but with a more sophisticated code that included
an explicit model of fracture.

FIG. 6. Critical dispersal speed Vdis as a function of projectile radius. The

solid line is a power-law fit with a slope of −1.9 ± 0.1. The error bars represent
spread in the critical speed as a result of orientation of the projectile.
RICHARDSON

FIG. 7. Critical disruption energy (Q∗
D) as a function of projectile radius

(RP ). The solid line is a power law fit with a slope of −1.1 ± 0.3 and an intercept
of log(Q∗

D) = 3.5 ± 0.7.

Ryan and Melosh (1998) used a slightly different method.
Using a 2D hydrocode with three different equations of state
and including strength and fracturing, they ran a series of simu-
lations to determine Q∗

D vs D from the strength through the
gravity regime by varying the target diameter from 10 cm to
1000 km. They calibrated their code with impact experiments
in the strength regime. However, they did not have a similar
calibration for the gravity portion of their code. The impact speed
was kept constant at 2 km s−1 and the projectile size was varied
to find Q∗

D . However, the mass ratio was consistently much more
extreme than that of Love and Ahrens (1996); thus the change
in the projectile size may not be as important.

5. CONCLUSIONS

In this paper we presented results from two sets of direct
N -body experiments in order to investigate the collisional evo-
lution of gravity-dominated planetesimals. In these simulations
we focused on understanding the effect of impactor mass ratio
on collision outcome. In our first set of simulations (Section 3.2)
we presented four parameter-space studies, each with a different
mass ratio. In these studies we found that as mass ratio increases
the impact parameter becomes less important. There was almost
no change in Vtrans from b = 0 to b = 0.75 for mass ratio 1 : 6 and
1 : 9 (Fig. 3). As one might expect the probability of planetes-
imal growth increases steadily with decreasing ξ = MP/MT .
For the mean mass ratio ∼1/5 (assuming a size distribution

∝ R−3) the probability of an accretion event was ∼60%. In
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addition we found that the size of the projectile is important to
the collision outcome. A larger projectile is more efficient at
disrupting a target than a smaller projectile for the same impact
energy.

In the second series of experiments we conducted several
head-on simulations at mass ratios far from unity (1 : 8 to 1 : 64)
in order to find Q∗

D for a 1-km target. Based on a power-law fit
to the above results we found Q∗

D = 102.8–104.2 J kg−1 for a 1-m
projectile.

There are two limitations to our numerical model that must be
mentioned. First, because our model does not include a fracture
model we are limited to relatively slow speeds. Although this
does not affect our current results extensively, we will need to
model particle damage in order to extend the speed distribution.
Second, all of the simulations presented here were done at rela-
tively low resolution. In order to find out how the detailed mass
distribution of the smaller post-collision remnants varies with
speed, impact parameter, and mass ratio, higher resolution will
be required.

5.1. Future Work

The present study had a fairly narrow focus so there are many
avenues to explore in future work. We previously mentioned that
collision outcome will depend on impactor spin and the choice
of dissipation parameter εn—the latter effect in particular re-
mains to be quantified. Ultimately our goal is to implement a
planetesimal collision outcome “recipe” in a large-scale plan-
etesimal evolution (planet formation) code, without having to
resolve each collision in detail. To achieve this, it will be neces-
sary to parameterize detailed collision simulations by the post-
collision fragment/remnant mass and velocity distributions and

derive representative distribution functions from these that can
be sampled with random deviates. This would not require much
EVOLUTION 313

more work than the present study and therefore this objective is
definitely within reach.

ACKNOWLEDGMENTS

The authors thank Dr. Erik Asphaug (UCSC) for the use of his Beowulf
cluster. They also thank the numerical group at the University of Maryland for
their helpful comments. Z.M.L. thanks John Ohlmacher and Chance Reschke
for the Borg.

REFERENCES

Benz, W. 2000. Low velocity collisions and the growth of planetesimals. Space
Sci. Rev. 92, 279–294.

Benz, W., and E. Asphaug 1994. Impact simulations with fracture. I. Method
and tests. Icarus 107, 98–117.

Benz, W., and E. Asphaug 1999. Catastrophic disruptions revisited. Icarus 142,
5–20.

Durda, D. D., R. Greenberg, and R. Jedicke 1998. Collisional models and scal-
ing laws: A new interpretation of the shape of the main-belt asteroid size
distribution. Icarus 135, 431–440.

Holsapple, K. A. 1994. Catastrophic disruptions and cratering of Solar System
bodies: A review and new results. Planet. Space Sci. 42, 1067–1078.

Leinhardt, Z. M., D. C. Richardson, and T. Quinn 2000. Direct N -body simula-
tions of rubble pile collisions. Icarus 146, 133–151.

Love, S. G., and T. J. Ahrens 1996. Catastrophic impacts on gravity-dominated
asteroids. Icarus 124, 141–155.

Richardson, D. C. 1994. Tree code simulations of planetary rings. Mon. Not. R.
Astron. Soc. 269, 493–511.

Richardson, D. C., T. Quinn, J. Stadel, and G. Lake 2000. Direct large-scale
N -body simulations of planetesimal dynamics. Icarus 143, 45–59.

Richardson, D. C., Z. M. Leinhardt, H. J. Melosh, W. F. Bottke, Jr., and
E. Asphaug 2002. Gravitational aggregates: Evidence and evolution. In As-
teroids III (W. F. Bottke, Jr., A. Cellino, P. Paolicchi, and R. P. Binzel, Eds.).
Univ. of Arizona Press, Tucson. In press.
Ryan, E. V., and H. J. Melosh 1998. Impact fragmentation: From the laboratory
to asteroids. Icarus 133, 1–24.


	1. INTRODUCTION
	2. METHOD
	FIG. 1.

	3. ACCRETION/EROSION SIMULATIONS
	FIG. 2.
	FIG. 3.
	FIG. 4.
	FIG. 5.

	4. CRITICAL DISPERSAL SIMULATIONS
	FIG. 6.
	FIG. 7.

	5. CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES

