
Matchmaking and Implementation Issues for a P2P Desktop Grid

Michael Marsh1, Jik-Soo Kim1, Beomseok Nam1, Jaehwan Lee1, San Ratanasanya1,
Bobby Bhattacharjee1, Peter Keleher1, Derek Richardson2, Dennis Wellnitz2 and Alan Sussman1

1UMIACS and Department of Computer Science
2Department of Astronomy

University of Maryland, College Park, MD 20742
1{mmarsh,jiksoo,bsnam,jhlee,san,bobby,keleher,als}@cs.umd.edu

2{dcr,wellnitz}@astro.umd.edu

Abstract

We present some recent and ongoing work in our decen-
tralized desktop computing grid project. Specifically, we
discuss matching jobs with compute nodes in a peer-to-peer
grid of heterogeneous platforms, and the implementation of
our algorithms in a concrete system.

1 Introduction

Centralized desktop grid systems [1, 2] face inherent
bottlenecks in the management nodes. Consequently, re-
searchers have been investigating decentralized grid archi-
tectures, built largely on peer-to-peer designs [3, 8].

The loss of centralization makes the task of matching
jobs to computational nodes capable of meeting the jobs’
requirements considerably more difficult. In addition, the
implementation issues faced by grids generally are com-
pounded by the addition of a peer-to-peer layer. In this pa-
per we outline the issues and challenges that have arisen in
own peer-to-peer desktop computational grid system, tar-
geted at allowing a set of collaborating users to share com-
putational resources.

Architecture Overview In previous work [4, 5, 6], we
found that a Content-Addressable Network (CAN) [7] pro-
vides a good framework for a decentralized grid. A CAN is
a type of distributed hash table (DHT) that maps nodes and
jobs into a multidimensional space. In our case, nodes are
mapped by their resource capabilities (each resource type is
a separate dimension), and jobs by their resource require-
ments. The CAN algorithms partition the space into non-
overlapping (hyper-rectangular) regions, with each node re-
sponsible for one region. The semantics of forwarding in
a CAN places a job at a node that is minimally capable of

running that job. (More likely, due to the geometry of the
multidimensional space, the node is almost capable of run-
ning the job.) The further task of choosing a node to run the
job proceeds from that point in the space.

2 Matchmaking

2.1 Goals

A general-purpose desktop grid system must accommo-
date various combinations of node capabilities and job re-
quirements. Nodes may be added one at a time over time,
so that their resource capabilities are heterogeneously dis-
tributed, or they may be added as homogeneous clusters.
Likewise, jobs may be relatively unique in their require-
ments, or part of a series of requests with similar or identical
requirements (e.g., a parameter sweep application).

The implication is that a matchmaking algorithm must
incorporate both node and job information (resource capa-
bilities and requirements, respectively) into the process that
eventually maps a job onto a specific node. To be able to
handle general configurations of nodes and jobs, the goals
of any matchmaking algorithm should meet the following
criteria:

1. Expressiveness - The matchmaking framework should
allow users to specify minimum (or exact) require-
ments for any type of resource

2. Load balance - Load (jobs) must be distributed across
the nodes capable of performing the work.

3. Parsimony - Resources should not be wasted. All other
issues being equivalent, a job should not be assigned to
a node that is over-provisioned with respect to that job.

4. Completeness - A valid assignment of a job to a node
must be found if such an assignment exists.

1



5. Low overhead - The matchmaking must not add sig-
nificant overhead to the cost of executing a job.

2.2 Matchmaking Overview

2.2.1 The Easy Case

Matchmaking begins at the node closest in capabilities to
the requirements of the job. This node, the owner, looks
at the information it has for its nearest neighbors and next-
nearest neighbors in the partitioned multidimensional space
that satisfy the job’s requirements. If any of these has an
empty queue, it is selected as the run node for the job.

2.2.2 Extending the Horizon

In an active grid system, there is not likely to be a neighbor
of the owner without any jobs in its queue. Consequently,
we need a way to extend our view of available nodes beyond
those for which we have direct information.

The Setup The normal maintenance of a CAN involves
regular exchange of messages between nodes. We augment
these messages with a small amount of information, related
to overall system load. In particular, we record an approxi-
mation of the number and load of nodes extending towards
the resource capability maxima in each dimension of the
CAN. As messages are exchanged, this information flows
from the more capable nodes down to the less capable nodes
in each dimension, aggregating the information from inter-
vening nodes along the way. Thus we build an approximate
view of the upper regions of the CAN space.

Finding a Run Node Consider a node n that is processing
a matchmaking request for the job. Initially, this is the job’s
owner node. n looks at the information it has aggregated
from its neighbors. Using some type of scoring function,
it picks one of these neighbors that seems most likely to
reach a free node quickly. The job is then forwarded to
this neighbor, which repeats the process. We refer to this
as “pushing” the job. Because information is aggregated
toward the CAN origin, jobs are pushed to more capable
nodes. If a job ever reaches a node with an empty queue
(and that is capable of running the job), that node becomes
the run node. We discuss more details of the difficulties in
this part of the problem later. Figure 1 depicts the overall
process of finding a run node after a client submits a job.

2.3 Challenges

Aggregation The first challenge with load aggregation is
what, precisely, to aggregate. From simulations, we find
that using the number of nodes and sum of the job queue
lengths allows us to balance the load fairly effectively.

CPU

Memory

Job J
CPU >= CJ

&&
Memory >= MJ

CJ

MJ

Client

Starting
Node

Owner
Node

Run
Node

Route J
to Owner

Job J

Insert J

Job J

Pushing J
to Run Node

(load balancing)

Stop
Pushing

Figure 1. Matching a Job to an Available Ca-
pable Node

The second challenge is how to aggregate this informa-
tion. The simplest and most obvious choice is to aggre-
gate along the individual dimensions. That is, a node n has
aggregated information from its neighbor with more disk
space regarding all other nodes in a straight line from n

outward in the disk space dimension. Unfortunately, this
misses the possibility that a node slightly off this line has a
very short job queue. We have been investigating ways of
capturing this off-axis load information, generally involving
attenuating information in proportion to its distance from
the axis along which it is aggregated.

The scoring function, on which we base our pushing de-
cision, is another issue. The straightforward solution uses
the average queue length of the nodes in each CAN dimen-
sion. Again, this misses some relevant features for load
distribution. That is because nodes in the dimension with
the shortest average queue length are not always the best
choice. Routing in a dimension with a slightly longer av-
erage queue size might enable access to a larger number
of potential run nodes than the dimension with the smallest
average queue length. Seeing the larger number of nodes
makes it more likely that when a pushed job reaches one of
the nodes believed to be lightly loaded, that node will still
be lightly loaded. Therefore, our scoring function considers
both average job queue length and the number of available
nodes propagated during load aggregation.

One final challenge regarding aggregation is that the in-
formation rapidly becomes stale. There is no way to avoid
this, except by more frequent message exchanges. Recent
work on our system has employed partial exchanges, where
only some neighbors receive updates. While this improves
many features of the system, especially its ability to scale,
it also exacerbates the aggregated load staleness problem.

2



 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

15 16 17 18 19 20

W
ai

t T
im

e 
of

 J
ob

 (
s)

Average Inter-Arrival Time of Jobs (s)

Average Wait Time of Jobs

RND
CAN

CENTRAL

Figure 2. Load Balancing Performance of the
CAN algorithms

Pushing It is not enough to aggregate load information –
we must also be able to use it to move jobs towards lightly
loaded potential run nodes. Because pushing, as we envi-
sion it, involves sending a single copy of the job descrip-
tion out from the owner node, matchmaking is susceptible
to message losses. These might be due to network failures,
data corruption, or messages discarded by an errant node.
Some sort of mechanism to detect and recover from this sit-
uation is necessary. As a last resort, the client that submitted
the request might time out waiting for a response indicating
that the job has been enqueued, prompting it to resubmit the
job. This, however, is an unsatisfying solution.

The larger challenge when pushing a job is deciding
when to stop pushing it. The job may never reach a node
with an empty queue, which means we need some mecha-
nism for a node to decide, based solely on local information,
that it will not push the job further, but rather nominate itself
as the run node. We have investigated a probabilistic mech-
anism for this purpose, based on the estimated number of
nodes reachable by pushing from the current node. When
establishing this stopping probability, we need to balance
the likelihood of finding a better choice by continued push-
ing against the needs of legitimately resource-demanding
jobs which have a smaller pool of potential run nodes.

2.4 Performance Results from Simula-
tions

Figure 2 shows experimental results obtained via event-
driven simulations. All results were collected when the sys-
tem was in the steady state, where the rate for jobs arriv-
ing and completing is approximately the same. As the av-
erage inter-arrival time between jobs increases, the overall
system becomes less loaded. To see how well the work-
load could be balanced, we measure average job wait time

in the job queue on a node and compare the CAN-based ap-
proach (CAN in the figure) with an idealized online central-
ized scheme (CENTRAL) that uses knowledge of the status
of all nodes and jobs, so cannot be efficiently implemented
in a decentralized system. We also show results for a rel-
atively simple randomized approach (RND) that achieves
load balancing based on random assignment of jobs to the
nodes and meets the jobs’ constraints through a local search
(for more details on RND and CENTRAL, see [4]). As the
results show, the CAN algorithms outperform RND, espe-
cially under high load, and balance load almost as well as
CENTRAL. In results not shown due to lack of space, we
also verified that the cost for performing matchmaking in
the CAN is very low compared to the time to run a job.

3 Implementation

3.1 Goals

As a real-world computational grid, the system must be
long-running. That is, we should not expect the entire grid
to be brought down and restarted except under exceptional
circumstances. One thing that works in our favor is that the
system is completely decentralized, so individual failures
have a minor impact on the system as whole, provided the
mean time to failure for any participant is large.

Our system is also designed to have a small impact on
the perceived performance of the hosts on which it runs.
For desktop grid participants, local users’ tasks must run
with highest priority. Beyond that, grid jobs should con-
sume as much processing time as they reasonably can. The
operation and maintenance of the grid software should have
minimal impact on the participants. Ideally, the CPU and
network usage should be unnoticeable. Minimizing the sys-
tem’s impact on hosts cannot be the sole concern, however,
since users will expect the system to be responsive. Re-
searchers should not have to wait five minutes to find out
whether jobs they have submitted have been enqueued suc-
cessfully.

Finally, the resource providers and job submitters are
generally assumed to be well-intentioned. However, the
grid will be visible to the Internet, which includes many
malicious individuals. Moreover, we cannot expect submit-
ted jobs to be bug-free, whether in implementation or logic.
Consequently, we need to ensure that the system is “rea-
sonably” secure.

3.2 Overview

3.2.1 CAN

The underlying peer-to-peer architecture is a highly cus-
tomized implementation of a Content-Addressable Network

3



(CAN). A standard CAN has a number of dimensions with
no semantic meaning. Effectively, each is an independent
hash of some unique characteristics of the node or data. The
number of dimensions is chosen to balance per-node state
and routing costs. However, our design and implementation
depends on dimensions corresponding to the resource types
provided by nodes or required by jobs, as well as a single
virtual dimension that more closely corresponds to the orig-
inal CAN design. Since the point of the virtual dimension
is to distinguish between nodes that are otherwise identical
and help spread jobs over these nodes, rather than using a
hash function we randomize the values of nodes and jobs in
the virtual dimension.

Our implementation is designed to run on non-dedicated
hosts. That is, we do not expect either our system or the
jobs it runs to be of great importance to the principal user
of a participating machine. That means the grid application
must be easy to run, unobtrusive, and robust.

3.2.2 Jobs

The purpose of the grid is to run jobs submitted by users.
These jobs will come from users that may or may not be
from the same department or even institution as the hosts
on which they will run. Since job executables and data files
might be large, we do not move these around in the sys-
tem. Rather, we pass descriptions of jobs, which include
instructions on how to retrieve the needed files and how to
compose them in a job invocation.

Once placed at a run node, jobs are processed in FIFO
order; there is no notion of job priorities. Each job runs in
its own directory, with all of its input and output files. Both
the standard output and standard error streams are captured
in files, though the job is also free to create additional output
files. When a job completes, the run node creates a tar file
of the job’s directory and sends it to the client via a standard
POSIX TCP socket.

3.3 Challenges

3.3.1 CAN

A review of the literature shows that few implementations
of CAN exist. This is because CAN is significantly more
difficult to implement than other distributed hash table al-
gorithms. We compound the difficulty by creating a version
of CAN that is even more difficult to implement.

Our semantics mean that the standard CAN technique for
inserting a new node, which is to split the current zone con-
taining the node’s multidimensional point evenly along its
longest current dimension, is not possible. Consequently,
we may have zones that cover a large range in one di-
mension, but very small ranges in the others. This is fur-
ther exacerbated by the fact that we are unable to balance

node placement through uniformly random placement in the
space.

Zone management is also more complicated. Holes are
not permitted in the CAN space, either for the original de-
sign or our implementation. The original design does not
make any intimate connection between a node and the re-
gion of the space it covers, so it is acceptable for a single
node to maintain two distinct rectangular zones. In our case,
this does not work, since zone ownership implies a certain
minimum capability in terms of real resources. The failure
recovery mechanisms in the original CAN therefore become
brittle in our system. We have, however, solved all of these
problems in our design and implementation, and verified
their correctness and adequate performance characteristics
through simulations.

To add another complication, we intend the system to
run on any POSIX host. Hence we chose to restrict our
implementation to the C99 standard of the C programming
language, with the addition of POSIX features. By restrict-
ing ourselves in this way, our source code should be read-
ily portable to additional systems beyond those on which
we are currently developing (Linux, Solaris and OSX). The
GNU autoconf package gives us the ability to compensate
for the remaining variations between platforms.

3.3.2 Keeping Sysadmins Happy

A crucial aspect of a grid computing system is that it has to
run on hosts for which system administrators are responsi-
ble. These sysadmins tend to be conservative, so the imple-
mentation must be demonstrably not harmful.

Network Network usage affects all users, and a substan-
tial slowdown will result in a flood of complaints. This will,
understandably, make a sysadmin ill-disposed to continued
participation in the grid. The implication of this is that ba-
sic grid maintenance messages, such as job heartbeats and
periodic neighborhood exchanges, must be kept as small as
possible, lest they give the appearance of malware. The fre-
quency of message exchanges must also be limited, since
this too can overburden a network. Message frequency re-
quires trading off bandwidth consumption against staleness
of data. If we expect jobs to run for times on the order
of hours, then periodic exchanges on the order of minutes
should suffice. We are currently working on techniques to
limit message sizes even for very large and arbitrarily zoned
grids.

Hosts A user contributing his or her desktop machine to
the grid will not appreciate a dramatic slowdown in respon-
siveness. Additionally, many hosts have network-mounted
filesystems. Over-use of CPU (easily mitigated with the

4



nice command) or storage space are bad enough, opera-
tionally, but the potential for malicious behavior (including
possible privilege escalation) is a major concern.

We address these issues first by restricting who can sub-
mit jobs to the grid. By using standard X.509 certificates,
with a grid “owner” as the certification authority (CA), we
cryptographically ensure that jobs are legitimate. We also
use certificates to prevent malicious individuals from con-
tributing hostile nodes to the grid. Not all messages need
to be signed; established connections can be trusted to pass
only legitimate traffic, so long as we discount the possibility
that hosts are compromised.

Even with trusted users, the grid is running untrusted
code that might contain errors in logic or implementation.
Our main concern here is to limit the damage that buggy
code might cause. The simplest protection that we can offer
is the Unix chroot command. We use this, when avail-
able, to run jobs in a restricted environment that shields
the bulk of the host’s filesystem from the job. This, how-
ever, requires superuser privileges to set up. While we pro-
vide a readily auditable program to establish the jail, not
all sysadmins will be willing to allow it. A more complex
option is to use virtualization software, such as VMWare
(http://www.vmware.com) or Xen (http://xen.org). This re-
quires greater effort to set up, but can in principle be done
by an ordinary user, and is completely independent of our
implementation. We would like to provide the added pro-
tection of blocking jobs from accessing the network, but
it is exceedingly difficult to keep user code from opening
sockets.

3.3.3 Keeping Users Happy

A computational grid that works flawlessly is not useful un-
less researchers are willing and able to use it. Consequently,
we have put considerable effort into the two components
with which users will interact directly. There is also exten-
sive documentation, in the form of a user guide.

Researchers will primarily interact with the grid through
the client interface. This is a graphical application, built
in C using the Gtk toolkit (http://www.gtk.org/), that allows
users to submit jobs and monitor their progress. A sim-
ple text-based client is also available, which is suitable for
scripted interactions with the grid.

The other major user-interface component is a Java ap-
plication to generate job description files. The files them-
selves are in a custom XML format, which is designed to
be fairly human readable. The job file generator allows
researchers to combinatorially construct potentially large
numbers of jobs, such as by specifying multiple values for
each of several parameters in a simulation, or providing a
set of data files to be processed identically by the same user
program.

4 Summary

Decentralizing the management of a desktop computing
grid brings with it many challenges, but it also brings in-
creased scalability and resilience to failures. As we have en-
countered algorithmic challenges, we have found that mod-
ifications to our initial algorithms have been necessary, to
maintain scalability and reliability. Further, while start-
ing from an inherently complex distributed hash table, the
implementation has never suffered from apparently insur-
mountable obstacles, nor any sacrifice in software design.
The implementation is nearly ready for field testing, with
the matchmaking algorithms still in the process of being re-
fined. However, the parts of the implementation that have
been validated by simulation are already in, or currently be-
ing added to, the peer implementation.

References

[1] D. Anderson. BOINC: A System for Public-Resource Com-
puting and Storage. In Proceedings of the 5th IEEE/ACM In-
ternational Workshop on Grid Computing (GRID 2004), Nov.
2004.

[2] A. Chien, B. Calder, S. Elbert, and K. Bhatia. Entropia: Ar-
chitecture and Performance of an Enterprise Desktop Grid
System. Journal of Parallel and Distributed Computing,
63(5):597–610, May 2003.

[3] I. Foster and A. Iamnitchi. On Death, Taxes, and the Conver-
gence of Peer-to-Peer and Grid Computing. In Proceedings
of the 2nd International Workshop on Peer-to-Peer Systems
(IPTPS ’03), Feb. 2003.

[4] J.-S. Kim, P. Keleher, M. Marsh, B. Bhattacharjee, and
A. Sussman. Using Content-Addressable Networks for Load
Balancing in Desktop Grids. In Proceedings of the 16th IEEE
International Symposium on High Performance Distributed
Computing (HPDC 2007), June 2007.

[5] J.-S. Kim, B. Nam, P. Keleher, M. Marsh, B. Bhattacharjee,
and A. Sussman. Resource Discovery Techniques in Dis-
tributed Desktop Grid Environments. In Proceedings of the
7th IEEE/ACM International Conference on Grid Computing
(GRID 2006), Sept. 2006.

[6] J.-S. Kim, B. Nam, M. Marsh, P. Keleher, B. Bhattacharjee,
D. Richardson, D. Wellnitz, and A. Sussman. Creating a Ro-
bust Desktop Grid using Peer-to-Peer Services. In Proceed-
ings of the 2007 NSF Next Generation Software Workshop
(NSFNGS 2007), Mar. 2007.

[7] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Shenker. A Scalable Content Addressable Network. In
Proceedings of the ACM SIGCOMM, Aug. 2001.

[8] P. Trunfio, D. Talia, H. Papadakis, P. Fragopoulou, M. Mor-
dacchini, M. Pennanen, K. Popov, V. Vlassov, and S. Haridi.
Peer-to-Peer resource discovery in Grids: Models and sys-
tems. Future Generation Computer Systems, 23(7):864–878,
Aug. 2007.

5


