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We present results from a large suite of simulations of Saturn’s dense A and B rings using a new model of
particle sticking in local simulations (Perrine, R.P., Richardson, D.C., Scheeres, D.J. [2011]. Icarus 212, 719–
735). In this model, colliding particles can be incorporated into or help fragment rigid aggregations on the
basis of certain user-specified parameters that can represent van der Waals forces or interlocking surface
frost layers.

Our investigation is motivated by laboratory results that show that interpenetration of surface layers
can allow impacting frost-covered ice spheres to stick together. In these experiments, cohesion only
occurs below specific impact speeds, which happen to be characteristic of impact speeds in Saturn’s rings.
Our goal is to determine if weak bonding is consistent with ring observations, to constrain cohesion
parameters in light of existing ring observations, to make predictions about particle populations through-
out the rings, and to discover other diagnostics that may constrain bonding parameters.

We considered the effects of five parameters on the equilibrium characteristics of our ring simulations:
speed-based merge and fragmentation limits, bond strength, ring surface density, and patch orbital dis-
tance (i.e., the A or B ring), some with both monodisperse and polydisperse comparison cases. In total, we
present data from 95 simulations.

We find that weak cohesion is consistent with observations of the A and B rings (e.g., French, R.G.,
Nicholson, P.D. [2000]. Icarus 145, 502–523), and we present a range of simulation parameters that repro-
duce the observed size distribution and maximum particle size. It turns out that the parameters that
match observations differ between the A and B rings, and we discuss the potential implications of this
result. We also comment on other observable consequences of cohesion for the rings, such as optical
depth and scale height effects, and discuss whether very large objects (e.g., ‘‘propeller’’ source objects)
are grown bottom-up from cohesion of smaller ring particles.

� 2012 Elsevier Inc. All rights reserved.
1. Introduction

1.1. Motivation

As the small particles comprising the rings of Saturn are com-
posed almost entirely of water ice (e.g., Cuzzi et al., 2009), many
experimentalists have undertaken the task of measuring the coef-
ficient of restitution (�) in icy particle collisions (e.g., Bridges et al.,
1984; Supulver et al., 1995). These experiments revealed that
‘‘clean’’ icy surfaces are quite elastic at low speeds (normal coeffi-
cient of restitution above 0.8 at �1 mm/s), but that a coating of
water frost can reduce � significantly (see Bridges et al. (2001)
for a review). On the other hand, studies combining observations
with simulations (e.g., Porco et al., 2008) have shown that impacts
ll rights reserved.

on).
among ring particles in Saturn’s rings must be fairly inelastic—
implying that these particles are coated in an icy frost.

Interestingly, some of these experiments have revealed that
frost-coated ice can stick at low impact speeds, forming a cohesive
bond (Hatzes et al., 1991; Bridges et al., 1996, 2001; Supulver et al.,
1997). In particular, Hatzes et al. (1991) describe this cohesion by
invoking a ‘‘Velcro’’ model—the rough texture of the frost layers
provide an interlocking structure for colliding particles. Particu-
larly intriguing is their discovery of a critical impact speed for
cohesion (hereafter called a ‘‘merge limit’’) of �0.3 mm/s (for
2.5 cm-radius bodies), as this speed is on the order of the gravita-
tional escape speed (for a test particle on the surface) of an icy
sphere 1 m in radius. If this cohesion mechanism is generic across
size scales, and the particles in the dense rings of Saturn are expe-
riencing cohesion, they may form large aggregations of material.

Analysis of recent observations of the rings of Saturn implies the
need for such a bonding mechanism. Porco et al. (2008) show that
the contrast in the azimuthal brightness asymmetry of Saturn’s A
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ring (e.g., Salo et al., 2004; French et al., 2007; Porco et al., 2008)
can be modeled using extremely dissipative particle interactions,
such as would arise from bonding. As well, radial banded struc-
tures in Saturn’s B ring elude explanation. Tremaine (2003) sug-
gests that these zones occupy a region of dynamical phase-space
that is ‘‘shear-free’’—zones with zero Keplerian shear—and thus
subject to a solid–liquid phase transition. These zones (�100 km
in scale) may consist of large-scale transiently bonded particles
that orbit Saturn as a solid.

1.1.1. Observational constraints on the particle size distribution in
Saturn’s A and B rings

Observations of the rings (Zebker et al. (1985) for Voyager 1
radio occultation experiments, French and Nicholson (2000) for
the 1989 Earth-based observations of an occultation by the star
28 Sgr, and Cuzzi et al. (2009) for Cassini radio occultation obser-
vations) have revealed estimates of the size distribution and max-
imum particle size within different regions of the rings.

It should be noted that the results derived from these observa-
tions are model-dependent (i.e., ‘‘classical’’ vs. ‘‘thin layer’’), and as-
sume that the ring plane is composed of a loosely packed,
uniformly distributed layer of particles (which is not likely to be
true, considering the widely accepted presence of gravity wakes
in dense rings—see Section 1.2). Also note that the Voyager results
have greater fidelity than the Earth-based 28 Sgr occultation, and
that results concerning the B ring carry greater uncertainty than
those from the A ring, due to the difficulty of accurate measure-
ments at such high optical depth. In this light, we only discuss
these results in a broad overview, and apply them to constrain
our data using a similarly broad target range (see Section 3.4).

Overall, the results of the modeling and data analysis from these
three data sets are that the size distribution and maximum particle
size in the A and B rings are roughly independent of the distance
from Saturn. Adopting a functional form for the differential size
distribution of n(R) / Ra (where n(R)dR is the number of particles
with radii between R and R + dR, and a is a parameter to be deter-
mined), they find a to be roughly between �2.5 and �3, and the
maximum particle size1 (Rmax) to be 5–20 m (with the Voyager
results favoring 5–10 m, and the stellar occultation showing a nearly
constant 20 m). There may also be moderate trends with orbital dis-
tance from Saturn: each experiment showed a steepening of the size
distribution from the inner to the outer A ring (a parameter from
�2.7 to �3 for Voyager, and from �2.75 to �2.9 for the stellar occ-
ultations), and there are hints that Rmax may increase with distance
from Saturn (e.g., the Voyager experiment showed Rmax increasing
from 5 to 6 m in the inner and mid A ring to 9–11 m in the Encke
gap region). We obtained these values from Table 15.1 of Cuzzi
et al. (2009), and we refer the reader to that work for further details
on these observations and how the signals were processed to obtain
these numbers.

1.1.2. Numerical simulations of planetary rings
Studying the full effect of cohesive bonding in dense environ-

ments, specifically Saturn’s dense A and B rings, requires detailed
numerical modeling. Such systems involve a complex convergence
of phenomena, including interparticle self-gravity, planetary tides,
and interparticle collisions, and it may prove difficult to further
incorporate dynamical bonding and fragmentation in a fully self-
consistent way into current analytical models. Some groups have
analytically modeled the effect of cohesion between a small num-
ber of bodies (e.g., Spahn et al., 2004; Albers and Spahn, 2006,
using a viscoelastic model), and a few groups study planetary ring
1 Note that Rmax may describe a single large body that, due to its low number
frequency, does not necessarily lie on the overall size distribution. Its size could be
well above the predicted cutoff.
dynamics with local N-body simulations (e.g., Lewis and Stewart,
2000; Karjalainen and Salo, 2004; Porco et al., 2008), but none
numerically model the emergent behavior of tens of thousands
(or even millions) of N-body particles interacting with cohesion
over many orbital times.

We created a new model that incorporates cohesion among
N-body particles into a local, rotating frame (Perrine et al., 2011;
hereafter Paper I). That work discusses the details of the model
(including the considerations taken to combine a model of rigid
aggregates with periodic boundary conditions), derivations of
equations of motion for rigid aggregates in a rotating coordinate
system, model tests, and initial results. Pertinent details of the
method are summarized below in Section 1.3; for further discus-
sion, see Paper I, or the doctoral dissertation by Perrine (2011).

We emphasize here that local simulations, first used in a plan-
etary ring context (with linearized equations of motion to simplify
computations; see Paper I) by Wisdom and Tremaine (1988),
restrict the computational volume to a small region of interest
(which we call a ‘‘patch’’), enabling simulations with realistic sur-
face densities and particle size distributions. For example, a full-
ring simulation of Saturn’s A and B rings with accurate surface den-
sities and spherical 1-m-radius bodies would require roughly 1015

particles, which is far beyond current computational capability.
But a representative patch may require only 105–109 bodies,
depending on the specific problem being explored.

Also, regarding the cohesion model, we do not attempt to
encapsulate all of the complex physics relevant to granular
mechanics—rather the model represents a first step toward under-
standing how cohesion might affect particle dynamics in rings (see
Paper I for further discussion).

The remainder of this paper is divided as follows. Section 1.2
defines a few select terms that we use in this paper, while Section
1.3 presents our model and its capabilities. Section 2 describes the
simulations we performed, including a description and motivation
for our range of cohesion and ring parameters. Section 3 first dis-
cusses the typical lifetime of an aggregate in our model, and then
presents the results and implications of our simulations, address-
ing our key science goals. Lastly, Section 4 provides a summary
with conclusions, and ideas for future work.

1.2. Terminology

In our model, cohesion leads to the formation of ‘‘aggregates’’
that are collections of particles joined via inflexible and incom-
pressible bonds of user-defined strength. For example, this body
can, depending on the strength of the bonds, resist self-
gravitational reshaping (e.g., remain highly non-spherical). The
constituents of an aggregate remain fixed with respect to one an-
other as the aggregate moves and rotates in response to external
forces and torques. Aggregates can agglomerate through collisional
accretion with other bodies—free particles, or other aggregates—
and can fragment through collisional events or stress fragmenta-
tion (when stresses exceed bond strengths).

Other researchers (e.g., Karjalainen and Salo, 2004; Karjalainen,
2007) use the term ‘‘aggregate’’ to refer to a collection of particles
bound together by gravity alone. Following the terminology of
Richardson et al. (2002), we refer to these structures as ‘‘gravita-
tional aggregates.’’ Unless indicated otherwise, ‘‘aggregate’’ in this
paper refers to a bonded aggregate, though we use ‘‘bonded aggre-
gate’’ at times for clarity. Both types of structures appear in our
simulations (cf. Section 2, Figs. 1 and 2).

An important form of gravitational aggregate that is prevalent
in dense ring simulations arises in the form of web-like structures
usually referred to as ‘‘self-gravity wakes,’’ which for simplicity we
subsequently refer to as ‘‘wakes’’ (see Julian and Toomre (1966)
and Salo (1992) for more detail, or Schmidt et al. (2009) for an



Fig. 1. Snapshots from A ring runs with moderate cohesion (A-F-mono-4, left; cf. Table 2) and high cohesion (A-M2-mono-9, right, cf. Table 1). For reference, the merge limit
in the left pane is near the Hatzes et al. (1991) value, but the merge limit in the right pane is four times ‘‘stickier’’. The view of these local patches of ring material is face-on,
with up as the orbital direction, and Saturn (not shown) located far to the left. These patches are approximately 350 m on a side as pictured, so this view only displays
approximately half of the simulated region. To enhance aggregate visibility, particles bonded into aggregates (shown in non-green colors) are drawn overtop of non-bonded
particles (in green)—thus, aggregates are never hidden behind a cluster of unbonded green particles. Conversely, clusters of green particles are unbonded gravitational
aggregates; see for example the large object near-center on the right pane. Note the finer wake structure and abundance of small aggregates in the left pane, but coarser wake
structure and larger embedded aggregates in the right pane. Strong bonding evidently not only enables larger aggregates, but begins to disrupt wake structure. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 2. Pictured here are two simulations based in the B ring using the same cohesion parameters as in Fig. 1, showing moderate cohesion (B-F-mono-4, left) and high
cohesion (B-M2-mono-8, right). Viewing geometry and colors are as in Fig. 1. Note the drastic difference in structure between the two panes, in comparison to the two panes
in Fig. 1—this demonstrates that there may be a relationship between the physical optical depth and cohesion parameters in the B ring, which is not present in the A ring (see
Section 3.8). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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extended review). While these wakes have never been imaged di-
rectly (due to their currently unresolvable sub-hundred-meter
size), they are predicted by many models (e.g., Salo, 1992; Richard-
son, 1994; Porco et al., 2008; Robbins et al., 2010). These structures
are highly transient, forming and dissolving on orbital timescales,
and form when the gravitational collapse due to particle self-grav-
ity nearly balances the disruptive influence of Keplerian shear (i.e.,
when the Toomre Q parameter is near unity; Toomre, 1964). They
take the form of elongated and densely packed gravitational aggre-
gates, with a radial spacing estimated by kcrit, the critical wave-
length of the region,2 and a characteristic pitch angle (orientation
2 The critical wavelength is the shortest axisymmetric wavelength stabilized by
differential rotation alone: kcrit = 4p2GR/X2, with G the gravitational constant, R the
ring mass surface density, and X the orbital frequency of the comoving frame. See, for
example, Salo (1992).
with respect to the orbital direction) of about 20–25�, depending
on local conditions.

Important characteristic speed scales in our simulations include
the particle escape speed (vesc) and shear speed (vshear). The former
has the usual definition: the minimum initial speed for a massless
test particle to reach infinity relative to an isolated ring particle,
vesc ¼

ffiffiffiffiffiffiffi
2Gm

R

q
, where m and R are the mass and radius of the ring

particle. For this definition, we ignore planetary gravity, tidal
effects, and perturbations from other particles (or moons), as this
quantity is merely used as a convenient normalization. The shear
speed is the relative speed between two (massless) objects on
circular orbits with semimajor axes separated by the sum of their
radii, that just barely touch as the inner body overtakes the outer;
in the linearized approximation (see Wisdom and Tremaine, 1988),
vshear ¼ 3

2 Xda, where da is the difference in the particles’ orbital
semimajor axis—which is merely the sum of the particles’
radii. The bodies are massless in this definition so that their
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mutual gravitational attraction does not increase their relative
speed.

We will use the escape and shear speeds to scale the impact
speeds of particles in dense rings. In fact, these two quantities
are nearly equal in the main rings of Saturn. For equal-size parti-
cles, their ratio depends only on the internal density of the parti-
cles and the orbital frequency, or vesc=v shear �

ffiffiffiffiqp =X. (We apply
this relationship to the results of our simulations in Section 3.5.)

Finally, in Paper I, we introduced a quantity b that defines the
contact area assumed when discussing different bonding models,
while at the same time encapsulating complex bonding physics
into a simple term (similar to the concept of a coefficient of resti-
tution). When any model calculates bond strength from relative
acceleration or force, that model must specify the assumed contact
area, as the contact area is the conversion factor between force and
pressure. Thus, in this work, we quote the assumed b whenever a
bond strength is discussed.

For the full derivation and discussion of b, we refer the reader to
Appendices B and C in Paper I. In short, b � d/R, or the ratio be-
tween the depth of particle surface layer interpenetration (d) to
the radius of the equal-size bodies (R). More intuitively, at small
values of b, b is approximately the ratio between the contact area
and the particles’ cross-section. (Note that for simplicity, we re-
strict ourselves here to the monodisperse case.)

For spheres that perfectly overlap, b = 2, and the resulting con-
tact area is the cross-section of the particles: pR2. Consequently,
this is the largest possible b. While the image of such a particle
configuration is quite unphysical, this is the most generic case.
(Due to its generality, and ease of translation to other contact
areas, the full particle cross-section is the contact area assumed
in the model presented in Section 1.3—see below for examples.)
The smallest possible b is 0, when there is no overlap, and thus
the contact area is zero.

For clarity, in this work, we refer to simulation ‘‘parameter
strengths’’ and ‘‘lab strengths.’’ Parameter strengths refer to the
modeled parameter used in the code, and lab strengths refer to
an experimentally or observationally determined strength. The
conversion between these two types of strengths is the b for the
experiment; when b� 1, the relationship is:

ðSParamÞ ¼ ðbLabÞ ðSLabÞ ð1Þ

where SParam and SLab are the parameter and lab strengths, respec-
tively, and bLab is the conversion factor.

There are two means of calculating the b conversion factor be-
tween any experimental setup and our simulations: either com-
bine d and R (e.g., for dynamic experiments involving spherical
particles), or compute the ratio of the contact area to the cross-sec-
tion of the simulated particles (e.g., static experiments using flat
plates). For example, the bonding concept used in this work is
based on overlapping frost layers; Hatzes et al. (1991) studied
2.5 cm ice spheres, and from their results we adopt the frost layer
interpenetration to be d � 25 lm. With R = 2.5 cm, we have
b = 10�3. Using Eq. (1), a parameter strength of 100 Pa in the code
would approximately match a lab strength of 105 Pa for the Hatzes
et al. (1991) experiments. As another example, Supulver et al.
(1997) used static plates in their apparatus (and thus R is unde-
fined in this experiment). So we instead examine the ratio of their
contact area (�1 cm2) to the cross-section of a typical particle in
our simulations (�1 m2), which is b � 10�4. So a lab strength in
Supulver et al. (1997) of �100 Pa approximately matches a param-
eter strength of 10�2 Pa.

1.3. Numerical method

Our aggregation model is built into pkdgrav, an N-body code
originally designed for cosmological simulations (Stadel, 2001),
which was adapted to include particle collisions (Richardson
et al., 2000) for the purpose of studying, among other things, plan-
etary rings (e.g., Porco et al., 2008).

Pkdgrav uses a parallelized tree code to reduce the computa-
tional cost of summing up gravitational force contributions be-
tween particles (e.g., Barnes and Hut, 1986; Richardson, 1994). A
second-order leapfrog scheme is used to integrate the equations
of motion; collisions among particles are predicted and resolved
during the drift phase by treating particle trajectories as linear
and predicting when intersections occur.

The aggregation model works as follows. Colliding particles can
stick on contact if the impact speed is below a user-defined thresh-
old called the ‘‘merge limit.’’ Fractal growth proceeds as more free
particles—or other aggregates—collide and stick in this way.

Particles can fragment from an aggregate—becoming free, single
particles—in two ways. First, a particle impacting an aggregate at a
speed above another user-specified threshold (the ‘‘fragmentation
limit’’) causes the impacted particle to become liberated from the
aggregate. If the impacting particle is itself part of an aggregate,
it may be liberated as well. Liberated particles will likely immedi-
ately strike other particles in their respective former aggregates,
which might also become liberated (if the impact speeds are still
high enough), causing a fragmentation cascade.

Second, each aggregate is assigned a user-defined strength in
the normal (tensile) or tangential (shear) directions. Any particle
whose acceleration relative to its aggregate’s center of mass ex-
ceeds the stress limit is liberated from the aggregate and becomes
a free particle again at its current position and velocity. The aggre-
gate experiences no strain as the stress increases: it remains per-
fectly rigid until the strength is exceeded.

For these calculations, the parameter strength, in units of pres-
sure, is converted to a maximum acceleration by multiplying by
the cross-sectional area of the particles and dividing by the mass
of the particle under consideration. This choice is made in order
to remain a general and simple method to explore the effects of
cohesion, no matter the means of sticking under study. If desired,
the user of the code may translate the parameter strength used
within pkdgrav into the appropriate lab strength for the desired
bonding method. This is achieved by scaling the parameter
strength by the ratio of the cross-sectional area to the true contact
area by the experiment’s b parameter (see Section 1.2).

The reader should keep in mind that this cohesion model is
quite general, and it is only an approximation to the behavior of
real cohesive materials. For instance, in our model, particles have
no knowledge of which particle(s) they are stuck to—all a particle
‘‘knows’’ is which aggregate it belongs to. Aggregate properties are
calculated based on the positions, velocities, spins, etc., of the par-
ticles included in that body alone. Our simple tool is not capable of
modeling sophisticated granular and solid-body physics, such as a
force network (e.g., Lois and Carlson, 2007), as that level of detail is
beyond the scope of this work. For more detail, see the doctoral
dissertation by Perrine (2011).
2. Simulations

2.1. Parameters

The simulations presented here generally employed the same
parameters as in Paper I. Settings consistent across all simulations
will be discussed first.

The internal density for all particles was 0.5 g/cm3, representing
porous ice. This is consistent with the local Roche critical density
(the density of material that would fill its own Roche lobe,
qR � 1.88MS/a3, with MS the mass of Saturn and a the patch semi-
major axis; see for example Tiscareno et al., 2008) for the A ring



Table 1
First in a series of tables of simulation parameters, with each row representing a
simulation. The first column is the simulation index, as explained in Section 2.1. The
next 3 columns are the bonding parameters: merge limit (M), fragmentation limit (F),
and strength (S), in either units of vesc (0.53 mm/s; the escape speed from a spherical
particle with radius of 1 m and density 0.5 g/cm3), or Pascals. The last column is the
mass surface density (R). The total combined CPU time for all the runs represented on
these tables is over 561,000 CPU hours.

Index M (vesc) F (vesc) S (Pa) R (kg/m2)

A-M1-mono-1 0.01 1.0 102 500
A-M1-mono-2 0.05 – – –
A-M1-mono-3 0.1 – – –
A-M1-mono-4 0.175 – – –
A-M1-mono-5 0.25 – – –
A-M1-mono-6 0.375 – – –
A-M1-mono-7 0.5 – – –
A-M1-mono-8 0.75 – – –
A-M1-mono-9 1.0 – – –

A-M1-poly-1 0.01 1.0 102 500
A-M1-poly-2 0.05 – – –
A-M1-poly-3 0.1 – – –
A-M1-poly-4 0.175 – – –
A-M1-poly-5 0.25 – – –
A-M1-poly-6 0.5 – – –
A-M1-poly-7 1.0 – – –

A-M2-mono-1 0.05 2.0 102 500
A-M2-mono-2 0.25 – – –
A-M2-mono-3 0.5 – – –
A-M2-mono-4 0.75 – – –
A-M2-mono-5 1 – – –
A-M2-mono-6 1.25 – – –
A-M2-mono-7 1.5 – – –
A-M2-mono-8 1.75 – – –
A-M2-mono-9 2.0 – – –
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(Porco et al., 2007). For simplicity, we used the same internal den-
sity for all A and B ring simulations, even though the local Roche
density should be higher for the B ring region (see Section 3.6 for
more discussion).

Following Porco et al. (2008), we used the speed-dependent
normal coefficient of restitution (�) law from Borderies et al.
(1984), with an extremely dissipative v⁄ of 0.001 cm/s, with zero
surface friction. This choice of v⁄ means all impacts with speeds
above 2 mm/s use an � below 0.1, and the typical impact speed
of 0.5 mm/s (the escape speed from a particle with the above
parameters) has an � of approximately 0.2—which appears consis-
tent with the dissipative nature of frost-covered ice (e.g., Bridges
et al., 2001).

The gravity tree’s critical opening angle (hcrit) was 0.5 radian
(see Richardson, 1994 for more discussion), and the timestep was
approximately 5 s. Each of these parameters were refined with
convergence tests to optimize computational expediency and
accuracy.

The dimensions of our patches were constant within the A or B
ring simulations: approximately 880 by 350 m for the A ring, and
695 by 280 m for the B ring, with the longer axis in the azimuthal
direction (the aspect ratio of 2:5 was chosen to accommodate the
pitch angle of the gravity wakes). For our fiducial choices of surface
mass density (R) for each ring (500 and 1000 kg/m2 for the A and B
ring, respectively), these correspond to 4 by 10 critical wave-
lengths (kcrit—see Section 1.2).

But changing R can change N; for simplicity, and to keep N trac-
table (as runtime scales—at best—with N2, due to geometrically
increasing collision frequency), we chose to keep our patch size
static when varying R (rather than forcing larger patches with in-
creases in kcrit). This means that at higher surface densities (and
thus larger kcrit’s) we are at higher risk for self-interaction among
the wakes (between the simulated patch and its replicated ghost
cells). However, our densest patches are at worst double the R of
our fiducial—and were thus 2 by 5kcrit—and our experience is that
2 by 5kcrit provides reliably similar results to the fiducial patch size,
so we feel that this is an acceptable compromise between numer-
ical accuracy and runtime.

We placed our simulated patches at two orbital semimajor axes
to mimic B and A ring conditions, at 100,000 and 136,530 km from
Saturn, respectively (with orbital periods of 8.96 and 14.3 h). The
majority of our simulations used a 1-m-radius monodisperse par-
ticle population (again, the choice to use relatively large particles
is to keep N tractable). For comparison purposes, some simulations
were performed with polydisperse particles, with a size range of
0.8–1.2 m, and using a power-law size distribution exponent
a = �3, assuming the form n(R) / Ra. These choices result in very
similar N between the polydisperse and the monodisperse cases.
(Note that the average particle radius in the polydisperse case is
approximately 0.96 m, which means that vesc will be �4% smaller
on average in the polydisperse cases than in the monodisperse.)
In either case, a size distribution of aggregates emerges as the sim-
ulations proceed, resulting in changes to the overall effective a.

Given our choice of particle size, fiducial R, and patch size, the
number of particles, N, was about 75,000 in the majority of our
runs. As discussed, runs with larger R values had more particles,
as N scales linearly with R (at constant patch area).

Our initial conditions were also identical to the setup presented
in Paper I: each particle began as a free, non-spinning particle, with
a random position and velocity. Each run was carried out for a sim-
ilar time as in Paper I: usually to about nine simulated days (15 or-
bits for our A ring runs, 24 orbits for the B ring runs). This gives
plenty of time for studying the equilibrium state of the system,
as equilibrium is established within approximately five orbits (as
determined when properties such as velocity dispersion and opti-
cal depth level off).
Most of our simulations completed in 8–11 days on 16 proces-
sors (cores), depending on the interparticle collision rate—but the
highest R runs took drastically longer. In fact, our B ring simulation
with the highest R (2000 kg/m2) required 130,000 CPU hours
(nearly 15 CPU years) of computation.

Our simulations explored the parameter space by holding cer-
tain values constant while varying a single parameter, in order to
isolate the effects of that parameter. Different suites of simulations
explored the effects of the merge and fragmentation limits, bond
strength, and mass surface density (see Tables 1–3). When avail-
able, we chose best-guess fiducial values and reasonable ranges
for our parameters based on observational, experimental, or theo-
retical considerations.

Our fiducial merge limit was 0.27 mm/s, or 0.5vesc for R = 1 m,
which remains a constant numerical value for every body through-
out a simulation (rather than scaling by local properties, such as
aggregate size). This value was based on the results of Hatzes
et al. (1991), who found the critical sticking speed for frosty
2.5 cm ice spheres to be �0.3 mm/s. We recognize that there likely
is a relationship between merge limit and radius (considering vary-
ing surface curvature and gravity scaling with particle size), but we
are constrained to larger particle sizes (see above) for which no
cohesion data yet exists.

We have no firm experimental reference for the impact frag-
mentation limit, but results from Bridges et al. (1996) indicate that
this quantity may be on the order of 1 mm/s. Fig. 2a in Bridges et al.
(1996) shows an impacting particle’s speed decreasing as it
rebounds, showing that the particles formed a cohesive bond dur-
ing the impact that then broke, losing energy to the failing bond.
That is, the impactor broke its own bond as it moved away faster
than the bond could hold, and thus the impact speed (1.5 mm/s)
exceeded the impact fragmentation limit for these particles.

Thus for the fiducial fragmentation limit, we chose two physi-
cally reasonable values of 0.53 and 1.06 mm/s (i.e., 1 and 2vesc for



Table 2
Second in a series of tables of simulation parameters; this table continues to detail the
A ring runs. See Table 1 for details.

Index M (vesc) F (vesc) S (Pa) R (kg/m2)

A-F-mono-1 0.5 0.5 102 500
A-F-mono-2 – 0.75 – –
A-F-mono-3 – 1.0 – –
A-F-mono-4 – 1.25 – –
A-F-mono-5 – 1.5 – –
A-F-mono-6 – 1.75 – –
A-F-mono-7 – 2.0 – –
A-F-mono-8 – 2.5 – –
A-F-mono-9 – 3.0 – –
A-F-mono-10 – 3.5 – –
A-F-mono-11 – 4.0 – –

A-F-poly-1 0.5 0.5 102 500
A-F-poly-2 – 0.75 – –
A-F-poly-3 – 1.0 – –
A-F-poly-4 – 1.25 – –
A-F-poly-5 – 1.5 – –
A-F-poly-6 – 1.75 – –
A-F-poly-7 – 2.0 – –
A-F-poly-8 – 2.5 – –
A-F-poly-9 – 3.0 – –

A-Str-mono-1 0.5 1.0 10�5 500
A-Str-mono-2 – – 10�4 –
A-Str-mono-3 – – 10�3 –
A-Str-mono-4 – – 10�2 –
A-Str-mono-5 – – 10�1 –
A-Str-mono-6 – – 100 –
A-Str-mono-7 – – 101 –
A-Str-mono-8 – – 102 –
A-Str-mono-9 – – Infinite –

A-Sig-mono-1 0.5 1.0 102 125
A-Sig-mono-2 – – – 250
A-Sig-mono-3 – – – 375
A-Sig-mono-4 – – – 437
A-Sig-mono-5 – – – 500
A-Sig-mono-6 – – – 625
A-Sig-mono-7 – – – 750
A-Sig-mono-8 – – – 1000

Table 3
Third in a series of tables of simulation parameters; this table details all of the B ring
runs. See Table 1 for details. (Note that B-Sig-mono-7 is included here, even though it
remains incomplete.)

Index M (vesc) F (vesc) S (Pa) R (kg/m2)

B-M1-mono-1 0.0 1.0 102 1000
B-M1-mono-2 0.01 – – –
B-M1-mono-3 0.05 – – –
B-M1-mono-4 0.1 – – –
B-M1-mono-5 0.25 – – –
B-M1-mono-6 0.5 – – –
B-M1-mono-7 0.75 – – –
B-M1-mono-8 1.0 – – –

B-M2-mono-1 0.05 2.0 102 1000
B-M2-mono-2 0.1 – – –
B-M2-mono-3 0.25 – – –
B-M2-mono-4 0.5 – – –
B-M2-mono-5 0.75 – – –
B-M2-mono-6 1.0 – – –
B-M2-mono-7 1.5 – – –
B-M2-mono-8 2.0 – – –

B-F-mono-1 0.5 0.5 102 1000
B-F-mono-2 – 0.75 – –
B-F-mono-3 – 1.0 – –
B-F-mono-4 – 1.25 – –
B-F-mono-5 – 1.5 – –
B-F-mono-6 – 1.75 – –
B-F-mono-7 – 2.0 – –
B-F-mono-8 – 2.5 – –
B-F-mono-9 – 3.0 – –

B-Str-mono-1 0.5 1.0 10�5 1000
B-Str-mono-2 – – 10�4 –
B-Str-mono-3 – – 10�3 –
B-Str-mono-4 – – 10�2 –
B-Str-mono-5 – – 10�1 –
B-Str-mono-6 – – 100 –
B-Str-mono-7 – – 101 –
B-Str-mono-8 – – 102 –

B-Sig-mono-1 0.5 1.0 102 250
B-Sig-mono-2 – – – 500
B-Sig-mono-3 – – – 750
B-Sig-mono-4 – – – 1000
B-Sig-mono-5 – – – 1250
B-Sig-mono-6 – – – 1500
B-Sig-mono-7 – – – 2000
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our porous icy R = 1 m spheres). In our model, the fragmentation
limit cannot be lower than the merge limit, so to choose a lower
fiducial fragmentation limit would further confine the merge limit
range during parameter sweeps. Thus the lower limit of 1vesc is
perhaps more physically grounded, but the larger limit of 2vesc al-
lows us to explore higher merge limits, and both are consistent
with the observation from Bridges et al. (1996). (Again, curvature
and gravity scaling may alter the fragmentation limit for our larger
particles, but we use these fiducials in the absence of further data.)

We used 100 Pa as our fiducial bond strength. This appears
consistent with the measured strengths of the only extraterrestrial
Solar System ice whose strength has been studied: comets. First,
100 Pa appears consistent with the analysis by Sekanina and Yeo-
mans (1985) for the strength of Comet Brooks 2. Yet Asphaug and
Benz (1996) found a weaker upper limit (�5 Pa) for the strength of
Comet Shoemaker–Levy 9, while Richardson et al. (2007) found a
higher upper limit of �103–104 for Temple 1 (though the results
are consistent with zero strength). This fiducial appears to be a rea-
sonable midpoint.

However, comets are compositionally and structurally different
from the particles comprising the rings of Saturn (as they include,
for example, dust, methane, and organics—see for example Sitko
et al., 2011), so their strengths are used here only as a starting ref-
erence. For comparison, the experiments of Supulver et al. (1997)
showed frosty ice bonds failing with forces on the order of
�1000 dynes. At a contact area of �1 cm2, that is approximately
a bond strength of 1000 dyn/cm2, or 100 Pa. Again, this value is
only a fiducial, as the experiments showed that this bond strength
is variable based on the frost thickness and density (Supulver et al.,
1997) and impact speed (Bridges et al., 1996).

Keeping in mind the discussion of parameter vs. lab strength
from Section 1.2, our fiducial parameter strength of 100 Pa could
translate into a lab strength that is higher than the upper limits
found observationally for comets, as well as the experimental
results for frosty ice cohesion (Supulver et al., 1997). However, this
value is only a fiducial, and we have conducted a strength-varying
suite in order to test the population’s sensitivity to strength. (See
Section 3.3 for a discussion of our results regarding the strength
parameter.)

While our fiducial fragmentation limits and strength seem plau-
sible, we believe that they are also roughly consistent with one an-
other. Included in Paper I is a rough order-of-magnitude estimate
relating the impact speed between two bodies (vimp) and the pres-
sure exerted by that impact (Pimp):

1
b

� �
R

1 m

� �
q

1 g=cm3

� �
v imp

1 mm=s

� �
1 s
Dt

� �
¼ Pimp

1 Pa

� �
ð2Þ

with R the radius of the (equal-size) impacting bodies, q the inter-
nal mass density of the bodies, Dt the timescale of the collision, and
assuming b� 1. This relationship allows us to understand how the
impact fragmentation limit (a speed) should scale with the bond
strength (a pressure), while enabling a convenient scaling between
these two failure limits.
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Assuming R = 1 m, q = 0.5 g/cm3, and Dt = 0.01 s (see Paper I),
we find that an impact fragmentation limit of 0.5 mm/s is approx-
imately consistent with an aggregate parameter strength (i.e.,
b = 2) of 25 Pa (or a lab strength of 105 Pa, using bLab = 10�3). Thus
a fragmentation limit of 0.5 mm/s is within an order of magnitude
of our fiducial parameter strength (100 Pa).

Our fiducial R values for the A and B ring were 500 kg/m2 for
the A ring and 1000 kg/m2 for the B ring, producing approximately
equal computational load for each location within the rings. At
R = 1 m, the geometric optical depths (i.e., total particle cross-sec-
tional area divided by the area of the patch) are 0.75 and 1.5 for our
A and B ring models, respectively.

Our A ring R value is based on the consistent results found both
by Colwell et al. (2009; a compilation of density wave observa-
tions3) and Robbins et al. (2010; N-body work that matched simu-
lated optical depth as a function of surface density to Cassini UVIS
stellar occultation data). The true B ring R may be much larger than
1000 kg/m2 (Robbins et al., 2010), but even doubling to 2000 kg/m2

turned out to be extraordinarily expensive (as mentioned above, our
2000 kg/m2 simulation required nearly 15 CPU years to complete).
Thus we maintained the B ring fiducial of 1000 kg/m2 in the interest
of completing a large number of simulations to produce parameter
sweeps—being sure to also provide a suite studying the aggregates’
state at a range of R’s.

For details regarding the remaining parameters, see Tables 1–3,
in which runs are organized into suites with one changing param-
eter and all others constant (as indicated by dashes). The tables
state an ‘‘Index’’ for each run, which is a shorthand for the param-
eters of interest in that simulation. The first term is A or B, indicat-
ing A or B ring nominal parameters (saturnian distance and surface
density). The second term indicates the parameter varied in that
suite, with M for merge limit, F for fragmentation limit, Str for
strength, and Sig for surface density; when the merge limit is var-
ied, we specify the fragmentation limit used (1 or 2vesc), as we em-
ploy two different fragmentation limits in such runs. The third
term is the nature of the innate particle population, either mono-
disperse (‘‘mono’’—all particles having radius of 1 m) or polydis-
perse (‘‘poly’’—radii of 0.8–1.2 m, with a = �3). Finally, the fourth
term is a convenient run index within the suite. When we refer-
ence a suite throughout this paper, we simply state the three first
terms of the indices of the runs in that suite; for example, the first
suite in Table 1 is A-M1-mono (i.e., nominal A ring settings, with
variable merge limit, fixing the fragmentation limit to 1vesc, and
monodisperse initial particles).

Note that some parameters are duplicated across different runs;
to save computation, we often used a single run in many suites
(e.g., entries A-M1-mono-7, A-F-mono-3, and A-Sig-mono-5 are
the same simulation). However, we did occasionally take the
opportunity to rerun a simulation (with the same parameters
and initial conditions) in order to verify that repeating a simulation
reproduces consistent results (e.g., entries B-M2-mono-4 and B-F-
mono-7 are independent simulations with the same parameters).
Additionally, this afforded us the opportunity to confirm that we
were getting uniform results between the two different computer
systems we used for our runs.
2.2. Data analysis

The majority of the data analysis proceeded as described in
Paper I; we present a summary of our procedures here, and outline
an important change to our calculation for a below.
3 Surface density is obtained directly from the density wave’s wavelength
dispersion as the wave propagates through the ring material; see Tiscareno et al.
(2007) for a discussion of the technique.
Once the particles equilibrate (as determined by examining
dynamical properties such as filling factor at the midplane and
velocity dispersion), a simulation proceeds for approximately 10
orbits, during which we sample the state of the system �10 times
per orbit—measuring, for example, the percentage of free (unbond-
ed) particles, the number of aggregates (including 2-particle
‘‘dumbbells’’), the radius of the largest aggregate (Rmax), the slope
of the size distribution (a), the physical optical depth (sphys), and
the particle vertical scale height (h).

We estimate the effective radius of our highly non-spherical
aggregates by finding the radius of the volume-equivalent sphere
(see Paper I). Once the sizes of the aggregates are known, we bin
the data into a log–log histogram, and measure the slope of the line
(see Fig. 3). In contrast to Paper I’s method, we remove from the
slope all bins with bodies less than 1.2 m in radius; we found that
the results from the monodisperse and polydisperse runs showed
improved agreement when we used this method, as it essentially
ignores all unbonded bodies in both types of simulations. For
example, Fig. 3 shows that particles in the first bin are far overrep-
resented in the power law, and would drastically skew the fit if in-
cluded. Moreover, in the polydisperse case, there is more than one
overrepresented bin, as there are unbonded bodies of many sizes in
those plots—thus the polydisperse and monodisperse cases would
include different biases if these bins were included. So our conven-
tion now is to ignore bins that include unbonded particles, or
R 6 1.2 m. It is possible that these unbonded particles are overrep-
resented because of their artificial indestructibility—these particles
would perhaps in reality break down into a distribution of ever-
smaller particles, which may in equilibrium match with the rest
of the aggregate population. But this is beyond the scope of the
model at this time.

Two example density distribution plots (from the same snap-
shots as in Fig. 3) are shown in Fig. 4. Note that Figs. 3 and 4 show
similar trends and features, strongly indicating that larger bodies
have consistently lower density than their constituent particles.
This is not surprising; if the fractal dimension of our aggregates
is under 3 (see Richardson, 1995 for a discussion), a random (inef-
ficient) packing of spheres should leave more and more empty
space between the objects as more spheres are added, resulting
in an overall drop in density as the body grows.

The physical optical depth (sphys) is determined by firing ‘‘test
rays’’ into the particle field at random locations normal to the
plane of the ring, and computing the probability that the rays pass
through the ring. Specifically, e�sphys � n=N, where n is the number
of test rays that pass through the ring and N is the total number of
rays fired. Thus sphys is infinite if n = 0 (fully opaque), and sphys = 0 if
n = N (fully transparent). The final quantity derived from the simu-
lations, h, is the RMS vertical height of all of the particle centers in
the patch.

Once each quantity is determined for each sampled timestep,
we take the average and standard deviation of these quantities
over time. This is necessary to remove the natural variability of
all of these quantities even when the system is in equilibrium;
see Paper I, Fig. 6, for an example. Scatter in sphys and h can be
attributed to formation and destruction of wakes, and similar scat-
ter in the aggregate properties is caused by stochastic bursts of
aggregate formation. These processes are related, as aggregates
tend to form readily as wakes collide, creating zones of low
encounter speeds and high densities, as discussed in Section 3.1
and Paper I.

Note that this averaging procedure may help our results more
closely match observations. While our simulations study a small
patch of ring material for a long temporal baseline (approximately
a week), observations typically image a large portion of ring mate-
rial all at once, studying a large spatial baseline at one instant.
These two techniques should yield similar results, as each



Fig. 3. Two example incremental size distributions of effective radii of bodies, chosen from snapshots of two simulations. The left pane shows the final state of the aggregate
population in run A-M2-mono-1, demonstrating the relatively steep size distribution (and smaller number of aggregates) that comes with weaker cohesion. The right pane
shows the final state of the aggregate population in a run with stronger cohesion, A-F-mono-5, in which larger bodies flatten out the size distribution. Plotting conventions are
as in Paper I: bins are 0.1 m wide, �’s indicate bins that contain exactly one body, and the result of the least-squares fit to the histogram’s slope on this log–log plot is given as
a (with 1 � r uncertainty). Note that in each plot there is a gap between the largest body and the next-largest body (and the location where the slope intercepts the x-axis). In
this work, when we discuss the largest aggregate (Rmax), we refer to the single body to the far right of these plots. (If we were to instead define Rmax as the x-intercept, for
example, our results for Rmax would decrease by a significant amount,�33–50%, so this is an important distinction.) Also note that the fit does not include bodies of radius less
than 1.2 m (a change from Paper I).

Slope Slope

Fig. 4. Two example aggregate density distributions, chosen from the same snapshots as Fig. 3 (i.e., run A-M2-mono-1, using weaker cohesion, left, and run A-F-mono-5, with
stronger cohesion, right). Density is computed as (3M)/(4pR3), with M the mass of the aggregate (sum of the masses of its constituent particles), and R the aggregate’s effective
radius (as defined in the text). Bins are 0.01 g/cm3 wide, and—as in Fig. 3—�’s indicate bins that contain exactly one body, and the result of the least-squares fit to the
histogram’s slope on this log–log plot is given (with 1 � r uncertainty). Note that these figures approximately mirror those of Fig. 3, with all of the unaggregated bodies falling
in the rightmost bin at 0.5 g/cm3, and the rarer large aggregates having the lowest densities. (The fit given here is merely for demonstration purposes, so it includes the
unaggregated bodies—in contrast to Fig. 3.)
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technique removes natural variability by averaging and estimating
error from internal variability in the sample.

Note that our calculation of the size distribution of bodies in our
simulations only includes bonded aggregates, and that any loosely
bound gravitational aggregates (such as wakes) do not affect our
determination of a. This may be in contrast to what observers have
measured, as those observations are based on light interacting
with the rings in total, which cannot distinguish between gravita-
tional and bonded aggregates as easily. We have not attempted to
include gravitational aggregates into our data analysis; this is an
area of future work.
3. Results and discussion

The results of our simulations (whose parameters are detailed
in Tables 1–3), analyzed as discussed in Section 2.2, are plotted
in Figs. 5–11. See the captions for further details.
3.1. The lifetime of a typical aggregate

Here we provide a brief description of the growth and destruc-
tion of a typical bonded aggregate. As discussed in Section 2.2,
aggregates form chiefly in the high-density and low-relative-speed
environment of the gravitational wakes. Then, as mentioned in
Section 1.2, the wakes are short-lived, and dissolve on orbital time-
scales, due to the shearing nature of the disk. The dissolved wakes
leave behind newly created aggregates, which then are free to col-
lide (bouncing, merging, or fragmenting), either with other aggre-
gates or free particles. Many survive until coming into contact with
another gravitational wake—at which time they are typically de-
stroyed down to their constituent particles, due to the encounter
speeds involved. As wakes form on orbital tiamescales, the typical
aggregate lifetime is an orbital period as well.

If the wakes are very tightly packed together (e.g., Fig. 2), the
lifetime of an aggregate is even shorter, due to the decreased time
between annihilating impacts.



Fig. 5. Four averaged, equilibrated aggregate population properties, calculated as described in Section 2.2, plotted against ring mass surface density (R). All points represent
separate simulations. The upper-left pane shows the number of unbonded particles in the simulation, as a percentage. The upper-right pane shows the average a, with
propagation of error used to combine the errors for each snapshot (from the least-squares fit; see Fig. 3) with the variation of a over time. The lower-left pane shows the
number of bonded aggregates (including 2-particle ‘‘dumbbells’’), and the lower-right shows Rmax. Suite B-Sig-mono is the solid line (blue), and A-Sig-mono is dotted (black);
see Tables 2 and 3. The transparent blue bars on the two right panes show the target observational constraints for both the A and B rings introduced in Section 3.4: a � �2.75
to �3, and Rmax � 10–20 m. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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3.2. Effects of surface density

One of the surprising discoveries of the Cassini era was that the
mass surface density (R) of the main rings is not as well con-
strained as previously believed (see Robbins et al., 2010). Conse-
quently, simulations of Saturn’s rings should ideally consider a
range of R values.

Fig. 5 shows our parameter sweep over R in both the A and B
ring regions. The overall conclusion is that changes in R do not
change our results with respect to matching observations of a
and Rmax with our data—but there are subtle effects. The number
of free particles increases with higher R, indicating that higher col-
lision rates tend toward liberation of more free particles rather
than trapping more particles into aggregates. The power law index
as measured from the simulations is steady in the A ring, with wid-
ening errorbars with larger R due to higher impact rates (and thus
more stochastic aggregate formation). The average Rmax peaks in
the center of our A ring range, but the errorbars are large enough
to assume a constant value of 10–20 m.

However, in the B ring, a appears to become steeper with in-
creases in R, moving from approximately �4.5 to �5.5. While a ap-
pears to saturate at a value of approximately �5.5 at the highest
surface densities, additional simulations at high R would be re-
quired to discover if a stabilizes or continues to fall at ever larger
R—unfortunately, these simulations are very computationally
expensive. On the other hand, Rmax appears roughly constant with
R in the B ring, at around 5–10 m.
Thus our A ring results appear insensitive to R, but caution is
needed when interpreting our B ring results for a, given the large
uncertainty in R there.
3.3. Dominant fragmentation mechanism: collisions or stress?

Fig. 6 shows the results of our suites studying the response of
the aggregate population to variations in the strength parameter,
for both the A and B rings. In both regions of the rings, the plots
show a sensitivity to the strength below a critical value, and essen-
tially no sensitivity to the strength above that value (to within
errorbars). This critical parameter strength, for both the A and B
rings, appears to be 10�2 Pa (for b = 2).

Evidently, strength fragmentation is not a significant breakage
mechanism above the critical value, as the aggregate populations
do not respond to changes in strength above this threshold. For fur-
ther evidence of this, we point out the A ring simulation with infi-
nite strength (marked at 104 Pa on the figure): the results are
similar to every simulation at and above the critical strength. That
is, above the critical strength, the bonds are essentially infinitely
strong, as the typical stresses encountered in these regions of the
rings are weaker than the bonds.

In the absence of acceleration-stress fragmentation, the only
remaining fragmentation mechanism is impact fragmentation.
Thus, when the strength is at or higher than the critical strength,
the limiting factor for aggregate size is impact fragmentation,



Fig. 6. Four equilibrated aggregate population properties, as described in Fig. 5, plotted against the bond strength (essentially an acceleration threshold for fragmentation).
Note that the x-axis is in log space, and that the point plotted at 104 Pa represents infinite strength. Lines represent suites B-Str-mono (solid, blue) and A-Str-mono (dotted,
black); see Tables 2 and 3. The transparent blue bars on the two right panes show the target observational constraints for both the A and B rings introduced in Section 3.4. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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which is governed by the fragmentation limit. If below the critical
strength, both stress and impact fragmentation can occur.

The majority of our runs set the fiducial parameter strength to
100 Pa (b = 2), so those runs are located in the impact-fragmenta-
tion-dominated regime. This fiducial is motivated by cometary
and laboratory results (see Section 2.1)—but the cometary results
are only upper limits, and we are aware that the true strength of
these comets may be orders of magnitude below our choice of fidu-
cial strength. However, our fiducial parameter strength is four or-
ders of magnitude larger than our critical value. Thus, even
allowing for considerable variation in the strength parameter, real
ring particles may still lie in the strength regime that is insensitive
to strength fragmentation.4

By extension, the discovery of the existence of a critical strength
implies that stresses like tidal disruption and aggregate spin are
not very important to the discussion of weak cohesive bonding. If
bonding is weak enough to allow Saturn’s tides to break bonds
(parameter strength under 10�2 Pa), then, according to the rela-
tionship between impact pressure and speed (Eq. (2)), the impact
merge and fragmentation limits would be very low: at least 4 or-
ders of magnitude below the merge and fragmentation limits used
in this work. These limits would be so low that essentially every
collision would be above the fragmentation limit; thus sticking
4 Note that in this discussion, both the critical and fiducial strengths remain
‘‘parameter’’ strengths, so it is not necessary to translate into ‘‘lab’’ strengths for this
comparison. That is, any conversion via b would apply equally to both the fiducial and
the critical strengths, canceling out b.
could not occur often, and impacts would rapidly break any bond
that does form. Thus, the most important cohesive bonding param-
eters for the rings are the merge and fragmentation limits. This
conclusion assumes that there is a (linear) relationship between
impact pressure and speed (that is, that the derivation of Eq. (2)
in Paper I is appropriate for Solar System ice).

It should be noted that the value of this critical strength ob-
tained here is dependent on chosen parameters, such as internal
particle density, and our range of merge and fragmentation limits.
For example, were the aggregates denser (either through higher
internal particle density or more efficient packing) they would bet-
ter resist tidal disruption. Similarly, were our maximum merge and
fragmentation limits higher, the aggregates would likely grow to
larger sizes—and as they grew, their densities would continue to
fall (see Fig. 4). Thus the results here demonstrate the existence
of a critical strength in these systems, but the exact value remains
dependent on local conditions.

3.4. Constraints on A ring bonding parameters

It was established in Section 3.3 that collisions are the dominant
fragmentation mechanism for aggregates in our simulations. Here
we examine our results from suites that varied merge and frag-
mentation limits in order to obtain ranges of those parameters that
match observations of the A ring.

We presented some of the observations of a and Rmax for Sat-
urn’s A and B rings in Section 1.1.1, and these results are quite
complex. For simplicity, for both the A and B rings, we set our



Fig. 7. Four equilibrated aggregate population properties, as described in Fig. 5, plotted against the merge limit, using the lower of our two fiducial fragmentation limits
(0.53 mm/s, or 1vesc). All points represent separate simulations with various merge limits. Suite B-M1-mono is the solid line (blue), A-M1-mono is dotted (black), and A-M1-
poly is dashed (red); see Tables 1 and 3. The transparent blue bars on the two right panes show the target observational constraints for both the A and B rings introduced in
Section 3.4. Note that the property with the most time-variability, and the largest errorbars, is Rmax. This is a symptom of the stochastic formation of very large bodies that are
quickly destroyed, resulting in brief spikes in Rmax vs. time. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
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target range for matching the observations of a at �2.75 to �3, and
Rmax at 10–20 m.

We match our chosen criteria for a and Rmax reasonably well in
Fig. 7 at a wide range of merge limits (0.053–0.53 mm/s), using the
lower of our two fragmentation limits (1vesc). Fig. 8, on the other
hand, uses the higher fragmentation limit (2vesc), and only satisfies
the criteria for a and Rmax at one point (0.05 mm/s). Clearly, there is
a relationship between fragmentation limit and merge limit: if one
value is too extreme, as the fragmentation limit appears to be in
Fig. 8, the other parameter’s range that matches the observations
becomes tiny. Ideally, the best range in one parameter is one that
opens the largest matching range in the other. An exhaustive
search over plausible combinations of merge and fragmentation
limits is possible, but it would require far more simulations than
we have performed in this work, so we will simply estimate the
bounds on the region of the merge-limit/fragmentation-limit plane
that best match the observations.

In Fig. 7 (variable merge limit), the monodisperse data matches
the target a and Rmax values (within error bars) with merge limits
of 0.053–0.53 mm/s, while the polydisperse data is slightly more
restrictive, with matching merge limits of 0.09–0.53 mm/s. In
Fig. 9 (variable fragmentation limit), the A ring line matches the
observations for fragmentation limits within 0.4–0.7 mm/s. This
result fits with the discussion above, as the constant fragmentation
limit in Fig. 8 is outside of the matching range quoted here,
causing a limited range of matching merge limits in suite A-M2-
mono.
Thus our estimated A ring range for the merge limit is 0.1–
0.5 mm/s, and 0.4–0.7 mm/s for the fragmentation limit. We note
that the Hatzes et al. (1991) result of a sticking limit at
�0.3 mm/s lies in the center of our range of matching merge limits,
lending support to the suggestion that such bonding is possible in
the main rings.

3.5. Constraints on B ring bonding parameters

Section 3.4 gave us two sets of constraints that we can now ap-
ply to our B ring results: a set of observational criteria, and limits
on the bonding parameters that matched our A ring results to those
observational constraints.

Applying the observational constraints (target a = �2.75 to �3;
Rmax = 10–20 m) to the B ring results plotted in Fig. 7 turns up no
matching parameters. The data in Fig. 8 is consistent with the
observations at merge limits of 0.25–0.4 mm/s (with a fragmenta-
tion limit of 1.06 mm/s). Lastly, Fig. 9 satisfies the target a and Rmax

values at fragmentation limits in the 0.9–1.1 mm/s range (with a
merge limit of 0.26 mm/s). Evidently, the fragmentation limit of
0.53 mm/s (i.e., 1.0vesc), used for the suite in Fig. 7, was too low
to satisfy the B ring observational constraints, which is consistent
with that limit being below the matching range found in Fig. 9.

Alternatively, if we assume the bonding parameters are con-
stant throughout the rings, and apply the parameter range that
matches our criteria in the A ring (particularly, a fragmentation
limit of �0.5 mm/s) to the B ring data, we find a curious result: a



Fig. 8. Four equilibrated aggregate population properties, as described in Fig. 5, plotted against the merge limit, but using the higher of our two fiducial fragmentation limits
(1.06 mm/s, or 2vesc). Suite B-M2-mono is the solid line (blue), and A-M2-mono is dotted (black); see Tables 1 and 3. The transparent blue bars on the two right panes show
the target observational constraints for both the A and B rings introduced in Section 3.4. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

5 This is an improper assumption if there are drastic changes in particle properties,
such as internal density variations, throughout the disk. Such variations would occur,
for example, if the local Roche density is the proper internal density for our
indestructible particles. See discussion in Section 3.6.

6 A R = 1 m body with density 0.5 g/cm3 has vesc = 0.53 mm/s. We define
vshear ¼ 3

2 ð2RÞX. Solving for X yields 1.8 � 10�4 rad/s, which is at 106,800 km.
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should be approximately �4 to �5 in the B ring, and Rmax would be
5–15 m.

What we have discovered is that the observational result of
consistent a and Rmax throughout the rings is at odds with our
assumption of constant bonding parameters throughout the rings.
We discuss possible resolutions to this conflict in Section 3.6, and
devote the rest of this section to discussing why we expect the A
and B rings to behave differently in the presence of constant bond-
ing parameters.

We already showed in Section 3.3 that stress fragmentation
plays a minor role in these simulations when the strength is above
a critical value, and thus collisions dominate the state of the aggre-
gate population, so it cannot simply be that, for example, stronger
tides in the B ring give rise to different a and Rmax. Whatever is
causing the B and A ring populations to differ must be collisional
in nature. We do not change the properties of the particles them-
selves (e.g., internal density), so the escape speed (vesc) is the same.
It cannot be an effect of R, as Fig. 5 shows A and B ring simulations
with the same R with vastly different results. We believe that it is
the slight change in the orbital frequency (X), and its resulting
change in the shear speed (vshear), that is causing such a drastic
difference.

At the semimajor axis of our A ring runs, vshear is 0.37 mm/s (for
R = 1 m particles), which is well below vesc of 0.53 mm/s (for
R = 1 m, q = 0.5 g/cm3 particles), allowing vesc to dominate the im-
pact speed distribution. But in our B ring runs, X is nearly 60%
higher than in the A ring, so vshear becomes 0.58 mm/s, which is
now slightly larger than the escape speed. Thus the impact speed
distribution shifts to larger values in the B ring than the A, as the
greater vshear establishes a higher floor of potential encounter
speeds. And if impacts tends to be faster in the B ring, the particles
will naturally require higher limits—they will need to be ‘‘stick-
ier’’—if they are to maintain the same equilibrium sizes and size
distributions.

This brings up an interesting question: if vesc is constant through-
out the disk,5 but vshear falls with distance from Saturn, at what loca-
tion in the disk does vshear match vesc—that is, where is the turning
point outside of which the escape speed is the dominant impact
speed? Both speeds are proportional to the size of the body, so it turns
out that their ratio is only dependent on the (assumed constant) inter-
nal density of the particles and the distance from Saturn—specifically,
vesc=v shear �

ffiffiffiffiqp =X. With 0.5 g/cm3, this location is 106,800 km from
Saturn’s center,6 or in the B3 region (Colwell et al., 2009).

If collision-dominated cohesive bonding is occurring in the
rings, and particle density is constant (as assumed in this work),
we might observe some changes in the particle population’s prop-
erties around this annulus. Given the parameters found for the A
ring, we would predict that a is rather steep (about �4 to �5) in
the B ring, with somewhat smaller Rmax (about 5–10 m in radius).



Fig. 9. Four equilibrated aggregate population properties, as described in Fig. 5, plotted against the fragmentation limit, using a fixed merge limit of 0.27 mm/s (0.5vesc). Suite
B-F-mono is the solid line (blue), A-F-mono is dotted (black), and A-F-poly is dashed (red); see Tables 2 and 3. The transparent blue bars on the two right panes show the
target observational constraints for both the A and B rings introduced in Section 3.4. (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)
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As we move out through the rings, we would expect to see a shal-
lower size distribution (less negative a) with increasing Rmax, and
thus more abundant larger aggregates, as the impacts become
milder due to a steady drop in shear speed, with a potentially
stronger change around the transition point near the 106,800 km
annulus.

It is true that the observations do not seem to agree with our
model’s predictions for how a should behave, given constant cohe-
sion parameters, but there are hints that perhaps Rmax is rising with
saturnian distance. French and Nicholson (2000) show a constant
Rmax with saturnian distance (20 m), but Voyager observations
have hinted otherwise: Rmax appears to grow from 5 to 10 m in
the A ring, and possibly even increases outward through the Cas-
sini division (see Section 1.1.1). While it is encouraging that the
observations for Rmax from Voyager agree loosely with our findings,
we acknowledge that it remains far from a satisfying and firm con-
firmation of our model’s results.

3.6. Reconciling observation and model results

In Sections 3.4 and 3.5, we found that we match the observa-
tional criteria for bonding in the A ring with a merge limit range
of 0.1–0.5 mm/s, and a fragmentation limit range of 0.4–0.7 mm/
s. We match those same criteria in the B ring with a merge limit
of 0.25–0.4 mm/s, and fragmentation limit of 0.9–1.1 mm/s. These
two sets of limits overlap in the merge limit parameter, but—con-
trary to our assumption of constant cohesion parameters through-
out the disk—differ in their range of fragmentation limits by nearly
a factor of two.

On the other hand, if we were to apply the A ring’s cohesion
ranges to the B ring, we would expect steeper size distributions
there than in the A ring (a = �4 to �5), with smaller largest parti-
cles (Rmax = 5–10 m). Here we provide some discussion on ways to
reconcile these differences between prediction and observation.

The first explanation to consider is that these results may indi-
cate that impact-limited weak cohesion is not occurring in the
rings—that the observed distribution of particle sizes is simply a
result of long-term collisional grinding, with particles never grow-
ing and coalescing, but merely fragmenting and shrinking over the
age of the Solar System. After all, it is a primary goal of this work to
explore whether cohesion is compatible with observations of the
rings, and this conflict may show that it is not. However, we have
managed to satisfy our observational criteria with reasonable
parameters, and may even have begun to explain the observed
growth of Rmax with distance from Saturn. Given these promising
findings, we will continue discussing ways to resolve the
disagreement.

Next, we consider that the bonding parameters can vary in the
main rings, and assume that the size distribution and maximum
aggregate size are constant throughout the disk. This implies that
the particles in the B ring are ‘‘stickier,’’ with a much higher impact
fragmentation limit than the particles in the A ring. Given the dif-
ferences in surface density and orbital frequency between the A
and B rings, it is possible that the surface properties of the ring



(a) (b)
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Fig. 10. These eight plots display the equilibrated physical optical depth in all of the simulations in Tables 1–3 using solid (blue), dashed (red) and dotted (black) lines. Each
pane also displays the dynamical optical depth (total cross-sectional area of all particles divided by the patch area) for that simulation for comparison, in a long-dashed
(magenta) line. Panes on the left are A ring suites (Tables 1 and 2), and those on the right are B ring suites (Table 3). Pane (a) shows suites A-M1-mono in black, A-M2-mono in
blue, and A-M1-poly in red; (b) B-M1-mono in black and B-M2-mono in blue; (c) A-F-mono in black and A-F-poly in red; (d) B-F-mono in black; (e) A-Str-mono in black; (f) B-
Str-mono in black; (g) A-Sig-mono in black; and finally (h) B-Sig-mono in black. See Section 3.8 for a discussion. Note that the rightmost point in pane (h) refers to an
incomplete simulation (see Section 2.1). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

7 The authors are indebted to Dr. M.S. Tiscareno for pointing this out.
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particles would be different, and any frost layers on their surfaces
would be potentially compacted and refreshed differently due to
the higher collision frequency in the B ring. It may be that the
bonds formed between cohering particles in the B ring are twice
as strong as those in the A ring, but it seems unlikely that these
B ring bonds would be exactly as strong as they need to be to
match the equilibrium properties of their counterparts in the A
ring. Something fundamental would have to link the strength
and fragmentation limits of the bonds to the orbital frequency of
the particles.

On the other hand, perhaps the cohesion parameters are con-
stant throughout the disk, and a does change with distance from
Saturn. This implies that the observations of the B ring measured
different structures than our analysis did—and this seems plausi-
ble. Figs. 1 and 2 show that the topography of the A and B rings
are very different; perhaps the same wavelength of light, interact-
ing with these very different patches of particles, is sensitive to dif-
ferent structures (P. Nicholson, personal communication, 2010).
Perhaps more of the wake structure is measured in the B ring than
in the A, where individual bodies are more separated. This poten-
tial ambiguity in observational measurements is in contrast to
the relative simplicity of our measurements within the model;
we have the luxury of counting every body separately and measur-
ing its size—regardless of how deeply embedded in a wake it may
be. Thus, until we can analyze our real and simulated patches in
the same manner, it will be difficult to know exactly how different
our results truly are.

We also point out the possibility that a combination of model
parameters may exist that provides a constant a with distance
from Saturn—under constant cohesion parameters—that our cho-
sen parameter space did not cover. For example, our range of R’s
in the B ring may not truly describe the environment there (e.g.,
Robbins et al., 2010), so our results may not be accurately model-
ing the true B ring.

Perhaps more significant is our choice to use a constant internal
particle density throughout our simulations, as the value we chose
causes our B ring particles to be underdense with respect to the lo-
cal Roche density there (see Section 2.1). Perhaps growth in our B
ring simulations could be enhanced were we to use a higher inter-
nal density in those simulations, possibly producing better agree-
ment between our A and B ring results. Specifically, if we were to
use the local Roche critical density (qR) for each region of the rings,
the ratio of the particle escape speed (vesc) to the local shear speed
(vshear) would be constant7:



Fig. 11. Composite plot displaying physical optical depth (sphys) vs. equilibrated vertical scale height (h) in the top pane, and h vs. the radius of the largest aggregate (Rmax) in
the bottom pane, for many of our simulation suites. Symbols distinguish A ring from B ring suites, with triangles for B ring, and �’s for A ring. Colors distinguish which
parameter was varied: merge limit suites with a lower fragmentation limit (1vesc) are dotted (black), merge limit suites with a higher fragmentation limit (2vesc) are solid
(blue), fragmentation limit suites are dashed (red), and bond strength suites are long-dashed (green). See Section 3.8 for a discussion. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
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vesc=v shear �
ffiffiffiffiffiffi
qR
p

=X � a�3=2=X � 1 ð3Þ

using qR � 1.88MS/a3, with MS, a, and X the mass of Saturn, the
ring’s semimajor axis, and the ring’s orbital frequency, respectively.
In Section 3.5, we discussed that the differences we observe be-
tween our A and B ring simulations are due to the changing value
of this ratio—thus if this ratio ought to be constant, these differ-
ences may be mitigated.

However, it may not in fact be proper to use the local Roche crit-
ical density for the internal density of our indestructible particles
in these simulations. The critical Roche density is based on the
assumption that the ring material is only held together via self-
gravity (no cohesion), and that a body will continue to accrete fluf-
fy icy material, lowering its density, until it fills its gravitational
Roche lobe. But this process would itself be enhanced if cohesion
is occurring in the rings, causing the particles themselves to poten-
tially overfill their Roche lobes, as the coherent material can grow
via cohesive forces as well as gravity. (We know this is happening
to the aggregates in our simulations—some possess estimated den-
sities far below the critical density; see Fig. 4.) In this light, perhaps
it is not appropriate to assume that qR is the only viable density,
but that a range of internal particle densities (including qR) may
be plausible. Unfortunately, exploring different material densities
was beyond the scope of this study, so such trials are left to future
work.8
8 One possible solution (though computationally impractical at this time) would be
to use a monodisperse population of very small particles (�1–10 mm) with densities
at or near 1 g/cm3, rather than larger (�1 m) bodies with an assumed porosity, and
allow them to accrete to whatever density is natural for the local conditions under
study. This may provide more definitive results, but unfortunately the number of
particles required is prohibitive (as the number of monodisperse particles increases
with the inverse cube of the particle size).
Finally, we must acknowledge that our model remains a
first-order attempt at simulating cohesion in planetary rings, and
that perhaps our code is too simple, and is missing key
physics. While we do not believe our results would change much
were we to use a more sophisticated model, the possibility
exists.

In summary, we have made a number of suggestions to help
reconcile the observational results with our model. In order from
least likely to have a significant effect, to most likely to have a large
effect, they include: this model may not include key physics that
could result in better agreement with observations; cohesion
might not be active in the rings (and the observed size distribution
arises via another process); particle cohesion parameters vary
throughout the rings, which tells us something regarding the
(potentially varying) surface properties of the particles; our param-
eter space was insufficient to fully study this topic; and cohesion
parameters are constant throughout the rings, indicating that the
ring observations and our data analysis differ in what they are sen-
sitive to.
3.7. Maximum aggregate size in equilibrium

In this section we discuss the largest average aggregate radii
(Rmax) in our equilibrated ring patches, and address how these find-
ings may apply to ‘‘propellers’’ in the A ring, and the suggestion by
Tremaine (2003) that large bonded aggregates may exist in the B
ring.

We have observed that it is the impact fragmentation limit that
appears to determine Rmax in a simulation. First, we discussed in
Section 3.3 that in our simulations, at our chosen parameters,
aggregate fragmentation is dominated by collisional fragmenta-



9 While it remains possible that larger aggregates may have longer lifetimes due to
self-shielding effects, we argue that increases in velocity dispersion from gravitational
stirring, and increased shear speed, would destroy these massive bodies just as
quickly as the smaller aggregates.
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tion, with stress fragmentation playing a minor role in the state of
the final aggregate equilibrium population. Then in Figs. 7 and 8, as
each portray suites that use constant fragmentation limits, each
suite shows evidence for saturation in Rmax at higher merge limits.
On the other hand, Fig. 9 shows consistent growth in Rmax, with no
evident saturation. Thus a rise in fragmentation limit allows Rmax to
rise as well.

As a consequence, we do not expect weak cohesion among ring
particles to result in runaway growth: larger aggregates induce fas-
ter impacts, as they have higher escape and shear speeds (each of
which are proportional to the size of the body—cf. Section 1.2), and
so growth will be self-limiting—so long as the fragmentation limit
of a body does not increase with the size of a body (or another
mechanism does not come into play at larger sizes to strengthen
the body). However, it does not seem likely that icy bodies in the
rings should grow stronger with size, as larger (terrestrial) rocky
bodies tend to be weaker than smaller bodies (e.g., Housen and
Holsapple, 1999). If this result applies to ice, the results for Rmax

from our simulations would in fact be too high, as our model
makes the simple assumption that the fragmentation limit of a
body is constant with size.

The largest aggregates created in our parameter space are
approximately 40 m in radius, for both the A and B rings, and only
form in simulations that employ the largest fragmentation limits
in our parameter space. It is likely that larger aggregates could
be made if we extended our parameter range to higher fragmenta-
tion limits—but ever higher fragmentation limits lead to stronger
disagreement with observations of a, so we do not feel it would
be illuminating to provide those models. It is also possible that lar-
ger aggregates could be produced if our aggregates had higher
overall densities—achieved either though the use of higher internal
densities for our indestructible particles (see Section 3.6 for a dis-
cussion regarding the local Roche critical density) or by altering
our model to allow for compaction of aggregates after they are
formed (see Perrine, 2011). Each of these are potential areas of fu-
ture work—the former being a natural extension of the work pre-
sented here (as it is merely exploring further the relevant
parameter space), while the latter could require significant model
revisions.

Cohesion provides a potential means of constructing large,
embedded objects in the dense rings; this is relevant to the discov-
ery of propeller-shaped features in Saturn’s outer A ring, as these
features appear to be the perturbed wakes of large (yet unresolved)
bodies �20–250 m in radius embedded in the rings. The propellers
often manifest in multiple images over time, implying that these
perturbations are not simply transient fluctuations in the ring
material, and most appear to be confined to three distinct annuli
in the A ring (Tiscareno et al., 2008). It is unknown whether these
bodies are the remnants of a parent body breakup into three well-
defined annuli, whether some mechanism has shepherded these
bodies into this configuration (or has preserved them there), or
whether they are simply uniquely visible in the observed locations
(cf. Tiscareno et al., 2008). Our work explores an alternative, that
these propeller bodies are in fact built ‘‘bottom-up’’ out of
ring material, rather than ‘‘top-down,’’ as the remnants of a larger
body.

Our work implies that we can rule out that these bodies are
weakly coherent aggregates for three reasons. First, by matching
the plausible range of fragmentation limits to observations
of a in the A ring, we have confined the range of possible Rmax

values as well, to approximately 15–40 m. In order to create
250 m bodies, we would need much larger fragmentation
limits, which would result in a values less negative than �2.
Second, these propeller bodies must be long-lived in order to
sustain such perturbations over orbital times, and the aggregates
in our simulations are created and destroyed on orbital
timescales.9 Third, our model provides no reason why only three
distinct annuli of the A ring would produce propeller bodies. On
the contrary, if our model is correct, we would expect to see propel-
lers throughout the A ring, with increasingly larger propellers at lar-
ger orbital radii, since Rmax should increase (according to our model)
in that sense (assuming constant bonding parameters throughout
the rings). It is possible that there is some threshold size that must
be reached before a propeller is created (as suggested by simulations
in Lewis and Stewart, 2008), yet our model provides no reason for
these objects to congregate into distinct regions, rather than distrib-
uting themselves evenly throughout the ring. However, we should
remind the reader of the caveat presented above regarding aggre-
gate densities: greater internal particle density, or dynamic aggre-
gate compaction (to reduce porosity in an aggregate after it has
formed) could allow an aggregate to grow larger by keeping its size
below its Hill radius. On the other hand, as indicated in Section 3.3,
stress fragmentation plays a lesser role in these simulations than
collisional fragmentation (above a critical strength), implying that
gravitationally based arguments such as this may not have a great
effect (above the critical strength). Of course, these processes are in-
ter-dependent; for example, lowering the size of a body relative to
its Hill sphere may lower the critical strength, allowing for colli-
sional fragmentation to dominate at even lower material strengths
than presented here. Future work should test the importance of
these factors in the growth of aggregates.

Turning our attention to the B ring: Tremaine (2003) suggests
that certain large-scale regions of alternating high and low optical
depth in the B ring, �100 km in radial extent, are the result of
‘‘shear-free’’ assemblies of particles—that is, regions of the ring that
seem to orbit as a solid body. The present work provides evidence
against the suggestion that weak cohesion could build these large
structures out of the ring material; while we were able to produce
a mix of aggregates, our aggregates’ maximum size is limited by
the fragmentation limits permitted by our observational con-
straints, as discussed above. Tremaine (2003) suggests a plausible
strength limit (104 Pa) which—were the ice that strong—would al-
low assemblies of such a size to exist. However, our work shows
that the impact fragmentation process dominates in regards to
the size and lifetime of these objects, and that due to the steady in-
creases in vshear and vesc that occur as these bodies grow, coupled
with the scale of vshear in the B ring, impacts should prevent these
objects from growing beyond the scale of tens of meters in the B
ring. Yet, similar to the previous paragraph, this conclusion is sub-
ject to the findings of future work. For example, different choices
for the internal particle density between the A and B ring simula-
tions should change the relationship between vshear and vesc, likely
altering the findings presented here—as discussed in Sections 3.5
and 3.6.

3.8. Other observational diagnostics for constraining aggregation
parameters

To this point, we have focused on constraining bonding param-
eters to match existing observations of the A and B rings of Saturn
(specifically, a and Rmax). We will now discuss the effects of cohe-
sion parameters on two other potentially observable properties of
the rings: the physical optical depth (sphys) and the scale height (h).
If we can show these properties vary with ‘‘stickiness,’’ perhaps we
can do more than simply constrain the plausible parameter range.

Fig. 10 shows the equilibrated sphys for each of the simulations
in Tables 1–3. We first point out that the bottom pane of Fig. 10
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shows nearly constant sphys for most R values in the A and B ring.
This agrees with the findings of Robbins et al. (2010), who dis-
cussed the nonlinear relationship between optical depth and R
by providing simulations that showed that one cannot assume that
rises in R will produce a corresponding linear rise in sphys (espe-
cially at large s). Thus the following discussion should hold no mat-
ter the value of the local surface density (cf. Section 3.2).

It appears from these results that sphys in the A ring is not sen-
sitive to changes in any cohesion parameter—which unfortunately
means that sphys may not be a useful diagnostic for cohesion in the
A ring. However, in the B ring, sphys can vary with cohesion param-
eter by as much as 30%, from sphys � 1 with no cohesion, to
sphys � 0.7 at very high merge or fragmentation limits. So, for
example, if cohesion parameters were to vary greatly in the B ring,
we might be able to observe a change in sphys.

But why do the same parameters cause changes to sphys in the
B ring, but no changes in the A ring? The answer appears to lie in
the scale height of those two regions of the rings. Tests we have
performed revealed a nearly-linear relationship between patch
semimajor axis and scale height, even in the absence of any cohe-
sion. (A similar increase in scale height with orbital distance was
noted previously by Salo (1995); see Fig. 14 in that work.) Geo-
metrically, if the material in the A ring is more vertically distrib-
uted, there is a greater chance for particles to move above or
below one another, reducing the physical optical depth. Thus,
even at the same surface densities, an A ring simulation ought
to have a lower equilibrium sphys than an equivalent B ring sim-
ulation (which is what we find).

The top pane of Fig. 11 shows that h is consistently higher in the
A ring simulations, while sphys is always lower in the A ring. In fact,
h appears to be so high in the A ring that changes to h do not affect
the optical depth (this is presumably because h remains large en-
ough to allow particles to consistently move above or below one
another). Conversely, points generally in the upper-left corner of
the top pane (B ring data, with weaker cohesion) have low h, and
thus such a compact configuration of particles (h � 2–3 m) that
any increase in h (with stronger cohesion parameters) has a signif-
icant effect on sphys in the B ring.

Why does h increase with stronger cohesion? In the bottom
pane of Fig. 11, we see that h is excited by increases in the size
of the largest aggregate (Rmax). The scale height appears nearly con-
stant10 with changes in Rmax until �20–25 m, when increases in Rmax

cause h to grow at the highest cohesion parameters (see Figs. 7–9 to
map the cohesion parameters to Rmax).

Thus when cohesion is strong enough to produce aggregates
larger than �20–25 m, the particle population responds to the
gravitational excitations of these bodies and becomes vertically
excited, causing h to rise. If this disk is already several particles
thick, as in the A ring, the optical depth does not fall; but if the
rings are ordinarily compact, then this rise in h will cause a
decrease in sphys.

Our observational criteria included the assumption that aggre-
gates do not grow larger than �20 m in the B ring, and we find that
sphys would only change if aggregates could grow to this size or lar-
ger. Thus searching for variations in s in order to constrain poten-
tial cohesion parameters would also potentially shed light on the
size of the largest aggregate in the rings.11
10 We note that in the A ring suites, h decreases slightly with increasing Rmax until
�8 m. We speculate that perhaps cohesion is providing a damping effect (via
collisions with zero coefficient of restitution) at these weakly cohesive parameters—
an effect that is overtaken at higher cohesion values when the gravitational influence
of the large aggregates re-excites the disk.

11 It would be more direct to observe local variations in h to constrain Rmax; however
such a study would require sub-meter resolution on the vertical structure of the main
rings, which is far beyond the capabilities of past or present space missions.
3.9. Validity of monodisperse starting conditions

To support the analysis above, we examine a major simplifica-
tion in the model and determine if it is acceptable—namely, that
the use of a monodisperse population of particles (with a uniform
1 m radius) matches the results of the polydisperse comparison
cases (radii 0.8–1.2 m, a = �3). We ran two comparison suites with
polydisperse particles, A-M1-poly and A-F-poly, and their results
are plotted with A-M1-mono and A-F-mono in Figs. 7 and 9,
respectively.

To first order, the results show good agreement, as the points
often lie within each other’s errorbars. But closer inspection shows
that where differences are visible, the polydisperse results are sys-
tematically offset from the monodisperse data, with the polydis-
perse runs having fewer aggregated particles, smaller largest
aggregates (Rmax), steeper size distributions, and more (smaller)
aggregates overall. It is possible that the presence of the more mas-
sive indestructible particles in the polydisperse cases (up to 1.2 m)
is increasing the velocity dispersion in those runs, leading to subtle
differences between the cases. Close examination of the average
velocity dispersion in these simulations, comparing monodisperse
to polydisperse runs, is mostly inconclusive, as the errorbars over-
lap. However, at higher merge limits, the polydisperse runs indeed
show higher velocity dispersions.

Excited to higher velocity dispersions, the polydisperse particles
are subject to higher-speed impacts, leading to fewer merging
events, and more fragmentation events. This would naturally cause
the observed systematic effects.

We note that this is likely an artificial difference: if these 1.2 m
particles were able to fragment, they would not likely have the
same enduring effect on the velocity dispersion. This could be
tested using a polydisperse population with a smaller maximum
size—however, using smaller particles causes a rapid rise in the
number of particles (for a simulated region of a fixed size and sur-
face density), and we have not attempted such runs at this time.

It would appear that our polydisperse and monodisperse cases
provide similar results, and that our results would not differ signif-
icantly were we to use a polydisperse initial size distribution
throughout our runs. This conclusion would be stronger if we were
able to compare to a wider range of polydisperse particles (e.g.,
0.1–1 m), but this was unfortunately not computationally practical
with the number of simulations required. Future work should push
the these limits and continue to test the validity of the monodis-
perse case.
3.10. Comments on our range of bonding parameters

Our chosen range of cohesion model parameters (merge and
fragmentation limits, and bond strength) appears to cover the most
significant and interesting regions of the parameter space that af-
fect the equilibrium aggregate population. In many of the panes
in Figs. 6–9, the data show signs of saturation.

At small strengths, and merge and fragmentation limits, we ap-
proach 0% bonding. At higher merge and fragmentation limits, we
begin to see evidence for saturation in the percentage of bonded
particles, as well as a, and Rmax. This is almost certainly the result
of our chosen parameter range bracketing the common impact
speeds of the rings (the particles’ escape speeds and the shear
speed of the regions of the rings we modeled). We predict that
our figures would look quite different if the impact speed distribu-
tion were centered around other values—that is, if the velocity dis-
persions of our particles were different. So any alternative choice of
parameters that could affect the equilibrium velocity dispersion
(e.g., the coefficient of restitution) might in turn affect the equilib-
rium aggregate population.
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We also note that our bond strength range is large enough to
encompass both the critical strength value (see Section 3.3) and
infinite strength (in one A ring simulation).

We believe that we have sampled the most significant portions
of the parameter space that are relevant to the A and B rings of
Saturn; however, we note that cohesion should produce different
results in other systems with vastly different velocity dispersions,
such as protoplanetary disks in the process of forming planets—
requiring a different range of parameters not likely covered by this
work.
12 http://www.povray.org/.
4. Summary and conclusions

We have used our new local N-body code, presented in Paper I,
to explore the possibility that cohesion, via the sticking process
studied by Hatzes et al. (1991), might be occurring in the A and
B rings of Saturn.

We find that cohesion is consistent with observations
(a = �2.75 to �3; Rmax = 10–20 m) in both the A ring and B rings.
We can constrain the merge limit in the A ring to 0.1–0.5 mm/s,
which brackets the Hatzes et al. (1991) result that frosty ice sticks
at impact speeds below 0.3 mm/s. We can constrain the fragmen-
tation limit in the A ring to 0.4–0.7 mm/s, which has no experi-
mental reference.

The same observational criteria constrain the merge limit in the
B ring to 0.25–0.4 mm/s, and the fragmentation limit to 0.9–
1.1 mm/s. If we instead apply the cohesion parameters found for
the A ring to the B ring, we find steeper size distributions
(a � �5 to �4) and smaller largest bodies (Rmax � 5–10 m).

We discussed possible conclusions we could draw from these
separate constraints in Section 3.6. For instance, it could be that
aggregates in the B ring somehow have stronger cohesive bonds
through differences in the particles’ surface texture there. Or per-
haps the observations of the rings we are using as criteria are sen-
sitive to different structures than our analysis is, and the size
distribution of particles in the B ring truly is steeper than has been
reported by observations.

We find a critical parameter strength in both rings of 10�2 Pa
(i.e., b = 2), above which collisions dominate the state of the aggre-
gate population, and stresses like tidal disruption and spin are neg-
ligible. For the sticking model presented in Hatzes et al. (1991), we
estimate b = 10�3, making the critical laboratory strength 10 Pa for
that cohesion model. This value is lower than lab strengths mea-
sured for icy frost by experiments (e.g., �100 Pa; Supulver et al.,
1997), and is consistent with (or lower than) the upper limits for
cometary results (�5 Pa for SL9, �100 Pa for Brooks 2, and �103–
104 for Temple 1; see Section 2.1). Thus it is possible that ice in
the rings, were it to form into frosty aggregates, could plausibly
be as strong as (or stronger than) the critical strength we have
found.

Applying both the discovery of a plausible critical strength and
our simple scaling relationship between impact pressure and
speed (see Section 2.1), we conclude that at these material densi-
ties, tides and reasonable aggregate spin rates are not significant
fragmentation factors for weakly cohesive aggregates in the rings,
and are not the limiting factor in aggregate growth. If the strength
is above the critical strength, impact fragmentation is the domi-
nant breakage mechanism. If the strength is lower than the critical
strength, then the scaling relationship (Eq. (2)) implies that the
fragmentation limit must be so low as to make aggregate survival
impossible.

We find that the maximum size of our aggregates is determined
by the choice of fragmentation limit (so long as the strength is set
above the critical value). As the plausible range of fragmentation
limits is restricted by observations of a, the largest bodies this
model can produce are approximately 40 m in radius. This could
imply that propeller progenitors, as well as Tremaine’s (2003)
shear-free regions, are not collections of weakly cohesive frosty
ice particles. However, further work (particularly to explore the ef-
fect of variations in internal particle density) is needed to resolve
these questions fully.

It might be possible to provide constraints on cohesion param-
eters in the B ring by searching for abnormally low physical optical
depths, but these variations should only occur at the largest of
cohesion parameters that allow the aggregates to grow beyond
20–25 m in radius. It appears that cohesion parameters have no ef-
fect on the optical depth in the A ring.

Our overall conclusion is that our results are generally consis-
tent with frosty ice cohesion occurring in the rings—though we
fully acknowledge that consistency by no means implies proof.
To find proof, the cohesive model could be used to explore other
ring phenomena. For instance, one might determine if any relation-
ship exists between the azimuthal brightness asymmetry and
cohesion; or investigate the effects of cohesion on ring viscosity
(cf. Daisaka and Ida, 1999), as applied to wave damping, or oversta-
bility. Finally, true proof should be possible if the rings could be
imaged with sub-meter resolution, so that we may directly resolve
any aggregates of coherent particles forming in the wakes—but
such a mission is not currently planned.

Note that the exact numerical results presented here for the
three bonding model parameters (merge limit, fragmentation limit,
and parameters strength) are sensitive to our choices for other
parameters (e.g., internal particle densities, coefficient of restitu-
tion) and data analysis strategy (temporal averaging of snapshots,
rather than stacking snapshots into a single size distribution). For
example, the quoted range of merge and fragmentation limits that
match the target constraints, and the value of the critical strength,
would likely change given other choices. However, the overall con-
clusion of this work—that weak cohesion is a plausible and poten-
tially important mechanism in dense rings—would remain
unchanged.
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