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We present a numerical method that incorporates particle sticking in simulations using the N-body code
pkdgrav to study motions in a local rotating frame, such as a patch of a planetary ring. Particles stick to
form non-deformable but breakable aggregates that obey the (Eulerian) equations of rigid-body motion.
Applications include local simulations of planetary ring dynamics and planet formation, which typically
feature hundreds of thousands or more colliding bodies. Bonding and breaking thresholds are tunable
parameters that can approximately mimic, for example, van der Waals forces or interlocking of surface
frost layers. The bonding and breaking model does not incorporate a rigorous treatment of internal frac-
ture; rather the method serves as motivation for first-order investigation of how semi-rigid bonding
affects the evolution of particle assemblies in high-density environments.

We apply the method to Saturn’s A ring, for which laboratory experiments suggest that interpenetra-
tion of thin, frost-coated surface layers may lead to weak cohesive bonding. These experiments show that
frost-coated icy bodies can bond at the low impact speeds characteristic of the rings. Our investigation is
further motivated by recent simulations that suggest a very low coefficient of restitution is needed to
explain the amplitude of the azimuthal brightness asymmetry in Saturn’s A ring, and the hypothesis that
fine structure in Saturn’s B ring may in part be caused by large-scale cohesion.

This work presents the full implementation of our model in pkdgrav, as well as results from initial
tests with a limited set of parameters explored. We find a combination of parameters that yields aggre-
gate size distribution and maximum radius values in agreement with Voyager data for ring particles in
Saturn’s outer A ring. We also find that the bonding and breaking parameters define two strength regimes
in which fragmentation is dominated either by collisions or other stresses, such as tides. We conclude our
study with a discussion of future applications of and refinements to our model.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

1.1. Motivation

The small particles comprising the rings of Saturn are composed
almost entirely of water ice (see Cuzzi et al. (2009) for a recent re-
view). Laboratory measurements of collisions between frost-cov-
ered icy spheres (Hatzes et al., 1991; Bridges et al., 1996;
Supulver et al., 1997; Bridges et al., 2001) have shown those bodies
to adhere at very low impact speed. In particular, Hatzes et al.
(1991) showed evidence for a critical impact speed below which
every impact results in cohesion (�0.3 mm/s); this speed happens
to be on the order of the escape speed (for a test particle on the sur-
face) of an icy sphere 1 m in radius. Their analysis explains this
cohesion with a ‘‘Velcro’’ model—the rough texture of the frost lay-
ers providing an interlocking structure for colliding particles.
ll rights reserved.

e).
Interestingly, analysis of recent observations of the rings of Sat-
urn implies the need for such a bonding mechanism. Porco et al.
(2008) show that the contrast in the azimuthal brightness asym-
metry of Saturn’s A rings (e.g., Salo et al., 2004; French et al.,
2007; Porco et al., 2008) can be modeled using extremely dissipa-
tive particle interactions, such as would arise from bonding. And,
until recently, radial banded structures in Saturn’s B ring eluded
explanation. Tremaine (2003) suggests that these zones occupy a
region of dynamical phase-space that is ‘‘shear-free’’—zones with
zero Keplerian shear—and thus subject to a solid–liquid phase
transition. The suggestion here is that these zones may consist of
large-scale transiently bonded particles that orbit Saturn as a solid.
While these banded structures have been attributed recently to
viscous overstability in the dense rings (Spitale and Porco, 2010),
transient cohesive bonding may still play some role in the dynam-
ics and observable properties of these regions.

Studying the full effect of such bonding mechanisms in dense
environments, specifically Saturn’s dense A and B rings, requires
detailed numerical modeling. Such systems involve a complex
convergence of phenomena, including interparticle self-gravity,
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Fig. 1. A schematic diagram of a local sliding-patch model with shearing periodic
boundary conditions. The three green (or dark, if viewed in gray scale) particles in
the center box are the simulated particles; yellow (light) particles are in replicated
patches that provide boundary conditions. The x coordinate is the radial direction,
with Saturn located far in the �x direction; y is the azimuthal direction, and the
entire patch orbits Saturn in the +y direction. z points out of the page, forming a
right-handed coordinate system. Note that while the patch is periodic in x and y, it
is unbounded in z. The simulation is carried out in the orbital frame of the center of
the patch, so particles to the left shear upward; on the right, they shear downward.
The replicated patches similarly shear (or ‘‘slide’’) past the center box in Keplerian
fashion; each bold X marks the center of each patch, with the bulk motion of each
patch indicated by black arrows. (This is the origin of the term ‘‘sliding patch.’’)
Particles crossing boundaries reappear on the opposite side, with positions and
velocities adjusted for shear; each particle in this example will soon cross a
boundary, with current velocities indicated by attached red arrows. The azimuthal
velocity of the particle making a radial boundary crossing will be adjusted for shear
by þ 3

2 XLxŷ (see Section 1.1). Note that while only one ring of replicated patches is
shown, we typically use three rings of replicas, in order to provide a smooth
background. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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planetary tides, and interparticle collisions. It is beyond the
capability of current analytical models to further incorporate
dynamical bonding and fragmentation. Some groups have modeled
the effect of cohesion between a small number of bodies (e.g.,
Spahn et al. (2004) and Albers and Spahn (2006) using a viscoelas-
tic model), but none have attempted to self-consistently model the
global effects that emerge when tens of thousands (or even
millions) of icy bodies interact over many orbital times.

Local simulations are valuable tools for these studies: by
restricting the computational volume to a small region of interest
(which we call a ‘‘patch’’), realistic surface densities and particle
size distributions can be modeled. Specifically, a full-ring simula-
tion of Saturn’s A and B rings with accurate surface densities and
spherical 1 m radius bodies would require roughly 1015 particles,
which is far beyond current computational possibility. But a repre-
sentative patch may require only 105�9 bodies, depending on the
specific problem being explored.

Local simulations can be used to study planetary rings, debris
disks around stars, or any other non-inertial system orbiting a large
body. Such systems use Hill’s linearized equations of motion (Hill,
1878; Wisdom and Tremaine, 1988):

€x ¼Fx þ 3X2xþ 2X _y;
€y ¼Fy � 2X _x; ð1Þ
€z ¼Fz �X2z

with F being the acceleration due to particle self-gravity, X the
Keplerian orbital frequency of the system (which equals

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GM=a3

p
,

with G the gravitational constant, M the mass of the central body,
and a the distance to that body), x, y, and z the coordinates of the
particle in the local coordinate system (whose origin is located at
the center of the patch), and derivatives with respect to time. See
Fig. 1.

The azimuthal and radial extents of the patch are small com-
pared to its orbital distance from the planet, but large compared
to the radial mean free path of the particles inside it. Periodic
boundary conditions are employed in x and y to ensure that the to-
tal number of particles in the rectangular volume containing the
patch remains constant. Particles exiting one side of the volume
(in x or y) reappear on the other side with the same properties
(mass, spin, random component of velocity, etc.) as the exiting
body. We refer to this process as ‘‘wrapping’’ the particle. When
a particle crosses the radial boundary, Keplerian shear requires
that its azimuthal velocity be adjusted by 3

2 XLx (where Lx is the ra-
dial dimension of the patch). This ensures a smooth velocity tran-
sition across the patch boundary. In addition, the particles in the
patch are replicated into surrounding patches; these provide grav-
itational and collisional boundary conditions. See Fig. 1.

Many groups employ this local ‘‘patch’’ model to study plane-
tary rings (recent examples include, Lewis and Stewart, 2000;
Karjalainen and Salo, 2004; Porco et al., 2008), though none of those
groups employ interparticle bonding in their models. Thus our
model appears to be unique, as it incorporates rigid bonding, using
user-defined merging and fragmentation criteria, into a local N-body
simulation of a self-gravitating, collisionally evolving system.

This model is also of interest in the planet formation field, as it
will improve upon the utility of existing methods. For example,
Barnes et al. (2009) includes a mechanism for merging N-body par-
ticles and growing planetesimals; however, those mergers merely
replace the colliding particles with a single spherical particle with
the same total mass and angular momentum, losing critical infor-
mation, such as shape and spin, as the planetesimals evolve. Fur-
ther, that model has no fragmentation mechanism. Spahn et al.
(2004) provides an analytical approach to collisional merging and
fragmentation in the context of planet formation, but relies on
replacing particles with spherical collision remnants. Our new
method allows for studies into more realistic shape and spin distri-
butions via fractal growth, and accounts for (somewhat simplistic)
breakage due to collisions and external forces.

Our model may not yet include all of the complex physics rele-
vant to fractal growth and granular mechanics, but it remains more
sophisticated than previous methods. In applying our model to the
rings of Saturn, we follow the precedent of the planet formation
field, in which basic models are first applied to the problem to gain
first-order understanding before investing more effort into ever
more detailed models with ever more accurate physics.
1.2. Terminology

Following the nomenclature of Richardson et al. (2009), we re-
fer to an ‘‘aggregate’’ of material as a collection of particles that are
joined together via inflexible and incompressible bonds of user-de-
fined strength. For example, this body can, depending on the
strength of the bonds, resist self-gravitational reshaping (e.g.,
remain highly non-spherical). The constituents of the aggregate
travel through space as one unit (i.e., the particles’ positions
remain fixed with respect to one another), and rotate collectively
in response to external torques. Aggregates can experience fractal
growth through collisional accretion with other bodies—free
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particles, or other aggregates—and can fragment and lose particles
through collisional events or stress fragmentation (when stresses
exceed bond strengths).

Other researchers (e.g., Karjalainen and Salo, 2004; Karjalainen,
2007) use the term ‘‘aggregate’’ to refer to a collection of particles
bound together by gravity alone. We refer to these structures as
‘‘gravitational aggregates.’’ Unless indicated otherwise, ‘‘aggregate’’
in this paper refers to a bonded aggregate, though both types of
structures appear in our simulations (cf. Section 3.2).

An important type of gravitational aggregate that is prevalent in
dense ring simulations is a structure usually referred to as a ‘‘grav-
ity wake,’’ or simply a ‘‘wake’’ (see Salo, 1992, for a full discussion;
for more theory, see, for example, Daisaka and Ida, 1999). While
these wakes have never been imaged directly (due to their cur-
rently unresolvable sub-hundred-meter size), they are predicted
by many models (e.g., Salo, 1992; Colwell et al., 2007; Porco
et al., 2008; Robbins et al., 2010). In the models, they are distin-
guished from other types of gravitational aggregates by stability,
morphology, and orientation, and form when the gravitational col-
lapse due to particle self-gravity nearly balances the disruptive
influence of Keplerian shear. Given sufficient surface density and
distance from the central body, these wakes form readily, yet are
disrupted on orbital times, and are thus highly transient structures.
They take the form of elongated and densely packed gravitational
aggregates, with a separation estimated by twice the critical wave-
length of the region: kcrit = 4p2GR/j2 (with R the surface mass den-
sity, and j the local epicyclic frequency—which in this case is the
Keplerian orbital frequency X). Due to their formation mechanism,
wakes have a characteristic pitch angle (orientation angle with re-
spect to the orbital direction) of about 20–25�, depending on local
conditions.

Researchers (e.g., Salo et al., 2004; Porco et al., 2008) have in-
voked the presence of these wakes to explain the azimuthal bright-
ness asymmetry in Saturn’s A ring. Wakes are a dominant structure
in our simulations (see Section 3.2).
1 For the interested reader: Py is defined and calculated for all particles at the
beginning of the kick phase, before any particle’s velocities are updated. Further, the
drift phase adjusts a particle’s position, using the adjusted velocity. Therefore, in
order to properly compute Py at any arbitrary time during the drift phase, we must
both backtrack the particle’s position to the start of the drift, and undo the velocity
change that occurred during the kick phase. Thus Eq. (2) depends on both the elapsed
time during the drift (to undo the drift) and the timestep (to undo the kick). Note that
at the exact middle of the drift, when Dt/2 = tevent, the expression simplifies to
Py ¼ _yþ 2XðxeventÞ; this is because Eq. (2) is based on the cross term of the
Hamiltonian (that is the basis of the symplectic method) as measured from the
middle of the step (see the discussion in Quinn et al. (2010), preceding Eq. (29)).
1.3. pkdgrav

We built our aggregation model into pkdgrav, an N-body code
originally designed for cosmological simulations (Stadel, 2001),
which was adapted to include particle collisions (Richardson
et al., 2000) for the purpose of studying, among other things, plan-
etary rings (e.g., Porco et al., 2008).

Pkdgrav uses a parallelized tree code to reduce the computa-
tional cost of summing up gravitational force contributions be-
tween particles. A second-order leapfrog scheme is used to
integrate the equations of motion by alternatively updating parti-
cle positions and velocities; velocity updates are performed during
the ‘‘kick’’ phase, and position updates during the ‘‘drift’’ phase.
(Velocities are held constant during the drift, and positions are
held constant during the kick.) Thus the code proceeds forward
in time as a sequence of alternating kicks and drifts.

Collisions among particles are predicted and resolved during
the drift phase by treating particle trajectories as linear and pre-
dicting when intersections occur (for more discussion, see, e.g.,
Richardson et al., 2009).

As discussed in Quinn et al. (2010), naïvely applying the leap-
frog method to integrate Hill’s equations generally breaks the sym-
plectic nature of the integrator. Quinn et al. (2010) presents a
symplectic leapfrog method for the rotating patch frame that we
have implemented into our code. One complication of the method
is the introduction of a new canonical variable, the momentum Py,
that needs to be tracked for each particle. Impulsive events, like
collisions, require updates to Py during the drift phase. We adapted
Eqs. (33) and (34) of Quinn et al. (2010) to find Py during the drift:
Py ¼ _yþ 2X xevent þ _xðDt=2� teventÞð Þ ð2Þ

where _x and _y are the (constant) velocities during the drift, X is the
orbital frequency of the rotating coordinate system, xevent is the
(drifted) radial position of the body at the time of the event, Dt is
the full timestep, and tevent is the elapsed time since the start of
the drift phase. Usually, the ‘‘event’’ is a collision, though other
events that require recalculation of Py do occur (e.g., stress fragmen-
tation).1 It should be noted that both dissipative collisions and the
non-momentum-conserving nature of the tree-based method also
‘‘break’’ the symplecticity of the leapfrog integrator—but the former
is a controlled energy loss, and the latter is minimized in the patch
model because forces rapidly homogenize with distance in the flat-
tened geometry of planetary rings.

The remainder of this paper is divided as follows. Section 2 de-
scribes the numerical method in detail. Section 3 describes tests
we performed that demonstrate the code is working correctly. Sec-
tion 4 provides a summary and ideas for future work. Appendix A
gives the complete derivation of the equations of motion of rigid
bodies in the rotating patch frame. Appendix B presents a geomet-
rical calculation for the contact area between rigid particles gen-
eral enough for any particular bonding model. Lastly, Appendix C
presents an expression and rationale for our choice of bonding
parameters by relating the impact pressure between colliding
bodies to the impact speed.
2. Aggregate model

2.1. Previous work

Richardson (1995) incorporated a basic version of the aggregate
model (for the inertial frame) into an earlier N-body code. Richard-
son et al. (2009) incorporated the model into pkdgrav, on which
the present work is based. We review the essential details here.

Colliding particles can stick on contact to form an aggregate—or
add to an existing aggregate—if the impact speed is below a user-
defined threshold called the ‘‘merge limit’’ (which can be chosen by
the user to be either a fixed value, or a value proportional to the
mutual escape speed of the colliding objects). Fractal growth pro-
ceeds as more free particles—or other aggregates—collide and stick
in this way. In our model, particles have no knowledge of which
particle(s) they are ‘‘stuck’’ to—all a particle knows is which aggre-
gate it belongs to. Aggregate properties are calculated based on the
positions, velocities, spins, etc., of the particles included in that
body alone.

To counter growth, an aggregate must be able to fragment, and
we have implemented two breaking mechanisms that can cause a
bonded aggregate to lose particles. First, a particle that impacts an
aggregate at a speed above a (different) user-specified threshold
causes the impacted particle to become liberated from the aggre-
gate. This threshold is the ‘‘fragmentation limit’’ (which can also
be either an absolute speed or a value scaled by the mutual escape
speed of the colliding bodies). If the impacting particle is itself part
of an aggregate, it may be liberated as well. Liberated particles will
likely immediately strike other particles in their respective former
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aggregates, which might also become liberated (if the impact
speeds are still high enough), causing a fragmentation cascade.

Second, each aggregate is assigned a user-defined strength,2 or
‘‘stress limit,’’ in the normal (tensile) or tangential (shear) directions,
or both. The aggregate experiences no strain as the stress increases:
it remains perfectly rigid until the strength is exceeded. The failure
test is performed at each step immediately following the gravity cal-
culation: each bonded aggregate is checked in turn to see if any con-
stituent particles are experiencing a differential acceleration relative
to the aggregate center of mass that exceeds the strength. This stress
can arise from such factors as rapid rotation, or gravitational tidal ef-
fects from the planet or other particles, and is offset by the effect of
gravitational self-compression (since all interparticle forces are com-
puted explicitly—even those arising between particles within an
aggregate). Any particle whose acceleration exceeds the stress limit
is liberated from the aggregate and becomes a free particle again at
its current position and velocity.

For these calculations, the strength, in units of pressure, is con-
verted to a maximum acceleration by multiplying by the cross-sec-
tional area and dividing by the mass of the particle under
consideration. We recognize that the cross-sectional area of the
cohesive particles is a gross over-approximation to the true contact
area of most particle bonding. But any bonding model (whether it
is based on deformable particles, or some means of interpenetra-
tion of the surfaces of the bodies) will have a drastically different
contact area. Our method makes no attempt to select one model
over another, in order to remain a general and simple method to
explore the effects of cohesion—no matter the means of sticking
under study. Thus it is up to the user of the code, and our readers,
to translate the strengths used as parameters within pkdgrav into
strengths applicable to the bonding method under study. This is
achieved by scaling the strength parameter by the ratio of the
cross-sectional area to the true contact area (see Appendix B).

Note that there is no internal consistency check to verify that
the user’s choice of fragmentation limit matches physically to the
choice to bond strength. Thus the user can chose to model aggre-
gates with infinite strength (such that tides never disrupt an aggre-
gate) while simultaneously allowing those aggregates to fragment
at the slightest of impacts, or aggregates that are highly resistant to
impact fragmentation yet are easily tidally disrupted. This is a use-
ful feature, as it can be illuminating to isolate the fragmentation
mechanisms to study their behaviors. So it is up to the user to
match these two parameters physically, if desired. In order to assist
with understanding, we have derived a naïve order-of-magnitude
relationship between the stress limit and the velocity-based frag-
mentation limit to use as a general guideline (see Appendix C). This
relationship includes the generic parameter b (defined in Appendix
B) that scales the strength by considering the varying contact areas
of different bonding methods.

Also note that we do not keep track of explicit bonding net-
works within an aggregate, such as those discussed in Lois and
Carlson (2007); whether a particle joins or leaves an aggregate is
based entirely on the properties of that particle alone and the
aggregate as a whole, not on local conditions within the aggregate.
For instance, we cannot track failures or cracks in this model—all
bonds obey the same strength law.

Additionally, collisional fragmentation is limited to removing
individual particles from an aggregate; once liberated, each parti-
cle is itself an indestructible sphere, yet each particle can continue
to fragment the aggregate in a cascade of collisions. Thus it is
impossible, for example, for an impacted aggregate to break into
two or more large pieces in a single event. This could result in an
2 The strength can be made size-dependent according to S / ra, where r is the
radius of the aggregate’s minimally enclosing sphere, and a is a user-defined constant.
over-abundance of small particles in equilibrium, as those particles
ought to be combined as larger collisional fragments. However, our
fragments can spontaneously recombine following the cascade—
particularly if those particles emerge from the impact event on
similar trajectories—to form a polydisperse distribution of frag-
ments. Thus our cohesion model is only an approximation to the
behavior of real cohesive materials, but we believe we are captur-
ing the essential elements while keeping the computations
tractable.

However, the model’s generality remains a strength, as it cap-
tures the basic behavior of bonding without limiting the range of
cohesion mechanisms that it can mimic. For example, our basic
model could approximate soft deformable spheres, such as those
used in Johnson et al. (1971), or overlapping frost layers, such as
in Hatzes et al. (1991), by merely a careful change to the bonding
parameters.

Having discussed the bonding aspects of our model (how aggre-
gates are created and destroyed), we next move on to a summary
of the dynamics of our aggregates. Aggregates obey Euler’s equa-
tions of rigid-body rotation:

I1 _x1 �x2x3ðI2 � I3Þ ¼ N1

I2 _x2 �x3x1ðI3 � I1Þ ¼ N2

I3 _x3 �x1x2ðI1 � I2Þ ¼ N3

ð3Þ

where Ik are the principal moments of inertia of the body, xk are the
spin components in the body frame, _xk are the time derivatives of
those components, and Nk are the net torque components in the
body frame. The evolution of the orientations of an aggregate’s prin-
cipal axes is given by:

_̂p1 ¼ x3p̂2 �x2p̂3

_̂p2 ¼ x1p̂3 �x3p̂1

_̂p3 ¼ x2p̂1 �x1p̂2

ð4Þ

where p̂i denote the principal axes. Note that these are simplified
for use in an aggregate’s body frame, in which the inertia tensor
is diagonalized. This further simplifies matters as the body frame
does not include the rotational accelerations that are present in
the rotating patch frame.

Torques in Euler’s equations have the form ðri � raÞ � ð€ri � €raÞ—
i.e., they depend on a constituent particle’s position (ri) relative to
the aggregate center of mass (ra), and the total relative force per
unit mass acting on the particle (including tides from the planet,
etc.). We use a fifth-order (time-adaptive) Runge–Kutta integrator
to advance the spin vectors and orientations of the aggregates dur-
ing the drift phase according to Eqs. (3) and (4). The aggregate cen-
ters of mass are advanced according to Eq. (1) in the usual way
while particles in the aggregates are constrained to obey Euler’s
equations. Collisions involving aggregates that result in bouncing
(i.e., too fast for sticking but too slow for breaking) are treated
using non-central impact equations (with no surface friction);
see Richardson et al. (2009) for exact equations. Note that particles
inside aggregates do not move relative to one another, which saves
on collision searches (considerably so for large aggregates that
would otherwise be computationally expensive rubble piles).

Because of the extra rotation component of aggregates, collision
prediction involving them is more complex—even though the solu-
tion still just consists of predicting the intersection of spheres. (The
complication is that the spheres are no longer on straight-line tra-
jectories, due to the aggregate rotation.) Formally, always within
the context of second-order leapfrog (for which translational
velocities are held constant during the drift phase), collision pre-
diction for rotating aggregates requires solving a quartic equation.
For sufficiently small timesteps, and reasonable rotation rates, the
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Fig. 2. A schematic diagram similar to Fig. 1 illustrating the considerations involved
with handling aggregates in a periodic patch. There are three particles in this
system, and they are joined into a single aggregate. The aggregate is encircled, and
the center of mass (COM) of this aggregate would lie at the approximate center of
the circle (as drawn). The green (dark) particles represent the positions of the
particles with the periodic boundary conditions taken into account (labeled as
position #1 in Section 2.3.2), and the yellow (light) particles are their replicas in
eight adjacent patches. As the aggregate lies across a boundary, the circle encloses
both yellow and green particles. If the model were to compute the location of this
aggregate’s COM from the positions of the green particles, the result would be
incorrect. A similar scenario exists with particle velocities: as in Fig. 1, Keplerian
shear carries particles on the right downward, and particles on the left upward.
Thus the green particle on the left of the patch has a velocity in the +y direction
(upward red arrow). However, the aggregate’s COM lies on the right of the patch,
and therefore is carried in the �y direction by shear (downward blue arrow). To
calculate an aggregate’s COM velocity, the model sums over the velocities of its
constituent particles; if it naïvely used green particle velocities, it would include the
red arrow, which would produce an incorrect result. Thus, we must store the
‘‘unwrapped’’ position and velocity of any such yellow particles in aggregates
(labeled position and velocity #2) and use that data to calculate the state of the
COM (cf. Section 2.3.2). (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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quartic can safely be approximated as a quadratic (the user has the
option of solving the full quartic, at a performance penalty).

However, even with the full quartic treatment, particle overlaps
occur, because the collision prediction only extrapolates the aggre-
gate motion (i.e., without solving Euler’s equations explicitly). See
Section 2.4 for a detailed discussion of particle overlaps.
3 The origin of the patch coordinate system does not coincide with the axis of
rotation; the distance between the origin and the center of rotation is the patch’s
orbital semimajor axis, a.
2.2. Modifications: overview

Two essential issues required direct attention while incorporat-
ing the rigid aggregate model of Richardson et al. (2009) into the
local rotating frame model, which we outline here. Details are in
Section 2.3.

The first is that with the introduction of periodic boundary con-
ditions, portions of a given aggregate can appear on opposite sides
of the patch simultaneously (see Fig. 2)—complicating, for exam-
ple, collision outcome handling, and calculation of the properties
of the aggregate’s center of mass (COM). To address this, we store
the positions and velocities of each particle in an aggregate with
respect to more than one reference point: when an aggregate lies
across a patch boundary (i.e., the circle in Fig. 2 intersects with a
boundary), we store not only the standard in-patch position
(shown in green in Fig. 2), but also the position of the particle that
is guaranteed to be near its COM—a position that may be located
outside of the patch (a case represented by the yellow particle in
the circle). We call this process ‘‘unwrapping’’ the particle, to con-
trast the in-patch ‘‘wrapped’’ particle. This greatly simplifies com-
putation of the aggregate’s COM properties (see Section 2.3.2).

The second issue is that the aggregate dynamics must be trans-
formed properly to the rotating frame. This involves special consid-
erations for aggregate rotation, orientation, external forcing from
planetary torques, and collision detection. For example, in an iner-
tial frame, in the absence of external influence, an aggregate main-
tains the orientation of its angular momentum vector with respect
to the coordinate axes. But if viewed in a local rotating frame, this
same aggregate’s angular momentum vector would appear to pre-
cess with a frequency equal to the orbital frequency of the patch
(X). This in turn has subtle effects on such processes as collision
detection and resolution, and requires rederiving the equations of
motion for an aggregate in a rotating frame (see Appendix A).

2.3. Modifications: details

This section describes explicitly all of the modifications and
additions we made to the numerical method in placing the rigid
aggregate model into the rotating local frame. This section can
safely be skipped if the reader is not interested in this level of
detail.

2.3.1. Three coordinate systems
We begin by presenting the three sets of Cartesian coordinate

systems (‘‘frames’’) in this model. Then we discuss their function,
and finally how we transform between them.

The ‘‘body’’ frame’s origin is at the COM of the aggregate, and its
axes are aligned with the principal axes of the body. In this frame,
the inertia tensor is diagonalized, and the Euler equations of rigid-
body motion are easily solved numerically. As the aggregate ro-
tates, the orientation of these axes changes in an external frame,
but not in the body frame (i.e., the body does not appear to move
in this frame).

The ‘‘space’’ frame is an inertial frame whose axes are station-
ary. The origin’s location in this frame is arbitrary. In this work, this
frame is used chiefly when storing the spins of free particles, and as
an intermediate step in transforming from the body frame to the
patch frame.

The ‘‘patch’’ frame is the frame in which we work most often, as
the sliding-patch model is based in this non-inertial frame (see
Fig. 1). Its axes are initially aligned with the space frame at t = 0;
but as the patch orbits, it rotates about its ẑ axis at X, the orbital
frequency of the patch.3 Translational motions for all bodies are cal-
culated in the patch frame, using Hill’s equations of motion (Eq. (1)),
which include the coriolis and centrifugal accelerations.

To transform from the patch frame to the space frame, one must
rotate the coordinate axes (about ẑ) by an angle Xt, where t is the
time since the simulation began. Also, any aggregates or particles
must add Xẑ to their spin vector.

To transform from the body frame to the patch frame, multiply
any body-frame vector by K, the matrix composed of the eigenvec-
tors of the inertia tensor (see Richardson et al., 2009), where the
eigenvectors are the orientations of the principal axes of the body
as seen in the patch frame. This is equivalent to performing two
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matrix multiplications: one to transform into the space frame, and
another to further transform into the patch frame. As such, both
rotations are performed in one operation. Note that to transform
spins from the body to the patch frame, one must finally subtract
Xẑ from all spin vectors.

Conversely, in order to go from patch to body frames, simply
multiply vectors by K�1. To properly handle spin, first add Xẑ to
the spin (to put the spin into the space frame), and then multiply
by K�1.

2.3.2. Aggregates and periodic boundaries
As mentioned in Section 2.2, there is a bookkeeping issue when

aggregations of particles interact with periodic boundary condi-
tions: it is no longer obvious on which side of the patch the center
of mass (COM) of any aggregate lies. For an aggregate overlapping a
boundary, a naïve weighted average of particle positions would
place the COM far from its true COM location (see Fig. 2). Also,
when aggregates overlap a radial boundary, they obey shear im-
posed by the sliding patch (i.e., parts of the aggregate will move
upward, and the rest downward), which similarly complicates cal-
culation of the COM’s velocity.

Rather than devise a computationally expensive scheme to de-
tect and compensate for periodic boundary offsets multiple times
during every timestep (e.g., for multiple collisions), we simply
track the aggregate’s constituent particles more completely. If it
is joined to an aggregate, we utilize two sets of coordinates to store
the position of a single particle:

1. Wrapped patch position.
2. Unwrapped patch position.

Position #1 is standard in the sliding-patch model: the position
of the particle in patch coordinates that has been wrapped as nec-
essary to keep it inside the patch. This position is not necessarily
on the same side of the patch as the aggregate’s COM (that is,
the distance to the COM is not the magnitude of the difference in
position vectors). Position #1 is used for gravity calculation and
collision prediction. These are the green particles in Fig. 2.

Position #2 is in patch coordinates, but is not wrapped as is
usual in a patch model—it is allowed to be outside the boundaries
of the patch. This position is guaranteed to be near the aggregate
COM (that is, subtracting the position vectors gives the correct
displacement from the COM). It is used to calculate the aggregate’s
COM position, spin vector, angular momentum, inertia tensor, and
torque vector. In Fig. 2, this is the position of the yellow particle in
the circle.

We also store the velocities of the particles in two ways, due to
the differential shear across the patch. The two types of velocity
are:

1. Wrapped patch velocity (shear matches position #1).
2. Unwrapped patch velocity (shear matches position #2).

Each velocity is measured in patch coordinates. Velocity #1 is
standard in the patch model, with particle shear applied as usual.
This velocity is used for collision detection between particles. Note
that collision detection between aggregates is complicated by the
rotating frame (see Section 2.3.5).

Velocity #2 is an ‘‘unwrapped’’ version of #1—that is, particles
in aggregates that extend beyond the edge of the patch do not
readjust their azimuthal velocities due to the Keplerian shear
across the boundary. This velocity is used to determine aggregate
velocity, spin, and angular momentum—free of any boundary-con-
dition-induced complications. (Fig. 2 refers to this issue specifi-
cally.) Note that velocities #1 and #2 are identical except for
their azimuthal components.
When an aggregate approaches a patch boundary, we must take
care to apply boundary conditions properly to the aggregate’s con-
stituent particles:

A particle’s position #1 is wrapped whenever that particle
crosses a boundary, to guarantee that it remains within the patch.
Additionally, as in the standard sliding-patch model, shear is ap-
plied to velocity #1 when a radial boundary is crossed.

In contrast, a particle’s position #2 is only wrapped when the
COM of its aggregate crosses a boundary. In fact, all particles in that
aggregate have identical offsets applied their position #2 simulta-
neously, to maintain the relative positions of the aggregate’s COM
and its constituent particles. Velocity #2 is updated similarly: each
particle in an aggregate whose COM crosses a radial boundary re-
ceives a uniform velocity #2 offset immediately.

As noted in Quinn et al. (2010), the canonical momentum, Py,
must also be updated whenever a boundary crossing occurs, as
the particles’ angular momentum changes during this procedure.
In our implementation, we find it is only necessary to store one
Py, corresponding to position and velocity pair #1.

However, once we introduce non-redundant velocities and
positions for each particle, we immediately encounter a problem:
how do we construct the other types of position and velocity from
any given data? This issue occurs whenever particles are added to,
or removed from, an aggregate—since the COM position immedi-
ately becomes unknown—and when initializing from stored data.

Our strategy begins with position and velocity pair #1, since
that is the data stored in pkdgrav data files. Initially, the position
and velocity pair #2 for all particles is set equal to #1. Then for
each aggregate, we find the most massive particle, and use its po-
sition as a reference point (since that particle is most likely to be
closest to the COM). Next, the code examines each particle in the
aggregate, and determines if that particle’s position #2 is currently
more than half a patch length or width from the reference point. If
it is, then it must be a wrapped particle (i.e., the yellow particle in
the circle in Fig. 2), so its position #2 is adjusted (while updating
velocity #2) until the particle is closer than half a patch dimension
from the reference point (i.e., placing its position #2 within the
circle).

Once all particles in the aggregate are unwrapped in this way,
we calculate the aggregate’s COM position based on the newly un-
wrapped positions #2. If the resulting COM position lies outside of
the patch (which is a distinct possibility, given the arbitrary refer-
ence point), then the COM is wrapped by adjusting each constitu-
ent particle’s position and velocity #2 accordingly, until the COM
lies inside the patch.

We made a critical assumption in order to make this data recon-
struction method possible: we assumed that aggregates will never
grow to be larger than half a patch dimension across. Otherwise,
the procedure will begin to mistake a distance from an aggregate’s
COM as large enough to require a wrap, when in fact this distance
is real. Early testing shows that obvious numerical artifacts appear
when aggregates grow large enough to break this procedure, and
thus it is easy to discover when this problem manifests. If such a
situation occurs, we must simply make the patch larger.
2.3.3. Aggregate orientation
Here we discuss how placing rigidly bonded aggregates into a

non-inertial frame affects aggregate orientation.
The Eulerian equations of solid-body motion (Eqs. (3) and (4))

take an aggregate’s spin and torque and update the body’s spin rate
and orientation of its principal axes. But these equations require
the aggregate’s principal axes, spin, and torque to all be in the body
frame. We follow the rules in Section 2.3.1 to place each vector into
the body frame for computation, and back into the patch frame for
usage.
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In addition, since our patch coordinate system rotates, sliding
out of sync with the inertial space frame, we must carefully manip-
ulate each aggregate’s orientation. In an inertial frame, free of tor-
ques, an orbiting aggregate will maintain the orientation of its
angular momentum vector. So, in the rotating frame, our aggre-
gates must precess at the orbital frequency of the patch (X).

We handle this orientation issue when transforming to and
from body coordinates before applying Eqs. (3) and (4). Consider
an integration over the time interval dt. First rotate the aggregate
into the space frame by rotating the transformation matrix K by
an angle +Xt (where t is the time since the space and patch frames
were last in sync), and then go into the body frame by the rules in
Section 2.3.1. When the Euler equations are done, transform from
the body frame to the patch, and derotate K into the patch frame’s
new orientation, using: �X(dt + t).

In practice, we simplify this by arguing that the rotation angle +Xt
is arbitrary; so let t = 0 for all times in this exercise. Thus the angle by
which we rotate into the ‘‘space’’ frame is zero degrees. This saves
computational work. Thus the above procedure reduces to simply
rotating K by �Xdt after the Euler equations are finished.

This procedure results in an aggregate precessing clockwise (in
the absence of external forces, such as tides), as viewed from the ẑ
direction in the patch. This is the proper behavior.

It is appropriate to note here that we have chosen to store the
particle spins in the space frame, while the velocities of those par-
ticles (including velocity due to potential aggregate spin) are valid
in the patch frame. This choice is made so that the particles will
properly precess, as discussed above, while minimizing computa-
tion. If we stored the spins in the patch frame, we would have to
rotate the spin vectors of perhaps millions of particles by �Xdtẑ
at each timestep. This is more computational work than adjusting
the spins as needed (i.e., during collision handing, after a collision
is detected).

We recognize the inconsistency between our treatment of par-
ticle and aggregate orientation. This is done because aggregates are
highly irregular in shape, and the proper aggregate orientations are
needed in the patch frame multiple times during every step in or-
der to properly compute the gravity field around an aggregate, and
detect collisions. On the other hand, particles are perfect spheres,
and their orientations do not affect gravity or collision detection.
There will always be (far) fewer aggregates to update in this man-
ner than particles, so this compromise avoids significant computa-
tional overhead.

2.3.4. Aggregate acceleration, torque, and stress
Here we discuss required modifications to aggregate accelera-

tion, torque, and stress calculations when in a non-inertial frame.
We compute these quantities for an aggregate using the accelera-
tions on each of its constituent particles, applying the results of
the derivations presented in Appendix A, as follows:

The acceleration of the COM of an aggregate is found by first
computing a weighted sum of the accelerations due to gravity
and external potentials of its constituent particles, and then com-
puting the Hill equations of motion (Eq. (1)) for the COM. Thus
the COM is accelerated by interparticle gravity, external potentials,
and the Hill equations, acting dynamically as though it were a sin-
gle rigid particle (see Eq. (30)).

In contrast, to compute both torques and stresses on rigid
aggregates in the rotating frame, we require the accelerations on
each particle without Hill’s terms—since those add accelerations
that do not torque a body directly. We achieve this by computing
the torques and stresses after interparticle gravity and external
forces are found, but before computing the Hill terms.

When the proper particle accelerations are known, we use Eq.
(36) to calculate the torque on an aggregate. Note that we take care
that all positions and the aggregate’s inertia tensor are in the patch
frame before applying this equation. The resulting torque vector
then needs to be transformed into the body frame for use in the Eu-
ler equations, as mentioned above. Computed in this way, the plan-
etary tides torque non-spherical aggregates to align with the radial
axis of the planet.

Computing the stress on an aggregate determines if any of its ri-
gid bonds should break (via stress fragmentation). Such fragmenta-
tion triggers include interparticle gravity, planetary tides, and rapid
aggregate rotation. Also, if bonding is sufficiently weak, an irregu-
larly shaped aggregate will fragment itself through self-gravity,
and drive toward an equipotential shape (e.g., a sphere, if non-
rotating).

We compute the stress on each particle in an aggregate sepa-
rately, computing the relative acceleration between that particle
and its aggregate’s COM, including planetary tides (cf. Eq. (22)),
and the centrifugal force from aggregate spin. As in Richardson
et al. (2009), when that relative acceleration exceeds the tensile
or shear strength (as defined by the user), the particle is liberated
from the aggregate.

2.3.5. Collisions
Collision handling in the rotating frame, for the most part, re-

mains unchanged from the methods used in Richardson (1995)
and Richardson et al. (2009). But we must take care to properly in-
clude the reorientation of the aggregates due to the changes in the
orientation of the rotating frame (see Section 2.3.3).

We have included the rotation of the patch frame in the velocity
used for collision prediction. As in Richardson et al. (2009), colli-
sion detection for aggregates is performed by using a second-order
prediction of each constituent particle’s path (referred to as q in
Richardson et al. (2009); see paragraph preceding their Eq. (A.4)),
which includes considerations for aggregate spin. We add patch
rotation to aggregate spin to obtain an estimate for each particle’s
trajectory. This provides an inexact approximation to the particle’s
true curved path, but it is accurate enough in short time intervals.

Once a collision is detected, and the collision time is found, we
integrate the aggregate(s) involved forward to the collision time.
This involves rotating K by the angle�Xdt to compensate for frame
rotation, integrating the Euler equations for aggregate spin, and
drifting the COM. We then resolve the collision, including any poten-
tial merging or fragmentation events. Ideally, we would then trace
back the COM position and derotate K into the proper orientation
for the start of the step, in order to search for subsequent collisions.
Unfortunately, that is not possible. The Euler equations that inte-
grate the aggregate’s orientation are computed with a time-adaptive
Runge–Kutta integrator, which is not time-reversible.

Thus, the aggregate’s COM is never ‘‘back drifted’’—that is, after
the collision is resolved, the aggregate’s data is not returned back
to a state that is valid for the beginning of the step. In order to keep
track of when the aggregate’s data is valid, each aggregate stores the
last time it was updated—that is, the time at which its current posi-
tion and orientation is valid. However, we must check for further col-
lisions, and pkdgrav’s collision-search algorithm assumes that all
particles positions are valid for the start of the step. Thus the posi-
tions for the aggregate’s constituent particles are back drifted (undo-
ing the frame rotation as well)—but the aggregate’s COM is not.

Once all collisions have been resolved, aggregates finish the step
by integrating forward over whatever time remains in the step
(taking an Euler step, drifting the COM position, and rotating K).
If there are no collisions for an aggregate during a timestep, it sim-
ply takes a full step forward to complete the timestep.

2.4. Overlapping particles, and resolution strategies

As discussed in Richardson et al. (2009) and Section 2.3.5, colli-
sion detection for aggregates is done approximately. To produce a



Fig. 3. Snapshot from a test simulation containing 200 particles in the coherent
particle sliding-patch model, with merging and fragmentation. The particles are all
1 m in radius. Green bodies are free (unbonded) particles; when two free particles
merge, they become an aggregate, and are assigned a random (non-green) color.
When two aggregates merge, the particles in those aggregates do not change color.
Many aggregates are visible in this frame; some are merely bonded pairs
(‘‘dumbbells’’), while others are collections of many colors—indicating a complex
aggregate–aggregate merging history. Viewing geometry is as in Fig. 1. Note that as
in all simulations in this paper, this is a 3D model, so the appearance of major
particle overlap is a projection effect.
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predicted collision time, we extrapolate the rotation and motion of
aggregates assuming, for example, that the spin rate of the aggre-
gate does not change over the time interval being considered.
However, integration forward to the predicted moment of impact
is performed using Eqs. (3) and (4) with a Runge–Kutta integrator.
Once the aggregates’ orientation and position are accurately deter-
mined for the predicted collision time, the colliders may in fact not
touch, or may find that they are overlapping. This is an unfortunate
inevitability in this strategy—even a quartic expansion of the colli-
sion–prediction equations cannot provide the exact collision cir-
cumstances (though smaller timesteps help to reduce errors).4

We provide three options to account for particle overlaps,
which we call the backstep, adjust position, and repel methods.
Backstep calculates how far in the past the collision should have
happened, moves the particles back (using their current velocities)
to the point of impact, resolves the collision, and finally moves the
particles to their new positions for the current time. This strategy
works very well in simulations without aggregates; however, due
to the irreversible nature of a Runge–Kutta integrator, the aggre-
gates cannot be integrated back in time accurately in order to pro-
cess the missed collision. Thus using this method with aggregates
tends to result in numerical artifacts, such as abrupt changes in
aggregate orientation.

The adjust position method simply moves the two overlapping
particles apart (along their lines of centers) until they are just
touching. This deceptively simple strategy also does not work with
aggregates, for two reasons. The first is that the method does not
move aggregates—it only moves the particles. For example, fixing
an overlap in this way on the surface of an aggregate may cause
a particle to move deeper into the aggregate, causing a host of
additional unphysical overlaps within the aggregate. The second
is that the adjust position strategy does not change the velocity
of the particles, only the positions—thus angular momentum of
aggregates is not conserved. Simulations have shown that this
method causes aggregates to spin up spontaneously.

Finally, the repel method applies a repulsive force to overlap-
ping particles such that they separate in a reasonable time. This
force replaces the usual self-gravity between these overlapping
particles (but other particles’ gravity is calculated as usual). This
repulsive force grows linearly with the degree of overlap, so parti-
cles barely overlapping feel a gentle push, while greatly overlap-
ping particles feel a stronger force. The user controls how strong
this force is via a parameter, called the repel factor. We note that
higher repel factors mimic bouncier coefficient of restitution laws,
as overlapping particles tend to separate at higher speeds. This re-
pel method differs from the other two strategies in that it does not
attempt to resolve the overlap instantaneously; rather it applies a
gentle force that encourages particles to separate in time.

We have performed a suite of tests using the repel strategy (the
only strategy we have that avoids numerical artifacts): Seventy to
ninety percent of all overlaps are between free particles, and are
highly transient. On average, less than 1% of the volume of any
aggregate will be overlapped. Outliers do occur however, with
some aggregates containing 10–20% of their volume in an overlap.
However, these aggregates tend to be ‘‘dumbbells’’—aggregates
with only two particles—and these are easier to force apart than
larger aggregates with more inertia. Also of note: roughly half of
all overlaps between particles in aggregates are in fact in the same
aggregate. This is a direct consequence of the inaccuracy of colli-
sion–prediction. These overlaps are frozen into the aggregate, since
the particles cannot move relative to one another, and thus are not
correctable (via the repel method) until some external process
4 An iterative procedure to predict and revise collision times may reduce these
errors—a possible future feature of the code.
fragments the bond. We do not feel these overlaps are harmful to
the results of our model, as the overlap simply imposes a larger-
than-average mass density to that region of the aggregate, which
mimics a physical variation in material density.
3. Tests and early results

3.1. Small-scale testing

To verify that the model functions correctly, we ran small tests
with 2–5 particles, confirming, for example: gyroscopic behavior as
observed in the patch frame (precession at X); tidal forcing from
the planet torquing aggregates to line up with the radial axis;
spin-induced fragmentation (demonstrating that liberated frag-
ments immediately move according to the Hill equations); merg-
ing particles conserving angular momentum in the non-inertial
patch frame; and collision detection and resolution function in
the rotating frame.

We note that our stress fragmentation model, as implemented,
liberates particles from a spinning aggregate from the surface first,
rather than from the center. (In a homogeneous solid, the greatest
stress is at the center, due to the accumulated tensions of the sur-
rounding accelerated material.) As noted in Section 2.1, our model
does not maintain a bonding network, and thus cannot model
transmission of tension across a solid. We recognize this limitation
of the model, and further improvements to our model and tech-
nique (both discussed in Section 4) should mitigate this issue.

Fig. 3 shows a snapshot from a 200 particle simulation using the
new cohesive particle model, illustrating the fractal nature of these
small aggregates.
3.2. Large-scale testing

We next performed a suite of seventeen full-scale simulations
with a range of merge limits and strengths. Each had 75,000



5 We recognize that we are using particles forty times larger than those in Hatzes
et al. (1991), and that size may have an effect on sticking properties, but this is not an
important issue for these tests.

6 Note that the first suite has no corresponding simulation with infinite merge
limit; with our chosen parameters, such a setting is known to cause total collapse of
the particles into a single aggregate.
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particles, and used nominal parameters for Saturn’s outer A ring—
namely, we placed the patch center 136,530 km from Saturn (with
an orbital period of 14.3 h), and used a rather high estimated mass
surface density of 500 kg/m2 (in order to favor a higher collision
rate), corresponding to a dynamical optical depth of 0.75. Our
monodisperse particles were 1 m in radius, with an internal den-
sity of 0.5 g/cm3 (to represent porous ice). The most significant
departure from currently estimated A ring values is that our small-
est dynamical unit was an indestructible sphere 1 m in radius. The
model is capable of modeling a size distribution of indestructible
particles, but in order to keep the number of particles tractable
for these tests, we used 1 m monodisperse particles. (Note that a
size distribution of bodies larger than 1 m emerges as the particles
coagulate into aggregates.)

The dimensions of the patch were set to 4 by 10 kcrit (approx-
imately 880 by 350 m)—where kcrit is the critical wavelength of
the ring material (see Section 1.2)—with the longer axis in the
azimuthal direction. The size of the patch must be large enough
to resolve the largest structures in the patch, which on these
scales are the gravity wakes (cf. Section 1.2), and also limit the ef-
fect of self-interaction between structures within the patch and
their counterparts in the external replicated patches. The aspect
ratio of 2:5 is chosen to accommodate the pitch angle of the grav-
ity wakes. Following Porco et al. (2008), we used the velocity-
dependent coefficient of restitution (�) law of Borderies et al.
(1984), using a v⁄ of 0.001 cm/s. This law has � decrease with
increasing impact speed, and our choice of v⁄ makes the law ex-
tremely dissipative; all impacts with speeds above 2 mm/s use an
� below 0.1, and the typical impact speed of 0.5 mm/s (the escape
speed from a particle with the above parameters) has an � of
approximately 0.2.

Particles were placed randomly within the patch, with no initial
aggregates, in a uniform vertical distribution 20 m thick. Initial
velocities were chosen from a uniform distribution in each Carte-
sian coordinate, with minimum and maximum values of ±2Xr in
the radial and azimuthal directions, and ±Xr in the vertical direc-
tion (with r = 1 m). (In this way, we deliberately begin out of equi-
librium, but note that—regardless of these choices—both the
vertical scale height and the velocity dispersion of the particles
equilibrate to consistent values within a few orbits.) Collisional
merging and fragmentation were enabled, as was fragmentation
due to stress. Each run was evolved for 15 orbits, which is sufficient
to reach equilibration of the velocity dispersion. At this distance
from Saturn, the orbital period is 14.3 h. Our simulations com-
pleted in 8–11 days on 16 processors, depending on the interparti-
cle collision rate.

The critical opening angle (hcrit) for the gravity tree was 0.5 ra-
dian, and our timestep was approximately 5 s. We tested a range of
hcrit values from 0.25 to 1 radian, and found no discernible system-
atic difference in outcome (besides a nearly a factor of two differ-
ence in computation time), and chose 0.5 as a conservative value.
In testing a range of timesteps from approximately 0.5–50 s, we
find our timestep is a reasonable compromise between accuracy
and computation time. (A timestep of 50 s resulted in significant
errors in the model’s outcome; on the other hand, a timestep of
0.5 s yielded fewer overlaps, but otherwise no systematic differ-
ences, at the cost of over 10 times greater computation time.)

We studied two bonding parameters in two suites of nine sim-
ulations (with one simulation shared between each suite). The first
suite studied the merge limit over the range of 0.01–1.0 vesc (the
escape speed of an individual particle, or 0.53 mm/s). The fragmen-
tation limit was held constant at 1.0 vesc. Thus the merge and frag-
mentation limits are constant among all collisions throughout each
simulation, as we have a monodisperse population of particles.
This choice is consistent with Hatzes et al. (1991), who found that
below a constant impact speed of �0.3 mm/s, ice spheres always
tended to stick on impact.5 This speed is 0.57 times the escape
speed of our particles, which places it in the center of our param-
eter space. For this suite, we chose a constant, size-independent
strength parameter of 100 Pa (for b = 2; see Appendix B), which
is very roughly consistent with our choice of fragmentation limit
(see Appendix C). This strength places this suite securely in the col-
lision-dominated regime for fragmentation, as opposed to frag-
mentation via tides or rotational stresses (this assertion is
demonstrated by the results below; see Fig. 8).

Note that, in the context of pkdgrav parameters (i.e., b = 2), a
strength of 100 Pa approximately corresponds to 105 Pa in the frost
layer overlap cohesion model (in which b = 10�3). This distinction
is necessary because of the differences in the contact areas be-
tween cohesive particles in different models (see Appendix B).
For these tests, we make the assumption that strength is indepen-
dent of the size of the body.

Our second suite of nine simulations studied the strength limit
(in both tensile and shear) logarithmically over a parameter range
of 10�5–102 Pa (for b = 2), with one comparison run with infinite
strength.6 This suite held the merge limit fixed at 0.5 vesc, or
0.27 mm/s, which closely matches the Hatzes et al. (1991) critical
sticking velocity. All other parameters (fragmentation limit, patch
size, etc.) were identical to the first suite.

Fig. 4 shows a snapshot of a simulated ring patch from this suite
(see caption for parameter details). Gravity wakes are plainly visi-
ble in this image, mixed in with the bonded aggregates. Aggregates
form primarily in the dense gravity wakes; this is expected, as the
particle density is high, and relative speeds are low. The wakes
shear out and disperse on timescales of less than an orbit, usually
releasing a line of small non-spherical aggregates. These aggre-
gates can then collide, both with dispersed wake material and
other aggregates, and either merge and grow or fragment and
erode, depending on the circumstances. Surviving aggregates even-
tually collide with other dense gravity wakes, at which time (given
our choice of fragmentation limit) they are typically destroyed
down to their constituent particles. That material is mixed into
the wakes, which form new aggregates. However, in rare cases, lar-
ger aggregates colliding with wakes may erode somewhat before
forming the core of a new large aggregate. This usually only occurs
when the merge or fragmentation limits are set to very high levels
(above vesc). The vast majority of aggregates have a typical lifetime
of somewhat less than an orbital time.

A particular quantity of interest in these simulations is the equi-
librium aggregate size distribution. We estimate the size (effective
radius r) of an irregularly shaped aggregate by first finding its prin-
cipal axis lengths (a P b P c) then computing the radius of the vol-
ume-equivalent sphere as r ¼

ffiffiffiffiffiffiffiffi
abc3
p

. Fig. 5 shows the incremental
aggregate size distribution at the conclusion of one of the runs in
the suite (using a merge limit of 0.5 vesc). The distribution fits well
to a power-law, n(a) = n(a0)[a0/a]a, with a = 3.0 ± 0.23. (The error
quoted is the formal 1-r uncertainty for a linear least-squares fit
to the power-law.)

Fig. 6 shows the temporal variation of aggregate properties dur-
ing a simulation, after the particles have settled into a reasonable
equilibrium. There are no obvious long-term trends in these prop-
erties—indicating that the population has reached equilibrium—
however significant variation is evident, as aggregates go through
periods of heavy formation and subsequent destruction (usually
when large gravity wakes collide). This plot demonstrates that



Fig. 4. Snapshot from a 75,000 monodisperse particle simulation with parameters
consistent with Saturn’s outer A ring. The patch (yellow box) is approximately
880 m long (azimuthal) and 350 m wide (radial). Aggregation parameters have the
merge limit at 0.5 vesc (particle escape speed, vesc, is 0.53 mm/s), the fragmentation
limit at 1.0 vesc, and a bond strength (tensile and shear) of 100 Pa (for b = 2; see
Appendix B). (See text for all remaining parameters.) Note that this merge limit
approximately matches the critical sticking speed of 0.3 mm/s found by Hatzes
et al. (1991). Colors and viewing geometry are as in Fig. 3. To enhance aggregate
visibility, aggregates are drawn over non-bonded particles (green particles)—thus,
aggregates are never hidden behind a cluster of green particles. Gravity wakes are
clearly visible, and strings of aggregates appear throughout the image, at approx-
imately the same pitch angle as the wakes; this is expected, as these aggregates are
the remnants of previously dissolved wakes. (A particularly large wake, that is
collapsing into a string of aggregates, is below-center in the image.) Many of these
aggregates survive to collide with other wakes—examples of those aggregates can
be seen freely floating in the interwake regions. However, the vast majority of
aggregates are destroyed in less than an orbital time (<14.3 h) when they encounter
another wake.

Fig. 5. Incremental size distribution of effective radii of bodies formed in an
equilibrated region of the A ring in our cohesive aggregate patch model. This data is
selected from the same simulation presented in Fig. 4 (see that figure caption for
simulation parameters). Bins marked with an ‘‘x’’ have exactly one aggregate in
them (since logarithmic axes cannot natively distinguish between bins containing
zero or exactly one object). Assuming the function n(a) = n(a0)[a0/a]a, a linear (least-
squares) fit to this log–log histogram (with bins 0.1 m wide) gives a power-law
exponent a = �3.0 ± 0.23, shown with 1-r uncertainty. The vast majority of bodies
on the plot lie in the r = 1 m bin; these are the unbonded particles. The plot extends
to include the largest aggregate at this moment in the simulation, with a radius of
14.7 m.
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time-averaging helps to filter out these rapid changes in aggregate
evolution.

For each simulation, we take the data for the final nine orbits
and time-average them, producing the data displayed in Figs. 7
and 8. The time-variability of each property is indicated by the size
of each errorbar; this is simply the standard deviation of each
property’s value over time. (Note that the error for a is computed
slightly differently; see Fig. 6’s caption.)

Fig. 7 shows the results from our first test suite, demonstrat-
ing that the aggregate populations that emerge vary signifi-
cantly with the choice of merge limit. With higher merge
limits (stickier particles) fewer particles remain unaggregated,
and more aggregates form. In fact, the upper left pane, showing
the percentage of unaggregated particles, is nearly a linear
trend with merge limit, and extrapolates to nearly 100% at a
merge limit of zero, as expected.

The right panels follow more intriguing trends. While increas-
ing the merge limit increases both the a and the maximum aggre-
gate size monotonically, much of our chosen range of merge limit
(�0.2–1 vesc, or 0.1–0.5 mm/s) produces an a of approximately �3,
and a maximum effective radius of 10–20 m (within error bars).
This is significant as these values are consistent with measure-
ments of Saturn’s A ring (Marouf et al., 1983; Zebker et al., 1985).

Fig. 8 shows the results of our second suite, in which we vary
the strength (both tensile and shear) of the aggregates. (Note
strengths in this figure are within the pkdgrav context, for b = 2;
see Appendix B.) The leftmost side of each pane, where aggregates
are weakest, shows the expected trends: fewer aggregated parti-
cles, fewer and smaller aggregates, and steeper size distributions.
However, at a critical strength (Scrit) of �10�2 Pa (for b = 2), this
trend ends. Above this critical strength, the results are nearly con-
stant (any variation is owing to the stochastic nature of our simu-
lations). In fact, the results of strengths from Scrit to infinity are
roughly indistinguishable, indicating that throughout this strength
range, fragmentation from stress is not occurring at a significant
enough level to influence the emerging aggregate population. Thus,
this result defines which fragmentation mechanism is dominant in
which strength range: below Scrit, fragmentation is dominated by
stress breakage (i.e., acceleration exceeding the user-defined
strength); above Scrit, fragmentation is dominated by collisions
(i.e., particle impact speeds exceeding the user-defined fragmenta-
tion limit). In the overlapping frost layer cohesion model,
Scrit � 10 Pa (for b = 10�3).

Our first suite used a fixed strength of 100 Pa (for b = 2), which
is above Scrit. This shows that this suite was performed in the col-
lision-dominated fragmentation regime, and that fragmentation
via tides or aggregate rotation was not a factor in the results of
the suite. Also of note: infinite strength cannot result in total col-
lapse of the particles into a single aggregate, but extremely weak
strength can prevent aggregation; strength = 10�5 Pa (for b = 2) re-
sulted in a maximum average aggregate size of 2 m (two attached
1 m particles), but infinite strength only �20 m.

These two suites provide an excellent demonstration of the util-
ity of this model. By simply varying two parameters, we have al-
ready discovered important behaviors of the aggregate
population within our parameter space. These results will be ex-
panded in future work as we explore more parameters beyond
those demonstrated here.



Fig. 6. Here we show the time evolution of four properties of the aggregate population in the same simulation as Fig. 5. This plot displays the final 9 orbits of the 15-orbit
simulation, demonstrating the system’s highly variable equilibrium. The upper-left panel is the fraction of unbonded particles in the simulation, with a value of 100%
indicating no bonded particles at that time. The lower-left panel is the total number of aggregates in the simulation (the scale of which is of course dependent on the size of
the simulated region). The upper-right panel shows the slope of the size distribution, a, taken from plots such as Fig. 5. The lower-right panel shows the effective radius of the
largest aggregate, in meters. Note that the identity of the largest aggregate is not consistent throughout the simulation; in fact, the largest aggregate will change quite often,
as aggregates are continually created and quickly destroyed, often existing for less than one orbit. The time-averaged data is displayed on each pane as a mean and a 1-r
standard deviation, with the mean drawn on the plot as a dashed line. The error for a is more complex than a simple standard deviation of its variation in time, as each point
has its own error (from the least-squares fit). Propagation of error was used to combine each point’s error with the variance in the time-averaged data to obtain the value
displayed on the plot; however, we note that most of the quoted error in a results from time-variability.
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4. Summary

We have combined two numerical methods—a local patch mod-
el (e.g., Porco et al., 2008), and a cohesive aggregate model (e.g.,
Richardson et al., 2009)—forming a new tool with unique capabil-
ities. The final result is a local N-body code in a rotating coordinate
system, with self-gravity and hard-sphere collisions, that includes
self-consistent rigid-body cohesion and fragmentation. This model
is useful in building a first-order understanding of any system that
involves a large number of colliding and cohesive bodies, each far
smaller than the size of the system, orbiting a central body—e.g.,
ring dynamics and planetary system formation. However, the
cohesive aspects of our N-body model remain quite simple, and
while potentially applicable to a wide range of bonding methods,
our approach does not attempt to encapsulate the detailed granu-
lar mechanics (e.g., bonding networks) and fragmentation physics
(e.g., production of fragments with realistic size distributions) of
more sophisticated models.

We have detailed how we have modified the existing pkdgrav

model’s rigid-body capabilities to function in a local, rotating
frame. We discussed the frequency and severity of particle over-
laps in our model, and our resolution strategies, which we have
found to be adequate for the physical requirements of the systems
we are modeling.

Last, we provided a demonstration of this model at work, as we
varied two of our modeled bonding parameters: the merge limit
(velocity threshold for aggregation) and the strength (the aggre-
gated particles’ resistance to breakage via tidal, centrifugal, or
gravitational stress). These example data suites showed that our
bonding parameters—only one of which has an experimental con-
straint—have an important effect on the final state of the system.
We demonstrated an example range of merge limits that results
in observable properties similar to those measured in Saturn’s A
ring by the Voyager spacecraft: �0.1–0.5 mm/s, which brackets
the merge limit for icy spheres found experimentally (�0.3 mm/
s) by Hatzes et al. (1991).

We also identified two strength regimes within the parameter
space examined: at extremely low strengths, fragmentation is
dominated by stress breakage, while at moderately high strengths,
fragmentation is dominated by interparticle collisions. On the scale
of �10 m aggregates, the critical strength (Scrit) is approximately
10�2 Pa (assuming a contact area of a full particle cross-section—
i.e., b = 2; see Appendix B), or �10 Pa in the overlapping frost layer
cohesion model (b = 10�3). (Note that these strength-related re-
sults are subject to many assumptions, and are accurate to an order
of magnitude at best.)

As mentioned above, our model provides a simple means of
experimenting with rigid aggregation in a rotating frame, but its
simplicity does lead to subtle behaviors that are contrary to the
physical behaviors of rigid solids. The most significant of these is
that stress fragmentation occurs from the outside-in, rather than
from the inside-out (that is, the model liberates particles from



Fig. 7. Here we demonstrate the results of our first suite of nine simulations, in which the merge limit was varied. Displayed versus merge limit (defined in Section 2.1) are
the same time-averaged properties shown in Fig. 6. Each point was obtained for each run as described in the caption for Fig. 6. As the merge limit rises, it is easier for colliding
particles to merge, and this has a visible effect on the equilibrium aggregate population. Note the somewhat abrupt change in the behavior in a, and the radius of the largest
aggregate, below a merge limit of approximately 0.2 vesc—deviating from observed A ring properties from Voyager (Marouf et al., 1983; Zebker et al., 1985). For completeness:
in the upper-right pane, the calculated value of a for a merge limit of 0.01 is �15.3 (far below the plot’s limits), indicative of extremely limited aggregate formation.
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the surface of an aggregate under stress, rather than breaking the
aggregate into two large remnants). Were this behavior a domi-
nant phenomenon in our simulations, our equilibrated models
may favor smaller bodies, and under-represent large bodies, result-
ing in steeper equilibrium size distributions. However, we have
demonstrated that our simulations can be carried out in a colli-
sionally dominated fragmentation regime (so long as the strength
parameter is above the critical strength, Scrit)—thus preventing this
phenomenon from significantly affecting our data. We recognize
that the results of our model are less convincing near and below
this critical value, and do not plan on studying such weak bonds
with this model.

Further work will expand the testing in Section 3.2 from a dem-
onstration to a full examination of the parameter space. The first
aim will be to constrain the potential range of bonding parameters
that continue to match the Voyager data of particles in Saturn’s A
ring, and then make predictions for the—yet unobserved—size dis-
tribution and potential maximum particle size in the B ring. This
study will shed light on the hypothesis discussed in Tremaine
(2003) regarding shear-free regions of the B ring, which estimated
that a bond strength of approximately 10,000 Pa (105 dyn/cm2)
would be sufficient to allow particle assemblies of approximately
100 km to resist tidal shear. However, it is not known whether
aggregates can grow to that size when dynamic collisional frag-
mentation is taken into account.

Further, it is possible to use this new tool to explore the theory
proposed by Porco et al. (2008) that wake–interwake optical depth
contrast is enhanced by significant damping. Cohesive bonding
should have an overall effect on collisional damping that reduces
the net coefficient of restitution—and can be quantified via optical
depth variations using, for example, the analytical technique de-
tailed in Tiscareno et al. (2010).

Several refinements to improve the realism of the cohesive
model are under development. These refinements include attach-
ing breakable springs between individual particle centers. As the
particles separate, they feel a Hooke’s law restoring force that pro-
vides a resistance to separation. Once a maximum distension is
reached, the spring can break, freeing the attached particles. This
model captures the desirable property of failure stress maximizing
at the body center, but greatly increases the complexity of particle
rotation tracking. Additionally, work to improve collision detection
between aggregates may lessen the severity of particle overlaps in
our model—however this appears to be a minor concern.
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Fig. 8. Similar to Fig. 7, plotted here are the resulting changes in the aggregate population across our second suite of nine simulations in which the strength, or particle stress
limit, was varied. Note that strengths are plotted on this figure in the context of the pkdgrav strength parameter (i.e., b = 2). As the strength rises, particles must experience
larger accelerations relative to their aggregate’s center of mass in order to separate from the aggregate. The simulation that is plotted at ‘‘104 Pa’’ had, in fact, infinite
strength—that is, aggregates could never break due to stress. The results of all of the simulations—above an apparent critical value, Scrit—are indistinguishable from the case of
infinite strength. This critical value is approximately 10�2 Pa (for b = 2). At weaker strengths, aggregates are smaller and less numerous, as aggregate spin and tides begin to
cause aggregate breakage. At 10�5 Pa (for b = 2), aggregates can barely hold as 2-particle ‘‘dumbbells,’’ which is reflected clearly in all panels of the plot. For completeness:
a = �14.6 at a strength of 10�5 Pa. As a reminder, strengths in pkdgrav are converted from separation forces in a very general way, using the particle cross-section as the full
contact area (i.e., b = 2), and the reader should keep in mind the discussion in Section 2.1 and Appendix B when interpreting these results in the context of a particular
cohesion model.
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Appendix A. Derivation of the N + 1 Hill Problem with rigid
bodies

A.1. Introduction

This derivation starts from the N + 1 body problem and derives
the ‘‘N + 1 Hill Problem’’. Then, supposing that a subset of the
masses are joined into a rigid body, it forms the appropriate grav-
itational force and torque acting on a rigid body in this problem.
We start with the classical N + 1 body problem in an inertial frame.
Note that we will remain in an inertial frame until the very end, as
this makes the derivation simpler. Much confusion arises when a
transformation into a rotating frame is made, as not all of the accel-
erations that arise can be disentangled easily from the forces acting
on the bodies.
Consider N + 1 mutually gravitating bodies Pi with position vec-
tors Ri measured from the system barycenter and masses mi,
i = 0,1, . . .,N. By Newton’s laws their motion is defined by the equa-
tions of motion:

mi
€Ri ¼ G

XN

j¼0;j–i

mimj

jRijj3
Rij ð5Þ

where Rij = Rj � Ri, and G is the gravitational constant.
We will distinguish the body P0 from the rest of the system. To

that end define R as:

R ¼ 1
m0
XN

i¼1

miRi ð6Þ

where m0 ¼
PN

i¼1mi. From the barycentric assumption we find that:

m0R0 þm0R ¼ 0 ð7Þ

or

R0 ¼ �lR ð8Þ
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where l = m0/m0.
We note that we can explicitly write out the equation of motion

for R:

€R ¼ �G
m0

m0
XN

j¼1

mj

jR0jj3
R0j ð9Þ
A.2. Shift of center

Now we will shift the center of the remaining N bodies relative
to the vector R, i.e., we will redefine the position vectors as:

Ri ¼ Rþ ri ð10Þ

Under this change we note the following:

Ri � R0 ¼ ri þ ð1þ lÞR ð11ÞXN

i¼1

miri ¼ 0 ð12Þ

Using the transformation ri = Ri � R and the fact that we are still in
an inertially oriented frame (i.e., a non-rotating frame), we can de-
rive the equations of motion for the new positions as:

€ri ¼ €Ri � €R ð13Þ

¼ Gm0

m0
XN

j¼1

mj rj þ ð1þ lÞR
� �
jrj þ ð1þ lÞRj3

� Gm0
ri þ ð1þ lÞRð Þ
jri þ ð1þ lÞRj3

þ
XN

j¼1;j–i

Gmjrij

jrijj3
ð14Þ
A.3. The Hill approximation

Now we will apply the Hill approximation, following Scheeres
(1998). We note that the assumptions are simple, namely that
l� 1 and jrjkj � jRj. The heart of the approximation is the expan-
sion of the denominator terms jri + (1 + l)Rj3 and their multiplica-
tion with the numerator terms, ignoring higher powers of r/R
(where R ¼ jRj ¼

ffiffiffiffiffiffiffiffiffiffi
R � R
p

). Specifically, we note the following:

ri þ ð1þ lÞRð Þ
jri þ ð1þ lÞRj3

¼ ri þ ð1þ lÞRð Þ

ð1þ lÞ3R3 1þ 2ri �R
ð1þlÞR2 þ ri

ð1þlÞR

� �2
� �3=2 ð15Þ

which can be expanded using the binomial theorem to find:

1
R3 Rþ ri �

3
R2 ðR � riÞRþ � � �

� �
ð16Þ

where higher orders of l have also been neglected. This is just a lin-
earization of the force terms that depend on the distance R.

Substituting the above into our equations of motion yields:

€R ¼ � Gm0

m0R3

XN

j¼1

mj Rþ rj � 3ðbR � rjÞbRh i
ð17Þ

¼ �Gm0R
R3 ð18Þ

where the other terms sum to zero given Eq. (12). Similar simplifi-
cations occur in the equations for ri, yielding:

€ri ¼ �
Gm0ri

R3 þ 3Gm0

R3 ðbR � riÞbR þ XN

j¼1;j–i

Gmjrij

jrijj3
ð19Þ

Note that the equation for R is just the 2-body problem, and thus
the center of mass of the N particles describes a Keplerian orbit.
The simplest, and usual, case is to assume that it follows a circular
path, as then the radius R is constant and the term Gm0/R3 = X2 and
is the mean motion of the particle center of mass about the central
body. Rewriting the equations in this way we find:

€ri ¼ �X2ri þ 3X2ðbR � riÞbR þ XN

j¼1;j–i

Gmjrij

jrijj3
ð20Þ

Further, if we transform to a uniformly rotating reference frame,
rotating with the mean motion and about the ẑ axis, we find the usual
form of the Hill Equations, written in a rotating reference frame:

€ri þ 2Xẑ � _ri ¼ �X2ẑ � ẑ � ri �X2ri þ 3X2ðbR � riÞbR
þ
XN

j¼1;j–i

Gmjrij

jrijj3
ð21Þ

¼ 3X2ðbR � riÞbR �X2ðẑ � riÞẑ þ
XN

j¼1;j–i

Gmjrij

jrijj3
ð22Þ

where the bR direction is usually taken to be the x-axis. This is the
appropriate set of equations to integrate to track the motion of
the particles relative to their center of mass and incorporating mu-
tual attractions between them. As such, Eq. (22) is used to calculate
stress within an aggregate (see Section 2.3.4). Note that this is the
generalized form of Eq. (1), providing the derivation for the Hill
equations of motion both for single particles and aggregates in
the N-body frame.

A.4. Forces and torques acting on a rigid body

Now assume that a subset of the N bodies Pi are rigidly tied to each
other. Let us assume that the first L bodies, P1,P2, . . .,PL, with L < N, are
tied together in a rigid body. Define the total mass of this body to be
m00 ¼

PL
i¼1mi and its center of mass to be r ¼ 1

m00
PL

i¼1miri.
We then wish to find the total force acting on this body and the

net torque acting on it about its center of mass. We should note
that the total force that acts on a body Pi is computed using Eq.
(20) as we are only interested in the gravitational forces acting
on the particles. Once the forces and torques acting on the rigid
body in the inertial frame have been stated, then we can transform
to a rotating frame if desired.

A.4.1. Rigid-body center of mass equation of motion
Thus, the force acting on the body Pi due to mutual attraction of

all the other bodies, under the Hill approximation, can be stated as:

F i ¼ mi€ri ð23Þ

¼ �X2miri þ 3X2miðbR � riÞbR þ XN

j¼1;j–i

Gmimjrij

jrijj3
ð24Þ

The total force acting on the rigid body is then:

F ¼
XL

i¼1

F i ð25Þ

¼ �X2m00r þ 3X2m00ðbR � rÞbR þXL

i¼1

XN

j¼1;j–i

Gmimjrij

jrijj3
ð26Þ

¼ �X2m00r þ 3X2m00ðbR � rÞbR þXL

i¼1

XN

j¼Lþ1;j

Gmimjrij

jrijj3
ð27Þ

where we note in the last step that the forces between the rigid
body particles identically vanish. The equation of motion for the ri-
gid body center of mass is then

€r ¼ 1
m00

F ð28Þ

¼ �X2r þ 3X2ðbR � rÞbR þ 1
m00

XL

i¼1

XN

j¼Lþ1;j

Gmimjrij

jrijj3
ð29Þ
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Again, if we transform into a rotating coordinate frame the equation
takes on a more standard form:

€r þ 2Xẑ � _r ¼ 3X2ðbR � rÞbR �X2ðẑ � rÞẑ þ 1
m00

XL

i¼1

XN

j¼Lþ1;j

Gmimjrij

jrijj3

ð30Þ
hR

dR

Fig. 9. Geometry and symbols used in the derivation of an approximate value for
the contact area between intersecting spheres (Appendix B). Here, d refers to the
dashed line, indicating the depth of particle overlap; h is the dotted line, indicating
the distance from the center of the overlap to the edge of the particle intersection—
in this approximation, h also refers to the radius of the circular particle contact area;
R0 is the shortest distance from a particle center to the intersecting particle; and R is
the particle radius.
A.4.2. Rigid-body torques
Computation of the torques is a bit more involved, yet yields a

very simple result. The torque from each particle Pi relative to the
rigid-body center of mass r is computed as Ni = (ri � r) � Fi. It can
be verified that the torque equals the following:

N i ¼ 3X2miðri � rÞ � bRðbR � ðri � rÞÞ �X2miðri � rÞ � r

þ 3X2miðri � rÞ � bRðbR � rÞ þmi

XN

j¼1;j–i

Gmjðri � rÞ � rij

jrijj3
ð31Þ

Summing this over the L bodies causes the two middle terms to
vanish, leaving the result:

N ¼
XL

i¼1

N i ð32Þ

¼ �3X2bR � XL

i¼1

miðri � rÞðri � rÞ
" #

� bR
þ G

XL

i¼1

XN

j¼1;j–i

mimjðri � rÞ � ðrj � riÞ
jrijj3

ð33Þ

where the term within the first summation is just the outer product
of the two vectors.

Each of the terms in this equation can be simplified. For the first,
we note that the inertia dyadic of any body with respect to its cen-
ter of mass consisting of point masses can be stated as:

I ¼
XL

i¼1

mi ðri � rÞ � ðri � rÞU � ðri � rÞðri � rÞ½ � ð34Þ

where U is the identity dyadic, ri are the positions of the point
masses, r is the center of mass of the body and I is the inertia dya-
dic. In Eq. (33) we note that the term involving the identity will van-
ish, meaning that we can substitute the full inertia dyadic in the
above equation for the quantity within the summation.

For the mutual gravitational term we note the identity
rij = rj � r � (ri � r), allowing us to simplify the result and just fo-
cus on the terms that do not mutually cancel. Applying both sim-
plifications we find the torque acting on the rigid body:

N ¼ 3X2bR � I � bR þ G
XL

i¼1

XN

j¼1;j–i

mimjðri � rÞ � ðrj � rÞ
jrijj3

ð35Þ

Again the common terms from the rigid body will mutually cancel,
leading to

N ¼ 3X2bR � I � bR þ G
XL

i¼1

XN

j¼Lþ1

mimjðri � rÞ � ðrj � rÞ
jrijj3

ð36Þ

This is the torque due to the gravitational forces acting on the rigid
body, accounting for the Hill approximation. This can be used in the
Euler equations, so long as the torque is stated in the proper frame.

A.4.3. Rigid-body rotational equations
Given the body torques acting on the rigid body (Eq. (36)), and

the translational equations that define its center-of-mass location
(e.g., Eq. (1)), we can state the full rotational dynamics equations
for this body. The fundamental equation that controls rotational
motion is:
_H ¼ N ð37Þ
H ¼ I �x ð38Þ

where the time derivative is with respect to an inertially oriented
frame, the inertia dyadic is evaluated at the body center of mass,
H and x are the angular momentum and velocity vectors of the
body relative to an inertially oriented frame, and N are the total tor-
ques acting on the rigid body relative to the center of mass. As the
equation is a vector equation, we have freedom in expressing which
frame they are relative to.

If these are expressed relative to a frame rotating with an angu-
lar velocity X relative to an inertially fixed frame, the equations
become more complex. First, we recall the result for the time deriv-
ative of a vector relative to a rotating frame:

_x ¼ x0 þX� x ð39Þ

where 0 signifies the time derivative relative to the rotating frame.
Applying this to the fundamental equation we find:

H0 þX� H ¼ N ð40Þ

This is the general derivation for the Euler equations (Eq. (3)),
accounting for the Hill problem frame in the statement of the tor-
que N. Note that Eq. (3) is simplified for use in the body frame of
the rotating aggregate.

Appendix B. Contact area for intersecting spheres

Here we derive an approximate expression for the contact area
between two overlapping equal-size spheres. (This expression
should additionally be applicable to deformable spheres, as noted.)

We refer to Fig. 9 and its caption to define the symbols R, R0, d,
and h. Physically, d represents the depth of particle overlap (or two
times the deformation depth, depending on the model). Note that
d + R0 = R, and that h and R0 + 0.5d form a right triangle, with R as
the hypotenuse. We assume that the circular contact area between
these two equal-size spheres is ph2. (This is an assumption in the
case of overlapping particles, but should be satisfactory with
deformable particles.)

By virtue of our right triangle, the Pythagorean theorem gives us:

ðR0 þ 0:5dÞ2 þ h2 ¼ R2 ð41Þ

Next, we remove R0 by its relationship to d and R. Rearranging and
canceling yields:

h2 ¼ Rd� d2
=4 ð42Þ
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Now, we define a new parameter b:

b � d=R ð43Þ

which can be understood as the fraction of a particle’s radius that is
overlapped (or deformed). This parameter encapsulates all of the
unknown bonding physics into one general term.

In terms of this new parameter, the circular contact area is:

ph2 ¼ pR2bð1� b=4Þ ð44Þ

When b� 1, this reduces to

ph2 ¼ pR2b ð45Þ

Thus, at small values of b, the contact area approximately equals the
cross-section of the particles times b.

If b = 2, the contact area equals the cross-section, pR2, and the
two particles are completely overlapped, with their centers touch-
ing (or their surfaces are deformed such that their centers touch).
And if b = 0, then there is no overlap or deformation, and the con-
tact area is zero.

Contact area scales inversely with strength (with constant force).
As such, Eq. (45) provides a simple means to convert from any
strength used as a parameter in pkdgrav to a strength meaningful
in whatever bonding model is under study. Since pkdgrav assumes
that the contact area is pR2 (consistent with b = 2 in Eq. (44)), it is a
simple matter of finding the b value for the bonding model and divid-
ing b into pkdgrav’s strength parameter (or b (1 � b/4) if b � 1). For
example, our bonding concept is based on overlapping frost layers;
Hatzes et al. (1991) studied 2.5 cm ice spheres, and found that only
‘‘the outermost 10–50 lm of the frost layer [was] largely responsible
for the sticking mechanism.’’ Taking a convenient middle value, this
gives d 	 25 lm. With R = 2.5 cm, we have b = 10�3 (which is�1).
Thus a strength parameter in pkdgrav of 100 Pa is approximately
105 Pa in the frost layer bonding model.

Appendix C. Relating impact pressure and speed

Here we derive an order-of-magnitude estimate relating the im-
pact speed between two bodies (vimp) and the pressure exerted by
that impact (Pimp). This relationship allows us to understand how
the impact fragmentation limit (which is in units of speed) should
scale with the bond strength (the bond’s resistance to stress, which
has units of pressure—see Section 2.1). After all, any stresses that
break an aggregate should be self-consistent, be they impacts or
tides.

We note that the following analysis is very similar to the tech-
nique employed by Hatzes et al. (1991) relating their experimen-
tally determined critical collision speed for sticking to the critical
force required for fragmentation in their experiments. This discus-
sion goes one step further, attempting to convert from impact force
to pressure by employing the results of Appendix B.

We begin with the simplified (one-dimensional) impulse equa-
tion relating the change in momentum of a rigid body to the force
applied over a short time interval by an external body:

mDv ¼ FDt ð46Þ

where m is the mass of the body impacted, Dv is the body’s change
in velocity due to the collision, F is the force applied during the col-
lision (which is assumed to be constant), and Dt is the timescale of
the collision—the time interval over which F is applied. This is a
simplification of the force experienced during a collision, in which
material compression exerts a varying pressure—we are merely
aiming for an order-of-magnitude estimate.

Then we take the impact speed (vimp) to be equal to Dv; this
assumption introduces a worst case error of a factor of two, which
depends on the coefficient of restitution of the impact.
Now we depart from Hatzes et al. (1991), and convert to pres-
sure: the force of the impact is distributed over the contact area,
or Pimp = F/A. To find A, we use the results of Appendix B, which
were that the contact area between two equal-size spheres (of ra-
dius R) is pR2b(1 � b/4), where b is the ratio of the particle overlap
(or twice the deformation depth) to the particle radius.

With the mass of the body being m ¼ 4
3 pR3q, we now have:

4pR3qv imp

3pR2bð1� b=4ÞDt
� Rqv imp

bð1� b=4ÞDt
¼ Pimp ð47Þ

where the factor of 4
3 has been neglected.

Putting this into units relevant for the rings of Saturn, and tak-
ing b� 1:

1
b

	 

R

1 m

	 

q

1 g=cm3

	 

v imp

1 mm=s

	 

1 s
Dt

	 

¼ Pimp

1 Pa

	 

ð48Þ

Now we apply this relationship to answer the original question:
what impact pressure corresponds to a given impact speed?

For this example, we choose vimp = 0.5 mm/s—approximately the
escape speed of a sphere with R = 1 m, and q = 0.5 g/cm3. (Note that
this speed is the fragmentation limit used throughout our
simulations.)

One of the larger uncertainties among the quantities in Eq. (48)
is Dt. Hatzes et al. (1991) places the impact timescale at approxi-
mately 0.1 s, while Albers and Spahn (2006) have a timescale of
� 1 ms (cf. their Fig. 2). For this exercise, we choose an intermedi-
ate value of 0.01 s, and recognize that we now have at least an or-
der of magnitude of uncertainty. Last, as in Appendix B, we use
b = 10�3 (for the overlapping frost layer model).

These inputs yield a limiting impact pressure of 25,000 Pa, or
about 104 Pa. Thus, in the overlapping frost layer cohesion model,
and given the assumptions and simplifications made, an impact
fragmentation limit of 0.5 mm/s is approximately consistent with
an aggregate strength (tensile and shear) of 104 Pa.

If one were to instead use b = 2, as pkdgrav does (since it uses
the entire particle cross-section as the contact area), one would in-
stead find that the pressure is �25 Pa. This is within an order of
magnitude of 100 Pa—our choice of strength for our first suite—jus-
tifying our choice for that parameter in our simulations.
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