
Planetesimal Dynamics

by

Derek C. Richardson

Clare Hall

Institute of Astronomy

Dissertation submitted for the degree of

Doctor of Philosophy at the

University of Cambridge

September 1993

PREFACE

This dissertation is the result of my own work and includes nothing which is the outcome

of work done in collaboration. Any sources from which information is derived are noted

in the text and summarized in the References section. I declare that this dissertation is

not substantially the same as any that I have submitted for a degree or diploma or other

quali�cation at any other University. I further state that no part of my dissertation has

already been or is being concurrently submitted for any such degree, diploma, or other

quali�cation. This dissertation does not exceed 60 000 words in length (with the computer

source code in Appendix B omitted).

The source listings for box tree as well as all other subsidiary programs written for use

with box tree are available by request to the author (e-mail dcr@mail.ast.cam.ac.uk)

or by anonymous ftp from ftp.ast.cam.ac.uk in the directory /pub/dcr. The source

code in its entirety is Copyright

c

 1993 by Derek C. Richardson and is distributed under

the terms of the GNU General Public License so that it may be freely used and modi�ed.

A copy of the License is included in the source distribution.

Derek C. Richardson

September 28, 1993

2

ACKNOWLEDGMENTS

I wish to thank the following people for their assistance during the course of my research

project: my supervisor Dr. Sverre J. Aarseth, for his guidance, enthusiasm, and expertise;

D. N. C. Lin, S. L. W. McMillan, and S. Tremaine for valuable ideas and suggestions; L.

Hernquist, H. Salo, C. F. Gammie, and F. Governato for technical comments; and the

sta� and students at the Institute of Astronomy, in particular G. F. Lewis, P. Tribble, H.

Ferguson, R. C. Thomson, and D. J. D. Earn. I am indebted to the Institute of Astronomy

for providing excellent computing facilities for this project, and for providing support

in many other ways as well. Lastly, I wish to thank the Association of Commonwealth

Universities for giving me the opportunity to study abroad at the University of Cambridge.

This document was prepared using L

a

T

E

X. Figures were produced using sm, xfig, and

xv. Source code listings were generated with c++2latex.

3

SUMMARY

A new tree code method for simulation of planetesimal dynamics is presented. A self-

similarity argument is used to restrict the problem to a small patch of a ring of particles.

The code incorporates a sliding box model with periodic boundary conditions and sur-

rounding ghost particles. The tree is self-repairing and exploits the attened nature of

Keplerian discs to maximize e�ciency. The code uses a fourth-order force polynomial

integration algorithm with individual particle time-steps. Collisions and mergers, which

play an important role in planetesimal evolution, are treated in a comprehensive manner.

The collision equations include provisions for particle spin. In order to take advantage of

facilities available, the code was written in C in a Unix workstation environment. The

unique aspects of the code are discussed in detail and the results of a number of perfor-

mance tests are presented. Timing tests show that the CPU time as a function of particle

number varies in a way consistent with an O(N logN) algorithm. The average relative

force error incurred in typical runs is less than 0.2% in magnitude. Simulations of early

solar system planetesimal evolution and the equilibrium properties of Saturn's B ring are

discussed. With the most realistic simulations to date, it is found that particle aggregates

and gravitational wakes readily form in Saturn's B ring, which may account in part for

observed non-uniformities in Saturn's outer rings. Illustrations of the applicability of the

code to other areas of research are given. Possible enhancements and extensions to the

code are also discussed. Appendices containing a user manual and full source listings are

provided. The source distribution, which includes supporting programs and macros, is

available on request.

4

Contents

List of Figures 8

List of Tables 10

1 Introduction 11

1.1 Historical Motivation : 11

1.2 Numerical Simulations : 12

1.3 Thesis Layout : 13

2 Fundamentals 14

2.1 The Box Code : 14

2.1.1 Coordinate System : 14

2.1.2 Linearized Equations of Motion : 14

2.1.3 Boundary Conditions : 16

2.2 The Tree Code : 17

2.2.1 Components of the Tree : 18

2.2.2 Multipole Expansions : 18

2.3 The box tree Code : 19

3 Code Details 21

3.1 Overview : 21

3.2 Program and Data Structures : 22

3.3 Initial Conditions : 23

3.3.1 Initial Mass Function : 24

3.4 Tree Considerations : 24

3.4.1 Tree Repair : 25

3.4.2 Node Updates and Prediction : 26

3.4.3 Boundary Conditions : 28

3.4.4 Problems in 2D : 28

3.4.5 Stretchable Nodes : 29

3.5 Collision Handling : 30

3.5.1 Time-step Formulae : 31

3.5.2 Collision Detection : 32

3.5.3 Position Corrections : 32

3.5.4 Velocity Corrections : 34

3.5.5 Missed Collisions : 34

3.5.6 Collision Resolution : 35

3.5.7 Mergers : 37

3.6 Discontinuity E�ects : 38

5

4 Performance Tests 40

4.1 Timing Tests : 40

4.1.1 Two-dimensional Trees : 40

4.1.2 Three-dimensional Trees : 43

4.2 Performance Pro�le : 43

4.3 Force Accuracy : 45

4.4 Constants of Motion : 48

4.4.1 Linear Momentum Conservation : 48

4.4.2 Angular Momentum Conservation : : : : : : : : : : : : : : : : : : : 49

4.4.3 Total Energy Conservation : 50

5 Simulations 51

5.1 Units : 51

5.2 Early Planetesimals : 51

5.2.1 Initial Conditions : 51

5.2.2 Long Integration (ALP Model) : 52

5.2.3 Large N Model : 56

5.2.4 Vertical Oscillations : 60

5.3 Planetary Rings : 62

5.3.1 Model Parameters : 62

5.3.2 Models (i){(iii): Comparison With WT : : : : : : : : : : : : : : : : 64

5.3.3 Model (iv): Improved Gravity Model : : : : : : : : : : : : : : : : : 71

5.3.4 Model (v): Size Distribution Model with Rough Spheres : : : : : : 72

5.3.5 Model (vi): Large N Models : 82

6 Other Applications & Future Work 92

6.1 Code Generality : 92

6.2 Gravitational Microlensing : 93

6.2.1 New Multipole Expansion : 93

6.2.2 Discontinuity Problem : 93

6.3 Galaxy Collisions : 94

6.3.1 Accelerated Frame of Reference : 94

6.3.2 Softening : 95

6.3.3 Early Results : 95

6.4 Future Work : 96

6.4.1 Fragmentation : 96

6.4.2 Gas Drag : 97

6.4.3 Hermite Integrator & Block Steps : : : : : : : : : : : : : : : : : : : 97

6.4.4 Parallelization : 98

6.4.5 Miscellaneous : 99

7 Conclusions 100

References 103

A User Manual 106

A.1 Overview : 106

A.2 Compiling : 106

A.2.1 Make�le Options : 106

A.2.2 Recompiling : 107

A.2.3 Other Platforms : 108

6

A.3 Running : 108

A.4 Input : 109

A.4.1 Command Line Arguments : 109

A.4.2 The Parameter File : 110

A.4.3 Supplied Initial Conditions : 119

A.5 Output : 120

A.5.1 Standard Output : 120

A.5.2 The Log File : 122

A.5.3 The Stats File (stats read) : 123

A.5.4 Data Files (dat read) : 124

A.5.5 Movie Frames (make movie, xrastool) : : : : : : : : : : : : : : : : 126

A.5.6 Save Files and Restarts : 127

A.6 Warnings and Error Conditions : 128

A.7 Miscellaneous Code, Scripts, and Macros : : : : : : : : : : : : : : : : : : : 129

A.8 Test Suite : 129

B Source Listings 131

B.1 box tree : 131

B.1.1 box tree.h : 131

B.1.2 params.h : 142

B.1.3 macros.h : 144

B.1.4 box tree.c : 149

B.1.5 bndry cond.c : 159

B.1.6 bounce.c : 164

B.1.7 check.c : 171

B.1.8 draw.c : 184

B.1.9 extern.c : 195

B.1.10 force.c : 197

B.1.11 init cond.c : 212

B.1.12 integrate.c : 228

B.1.13 make tree.c : 263

B.1.14 misc.c : 270

B.1.15 output.c : 285

B.1.16 params.c : 297

B.1.17 recipes.c : 318

B.1.18 repair tree.c : 322

B.1.19 tree util.c : 326

B.1.20 update tree.c : 329

B.2 rdpar : 342

B.2.1 rdpar.h : 342

B.2.2 rdpar.c : 342

7

List of Figures

2.1 Rotating coordinate system used in box tree. : : : : : : : : : : : : : : : : 15

2.2 Twenty particles in a 2D tree : 18

3.1 A schematic of the box treeintegration loop. : : : : : : : : : : : : : : : : : 21

3.2 Schematic representation of the tree repair algorithm. : : : : : : : : : : : : 25

3.3 An example of tree repair. : 26

3.4 Diagram illustrating the basic collision de�nitions. : : : : : : : : : : : : : : 35

4.1 CPU time per run as a function of �

C

and N . : : : : : : : : : : : : : : : : 41

4.2 CPU time per integration step as a function of �

C

and N . : : : : : : : : : : 42

4.3 Two King models colliding from in�nity. : : : : : : : : : : : : : : : : : : : 43

4.4 Average and maximum force errors that result from multipole expansions. : 46

4.5 An example where the quadrupole is worse than the monopole. : : : : : : : 47

5.1 Velocity dispersion evolution over 10 000 yr for a typical early planetesimal

simulation. : 53

5.2 Collision statistics for the 10 000 yr simulation. : : : : : : : : : : : : : : : : 54

5.3 Velocity dispersion in x over 100 yr for two systems of particles in 3D. : : : 55

5.4 Collision stats for an early planetesimal system of 10 000 particles in 2D. : 56

5.5 Mass spectrum evolution of the N = 10 000 planetesimal system. : : : : : : 57

5.6 Spin evolution of the N = 10 000 planetesimal system. : : : : : : : : : : : : 58

5.7 Spin-velocity phase space of the N = 10 000 planetesimal system. : : : : : 59

5.8 Number density vs. jzj histogram for ring model (i) with � = 0:2. : : : : : 65

5.9 Midplane �lling factor vs. optical depth for models (i) and (ii). : : : : : : : 66

5.10 Components of the equilibrium velocity dispersion vs. � for model (iii). : : 67

5.11 Midplane �lling factor vs. � for model (iii). : : : : : : : : : : : : : : : : : : 68

5.12 Blowups of velocity dispersion and �lling factor vs. � for a critical domain

in model (iii). : 69

5.13 Vertical distribution of particles for model (iii) with � = 2:5. : : : : : : : : 70

5.14 View looking down onto the ring plane for model (iii), � = 2:5, during the

equilibrium phase. : 70

5.15 Vertical particle distribution for model (iii) with � = 1:3. : : : : : : : : : : 71

5.16 Equilibrium velocity dispersions for model (iv). : : : : : : : : : : : : : : : 72

5.17 Midplane �lling factor for model (iv). : 73

5.18 Dimensionless height-averaged kinematic viscosity for model (iv). : : : : : 74

5.19 Number density vs. jzj for model (iv) for � = 0.5, 1.0, 2.0, and 3.0. : : : : 75

5.20 Equilibrium velocity dispersions for model (v). : : : : : : : : : : : : : : : : 76

5.21 Midplane �lling factor for model (v). : 77

5.22 The quantity �� vs. � for model (v). : 78

5.23 Histograms of number density vs. jzj for model (v) and four values of � . : : 79

5.24 Relative number density as a function of spin magnitude ! for model (v). : 80

5.25 Relative number density as a function of spin obliquity for model (v). : : : 81

8

5.26 View of model (vi.4) at t = 3 looking along the negative z-axis. : : : : : : 84

5.27 Mean spin as a function of moment of inertia for model (vi.1). : : : : : : : 84

5.28 Number density vs. jzj histogram for model (vi.6) after three orbits. : : : : 85

5.29 Spin distributions for model (vi.6). : 86

5.30 Obliquity distribution for model (vi.6). : 87

5.31 Views of model (vi.6) at time t = 0 and t = 3. : : : : : : : : : : : : : : : : 88

5.32 View looking down the z-axis at model (vi.7). : : : : : : : : : : : : : : : : 89

5.33 Snapshots of a system of 5 000 equal-size particles. : : : : : : : : : : : : : : 90

6.1 Views of a galaxy-galaxy encounter with 15

�

inclination. : : : : : : : : : : 96

A.1 Sample main periodic output from a box tree run. : : : : : : : : : : : : : 121

A.2 Sample output of evolving box tree parameters. : : : : : : : : : : : : : : : 122

A.3 Sample box tree log �le. : 123

A.4 Sample short form output from stats read. : : : : : : : : : : : : : : : : : 124

9

List of Tables

4.1 Pro�le of top 11 CPU-intensive box tree functions. : : : : : : : : : : : : : 44

4.2 Some important macros used in box tree. : : : : : : : : : : : : : : : : : : 44

5.1 Some equilibrium values of �

z

for models (i) & (ii). : : : : : : : : : : : : : 64

5.2 Binned equilibrium data for models (v) and (vi). : : : : : : : : : : : : : : : 82

A.1 Make�le arguments for box tree. : 107

A.2 Command line arguments for box tree. : 109

A.3 Drawing colours supported by box tree. : : : : : : : : : : : : : : : : : : : 119

A.4 Stats �le format. : 123

A.5 Miscellaneous supporting code, scripts, and macros. : : : : : : : : : : : : : 129

10

Chapter 1

Introduction

Dictionaries may variously de�ne a \planetesimal" as a minute planetary body (from

\planet", meaning wanderer, and \in�nitesimal"), or a small body that existed during an

early stage in the development of the solar system. The �rst de�nition is preferred, as it

is more general, but the more speci�c de�nition connected with the history of the solar

system has come to be the one adopted by astronomers. This is unfortunate because it

restricts the discussion of planetesimals to the past, yet present-day asteroids, comets,

and meteoroids may be remnants of this primordial population. Indeed, if a planetesimal

is an in�nitesimally small wandering body (small, say, with respect to a typical terrestrial

planet), then there is no reason why the particles that constitute planetary rings could not

be called planetesimals as well. It is this de�nition of planetesimal, namely any small body

in the solar system, that is used in this thesis. Moreover, it is the study of the dynamics

of such bodies, modelled with a new computer code, that forms the broad subject of

the research presented here. Although attention is focused mainly on the evolution of

planetary rings and early planetesimals, much of the discussion may apply equally well

to other planetesimal populations.

1.1 Historical Motivation

It has been recognized for some time that techniques used in numerical simulations of

solar system formation can often be applied to studies of planetary ring dynamics, and

vice versa (e.g. Ward 1984). The most important feature common to both systems is a

attened Keplerian disk which describes the mean motion of the constituent particles.

These particles interact with each other, causing the system to evolve with time to some

equilibrium state, or through a series of quasi-equilibrium states. Processes important to

both regimes include energy dissipation due to collisions and velocity randomization due

to gravitational interactions (Petit & H�enon 1987; Aarseth, Lin & Palmer 1993, hereafter

ALP). Other mechanisms that play a role in these systems include resonance trapping,

merging, fragmentation, and gas drag (Beaug�e, Aarseth & Ferraz-Mello, in preparation),

and, in the case of di�use planetary rings, electromagnetic e�ects as well (e.g. Burns,

Showalter & Mor�ll 1984).

Both analytical and numerical methods (and, in the case of planetary rings, direct

observation) have been used to study planetesimal dynamics. In general, successive inves-

tigations employ more accurate or more e�cient techniques, or include more of the key

processes and fewer assumptions. Much of the groundwork for modern research into early

solar system problems was laid down by Safronov (1969). Goldreich & Ward (1973) were

able to show that initial gravitational instabilities in the primordial solar nebula could lead

to the formation of kilometre-sized planetesimals. Early numerical work by Greenberg et

11

al. (1978) used statistical methods based on heuristic scattering and coalescence cross

sections to study the growth of planetesimals. Their method included the possibility of

planetesimal fragmentation as well. A review of early numerical and theoretical work can

be found in Wetherill (1980). Nakagawa, Hayashi & Nagazawa (1983) added gas drag to

their numerical simulations, but still relied on a statistical method due to the prohibitive

cost of direct force calculations. Wetherill & Stewart (1989) established a theoretical basis

for the cross sections used in statistical methods, and found that runaway accretion can

occur for certain con�gurations. Recent work by ALP used a direct method to show that

conditions for runaway are favourable in the early solar system. Emori, Ida & Nakazawa

(1993) have developed a new method that separates the dominant solar force from the

planetesimal perturbations, reducing numerical errors and improving e�ciency. Many

other important contributions to this �eld have been made over the past years.

Work on planetary rings has followed a similar evolutionary path. Goldreich &

Tremaine (1978) used an analytical model consisting of identical non-self-gravitating par-

ticles to establish the importance of collisions in governing the equilibrium velocity dis-

persion in Saturn's rings. An important review of post-Voyager observational data as well

as analytical and numerical results to date can be found in Greenberg & Brahic (1984).

Work by Wisdom & Tremaine (1988, hereafter WT) on planetary rings will be discussed

in detail in this thesis. Recent numerical work by Araki (1991) used a kinetic theory

of dense gases and included spin e�ects to determine various equilibrium properties of

Saturn's rings. Still more recent work by Salo (1991; 1992a; 1992b) expanded on the WT

model by incorporating interparticle gravity and initial size distributions.

Despite advances in our understanding of the processes governing planetesimal dynam-

ics, it is acknowledged that analytical treatments still only give a very rough picture of

the true behaviour. It is rapidly becoming more feasible to rely on a numerical approach

to the problem, where at least some of the more fundamental complexities|gravitational

interactions between particles, physical collisions, and particle spin|can be taken into

account. However, in order to address the most central issues in planetesimal dynamics,

numerical simulations of systems with large dynamical range and high spatial resolution

are required (Salo 1991; Palmer, Lin & Aarseth 1993, hereafter PLA; ALP). This is the

motivation for the numerical code presented in this thesis.

1.2 Numerical Simulations

In order to minimize the computational expense arising from the large number of particles

needed to generate realistic planetesimal simulations, two important techniques have been

devised. The �rst of these methods, hereafter termed \box code", was introduced by WT

to simplify numerical studies of the Saturnian ring system. The box code is based on a

self-similarity assumption that the dynamical interaction over the entire extent of a given

ring of planetesimals may be studied by the detailed analysis of a local representative

patch of the ring. Hence a small-N system can be used to model a large-N system.

The second, more widely-known technique is the \tree code", presented by Barnes

& Hut (1986, hereafter BH) as an e�cient tool for fast and reasonably accurate force

calculations. Although the original motivation for the development of tree code stemmed

from modelling galactic dynamics, the method has been implemented successfully in a

variety of contexts. A simple angular size rule is used to decide whether to add force con-

tributions collectively by cell through multipole expansions, or individually by particle

through direct summation. For su�ciently large N , the tree code reduces the computa-

tional requirements of a standard N -body simulation from O(N

2

) to O(N logN).

12

These components have been combined together with a standard N -body integra-

tor (Aarseth 1985) to form a new code for planetesimal dynamics simulations, called

box tree. The purpose of the code, much like any other gravitational N -body simulator,

is to integrate the equations of motion of a given set of particles from a given set of initial

conditions until some user-speci�ed time has elapsed. In the case of box tree, events such

as particle collisions and boundary crossings are resolved along the way. This aspect adds

an extra layer of complexity over typical N -body codes, since the accurate prediction and

resolution of such events may become as important as the integration itself. As far as the

author is aware, box tree is the �rst implementation of tree code for the planetesimal

problem and incorporates most of the key features of previous codes (currently with the

exception of fragmentation), providing the most realistic simulations to date.

The box tree code has evolved considerably since its inception, both in form and

e�ciency. Originally, box tree was designed to simulate conditions in the early solar

system at 1 AU from the Sun using particles of size � 10{100 km. Early results from this

work have been published in Richardson (1993a). Later, the code was generalized to per-

form simulations of Saturn's B ring using centimetre- to metre-sized particles (Richardson

1993b). Much of the content of this thesis is taken from these publications. The box tree

code has been used in one form or another in other applications as well. As a result,

box tree has evolved into a much more general simulation package, capable of handling

a variety of numerical tasks.

1.3 Thesis Layout

This thesis is divided into seven major chapters and two appendices. Chapter 2 is es-

sentially a continuation of this introduction, describing the box code and tree code in

greater depth. The technical details of the new scheme are given in Chapter 3. Various

performance tests are presented and discussed in Chapter 4. The largest chapter, Chap-

ter 5, contains detailed results of the major simulations performed using box tree. Other

applications and future directions for the code are presented in Chapter 6. The last chap-

ter, Chapter 7, contains a summary and further comments. Appendix A is essentially a

user manual for box tree, but does make frequent reference to material discussed in the

earlier chapters. Appendix B contains full source code listings for box tree.

13

Chapter 2

Fundamentals

Before discussing the inner workings of the code, it is helpful to examine in more detail

the two main components that have been fused together to form box tree, without con-

sidering the actual implementation too closely. The box code (x2.1) provides the model

for the planetesimal simulations, specifying a coordinate system, the linearized equations

of motion, and a prescription for boundary conditions. The tree code (x2.2) provides the

means for fast calculation of the interparticle forces that are added as perturbations to

the equations of motion. Together these components form the basic tool for describing

planetesimal dynamics.

2.1 The Box Code

2.1.1 Coordinate System

WT demonstrated that a typical planetary ring can be divided into self-similar patches

or boxes which are dynamically independent, provided that the unit patch is larger than

the radial mean free path and much smaller than the distance to the planet centre. Hence

the dynamical evolution within a single patch can be used to represent the behaviour

of the ring as a whole. A further simpli�cation is obtained by referring patch particle

coordinates to the centre of a comoving Cartesian coordinate system superimposed on

the unit cell. The system follows a Keplerian orbit in the z = 0 plane with its y-axis

always pointing in the direction of motion and its x-axis pointing radially away from

the planet (Fig. 2.1). Under these conditions it is possible to linearize the equations of

motion for the particles (x2.1.2). The WT method can be applied equally well to the

case of planetesimals orbiting the Sun, although in this case patch sizes tend to be large,

typically a few hundredths of the distance from the Sun. For Saturn's rings there is no

danger of violating the model assumptions, since typical particle sizes are in the 1 cm{1 m

range (compared to an average orbital distance of � 10

8

m) and the particles are densely

packed (optical depth � 1), so the largest practical box sizes are only a few km on a side

and the radial mean free path is small.

2.1.2 Linearized Equations of Motion

To derive the linearized equations of motion, it is necessary to transform the particle

accelerations to the rotating frame. Let R

s

denote the position a particle relative to the

space frame origin (the heliocentre for example), as seen in the space frame. The relative

position vector of the particle as seen in the rotating frame is the same at any instant, i.e.

14

To Sun x

y

z out of
page

s

30 km/s

a = 1 AU

Figure 2.1: Rotating coordinate system used in box tree. Note that a� s� R, where

R is the average particle radius. The central box (shaded region) is surrounded by eight

ghost boxes, some of which are shifted in the y-direction to illustrate Keplerian shear.

R

r

= R

s

= R. However, the particle experiences a net acceleration in the space frame

given by:

�

R

s

= �

GM

R

3

R�r�; (2.1)

where M is the mass of the central body (the Sun in this case), and �r� is the sum of

the contributions of all other particles in the orbiting patch. The acceleration will appear

to be di�erent in the rotating (non-inertial) frame. To derive

�

R

r

, it is convenient to apply

an operator used by Goldstein (1980) which relates the time rate of change of a quantity

in the space frame to its counterpart in the rotating frame:

d

dt

!

s

=

d

dt

!

r

+
� (2.2)

where
 is the instantaneous angular velocity of the rotating frame. For the current

model,
 =

^
z is constant and has magnitude:

 =

s

GM

a

3

; (2.3)

where a is the (constant) distance separating the origin of the rotating frame and the

central body (say 1 AU). Note that in this model the origin of the rotating frame and

the location of the rotation axis itself do not coincide. Apply the operator given by

equation (2.2) to R:

_

R

s

=

_

R

r

+
�R: (2.4)

Now apply the operator to

_

R

s

:

�

R

s

=

d

dt

_

R

s

!

r

+
�

_

R

s

: (2.5)

15

Substitute equation (2.4) into equation (2.5) and rearrange to get:

�

R

r

=

�

R

s

� 2

�

�

_

R

r

�

�
� (
�R) ; (2.6)

which is the acceleration of the particle as seen in the rotating frame. It is not convenient,

however, to use R to denote particle positions. Instead, write R = a + r, where a is

the position vector of the origin of the rotating frame and r is the particle position with

respect to this origin. As seen from the rotating frame, the time derivative of a is zero,

hence

_

R

r

=
_
r and

�

R

r

=
�
r, so equation (2.6) becomes:

�
r = �2 (
�

_
r)�
� [
� (a+ r)]�

GM (a+ r)

ja+ rj

3

�r�;

where

�

R

s

has been substituted using equation (2.1). Consider the x-component of the

expression for
�
r:

�x = 2
 _y �

2

(a+ x)�

GM (a+ x)

ja+ rj

3

�

@�

@x

:

The denominator in the third term on the right-hand side can be written:

ja+ rj

�3

= a

�3

1 +

2x

a

+

r

2

a

2

!

�

3

2

' a

�3

�

1�

3x

a

�

;

where, by virtue of x being much smaller than a, all terms in x=a of second order and

higher have been dropped. From equation (2.3), a

�3

=

2

=GM , hence:

�x ' 2
 _y +

3x

a

(a+ x)

2

�

@�

@x

' 2
 _y + 3

2

x�

@�

@x

:

The y- and z-components follow in similar fashion to give the complete set of linearized

equations of motion:

�x = F

x

+ 3

2

x+ 2
 _y;

�y = F

y

� 2
 _x;

�z = F

z

�

2

z;

(2.7)

where F = �r� is the sum of the gravitational forces per unit mass due to the other

ring particles.

2.1.3 Boundary Conditions

The particles in a unit patch of a ring each have a mean Keplerian velocity that is a

function of the particle orbit radius plus some dispersion about the mean due to heating

e�ects. This mean velocity will generally di�er from the orbital velocity of the reference

frame (e.g.
a � 30 km/s at 1 AU from the Sun), being faster for particles closer to the

origin of the central force and slower for those further away. In the rotating frame this

phenomenon manifests itself as a uniform shear across the patch. As a result, particles

inside the central box will quickly leave the system unless some kind of periodic boundary

conditions are imposed. However, if the model assumptions are satis�ed, the unit patch

is only one of many making up the ring, each with the same relative particle distribution

16

as the central box. Thus as a particle leaves the central box, it is replaced by another

particle entering from a neighbouring patch. In this sense, periodic boundary conditions

are a natural consequence of the patch model.

There are two other consequences of the patch model that must be considered be-

fore quantifying the boundary conditions. First, since the particles have physical size,

collisions between particles in neighbouring boxes must be allowed for to prevent over-

lapping. Second, and equally important, gravitational perturbations due to particles in

neighbouring patches must be taken into account, otherwise the box particles would have

a tendency to squeeze together toward the centre. The most consistent way to deal with

these problems, and at the same time provide a convenient means of handling actual

boundary crossings, is to include contributions from the eight neighbouring patches (or

\ghost boxes") of the central box in the simulation. It is only necessary to keep track of

the boxes, not the ghost particles themselves, because the relative placement of particles

in each ghost box is the same as in the central box.

The positions and velocities of the ghost boxes can be determined by noting that,

in the absence of interparticle gravitational forces, equation (2.7) is invariant under the

transformation:

(x; y; z)! (x+ �x; y + �y; z) ; (_x; _y; _z)!

�

_x; _y �

3

2

 �x; _z

�

; (2.8)

where �x and �y are arbitrary (this justi�es the assertion that the relative particle positions

in each patch can be the same). Thus if the central box has sides of length s, the

eight nearest ghost boxes can be chosen with centres at (i

x

s;�

3

2

i

x

s
t + i

y

s; 0), where

i

x

; i

y

2 f�1; 0;+1g (not both zero). Boxes with i

x

= �1 experience a transverse shear

of magnitude

3

2

s due to the di�erential rotation of the ring (Fig. 2.1). Similarly, each

particle in the central box experiences a shear of magnitude

3

2

x. Note that as t increases,

it is necessary to subtract multiples of s from the shearing distance of the ghost boxes to

ensure that they remain close to the central box.

In summary, if a particle leaves the central box, it is replaced by its corresponding

image entering from a ghost box. Note that a particle leaving in the �x-direction may

also undergo a change in y due to the shear of the ghost boxes. Such a particle also

experiences a jump in its angular momentum (see x4.4.2 for a discussion). There are no

boundary conditions in the z-direction. Perturbations on central particles are calculated

by summing over contributions due to the N � 1 other central particles and the 8N ghost

particles (x2.3). Collisions on the boundary are detected during the force calculation by

tagging the closest particle, which may be a ghost (x3.5.2).

2.2 The Tree Code

The CPU time required to run a typical N -body simulation using a standard direct

method scales as O(N

2

) since, in repeated intervals typically much shorter than the

dynamical time, O(N) force calculations must be performed, each involving a sum over

contributions from O(N) particles (ignoring ghosts). In the present context, reasonably

large N (� 10

2

{10

4

) is required to examine the evolution of systems with large dynamic

range, making numerical computation with a standard direct method unrealistic. BH put

forward a hierarchical algorithm that reduces the expense to O(N logN) for su�ciently

large N , but which introduces a small error in the calculated force, on average � 1%

(somewhat larger than the intrinsic error in direct summation techniques). The idea is

to place particles in a tree-like hierarchy of boxes or cells and replace the direct force

with a multipole expansion about the centre of mass of those cells small enough or far

17

B

A

Figure 2.2: Twenty particles in a 2D tree. Two possible expansions are shown for one

particle (open circle): in case (A), the opening angle may be small enough for a multipole

expansion, but in case (B) the angle is probably too large so the force contribution of the

two particles in the upper-right would be added individually.

enough away from the test point. To load the tree, particles are placed into a cell large

enough to accommodate the entire system: if two particles occupy the same cell, the cell

is subdivided into 2

n

equal-sized boxes, where n is the tree dimension, until the particles

occupy separate cells (Fig. 2.2). Note that other forms of tree code exist, such as the

binary or mutually nearest neighbour tree (see Hernquist 1987 for a review), but the

quadrant/octant BH form is best suited to the box model used here.

2.2.1 Components of the Tree

Before explaining the details of how the force is calculated, it is helpful to de�ne some

of the terms that describe the components of the tree. A cell that contains more than

one particle (and therefore at least four sub-boxes in 2D) is called a branch or node, and

in some contexts an ancestor or parent. Parents have children or siblings or daughters or

descendants, which may be leaves in the case of isolated particles, or smaller branches

(sub-boxes with more than one particle). The largest cell is the root branch and is the

ancestor of everything in the tree. The root cell has no parent. Finally, a tree is often

divided into generations or levels: the zeroth level consists of the root cell, its immediate

children form the �rst level, and so on. The maximum number of nodes on level ` of an

n-dimensional tree is given by 2

n`

.

2.2.2 Multipole Expansions

To calculate the force at a point, each branch is considered in turn, starting with the root:

if the angle � = s

cell

=r subtended by the cell at its centre of mass is smaller than a spec-

i�ed opening-angle parameter (usually �

C

<

�

1 rad), a multipole expansion is performed

about the centre of mass of the cell (see Fig. 2.2). Otherwise, its children are examined:

if a leaf is found, its force contribution is calculated directly; if a branch is found, the

procedure continues recursively with a calculation of the angle subtended by the descen-

18

dant cell, then its child branches if necessary, and so on. The number of poles used in the

expansion determines the accuracy of the force approximation (see x4.3). The monopole

term (where all the particles in an expanded cell are replaced by one large particle at the

centre of mass), though easy to calculate, is generally an insu�cient approximation of

the force. With the expansion being about the centre of mass, the dipole term vanishes,

leaving the more complex quadrupole term as the next contribution in the series. Most

implementations stop at the quadrupole, but a few include the octupole (e.g. McMillan &

Aarseth 1993, hereafter MA). With just the monopole and quadrupole components, the

force per unit mass at a position r relative to the cell's centre of mass is given by (e.g.

Marion & Heald 1980):

F = �

M

r

3

r +

Q�r

r

5

�

5

2

(r�Q�r)r

r

7

; (2.9)

where the gravitational constant G has been de�ned such that GM

?

� 1, where M

?

is

the mass unit (see x5.1). The quantity M in equation (2.9) is the total mass of the cell

particles (in mass units), and Q is the quadrupole moment tensor of the cell given by:

Q

jk

=

X

i

m

i

(3x

i;j

x

i;k

� r

2

i

�

jk

); (2.10)

where r

i

= (x

i;1

; x

i;2

; x

i;3

) is the position of particle i relative to the cell's centre of mass.

Note that Q is symmetric, and, in 3D, traceless, so that only 2n � 1 elements need be

stored in memory for each matrix. Hernquist (1987) gives a useful recursion relation for

calculating the quadrupole moment of a cell from the quadrupole moments of its children

(cf. Shift Theorem):

Q =

N

cells

X

i

Q

i

+

N

cells

X

i

m

i

h

3r

0

i

r

0

i

� (r

0

i

)

2

I

i

; (2.11)

where r

0

i

= r

g;i

� r

g

is the displacement vector between the centre of mass of sub-box i

and the centre of mass of the parent cell, and I is the unit matrix.

BH suggested that due to its highly recursive nature, their version of the tree code was

well suited to an implementation in C. Other versions, where the recursion has been \un-

wound", have been programmed in vectorized form|usually in Fortran|for improved

performance on supercomputers (e.g. Hernquist 1990, Makino 1990; also see x6.4.4). Tree

code in one form or another is now used widely and has proved to be a very successful

method for approximating 1=r

2

interaction laws, especially in collisionless systems where

close encounters need not be represented accurately.

2.3 The box tree Code

Since \boxes" are a fundamental concept in both box code and tree code, it seems natural

to combine the techniques to provide a fast method for simulating planetesimal evolution.

The best con�guration is obtained by constructing a tree for the central box alone, which

can then be mapped without modi�cation onto each ghost box since the relative position

of any two particles is preserved under equation (2.8). The total perturbation on a particle

is obtained by summing contributions from particles in the central box and each ghost

box in turn according to the standard tree code algorithm described above (x2.2). Note

that the force due to a particle's own ghosts is included in the summation, since it is too

costly to remove the contribution from the appropriate cell moments in the case of a force

expansion. However, ghost particles are distributed symmetrically around the central

particle, so the net force from a particle's own ghosts is zero anyway.

19

These ideas were put together and the resulting code is a C program called box tree,

developed in a Unix workstation environment. A number of special and in some cases

unique considerations went into developing the code. All of these aspects are presented

in detail in the following chapter, along with a general description of the more basic

components of the code.

20

Chapter 3

Code Details

The technical details of box tree are presented in this chapter. An overview of the

logical structure of the program is given �rst to provide a framework for the more detailed

discussion. This is followed by a short description of the layout and use of the major data

structures. The rest of the chapter is devoted to describing certain features of the code

in detail, namely the options for initial conditions, the special tree considerations, and

particle collision handling. Figure 3.1 shows a schematic outline of the main integration

loop for reference.

This chapter is not intended to be a user manual for box tree. Many details pertaining

to the actual running of the code have been omitted. Instead, the focus here is on the

major aspects that make the code unique as an N -body simulator. Extensive information

on how to compile, run, and modify box tree including a complete source listing, can be

found in the Appendix.

3.1 Overview

The box tree integrator is based on a standard fourth-order polynomial N -body code

with individual time-steps (Aarseth 1985). Particles are given initial positions and ve-

locities at time t = 0 and the force and �rst three derivatives acting on the particles are

calculated explicitly. Each particle is assigned a time-step �t

i

according to a user-speci�ed

formula (x3.5.1). Divided di�erences are introduced by converting from the Taylor series

derivatives. The times t

i

+�t

i

(where t

i

is the last update time, initially zero) are sorted

chronologically into a list and integration proceeds one particle at a time starting at the

top of the list. When it is time for a particle to be updated, its position and veloc-

ity are �rst predicted to high order (F

(3)

) using the stored derivatives. Next, the force

acting on the particle in its new position is calculated by predicting the positions of all

other particles to low order (F

(1)

) and summing the contributions to the force (including

ghosts). Then new derivatives/di�erences are calculated and a fourth-order semi-iteration

is performed to further improve the accuracy of the position and velocity of the current

Check for

STOP/CPU/

safety dump

Get next

particle

from TSL

Set

main

clock

Check clock

for output/

movie/end

Predict

pos & vel of

particle

Get

tree

force

and tidal

terms

Add Coriolis

Update time

intervals &

divided diffs

Check for

collision and
merge if req’d

Check

boundary

conditions

Move

particle

in tree

Set

new

time step

START

Figure 3.1: A schematic of the program ow in the main box tree integration routine.

21

particle. After a new time-step has been determined, the particle is placed back on the

time-step list (TSL), and integration continues with the next particle.

Many modi�cations to this scheme had to be made in order to incorporate the box code

and tree code. However, with the exception of the force calculation, these modi�cations

consist largely of statements inserted into the main integration routine, without replacing

major parts of the existing algorithm. The most important changes are: (1) construction

of the initial tree at time t = 0, including a calculation of all the node moments; (2)

replacement of the force calculation with a \tree walk" over nodes in the central and

ghost boxes by performing multipole expansions over nodes that are su�ciently small or

far away, or adding contributions from individual particles; (3) addition of Coriolis and

tidal terms to the force [cf. equation (2.7)]; (4) checks for collisions once the new position

has been determined; (5) application of boundary conditions if the particle has moved

outside the central box; and (6) repair of the tree to account for the change in position

of the particle.

Double precision is used throughout box tree to minimize roundo� errors and to

conform with standard C math function prototypes. The tree expansion is taken to

quadrupole order as a compromise between speed and accuracy (see x4.3). The initial

conditions and other program parameters, including termination time and output control,

are supplied through a parameter �le by the user at run time. Several timers are used

to keep track of output schedules. Safety dumps of all variables are performed regularly,

and give identical results on restarts within machine precision. The program can be

halted cleanly and simply at any time by creating a special �le in the run directory.

These periodic checks are made at various points inside the main integration loop, which

otherwise continues uninterrupted.

3.2 Program and Data Structures

During the development of box tree, an attempt was made to exploit the features of C to

the fullest extent possible. Such features include dynamic memory allocation, pointer ref-

erences, data structures, recursion, preprocessor macros, and so on. Further, code dealing

exclusively with tree management was kept as separate as possible from the integration

code, both to lend a more logical structure to the program and to aid in debugging.

Each particle in box tree is described by a structure containing data such as the

particle mass, radius, position, spin, time-step, tree node, etc., amounting to 440 bytes

of information per particle. Memory for these structures is allocated dynamically at run

time, and deallocated when particles undergo mergers. Tree nodes have similar structures

to store sizes and positions, child information, multipole moments and their derivatives,

and various indices and ags (520 bytes per node). These structures are created and

destroyed quite frequently as a result of tree repair. There are many other useful global

structures, including one for all the program clocks and timers, one for storing closest-

particle information, one for the TSL data, and a large structure for storing most of the

run parameters. Structures are a convenient means of grouping similar data in a logical

and easily interpreted fashion. In the case of the particle data, an array of pointers to the

structures is kept globally, so that, for example, the current position of particle i is kept

in Data[i]->pos. For the tree nodes, only the root address is stored globally; all other

nodes are accessed from the children of the root. For example, the position of the �rst

child branch of the root is Root->child[0].branch->pos (recall that array indexing in

C begins at 0, not 1 as in Fortran).

The pointer implementation of node structures allows recursive tree routines to be

22

constructed very easily. The following C function illustrates the principle:

void GetNumLeaves(branch, num leaves)

BRANCH T �branch;

int �num leaves;

f

int i;

for (i = 0; i < MAX NUM CHILDREN; i++)

switch (branch!child type[i]) f

LEAF:

++(�num leaves);

break;

BRANCH:

GetNumLeaves(branch!child[i].branch, num leaves);

g

g

This routine returns the total number of particles contained in a node and its subnodes

(MAX NUM CHILDREN is de�ned as 2

n

). If branch points to the root node, then after the

call num leaves will contain the total number of (central) particles in the simulation

(note num leaves must be zeroed prior to the �rst call). This sort of recursive program

structure is used repeatedly in box tree and has proved to be very e�cient.

Where appropriate, preprocessor macros (via the #define directive) have been used to

improve both the readability and e�ciency of the code. Simple mathematical functions,

\fuzzy" comparisons of machine precision limited numbers, logical ags, and some short

core functions have been coded in this way. Most box tree options can be con�gured at

run time through the use of a special parameter �le. Many options can be changed on

restart so that program ow can be altered during the course of a long run. Most of the

parameter data are stored in a large global structure for easy access anywhere within the

program.

In all, box tree consists of 167 routines (of which 79 are global), grouped into 17

�les. There are three header �les containing �xed parameters, function declarations, type

de�nitions, and macro de�nitions, and a \make�le" for compilation on Unix platforms.

The source, including extensive comments, is roughly 370 kB in size (just over 12 000

lines). The size of the symbol-stripped executable is just over 200 kB when compiled and

optimized using \gcc -O2" on a Sparc 10/50 running SunOS 4.1.3.

3.3 Initial Conditions

For ease of use, box tree has several built-in algorithms for generating initial conditions.

There is also an option to read in external data, so that in principle any initial conditions

can be accommodated (e.g. x6.3). Currently only built-in functions for populating a

patch of a ring are implemented. The most important of these are described in Chapter 5

in the context of the simulations in which they have been used. Generally, given the

number of particles N , the box size, an initial velocity dispersion, and a mass range, these

functions generate initial particle positions and velocities, usually adjusted so that there

is no net momentum and the centre of mass is at the origin. Initial bound pairs (within

a �xed distance) can optionally be rejected. Generation of the initial mass distribution is

described in the following section.

23

3.3.1 Initial Mass Function

The initial mass function (IMF) used to generate particle masses is derived from:

n(m) / m

�

;

where n(m) dm is the number of objects with mass in the range [m;m+ dm], and � is a

dimensionless parameter. Let N(m) be the cumulative distribution, such that dN=dm =

n(m). Integrating between m

min

and m gives:

N(m) =

m

�+1

min

�+ 1

"

�

m

m

min

�

�+1

� 1

#

; � 6= �1:

The total number of particles N is simply N(m

max

). Let f = N(m)=N and solve for m:

m = m

min

(

1 + f

"

�

m

max

m

min

�

�+1

� 1

#)

1

�+1

: (3.1)

This equation is equivalent to:

m =

h

(1 � f)m

�+1

min

+ fm

�+1

max

i

1

�+1

;

which is less computationally e�cient but somewhat more intuitive. Masses are chosen

by replacing f with uniform deviates between 0 and 1, or, for a smooth distribution, with

values varied monotonically from 0 to 1 in steps of N

�1

.

To obtain a size (radius) distribution in place of a mass distribution, write:

dN / R

�

?

dR:

Assuming constant particle density (m / R

3

), a substitution of variables gives:

dN / m

�

?

�2

3

dm:

Hence the correct size distribution can be obtained by setting:

� =

�

?

� 2

3

in equation (3.1).

For large N , global properties of the mass distribution (e.g. total mass, mean mass,

mean radius, etc.) can be well approximated by integrating appropriate powers of m in

equation (3.1). For example, the mean mass can be estimated by setting f = x=N and

integrating the IMF in the range [0; N] in x to give:

m �

�

�+ 1

�+ 2

�

m

�+2

max

�m

�+2

min

m

�+1

max

�m

�+1

min

!

; � 6= �1;�2:

For N as low as 50, this estimate is still good to about 10%.

3.4 Tree Considerations

There are a number of di�culties that arise from attempting to impose tree code on the

planetesimal problem. These problems and their solutions are discussed in this section.

24

START

RETURN

Only 2 leaves &

particle now

outside node?

YES

YES

YES

YES

NO

NO

NO

NO

Deallocate

node

parent node &

only 2 leaves?

Particle outside

RETURN

node =

Particle

outside

node?

Place leaf in

new position

parent

Update node

moments

node = parent

Set this

sub-box to

EMPTY

Movement

all inside

sub-box?

Make sub-box

a leaf for
"orphan"

Figure 3.2: Schematic representation of the tree repair algorithm.

3.4.1 Tree Repair

Since any N -body system is dynamic by its very nature, it is clear that a static tree will

cease to represent the correct mass distribution after a fairly small number of time-steps.

BH, who employed a common step for all particles, suggested that the tree should be

rebuilt after every time-step (since this is a fairly fast procedure for collisionless systems),

while other authors assign a time-step to the entire tree (or parts of the tree using hier-

archical or \block" steps, e.g. MA) based on the minimum of various timescales, such as

the minimum cell crossing time. However, these methods are unsuitable for the current

project: rebuilding the tree every time-step is far too expensive since a high collision

frequency leads to very short time-steps; but assigning an e�ective tree-step is di�cult

because particle velocities vary widely across the central box as a result of the Keplerian

shear. Ideally, the tree should only be updated in places where it would actually change

as a result of particle motion from step to step. Although every particle moves between

steps, it is su�cient to consider only the single particle being integrated at each step,

since the other particles are only predicted to low order (see x3.4.2 and x3.4.5, however).

Figure 3.2 is a schematic representation of the tree repair algorithm used in box tree.

When a particle is to be moved in the tree, a check is made �rst to see whether the new

position is still within its original sub-box (one of the 2

n

boxes of its parent). If so, no

25

Figure 3.3: An example of tree repair. Here two nodes are destroyed and one is created.

repair is performed since the tree structure will not change. Otherwise, there are three

possibilities: (1) the particle is moving between sub-boxes of its parent; (2) the particle is

leaving the current node and at least two particles will be left behind; or, (3) the particle is

leaving the node but only one particle will be left behind. In cases (1) and (2), the sub-box

previously occupied by the particle is vacated; no further structural changes are needed

since the original node remains intact. In the third case, however, when there is only

one particle left behind (call it an \orphan"), the node and its parents must be destroyed

until either (a) the new position of the �rst particle is contained within an ancestor of

the current node, or (b) a companion can be found for the orphan in an ancestral node,

whichever comes �rst. When such a node is found, it becomes the current node and the

orphan is made into a leaf in the appropriate sub-box of the node. At this point in all

cases, the current node and its ancestors are updated (x3.4.2) until the motion of the �rst

particle is contained entirely within a node, or until the root node is reached. Once this

is accomplished, the particle can be placed in its new position using the standard tree

construction algorithm, which will often result in the creation of new nodes. Figure 3.3

is a pictorial example of a section of a 2D tree before and after repair.

Though somewhat di�cult to describe, tree repair is fairly straightforward to im-

plement, especially in its recursive form. Tree repair eliminates the need for full tree

reconstruction at regular intervals, and is well suited to situations when only certain

parts of the tree are undergoing rapid changes at any given time. Moreover, tree repair is

extremely CPU cost-e�ective, taking less than 1% of the total computation time during

a typical run (see x4.2).

3.4.2 Node Updates and Prediction

When particles are inserted into or removed from the tree (or, by extension, moved within

it), branches may be created or destroyed. This means that the multipole moments of

each a�ected branch must be recalculated so that the correct expansion may be formed

when determining the interparticle gravitational forces. If the system were static, inserting

and removing leaves from branches would be a simple matter of adding and subtracting

the corresponding contributions to the monopole and quadrupole moments of the parent

branches. Unfortunately, the system is not static, as was seen in the previous section.

Moreover, after t = 0, particles are updated on di�erent time scales so that some form of

prediction of all the descendant leaf positions would be needed to bring the moments back

up to date. But since updates are performed only during tree repair, the moments would

be valid in any case only at each update time, and would become progressively worse

approximations until the next update was performed. Subsequent force errors would

26

be noticeably large and discontinuous depending on the time between updates and the

importance of the particular force contribution.

The obvious solution to both these problems|ine�cient updates and large, discon-

tinuous force errors|is to introduce node prediction (e.g. MA). An e�ective treatment

requires calculation of the node position and velocity (i.e. the centre-of-mass position and

velocity of the node), the force acting on the centre of mass and its �rst time derivative,

as well as the quadrupole moment and its �rst three time derivatives, at each update. The

former components, those associated with the monopole, are straightforward to calculate,

since they are simply the mass-weighted sum of the corresponding components of the

node children. These quantities (position, velocity, etc.) are already known for the leaves,

and can be determined recursively for any child branches. The quadrupole derivatives

must be calculated explicitly, however, but are still subject to the recursive property of

equation (2.11). For completeness, the quadrupole tensor derivatives are given by:

_

Q

jk

= 3(_x

j

x

k

+ x

j

_x

k

)� 2�

jk

P

k

0
x

k

0

_x

k

0

;

�

Q

jk

= 3(�x

j

x

k

+ _x

j

_x

k

+ x

j

�x

k

)� �

jk

(_r

2

+ 2

P

k

0
x

k

0

�x

k

0

);

���

Q

jk

= 3(

���

x

j

x

k

+ �x

j

_x

k

+ _x

j

�x

k

+ x

j

���

x

k

)� 2�

jk

P

k

0
(x

k

0

���

x

k

0

+ _x

k

0

�x

k

0

);

(3.2)

where r = (x

1

; x

2

; x

3

) is the position relative to the node's centre of mass, as before. Note

that �x and

���

x have been divided by 2 and 6 respectively, and that the summations over

m

i

have been omitted for clarity.

When calculating forces, then, the predicted centre-of-mass position of each node is

used to determine whether or not a multipole expansion should be performed. In the

case of an expansion, both the monopole and predicted quadrupole are used to obtain the

force contribution. Further, for updates of a given node following tree repair, only the

immediate descendants of the node need be considered: both child leaves and branches are

predicted to low order, and their contributions to the monopole and quadrupole moments

of the node are added in explicitly. These re�nements reduce the average force errors

considerably, though at the cost of a noticeable but bearable increase in computation time.

In fact, with node prediction in place, force errors are dominated by the approximate

nature of the expansion itself, so that any improvement would require introducing the

octupole moment (see x4.3).

Note that it is possible for nodes (and particles for that matter) to have predicted

positions that lie outside the box system, which could lead to noticeable asymmetries in

the force distribution depending on the velocities, time-steps, and masses of the nodes or

particles. To minimize this e�ect, a \tree wrap" is performed after predicting node or

particle positions in the force routines. That is, appropriate multiples of three box lengths

are either added to or subtracted from y-positions found to lie outside of the system prior

to measurement of the node or particle distances. Corrections are not performed in the

x-direction since the radial mean free path is expected to be small at all times. Note

that this simple wrap routine is not applied to a central particle being advanced at a

given time-step, but rather to all other particles whose positions and velocities have been

predicted to low order for the purpose of calculating the force on the central particle. For

the particle being advanced, a proper boundary condition treatment is performed after

the new force has been calculated (x2.1.3).

It should also be noted that, as with any predicted quantity, there is a time interval

over which the prediction can be considered reliable and after which the prediction can

no longer be used. MA have put forward recipes for assigning time-steps to the monopole

and quadrupole moments of a node, based on standard time-step formulae (see discussion

27

in Press & Spergel 1988). For the monopole:

�t

M

= �

M

0

@

s

cell

P

k

jF

k

j+ _x

2

P

k

j _x

k

j

P

k

�

�

�

_

F

k

�

�

�
+ F

2

1

A

1

2

; (3.3)

and for the quadrupole:

�t

Q

= �

Q

0

B

@

P

i

jQ

i

j

P

i

�

�

�

�

Q

i

�

�

�+

P

i

_

Q

2

i

P

i

�

�

�

_

Q

i

�

�

�

P

i

�

�

�

���

Q

i

�

�

�
+

P

i

�

Q

2

i

1

C

A

1

2

; (3.4)

where �

M

and �

Q

are constants, and the index i in the second equation is taken over the

2n�1 unique matrix elements. A check is made to ensure the time-steps do not grow too

large too quickly. When performing or checking for expansions in the tree force routines,

the current time is compared with the last update of the current node plus its appropriate

time-step. If the node needs updating, this is done immediately. In general, it is the larger

branches that need more frequent updating, since particles take a long time to cross the

bigger boxes, while smaller nodes are repeatedly being created and destroyed as a result

of tree repair. The appropriate choice of �

M

and �

Q

is discussed in x4.3.

There are further complications that result from node prediction, but discussion of

these will be deferred to x3.4.5.

3.4.3 Boundary Conditions

Since the box and tree overlap perfectly, when a particle crosses the central box boundary

it also crosses the tree boundary. At the same time, the particle's ghost enters the tree

from the opposite side. Fortunately these events are easily handled by the tree repair

routines (x3.4.1). In this case the particle's node and all its ancestors, including the root

node, must be updated. For technical reasons, however, the repair algorithm as described

will actually miss updating the moments of the root node following a boundary crossing

because the new particle position is automatically o�set by a box length before the tree

repair routine is called. Thus, as far as the repair algorithm is concerned, the particle

never left the tree but was merely displaced within it by a large distance. The solution is to

pass a ag from the main integration routine to the tree repair routine indicating whether

or not a particle boundary crossing occurred and the root node should be updated.

3.4.4 Problems in 2D

Since planetesimals are more or less con�ned to a plane, it seems ine�cient to use a 3D

tree to represent the system. However, it is important to study planetesimal dynamics

in the direction normal to the plane in order to, for example, measure the evolution of

the thickness of the disk. The additional degree of freedom also prolongs the evolution

process since the collision timescale increases by at least an order of magnitude (PLA).

Hence for an e�cient but accurate treatment it is necessary to impose a 2D tree on a

3D system. A few unique problems arise from this con�guration, but their solutions are

straightforward enough to justify the unconventional approach.

The major di�culty with 2D trees is that expansions tend to be performed more often

than they should. This is because particles projected onto the xy-plane seem to be closer

together and may therefore be placed in boxes that are smaller than they would be in

the 3D case. The solution to this problem is conveniently part of the solution to a more

general problem that stems from node prediction, and will be discussed in x3.4.5 below.

28

A less crucial but nonetheless important problem can occur in the relatively rare

case when two or more particles almost line up perpendicular to the xy-plane. As the

particles line up, more and more subdivisions of the tree are required to separate their

projections. In theory, two particles could overlap perfectly in this way, resulting in an

in�nite number of subdivisions. In practice this situation has never arisen, but particle

projections have overlapped enough to cause problems. The �rst di�culty is that machine

precision fundamentally limits the number of times a quantity can be accurately divided

by 2. The second more restrictive problem is that nodes in box tree are each tagged with

a unique index given by:

i

node

= (i

node�>parent

)2

n

+ j + 1; (3.5)

where i

Root

� 0 and j (0 � j < 2

n

) is the position of the node inside its parent (j

can also index leaf positions in a node). In the case n = 2, the bottom left sub-box is

j = 0, bottom right j = 1, top left j = 2, top right j = 3. The index is primarily used

for book-keeping purposes and has proved useful when debugging. Unfortunately, on a

typical workstation, i

node

must be less than 2

31

as a signed integer (i

node

= �1 is used for

initialization), which for n = 2 means `, the tree level, must always be 15 or less. In fact,

` > 14 is quite rare, so this is a reasonable restriction. But these unusual con�gurations

do occur nonetheless, so a scheme called \node packing" has been introduced. If ` is

found to exceed (int)(31=n) for a particular node, then the leaves involved are packed

into the �rst available locations in the node, regardless of their exact physical position.

That is, the particles are given arbitrary j values, which presupposes that not more than

2

n

particles will overlap at the same time (such an over-packed situation has yet to occur

in a 2D tree). Packing is possible because the exact location of a particle in its node is

used only at the beginning of the tree repair algorithm (see x3.4.1 or Fig. 3.2). So for a

packed node, the �rst test of the repair routine|whether a particle has moved between

sub-boxes|is automatically forced to fail. No other changes to the code are required. The

ag for a packed node remains set until the node is destroyed, which is rarely more than

a few time-steps after it was created. Packing essentially means that there is a minimum

node size (given by s

Root

=2

`

max

, where s

Root

is the tree size), but for expansion purposes

it is highly probable that the e�ective size (see x3.4.5 below) will always be greater, so

expansions will not be a�ected at all.

It should be noted that in 3D the restriction on ` is much more severe (a maximum

of 10 levels can be accommodated). For a simulation with large N (N

>

�

10

3

) and par-

ticularly dense regions, many nodes may become packed and overow. For this reason,

node packing is disabled in 3D and the tree indices must be assumed to be unreliable.

Fortunately this has no e�ect on the simulation itself.

3.4.5 Stretchable Nodes

Perhaps the greatest di�culty that results from not reconstructing the entire tree every

time-step is that particles may move outside their own nodes between repairs, despite

the fact that both node and particle positions are predicted. Consequently, force errors

may result that noticeably exceed the expected intrinsic error of a �nite-term multipole

expansion (x4.3). Generally this problem is most acute in the y-direction, where local

shear relative to each node centre would tend to make the node twist and stretch diago-

nally if it were exible. Unfortunately, such parallelograms are not well suited to a tree

structure! Instead, a compromise has been made by introducing an \e�ective size" for

each node that is recalculated during node updates: the node is allowed to stretch equally

in all directions to form a larger square box that accommodates its children at the time

29

of update. It must be stressed that this e�ective size is used only when deciding on ex-

pansions in the force routines, i.e. the opening angle is rede�ned as � = s

e�

=r. Naturally,

s

e�

can be made smaller by reducing the node update time-step coe�cients �

M

and �

Q

[cf. equations (3.3) & (3.4)]. However, it has been found (x4.3) that the coe�cients can

retain reasonably large values and still give good results.

Particles can still wander outside their nodes, however, since the e�ective size remains

�xed between node updates. Usually this is not a problem if updates are su�ciently

frequent, but, in extreme cases, an expansion may be performed over a node to which

the particle itself actually belongs, causing a potentially severe force error due to self-

gravity (severe because both the node sizes and the separations tend to be small in this

case). This problem can be overcome by recursively checking all the descendants of a

node before performing an expansion. However, to do this in all cases results in a very

noticeable increase in CPU time. It has been found that this check need only be performed

when a particle is within 0:01s

Root

of the node. Note, however, that this method is reliable

only if �

C

<

�

n

�(1=2)

, which can easily be shown to guarantee elimination of the self-gravity

problem in the static case.

As mentioned in x3.4.4, imposing a 2D tree on a 3D system gives rise to some trouble-

some projection e�ects. Fortunately, a simple generalization of the de�nition of s

e�

can be

made to allow for comparatively large z-separations of particles in a node. In particular,

the e�ective size can be de�ned as the maximum of the actual size of the node and the

predicted y- and z-extensions of each child from the centre of mass. Note that both leaves

and branches of the node are considered, since the predicted branch positions are subject

to the same e�ects as the leaf positions. The \extension" of a leaf in y or z is simply the

corresponding projected distance between the leaf and the parent centre of mass, but for

a branch the extension is the sum of the projected separation between centres of mass

and half the maximum extension of the branch, to allow for extended and/or o�set sub-

boxes. Hence updates should be performed starting from the bottom of the tree hierarchy

to ensure that child branches have the correct e�ective size. Fortunately, both the tree

repair algorithm and the update routines inherently work from the bottom up (x3.4.1 and

x3.4.2), so this requirement adds no additional computational burden. Note that devia-

tions in the x-direction are not considered since any radial excursions are expected to be

small.

3.5 Collision Handling

Collisions are a fundamental aspect of planetesimal evolution, providing a mechanism

for energy dissipation to balance heating derived from the shearing ow. Because of

the dynamical importance of collisions, it is crucial to have an accurate collision detection

and resolution algorithm. But due to the inherent complexity of an N -body gravitational

system, it is generally impossible to predict in advance exactly when a collision between

two particles will occur. This means that in order to detect collisions reliably, particle

time-steps must be sensitive to the proximity of potential colliders. However, the level of

sensitivity must be tempered by practical considerations: an in�nitely precise algorithm

would take an in�nite amount of time. As a result, collisions are generally not detected the

instant they occur, but rather after some mutual penetration of the colliding bodies has

taken place. The goal is to minimize the penetration distance prior to collision without

incurring too heavy a computational burden. The method developed for box tree is

designed to handle regimes at very high optical depth and is therefore relatively complex,

but it has proved to be quite e�ective. All of the elements that go into this method will

30

be presented in this section.

3.5.1 Time-step Formulae

If interparticle gravity is not treated in the simulation (as for the WT models), the

following formula is used to calculate the optimal time-step of a particle given the position

and velocity of its nearest approaching neighbour:

�t = �

s

r

2

� "

2

(R

1

+R

2

)

2

v

2

; (3.6)

where � is the dimensionless time-step coe�cient, r is the magnitude of the relative

position r = r

2

�r

1

measured between the centres of the particle and its neighbour, R

1

+

R

2

is the sum of the particle radii, and v is the magnitude of the relative velocity v = v

2

�

v

1

. An approaching neighbour is de�ned as one for which r�v < 0 (particle trajectories are

generally well-behaved when there is no interparticle gravity, so approaching neighbours

are the most likely colliders). The parameter " determines what fraction of the �nite size

of the particles is included. If " = 0, the sizes are ignored and the equation reduces to

"(r=v). If " = 1, the \true" particle separation is used, measured from surface to surface

along the line connecting the particle centres. Since the latter case can result in very short

time-steps, the computation time may increase signi�cantly when there are many close

encounters and collisions. The CPU dependence turns out to be more or less exponential

for " near unity. In fact, " = 0:99 is typically twice as fast as " = 1 but still gives very

good accuracy.

Equation (3.6) is inadequate for models that include interparticle gravity. Consider,

for example, a very close encounter in which the particle trajectories undergo consid-

erable distortion. The above formula may give good results during the approach, but

immediately after the encounter the second particle will be ignored in favour of a di�er-

ent approaching particle when determining the new time-step. This neglects the strong

gravitational e�ects that will still be present after closest approach. Hence for the full

gravity case, the r�v < 0 criterion is no longer safe. Further, the time-steps will gen-

erally be too large immediately following a collision, since the quantity r�v may change

sign in just a few time-steps due to the mutual gravitational attraction. In short, the

time derivatives of the total force acting on a particle must be taken into account when

choosing a time-step to allow for complicated interactions with close neighbours. The

formula adopted in box tree is based on a similar expression used by Aarseth (1985)

[also compare with equations (3.3) and (3.4) in x3.4.2]:

�t =

0

B

@

�

P

k

jF

k

j

P

k

�

�

�

�

F

k

�

�

�+

_

F

2

P

k

�

�

�

_

F

k

�

�

�

P

k

�

�

�

���

F

k

�

�

�+

�

F

2

1

C

A

1

2

: (3.7)

Here, unlike in Aarseth (1985), the absolute value of the components of the force and

its derivatives are used to calculate \magnitudes", eliminating two square roots at the

expense of a slightly less sensitive formula. To conform with Aarseth (1985), the time-

step coe�cient � has been placed inside the square root in this expression. Note that

information regarding the closest neighbour is only implicit in this formula, contributing

the larger part of the force derivatives. Identi�cation of the closest neighbour is only used

for collision determination (x3.5.2). This formula is expensive to compute, especially if

box tree �rst needs to convert from divided di�erences to the Taylor series terms (which

is usually the case), but the bene�ts gained from increased sensitivity far outweigh such

considerations.

31

To save time, equation (3.6) could be used when the nearest neighbour is approaching

and equation (3.7) when it is receding. But since it is short-range interactions that

are of crucial importance in high-density collisional simulations, usually equation (3.7)

is favoured for these models. It should be noted that the time-step coe�cients � in

equations (3.6) and (3.7) need not be the same, but, in the form they are given here, �

values in the range 0.002{0.02 generally give good results.

3.5.2 Collision Detection

Potential colliders are identi�ed as part of the force calculation procedure in order to

minimize the number of predictions and distance measurements to be performed. Con-

veniently, the tree code automatically eliminates particles that are too far away to be

likely colliders when it applies the opening-angle criterion to its nodes (x2.2). The closest

particle (with r�v < 0 if there is no interparticle gravity) is noted, along with its posi-

tion and velocity predicted to �rst order and appropriately adjusted if the neighbour is a

ghost. After the fourth-order semi-iteration correction to the current particle position and

velocity, a check is made to see whether a collision may have occurred by comparing the

distance r with the sum of the radii R

1

+R

2

. If r < R

1

+R

2

(i.e. there is some overlap),

and if interparticle gravity is included in the simulation, a check is made to ensure that

the particles are indeed approaching one another, and are not left over from a previous

collision.

If the pair satis�es these conditions, then a collision is probable. The position and

velocity of the collider is predicted to high (third) order, adjusted for ghosts, and the sum

of radii and r�v checks are repeated. If the particles are no longer found to be colliding, a

\near miss" message is generated and the collision is not recognized. Otherwise, a position

correction is performed to adjust the particles so that they are just touching (x3.5.3), and

r�v is checked for the last time. Though unlikely, it is possible that position correction

prevents the particles from actually colliding. Otherwise box tree proceeds to calculate

the post-collision velocities.

Though tedious, these tests are needed to ensure correct behaviour under close-packed

conditions.

3.5.3 Position Corrections

Ideally, a collision should be detected the instant it occurs. Unfortunately, such precision

is impractical so a certain amount of \penetration" or temporary overlap is unavoidable.

For low collision rates, errors introduced by such penetrations can be ignored, but when

there are many collisions, especially between the same particles, two major problems

arise: (1) angular momentum is not conserved because the collision equations (x3.5.6)

assume the particles are just touching; and (2) self-gravitating particles may \collide"

again after their �rst bounce, before they have completely separated. The latter problem is

potentially disastrous because under extreme conditions the particles involved will simply

\sink" into one another. A na��ve solution to this problem would be to switch o� the

gravitational attraction between particles with r < R

1

+R

2

, simulating a surface normal

force. Unfortunately, a third particle could simply bounce into either of the �rst two

before they drift apart, resulting in another sinking problem. Introducing normal forces

between all touching particles in an arbitrary aggregate, and including perhaps a restoring

force at the surface to simulate \stickiness" (e.g. Watanabe, in preparation), is beyond

the scope of the current project.

32

The most straightforward solution, which also addresses the problem of angular mo-

mentum conservation, is to simply displace the particles so that they are just touching

before applying the collision equations. There are two ways of accomplishing this: (1)

moving the particles outward along the line connecting their centres; or (2) tracing the

particles back along their respective velocity vectors. The latter solution has the ad-

vantage, for small displacements, of reproducing the \true" geometry just prior to the

collision. However, to be consistent, the particles should really be advanced forward in

time after resolving the collision, but this introduces far too many complications to be

practical. Hence the post-collision positions and velocities will still be slightly inaccu-

rate with this method. A more serious problem is that for grazing collisions (which are

quite frequent in a shearing disk), the displacements can become arbitrarily large and

unrealistic.

The �rst method, displacing the colliders along the line connecting their centres, en-

sures a minimum displacement, namely half the penetration depth. Since the depth of

penetration can be controlled somewhat by the choice of time-step coe�cient (x3.5.1), this

is a desirable property. The disadvantage is that the collision geometry is altered slightly,

and it is possible (though unlikely) that the particles involved may no longer be colliding

after the displacement. However, given the simplicity of the technique, and the fact that

it e�ectively eliminates the sinking e�ect for self-gravitating particles, this method has

been implemented in the code. In equation form, the new particle positions are given by:

r

new

1

= r

1

�

�

�r

r

�

r; r

new

2

= r

2

+

�

�r

r

�

r;

where

�r �

R

1

+R

2

� r

2

:

A further re�nement would be to weight the o�sets according to particle mass, to minimize

the e�ects of o�sets on the larger particles. Note that " = 1 can no longer be used in

equation (3.6) with these corrections in place, as it would result in zero time-steps following

collisions.

For completeness, a simple procedure for backtracking along particle velocity vectors

is also given here. Write:

r

new

i

= r

i

+ �

i

v

i

�t (i = 1; 2);

where, to allow for particles moving in roughly the same or opposite directions,

�

1

=

(

�1; r�v

1

< 0

1; r�v

1

> 0

; �

2

=

(

�1; r�v

2

> 0

1; r�v

2

< 0

:

To force the particles to just touch, set:

(r

new

2

� r

new

1

)

2

= (R

1

+R

2

)

2

:

Now solve the quadratic to obtain �t, rejecting the root with the larger absolute value

(both roots should be negative):

�t =

�r�v

?

�

q

(r�v

?

)

2

� jv

?

j

2

[r

2

� (R

1

+R

2

)

2

]

jv

?

j

2

;

where v

?

� k

2

v

2

�k

1

v

1

. This procedure is evidently more complicated than the �rst, but

may be more suitable for isolated collisional systems that are not subjected to a strong

tidal �eld.

33

3.5.4 Velocity Corrections

The position corrections described in the previous section have the unfortunate side-e�ect

of changing the total energy of the system for self-gravitating particles. If the total energy

is being monitored as a performance check (x4.4.3), it is necessary to allow for the change in

gravitational potential energy that results from applying position corrections. Conversely,

the requirement that the total energy be conserved (allowing for heat dissipation from

inelastic collisions) can be used to adjust the velocity of the colliders prior to applying the

collision equations (x3.5.6). Currently box tree reduces the radial (normal) component

of the velocities of both particles by a factor (0 < < 1) to compensate for the increase

in gravitational potential energy V of the system. The value of is given by:

 =

s

1 �

�V

T

n

; (3.8)

where �V is the change in gravitational potential energy, and T

n

is the kinetic energy

arising from the normal component of the velocities of the two particles. The correction

is not applied if < 0:9 (because the velocity correction is considered too large) or if

 > 1:0 (because this implies that V actually decreased, which can happen if one of the

two particles was pushed into a third particle as a result of the position correction | see

x3.5.5). In these cases, a correction is applied to the total energy itself, rather than to

the velocities.

It turns out (x4.4.3) that V is not something easily measured in the shearing box

approximation. Instead, the change �V for a two-body collision is approximated by:

�V � m

1

m

2

�

1

r

�

1

R

1

+R

2

�

; (3.9)

where r is the separation prior to the position correction. This is the correction that would

be applied in an inertial frame that contained only the two colliders. The approximation

is good enough to ensure that anomalous heating is minimized in close-packed systems,

even though it's not eliminated altogether.

There is another small velocity correction that must be applied in the rotating frame:

if the particles are displaced in the x-direction as part of the position adjustment, their

mean orbital velocity must be changed. This is accomplished by subtracting

3

2

�x

i

from

the y-velocities of the two particles, where �x

i

is the change in x-position of particle i.

3.5.5 Missed Collisions

Currently box tree is only capable of handling two-body collisions. Though these are

by far the most common type of collision in N -body dynamics, under extreme conditions

it is quite possible for two or more particles to collide with and hence overlap the same

particle during the same time-step. The position correction described in x3.5.3 can worsen

the situation, by adjusting the current particle or its original collider into new positions

that overlap other particles. During reinitialization following a collision (x3.6), a check is

made to see whether the new closest neighbour has indeed penetrated the current particle.

If so, the current particle is assigned a very small step to ensure that it will be updated

immediately, forcing collision resolution. In this way it is possible for many particles to

bunch together quite tightly in a self-consistent manner. To do any better would probably

require testing for multiple colliders at the outset, which for the current project would be

an unnecessary added complication (especially since the assumption of spherical particles,

for instance, is only an approximation in the models considered here).

34

ω

ω

v

v
m

m

1

1

2

2

1

2

nt

R

R

1

2

Figure 3.4: Diagram illustrating the basic collision de�nitions.

For regimes of moderately high particle density, it was found that setting �t = 10

�15

t

as the new time-step worked quite well, where t is the current simulation time. A relative

value is favoured over an absolute value, as the former is not subject to precision limita-

tions. However, at very high densities, there is a danger of entering a nearly in�nite loop

in the form of a repeated series of position adjustments and missed collision corrections

to the same particles (picture three particles in a straight line, all touching). To avoid

this, more moderate values of �t should be used, based on the time-step and update time

of the missed collider. Thus if a repeated series of corrections begins to take place, it will

not be too long before another particle disturbs the cycle. A reasonable formula is:

�t = 0:01(t

0

+�t

0

� t); (3.10)

where t

0

and �t

0

are the last update time and time-step of the missed collider, respectively.

The factor of 0:01 was determined empirically: the smaller the value, the closer the

equation approaches the original formulation.

Note that it is possible that �t = 0 in equation (3.10). This could happen if the missed

collider was already due to be considered during the current time-step. Zero time-steps

are not allowed in box tree, so it is necessary to de�ne a strict minimum step, which is

taken as 10

�15

t. Since the missed collider was due for immediate consideration anyway,

this is not a concern.

3.5.6 Collision Resolution

Once a collision event has been �rmly established, the post-collision velocities (both linear

and angular) of the colliders must be determined. The following derivation is appropriate

for rough spheres of arbitrary mass.

Consider two uniform colliding spheres with masses m

1

and m

2

, radii R

1

and R

2

,

located at r

1

, r

2

in a Cartesian space, with linear velocities v

1

, v

2

and angular velocities

(spins) !

1

, !

2

(Fig. 3.4). Let r = r

2

� r

1

and v = v

2

� v

1

be the relative position and

velocity of the spheres, respectively, and de�ne a new coordinate system in the collision

plane with orthogonal axes n (normal component) and t (transverse component). The

35

normal component is directed along the line connecting the centres of the two spheres

(
^
n � r=r). Also de�ne vectors connecting the sphere centres to the point of impact:

R

1

= R

1

^
n, R

2

= �R

2

^
n. Hence de�ne the (linear) spin velocities at the point of impact:

�

i

= !

i

�R

i

, i = 1; 2. Let � = �

2

� �

1

be the relative spin velocity at the point of

impact and u = v + � be the total relative velocity. Lastly, let M = m

1

+ m

2

be the

total mass of the two-body system, and denote the moments of inertia of the spheres by

I

1

and I

2

, respectively (I

i

=

2

5

m

i

R

2

i

for uniform spheres). In the following treatment, all

post-collision quantities are denoted by primes (0).

The linear impulse su�ered by body 1 as a result of the collision is given bym

1

(v

0

1

�v

1

).

By Newton's Third Law, this must be the negative of the impulse su�ered by body 2,

hence:

m

1

(v

0

1

� v

1

) = �m

2

(v

0

2

� v

2

): (3.11)

By inspection, equation (3.11) is a statement of linear momentum conservation. The two

spheres also su�er impulsive torques:

I

1

(!

0

1

�!

1

) = m

1

R

1

�(v

0

1

� v

1

);

I

2

(!

0

2

�!

2

) = m

2

R

2

�(v

0

2

� v

2

):

(3.12)

It is straightforward to show that equations (3.11) and (3.12) together imply that angular

momentum about the centre of mass of the two-body system is conserved. Finally, an

expression for the energy loss resulting from the collision can be written as:

u

0

= ��

n

u

n

+ �

t

u

t

; (3.13)

where �

n

and �

t

are the normal and transverse coe�cients of restitution, respectively, and

u

n

= (u�
^
n)

^
n and u

t

= u � u

n

are the corresponding components of the total relative

velocity.

Solving equations (3.11){(3.13) for v

0

1

yields:

v

0

1

+ ��(
^
n�v

0

1

)�
^
n = v

1

+ ��(
^
n�v

1

)�
^
n+

m

2

M

[(1 + �

n

)u

n

+ (1� �

t

)u

t

] ;

where:

� �

R

2

1

I

1

+

R

2

2

I

2

and

� �

m

1

m

2

M

:

In the case of uniform spheres, � =

5

2

�

�1

. Solving by components and combining the

results, the post-collision linear and angular velocities are given by:

v

0

1

= v

1

+ (m

2

=M)p; (3.14)

v

0

2

= v

2

� (m

1

=M)p; (3.15)

!

0

1

= !

1

+ (R

1

=I

1

) q; (3.16)

!

0

2

= !

2

+ (R

2

=I

2

) q; (3.17)

where

p � (1 + �

n

)u

n

+ � (1� �

t

)u

t

;

36

and

q � �� (1 + �

t

)
^
n�u;

with

� �

1

1 + ��

:

For uniform spheres, � =

2

7

. It can readily be shown that equations (3.14){(3.17) reduce

to equations (65-1){(65-4) of Araki & Tremaine (1986) for the equal-mass case, though

the results were derived independently.

An expression for the kinetic energy lost during a collision can be derived from equa-

tions (3.14){(3.17):

�T =

1

2

�p

2

+

1

2

�q

2

� � (v�p) +w�q; (3.18)

where

w � R

1

!

1

+R

2

!

2

:

For the case of no particle spin (�

n

= �, �

t

= 1), this expression reduces to the familiar

form:

�T = �

1

2

�

�

1 � �

2

�

v

2

:

3.5.7 Mergers

Once a dissipative collision has taken place between two particles, it may be the case that

the colliders do not retain su�cient kinetic energy to escape their mutual gravitational

attraction. Depending on the simulation, it may be desirable to replace the two particles

with a single particle of mass m = m

1

+m

2

situated at the centre-of-mass position of the

pair and having the centre-of-mass velocity (the spin is determined by the constraint that

the angular momentum about the centre of mass must be conserved). This treatment

saves considerable CPU time at the expense of several assumptions, namely that: (1)

the new body is a sphere of the same density as the colliders; (2) there will not be any

perturbations that will separate the pair at a later time; and (3) that it is statistically

valid to reduce N . The last point can be addressed by deciding on a minimum N (or

a maximum mass) for the simulation that still satis�es the self-similarity criterion of

the model. The second point could perhaps be reduced in severity by introducing the

possibility of fragmentation following collisions (x6.4.1), but motion caused by di�erential

forces or gravitational torques would still be ignored for the merged body. The �rst point

is a fundamental assumption of box tree and cannot be changed without signi�cant code

modi�cation.

The choice of whether to allow mergers depends largely on the problem being modelled.

For simulations with a long time base and only a moderate number of collisions, allowing

merging speeds up the calculations considerably and gives a realisticmodel of the accretion

rate (e.g. x5.2). But for short integrations of high density regions (e.g. x5.3), mergers

would almost certainly result in runaway accretion of unacceptable proportions. At the

same time, much of the �ne structure that may develop would be lost. It may be helpful

to study simulations with and without mergers to see if they provide reasonable speed

improvement without generating unrealistic results.

37

If merging is allowed, box tree applies three tests to determine whether two particles

should be merged. First, before calculating the �nal post-collision velocities, the mutual

escape velocity of the pair is calculated. If the relative velocity before the collision is less

than 1% of the escape velocity, the particles are merged immediately. For reference, the

two-body escape velocity is given by:

v

esc

=

s

2m

r

; (3.19)

where r = R

1

+ R

2

following the position correction described in x3.5.3. Otherwise the

collision is allowed to take place and the new semi-major axis a of the two-body system

is calculated according to:

1

a

=

2

r

�

v

2

m

: (3.20)

If a > 0 (implying a bound orbit) and a < R

1

+R

2

, the particles are merged. Finally, if a

is not too large (currently less than �ve times the sum of the particle radii), the pericentre

distance r

p

is checked using:

r

p

= (1� e)a =

8

>

<

>

:

1�

"

�

1�

r

a

�

2

+

(r�v)

2

am

#

1

2

9

>

=

>

;

a; (3.21)

where e is the eccentricity. If the pericentre distance exceeds R

1

+ R

2

, the particles are

also merged. This is intended to prevent two particles from orbiting each other in tight

near-circular orbits that never result in a collision but take a considerable amount of time

to compute. Such a situation can arise after repeated dissipative collisions between two

particles: since angular momentum is conserved, as the particles lose energy the orbits

circularize and the pericentre distance actually increases. Perturbations from nearby

particles may enhance this e�ect.

3.6 Discontinuity E�ects

Since boundary crossings, collisions and mergers create discontinuities in position and

velocity, the particles involved get special treatment. In particular, after each such event,

the force polynomials of the a�ected particles (or the remaining particle after a merger)

must be reinitialized. This is because the integrator relies on past history to predict

positions and velocities forward in time. Recall that polynomial initialization requires

explicit calculation of the force and force derivatives, so this is a costly procedure. To

be consistent, the position and velocity of all other particles are predicted to high order

before reinitializing as well.

After polynomial reinitialization, the particle(s) must also be removed completely from

the tree and replaced so that the derivatives of the moments of the ancestors are changed

to reect the new position, velocity, and force terms of the a�ected particles. A special

stream-lined version of the repair algorithm was written to handle this case. It may

also be necessary to update the time-step list, so special routines were written to handle

insertions and deletions from the TSL cleanly. In the case of mergers, one of the two

particles (the choice is arbitrary) is removed completely from memory, so data pointers

must also be revised. Note that a particle may collide with a ghost, in which case the

\real" counterpart of the ghost must be updated in the manner just described, since,

logically, that particle must simultaneously be in collision with a ghost of the former

particle.

38

Discontinuity events generally happen infrequently, so that the extra work is negligible

over the course of a run. In certain situations, however, reinitializations can become

signi�cant. Note that high-order polynomial initialization is unnecessary when using a

Hermite integrator (Makino & Aarseth 1992), which is a strong argument for its adoption.

See x6.4.3 for further discussion.

39

Chapter 4

Performance Tests

The purpose of box tree is to provide a fast N -body gravitational simulator for attened

systems that scales like O(N logN) without introducing large error. The attainment of

that goal is assessed in this chapter. It should be noted (as pointed out in the Introduc-

tion) that box tree has undergone considerable evolution since it was �rst used in \real"

simulations. In particular, the latest version of box tree is about twice as fast (1:9�) as

the version used in the original 2D timing tests presented in x4.1. The Appendix describes

a test suite of initial conditions and parameter �les that have been developed speci�cally

for performing many of the checks described here.

4.1 Timing Tests

4.1.1 Two-dimensional Trees

The �rst timing tests of box treewere performed on typical planetesimal simulations that

use 2D trees (x5.2), varying the opening angle parameter �

C

between 0 and 1 (inclusive)

in increments of 0.1 rad. Figure 4.1 shows the CPU time as a function of the number of

(central) particles N used in each simulation (total number for force calculations = 9N),

for each value of �

C

. Also shown (dashed line) is the time taken for the direct force when

used in place of the tree force. The central particle number was varied between 25 and

250 in increments of 25. Each run was carried out for only one orbit (1 yr) on a Sparc IPX

to allow evaluation of all cases in a reasonable time. Note that the same random seed was

used for each N (10 in all), which is why kinks in the lines|caused, for example, by the

presence or absence of collisions in a particular run|tend to line up vertically. Figure 4.2

shows the result of dividing the CPU time by the number of time-steps actually taken

during each run. Notice that the direct force case is a straight line, as would be expected

in the O(N

2

) limit. The �

C

= 0 case is also a straight line, since no expansions are

performed, but the line is much steeper due to the overhead of searching the tree. The

tree force curves for �

C

> 0:1 are much shallower than the direct force case, showing that

the tree method becomes more and more advantageous as the particle number increases,

consistent with an O(N logN) algorithm. For the �

C

= 0:6 case with N = 250, the

tree method is approximately 7 times more e�cient than the direct method. It should

be noted that the direct force calculation does not incorporate any special time-saving

mechanisms such as a neighbour scheme or fast square root (cf. ALP). However, a further

test revealed that box tree was still approximately 50% faster (in CPU/step) than the

ALP method for N � 100 and �

C

= 0:6 at the time of these tests, and 2{3 times faster

for N = 250.

A timing test with fewer particle cases (N between 20 and 100 in increments of 20)

40

Figure 4.1: CPU time per run for 10 values of �

C

(0 � �

C

� 1) and for 10 values of N

(25 � N � 250). Also shown is the direct force case (dashed line). Initial conditions were

identical for each N . Runs were performed on a Sparc IPX using optimized box tree

code. Each run was carried out for one orbit (1 yr). Note that all overheads, including

particle and tree initialization, are included in the run time.

41

Figure 4.2: CPU time per integration step for the runs shown in Fig. 4.1. Note that the

direct force case gives a straight line, as expected for an O(N

2

) algorithm. For reasonable

values of �

C

, the lines become virtually at, indicating that the CPU time per step is

almost independent of N . This is consistent with an O(N logN) algorithm. Recall that

all overheads are included in the CPU time, so the CPU/step values shown here are

slightly larger than the true values.

42

Figure 4.3: Two King models colliding from in�nity. Evolution proceeds from left to right

in steps of 1 time unit. The two systems collide and pass through each other in the �rst

few frames. The nuclei ultimately merge into one system.

but a longer integration time of 10 orbits was performed for comparison with the shorter

runs. The CPU time for each N increased by a factor of 10, but the CPU per step

was unchanged. This can be explained by the fact that the equilibrium timescale for the

system is much longer than 10 years (see ALP), so that no signi�cant dynamical evolution

took place over the run. Again, the tree force was found to be much faster than the direct

force, with roughly the same performance ratio for each �

C

.

4.1.2 Three-dimensional Trees

A recent large (N = 4096) run was performed to compare box treewith NBODY2 (Aarseth

1994) for a 3D problem. The initial conditions were the same as those used in Barnes &

Hut (1989): two unit-mass King models on a head-on collision from in�nity. Softening was

set to 0.025 for all particles. Figure 4.3 shows snapshots of the evolution of the system.

Both runs were performed on a Sparc 10, NBODY2 requiring 9.0 and box tree 8.1 CPU hrs

with comparable integration parameters to evolve the system for 6 time units. Due to the

nature of other comparisons being made at the time, a large value of �

C

(0.7) was used in

the box tree run, and a minimum time-step of 1=256 was introduced. As a consequence,

the root-mean-square deviation in total energy for the box tree run was much greater

than that of NBODY2, namely 0.3% compared to � 0:01% (see x4.4.3). However, for a short

simulation, an energy error of a few tenths of a percent is tolerable. To achieve better

accuracy, a smaller value of � would be required and the minimum time-step restriction

would need to be removed, presumably making the run time comparable or even greater

than that of NBODY2. This demonstrates that the simulation geometry plays an important

role in tree code performance: attened systems are better suited to tree codes (for a

given value of N), especially when a 2D tree can be employed successfully. Nevertheless,

box tree does perform quite well even for di�cult models such as this collision between

two spherical systems. Discussion of how box tree was adapted to handle collisionless

simulations in an inertial frame can be found in Chapter 6 and the Appendix.

4.2 Performance Pro�le

A performance pro�le of box tree was obtained using the gprof utility available with

SunOS 4.1.3. The pro�ler gives a detailed analysis of program ow, and, most important,

a breakdown of CPU usage by function. The 11 most expensive functions (those that

required more than 1% of the total CPU time) are shown in Table 4.1 for a planetesimal

run lasting 100 yr (just under 3:7�10

6

time-steps in � 188 CPU min on a Sparc 10). The

times shown are for the functions themselves, not their children. Note that capitalized

box tree functions are global to the entire code. Also, mcount() is actually the main

routine of gprof itself, and would not be present in an optimized version of box tree.

The table shows that the most time was spent calculating the multipole expansion during

43

Table 4.1: Pro�le of top 11 CPU-intensive box tree functions.

Function % CPU Time (sec) No. Calls

add_node_multipole_force() 28.1 3144.82 290531528

add_tree_force() 26.6 2984.83 33290226

sqrt() 10.6 1190.86 not avail

add_direct_force() 7.4 833.95 123329034

mcount() 7.1 792.85 not avail

initialize() 3.7 417.22 3698914

add_to_quadrupole() 2.3 252.64 11629302

Integrate() 1.9 216.48 1

pred_leaf_mono() 1.6 180.73 17700970

UpdateMonopole() 1.4 155.96 7884131

CheckForCp1() 1.1 120.16 78376707

Table 4.2: Some important macros used in box tree.

Macro Purpose

ZERO(v) Zeroes vector (v = 0)

COPY(v1, v2) Copies vector (v

2

= v

1

)

ADD(v1, v2, v) Adds vectors (v = v

1

+ v

2

)

SUB(v1, v2, v) Subtracts vectors (v = v

1

� v

2

)

CROSS(v1, v2, v) Calculates cross product (v = v

1

�v

2

)

PREDICT_POS_LO() Predicts particle position to low order

PREDICT_VEL_LO() Predicts particle velocity to low order

PREDICT_COM_POS() Predicts node centre-of-mass position

PREDICT_Q_MOM() Predicts node quadrupole moment

CALC_R2_DATA() Calculates distance and relative position

the pro�le run, but note that there were more than twice as many expansions as direct

force calculations. The next most expensive box tree routine was add_tree_force()

itself, which decides whether to use a multipole expansion or direct summation for each

node. The system square root function was the third most expensive routine, suggesting

that a fast square root algorithm would bene�t the code. Notice that less than 2% of the

CPU time was spent inside the main integration routine itself between calls to the other

functions. Further note that functions directly involving tree repair and extended node

checks do not appear on the list as they took less than 1% of the total CPU time.

The latest version of box treemakes use of preprocessor macros to code simple but key

functions in-line at compile time. For the purposes of discussion, a macro is considered dis-

tinct from a preprocessor \de�ne" directive if it represents an entire code fragment, rather

than a simple expression (hence the use of the macros.h header �le | see Appendix).

Many of the macros in box tree perform 3-vector operations, such as dot products and

cross products. Others are used for fast (low order) predictions. Use of macros generally

saves CPU time (by eliminating repeated function calls and loop variables for example)

but results in a larger executable, since every occurrence of a macro must be replaced by

the corresponding code fragment. Table 4.2 lists the most important in-line macros used

in box tree. These are all global, with the exception of CALC_R2_DATA() which is used

only in the force routines. Note that macro names are all in capitals, to distinguish them

from other function names. Many more macros could be added, but only at the risk of

44

reducing code readability. It is felt that the current set is the most e�cient choice. Note

that these macros are \hidden" when pro�ling: they do not appear explicitly in Table 4.1

since they have been replaced by actual code in the executable at compile time. Macros

are described in greater detail in the Appendix.

4.3 Force Accuracy

There are a number of factors that contribute to di�erences between the force calculated

using the tree method and that using the direct method. First and foremost is the intrinsic

error in the multipole approximation, which is a function of the expansion order, the choice

of �

C

, and the geometry. Next is the accuracy loss that results from using predicted

moments and stretchable nodes rather than updating the tree every time-step. Finally

there is the intrinsic error in these predictions, which is a function of the monopole and

quadrupole time-steps, and the maximum order of the derivatives used for the predictions.

The absolute error between the two methods is de�ned by:

error �

jF

M

�F

D

j

F

D

: (4.1)

In the case of a �

C

= 0:6 expansion to quadrupole order for two equal-mass particles

with perfectly determined positions, the largest possible error is � 24% (� 58% for the

monopole alone). This is the error obtained when the two particles are at opposite corners

of their (3D) box, with the test point located a distance s=�

C

from the centre of mass

along the diagonal joining the two particles. The average error over all possible two-

particle con�gurations is much smaller, less than 0.2%. Figure 4.4 shows the average and

maximum errors that result from using �nite-order multipole expansions over a unit box

seen from distances of 1, 2, and 5 units (�

C

= 1.0, 0.5, 0.2) along the diagonal. Between

2 and 1024 particles (in powers of 2) were placed randomly inside the box, and the

total monopole, quadrupole, and octupole contributions were calculated explicitly (the

expansion was performed over the entire box: particles were not divided into sub-boxes).

The average and maximum errors were computed from 10 000 con�gurations for each

choice of N . The �gures show that the errors increase by almost two orders of magnitude

between �

C

= 0:2 and �

C

= 1:0. As expected, the octupole is always better than or as

good as the quadrupole, which is always better than or as good as the monopole (the

apparent oscillation at small particle number is a spurious artifact of the natural spline

�tting routine). Note, however, that the largest di�erences occur for moderate values

of N ; as N increases, there is less and less advantage to using higher orders. Also note

that the improvement gained by using the octupole over the quadrupole is far less than

that gained by using the quadrupole over the monopole. Hence, the optimal expansion is

probably monopole plus quadrupole, with an expected average error of less than �

1

2

%

(maximum error of order 10{20%) for reasonable values of �

C

(0:375

<

�

�

C

<

�

0:625 in a

2D tree, 0:35

<

�

�

C

<

�

0:55 in 3D) and for systems that have a fairly uniform particle

distribution. Recall that this expected error is for a static con�guration; in the dynamic

case the errors will generally be larger.

There are provisions in box tree to perform some fairly extensive force checking by

comparing multipole expansions with their direct sum equivalents. As a result of these

tests it was discovered that it is possible for the quadrupole (or the octupole even) to make

the force approximation worse in some cases. Experimentation with this led to Fig. 4.5,

which shows that for the N = 3 case there exists a particle con�guration whose monopole

contribution is a better approximation of the force than the quadrupole for certain ranges

in position angle of the test point. In this example the system is con�ned to a plane and

45

Figure 4.4: Average and maximum force errors [cf. equation (4.1)] that result from termi-

nating multipole expansions at the monopole (solid line), quadrupole (dotted line), and

octupole (dashed line) terms. Graphs are shown for three values of �

C

(0.2, 0.5, and

1.0) taken along the diagonal of a box packed with 2

m

particles, where m runs from 1

to 10. In general, both average and maximum errors increase with �

C

and decrease with

N . Maximum errors are typically an order of magnitude larger than the average errors.

Di�erences between the expansion orders increase initially but converge with larger N .

Also, these di�erences are more marked for the smaller values of �

C

.

46

Figure 4.5: Illustration that the quadrupole approximation can sometimes be worse than

the monopole. The diagram on the left shows three particles (solid black dots) in a

symmetric planar con�guration at the edges of a box. The centre of mass is marked

by the shaded dot. The outer circle is the locus of points at which the box subtends

an angle of 0.5 rad (i.e. 2 box lengths from the centre of mass). The shaded triangular

wedges indicate the regions on the outer circle where the quadrupole approximation is

worse than the monopole. The graph at the right shows the actual percentage errors in

the force as a function of position angle. The solid line is the absolute monopole error

(average 7.4%), and the dashed line is the absolute quadrupole error (average 4.7%).

the opening angle is �xed at 0.5. Unfortunately, it is not feasible to predict in advance

which con�gurations are likely to do worse with the quadrupole. However, as seen in

Fig. 4.4, the quadrupole contribution always does better on average.

It should be noted that because boundary conditions are applied to predicted node

positions (x3.4.2), some care needs to be exercised when comparing the tree force to the

direct force. The problem is that when a node's predicted position lies outside the box

system, all of its leaves are moved to the other side of the system, regardless of whether or

not the leaves themselves are predicted to cross the boundary. In the direct force routine,

however, only individual particles are subject to boundary conditions, since there is no

concept of a collective cell. Hence apparent force errors may result simply because some

particles have been wrapped in the �rst case, but not in the second. The solution is always

to use the tree code when testing force routines, but to replace multipole expansions with

a direct summation over the leaves without applying boundary conditions to the children.

Naturally this makes the force testing routine much slower, but it ensures that the test

is valid. Note that this \direct tree" method was not used in the timing tests discussed

above (x4.1), where these kinds of force discrepancies were immaterial.

In order to improve on predictions, either the number of terms in the prediction

polynomial must be increased or the size of the update time-steps must be decreased.

Since it is easier to adjust time-steps than to add or remove prediction terms, several runs

were performed to determine the optimal values of the multipole time-step coe�cients [�

M

and �

Q

in equations (3.3) & (3.4)] that minimize both force errors and CPU expense. The

values of �

M

and �

Q

were independently varied in powers of 10 between 10

0

and 10

�7

for

two cases, one with N = 50 for 5 years, and the other with N = 100 for 1 year. From these

tests and earlier runs, �

M

and �

Q

have been chosen as 0.001 and 0.01, respectively. These

values tend to result in a roughly equal number of monopole and quadrupole updates per

unit time (about 10

5

in the �rst test case and 4 � 10

4

in the second).

47

A box tree run with the usual planetesimal initial conditions (x5.2) was performed in

order to illustrate these various aspects of the code accuracy. The run was carried out for

100 particles over 100 yr and required roughly 2 CPU days to complete because of the force

checking. The average absolute error (i.e. equation (4.1) averaged over every expansion

for each integration step of the entire run) was 0.176% and the maximum error was 18.0%.

In only 268 instances did force errors occur above the 10% level, out of a total of 4:7�10

6

time-steps. Of these 268, only 44 were unique to a particular particle at a particular

time, since particles tend to stay within expansion range of any given node for several

time-steps. Approximately 130 � 10

6

direct force calculations and 370 � 10

6

multipole

expansions were performed during the run. There were 6:3 � 10

6

monopole updates and

4:8 � 10

6

quadrupole updates. The total z angular momentum of the particles|with

the boundary corrections applied (cf. x4.4.2)|remained within 1:5 � 10

�6

of its starting

value, staying above and below in roughly equal amounts. In all there were 14 collisions,

of which 8 resulted in mergers. Both the average and maximum absolute errors agree well

with Fig. 4.4, and the number of collisions is reasonable given that roughly 30 �rst-time

collisions would be expected to occur by the time dynamical equilibrium is established in

the system [cf. equation (8-123) in Binney & Tremaine 1987].

4.4 Constants of Motion

The linear momentum, angular momentum, and total energy of an isolated system of

particles are all constants of motion if the only forces acting on the particles are those

arising from mutual gravitational attraction. Consequently, conservation of these quanti-

ties can be used as a check on the accuracy of the integration. Unfortunately, such checks

are di�cult to apply in bounded and/or non-inertial systems since boundary conditions

introduce discontinuities and the usual conservation laws do not necessarily hold in ac-

celerated frames. Particle collisions also introduce various discontinuities. However, it is

possible in many instances to make allowances for such di�culties, as will be shown in

the following section.

4.4.1 Linear Momentum Conservation

Conservation of linear momentum is equivalent to conservation of centre-of-mass velocity

in an inertial frame. The centre-of-mass position r

g

and velocity v

g

, and the deviation

from their initial values, are calculated as part of the regular box tree output routines.

For most simulations the initial value of v

g

is arranged to be zero to simplify analysis. In

a system with periodic boundary conditions, the following correction must be applied to

r

g

and v

g

following a boundary crossing:

r

0

g

= r

g

� (m

i

=M)r

b

;

v

0

g

= v

g

� (m

i

=M)v

b

;

where m

i

is the mass of the particle crossing the boundary, M is the total mass of all

(central) particles in the system, and r

b

and v

b

are the position and velocity, respectively,

of the neighbouring box that the particle is entering. In the case of shearing boxes in the

rotating frame, equation (2.8) can be used to determine the box position and velocity.

In an inertial frame, the box positions are �xed (e.g. set t = 0 in the transformation

equation). It should be noted that boundary crossings are detected after they occur,

just as collisions are detected after the actual impact (x3.5.3). Unlike in the collision

48

case however, there is no need to adjust the position or velocity to correct for the slight

overlap, since a ghost particle will temporarily �ll the gap in the central box.

Note that in the shearing model, if a particle crosses a boundary in the�x-direction, v

g

will take on a non-zero value, so that a systematic motion of the centre-of-mass position

will develop. This is because the particle's y-velocity changes sign as the particle is

translated from one side of the box to the other. This problem can be eliminated by using

the centre-of-mass velocity with respect to the local shear, that is, by subtracting �

3

2

x

i

from the y-component of the velocity of each particle when calculating v

g

. A typical

box tree run with WT-type initial conditions (x5.3) generally conserves this adjusted

centre-of-mass velocity to within � 10

�2

s (a few percent) with interparticle gravity

included in the simulation, and � 10

�6

s without, where, as usual, s is the box size.

4.4.2 Angular Momentum Conservation

The total z angular momentum (TZAM) is monitored by box tree in both the inertial

and non-inertial (rotating) case. Fortunately, the TZAM in the rotating frame di�ers

from the true TZAM as seen in the inertial frame only by a multiplicative and an additive

constant. To see this, note that the z angular momentum, with respect to the inertial

frame, of a particle with coordinates (x; y; z) and z-spin !

z

in the rotating frame is given

by:

L

z

= m

�

X

_

Y �

_

XY

�

+ I

Z

;

where to �rst order X = a + x, Y = y,

_

X = _x,

_

Y =
(a + x) + _y, and

Z

=
 + !

z

in

the notation of x2.1.1. If a� x; y and _x is small, then:

L

z

= ma (_y + 2
x) + I!

z

+m
a

2

+ I
:

Since a and
 are constants, it is su�cient to call `

i

z

= m

i

(_y

i

+ 2
x

i

) + I

i

!

z;i

the z

angular momentum of particle i. In the case of periodic boundary conditions, the following

correction must be made after each boundary crossing to keep the TZAM `

z

=

P

N

i

`

i

z

constant:

`

0

z

= `

z

+

1

2

m

i

i

x

s;

where i

x

s is the x-o�set of the ghost box that the particle is entering [cf. equation (2.8)].

Note that with this linearized formulation of the TZAM, crossings in the �y-direction

can be ignored. Also, the spin component is not a�ected by a boundary crossing. In the

notation of the previous section:

`

0

z

= `

z

+m

i

(v

b;y

+ 2
r

b;x

) : (4.2)

In the non-shearing case, the correction is given by:

`

0

z

= `

z

+m

i

(r

b

�v

i

)

z

; (4.3)

where v

i

is the velocity vector of the particle.

TZAM conservation is also a�ected by particle collisions. The position and velocity

o�sets described in x3.5.3 and x3.5.4 change the angular momenta of the colliders, but

since the exact adjustments are known, corrections similar to those just presented can be

applied to the TZAM to compensate. For example, in the rotating frame:

`

0

z

= `

z

+m

1

(�v

1

+ 2�r

1

) +m

2

(�v

2

+ 2�r

2

) :

49

There is a similar expression for the inertial frame. Note that no correction is necessary

following a merger since the relative angular momentum of the colliders is transferred to

the spin of the new particle (x3.5.7).

A typical WT-type simulation conserves TZAM to within 10

�6

M , where M is the

total mass of the system.

4.4.3 Total Energy Conservation

The total energy of a particle is de�ned as the sum of its kinetic energy (which may

include rotational energy) and its gravitational potential energy. Due to the approximate

nature of the linearized equations of motion [cf. equation (2.7)] and the presence of ghosts

particles, the total energy is not used as a check in the box model. For a system without

ghosts in an inertial frame, it is found that the root-mean-square (RMS) deviation of the

total energy generally scales inversely as the time-step coe�cient � (x3.5.1) to the fourth

power, as expected for a fourth-order integrator. The TZAM and linear momentum

conservation are similarly controlled by �.

Boundary crossings and corrections for particle collisions also introduce discontinuities

in the total energy. In addition, there are losses in kinetic energy following inelastic

bounces [cf. equation (3.18)] and merger events. Changes to the kinetic energy can be

accounted for by using expressions similar to those presented in the previous section, since

the change in velocity is known precisely. However, discontinuities in the gravitational

potential energy V that result from a position change can only be corrected in practical

fashion by calculating V both before and after the discontinuity event. This is expensive

and only approximate because particle positions must be predicted to the current time

for such calculations. These calculations are required, however, in order to perform the

collision velocity adjustments described in x3.5.4 in the unbounded inertial frame.

Typical conservation accuracies for the total energy are presented for some inertial

systems in the Appendix.

50

Chapter 5

Simulations

To date, box tree has been used to study two major areas of planetesimal dynamics:

the intermediate stage of early planet formation, and the present-day evolution of plane-

tary rings. Results from these simulations are presented in this chapter. Application of

box tree to other areas of study is discussed in Chapter 6.

5.1 Units

To simplify discussion, the system of units used in box tree for planetesimal simulations

will be outlined �rst. Further details can be found in the Appendix.

In order to eliminate inconveniently sized numbers and redundant multiplications,

box tree implicitly assumes|in the notation of Chapter 2|that a = 1,
 = 1, and

GM = 1. For the early planetesimal simulations (x5.2), the length unit is one astronomical

unit (1 AU ' 1:5� 10

11

m), the mass unit is one solar mass (M

�

' 2� 10

30

kg), and the

time unit is one sidereal year (1 yr ' 3:2�10

7

s). For the simulations of Saturn's rings in

x5.3, the length unit is the orbital radius of the centre of Saturn's B ring (R

B

� 10

8

m),

the mass unit is the mass of Saturn (M

S

' 5:7� 10

26

kg), and the time unit is the orbital

period at R

B

(T

B

� 3� 10

4

s). Speeds are measured in units of the orbital velocity (i.e.

� 30 km/s at 1 AU from the Sun, � 19 km/s at 1 R

B

from Saturn). Some quantities

have been converted back to familiar units for presentation.

5.2 Early Planetesimals

Much of the work presented in this section follows on from earlier studies by PLA and

ALP. Their work concentrates on the third stage of terrestrial planet formation, namely

the coagulation of planetesimals into protoplanets (Safronov 1969; etc.). Simulations of

this evolutionary stage require large dynamic range, high spatial resolution, and a long

time base, and are therefore well suited to treatment by box tree.

5.2.1 Initial Conditions

There are several constraints on the choice of initial conditions for early planetesimal

simulations. First, the number N and mass m

p

of the planetesimals must be consistent

with estimates of the total planet-forming mass M

t

in the early solar system. ALP took

M

t

' 5M

�

inside 1 AU, whereM

�

' 3�10

�6

M

�

is the mass of the Earth. Second, the box

size s must be chosen small enough so that the linearized equations of the box model [cf.

equation (2.7)] remain valid, but large enough so that a reasonable number of particles

51

(a few hundred or more) can be accommodated in order to satisfy the self-similarity

criterion. In particular, if the regime of interest is at a = 1 AU in the planetesimal disk,

then it is required that s � 1 and s � R

p

, where R

p

is the planetesimal radius (more

properly, s� R

R

, where R

R

is the Roche or Hill sphere radius of a planetesimal given by

R

R

= (m

p

=3M

�

)

1=3

a). Finally, s must be greater than the epicyclic frequency � = 2�=
,

where � is the velocity dispersion, to ensure a small radial mean free path.

For the models that follow, initial velocity dispersions appropriate for a \warm start"

were chosen. Particle positions in x and y were determined randomly and particle veloci-

ties were set to the appropriate dispersion multiplied by a Gaussian deviate. If required,

positions and velocities in z were obtained by randomly choosing a maximum distance

above the midplane equal to the initial z velocity dispersion times a Gaussian deviate and

randomly choosing a phase between 0 and 2� for the subsequent harmonic motion [cf.

equation (2.7)]. Initial bound pairs were rejected if the semi-major axis was smaller than

one Roche radius.

5.2.2 Long Integration (ALP Model)

As a test of box tree the initial conditions of model Z2 in ALP were chosen for a long

integration of 10 000 years. In this simulation,N = 100 (central particles),m

p

= 8�10

�11

,

and � = 1:4 g/cm

3

(so R

p

' 2 � 10

�6

). Hence this simulation represents a system of

M

t

=m

p

� 2 � 10

5

early planetesimals. The box size s was 0:04 (half-width of 66 Roche

radii) and the initial velocity dispersions were �

x

= 3 � 10

�4

, �

y

= �

z

= �

x

=2 (so the

initial epicyclic amplitude � � s). The radial coe�cient of restitution was 0.5. Fig. 4

of ALP shows the velocity dispersion evolution of the planetesimals over 10 000 years:

the system heats up rapidly in the �rst few hundred years and then gradually begins to

approach an equilibrium between collisional dissipation and gravitational excitation after

several thousand years. Throughout the run, �

x

always remains roughly twice as large in

magnitude as �

y

and �

z

. This behaviour was found to be in agreement with analytical

calculations performed by PLA.

Figure 5.1 shows the velocity dispersion evolution as calculated by box tree over the

same interval. The graphs are qualitatively identical, if di�erences in initial positions and

velocities (owing to a di�erent set of random values) are allowed for. The opening angle

�

C

was 0.6 and the monopole and quadrupole time-step coe�cients were 0.001 and 0.01

respectively (cf. x4.3). Fluctuations in �

x

and �

y

are at the � 100N

�1=2

% level and may

therefore be attributed to random noise (note that this noise increases with time since the

particle number decreases as a result of mergers). There is a systematic oscillation (period

� 50{100 yr) in �

z

present in both graphs, but the higher sampling rate makes the e�ect

much more visible in Fig. 5.1. This phenomenon is explained in detail in x5.2.4. Collision

statistics for the box tree run are shown in Fig. 5.2 and should be compared with Fig. 9

of ALP. Fewer collisions (and therefore fewer mergers) occurred in the box tree run, but

variations up to a factor of 2 in the collision rate can be attributed to di�erences in the

initial conditions. Hence the box tree and ALP runs are essentially in agreement.

A check of the self-similarity assumption made in the box method was also performed

in the same manner as in ALP. Two runs with equal surface density but di�erent particle

number were performed and the subsequent evolutions compared. Figure 5.3 shows the

growth in �

x

over 100 yr for (1) N = 200, s = 0:04 (solid line); and (2) N = 50, s = 0:02

(dashed line). Both systems evolve to �

x

� 0:0018 over the course of the run, even though

the noise in the N = 50 case is greater due to the smaller particle number. The latter

case also has a slightly higher fractional collision/merger rate, but again this may be

attributable to di�erences in initial conditions. Hence box tree obeys the self-similarity

52

Figure 5.1: Velocity dispersion evolution over 10 000 yr for a typical early planetesimal

simulation (here N = 100). The solid line follows the radial component �

x

; the dotted

and dashed lines trace �

y

and �

z

, respectively. The system undergoes rapid heating in the

�rst few hundred years, then slowly climbs towards equilibrium. The periodic oscillation

in �

z

is explained in x5.2.4. Otherwise uctuations are mostly random in nature.

53

Figure 5.2: Collision statistics for the system described in Fig. 5.1. The solid line shows

the number of particles as a function of time; the dotted line shows the total number

of collisions; and the dashed line shows the total number of \�rst-time" collisions, that

is, the number of collisions with repeated bounces between the same particles over an

unbroken interval removed. The graph shows that most encounters lead to a merger after

one or two collisions.

54

Figure 5.3: Velocity dispersion in x over 100 yr for two systems of particles in 3D: (1)

200 particles in a box of width 0.04 (solid line); and (2) 50 particles in a box of width

0.02 (dashed line). The systems should behave similarly since they have identical surface

densities. This is con�rmed by the fact that the velocity dispersions in both systems

follow the same general trend, with deviations in the N = 50 case being larger due to the

N

�1=2

statistics.

55

Figure 5.4: Collision statistics for an early planetesimal system of 10 000 particles in

2D. There were roughly 20 000 collisions in total (dotted line). The particle number

(solid line) drops o� roughly as t

�3=2

over the interval shown. The number of �rst-time

collisions (dashed line) mirrors the particle number, implying that most initial encounters

ultimately result in mergers.

criterion, at least within the current regime of interest.

5.2.3 Large N Model

Since the value of N in the long integration described in the previous section was relatively

small, box tree only o�ered a modest gain over traditional direct integration methods.

To take advantage of box tree then, a model with N = 10 000 was devised. To speed up

the evolution, however, the run was restricted to 2D (see ALP for a justi�cation of using

2D simulations to model 3D). For the large N model, the initial planetesimal mass was

m

p

= 3 � 10

�15

, so the system represents 5 � 10

9

planetesimals. The box size was set to

s = 0:008 and the initial velocity dispersions were �

x

= 1 � 10

�5

and �

y

= 5 � 10

�6

. A

transverse coe�cient of restitution of 0.5 was introduced for this run. The tree parameters

were the same as those used in the previous section. The run was carried out for � 240 yr,

at which point N had been reduced to just under 200 particles.

Figure 5.4 shows the collision statistics for the run. The number of particles drops

smoothly from the initial 10 000, and asymptotically approaches zero. The number of �rst-

time collisions closely mirrors this behaviour, indicating that most initial encounters result

in mergers. The particle number as a function of time can be modelled approximately by

56

Figure 5.5: Mass spectrum evolution of the system described in Fig. 5.4. The starting

mass is 3 � 10

�15

. From the graphs, there is no evidence of runaway accretion, although

the evolution is rapid (note the change in scale between graphs).

a function of the form:

N(t) =

N

0

k

t

3=2

+ k

; (5.1)

where N

0

and k are constants (N

0

= N(0) = 10 000, k � 75). This function falls o� faster

than an exponential over the time interval shown. From equation (5.1), the merger rate

goes roughly as dN=dt / �t

�5=2

.

Figure 5.5 shows histograms of the mass spectrum at t = 15, 50, 100, and 240 yr.

Recall that all particles start with equal mass, so as t increases the m = 3 � 10

�15

bin

is depleted, and bins at integer multiples of the starting mass are populated. The model

exhibits runaway accretion in the sense that the largest particles tend to grow fastest,

stretching the mass spectrum out to the high-mass end. At the end of the simulation,

the largest mass has grown by 750 times. Note, however, that the largest population still

consists of the smallest particles.

Figure 5.6 shows the spin evolution at four time intervals. Recall that since the model

is restricted to 2D, only spins directed about the z-axis develop. There is no evidence

for preference of either clockwise or anti-clockwise rotation. By time t = 240 yr, only

57

Figure 5.6: Spin evolution of the N = 10 000 planetesimal system. The dotted lines

denoted the classical maximum spin rate before break-up. There is no apparent preference

for clockwise or anti-clockwise spin.

58

Figure 5.7: Spin-velocity phase space of the N = 10 000 planetesimal system. The tri-

angular symbols are proportional to the particle mass. Equipartition of energy begins to

develop near the end of the run.

a handful of particles have zero spin, though many more have not merged. Therefore,

there are particles in the simulation that have gained spins only through the mechanism

of glancing dissipative collisions. Indeed, the particles with spins j!

z

j > 10

4

are unmerged

particles. The dotted line shows the classical maximum spin rate (both positive and

negative) before a uniform solid body breaks apart. The maximum spin is a function of

density only and is given by j!

max

j ' (

4

3

��G)

1=2

, in unscaled units. Not many particles

cross this boundary, and those that do tend to have small mass. Nevertheless, an allowance

for fragmentation that takes spin into account would probably improve the model (x6.4.1).

The last �gure in this section (Fig. 5.7) shows the spin-velocity phase space at the

same four time intervals. The size of the triangular symbols is proportional to the particle

mass, emphasizing the late development of the largest masses. The velocity is taken with

respect to the local shearing motion. The �gure illustrates that the system develops a

rough equipartition of energy, with the largest masses having the smallest velocities and

spins.

59

5.2.4 Vertical Oscillations

The apparent oscillation in the z velocity dispersion seen in Fig. 5.1 is due to a sampling

e�ect. For the purpose of analysis and plotting, it has always been convenient to record

simulation data in yearly intervals. Unfortunately, planetesimals in a disk at 1 AU have a

fundamental oscillation period of T = 1 yr. This can be illustrated easily with plots similar

to Fig. 5.1 by choosing a sampling interval that is smaller than 1 yr. Such plots exhibit

large half-yearly oscillations roughly centred on the relatively smooth curves obtained with

1 yr sample intervals. The period of these oscillations is 0.5 yr because the dispersion is the

square root of a quadrature sum of 1 yr sinusoids (see below), introducing a factor of 0.5.

Physically, these fundamental oscillations arise from the linearized equations of motion

[cf. equation (2.7)]. In the absence of interparticle gravity, these equations have solutions

containing periodic terms with angular frequency
 (see WT). Indeed, the equation for �z

describes a simple harmonic oscillator with such a frequency.

When interparticle gravity is included, the oscillation frequency can di�er slightly from

. Consider the case of the z coordinate. For any particle i, the equation of motion in z

is given by:

�z

i

= (F

i

)

z

�

2

z

i

;

where

(F

i

)

z

=

N

X

j 6=i

m

j

(z

j

� z

i

)

jr

ij

j

3

:

To simplify the argument, assume m

j

= m and replace jr

ij

j with an average distance,

denoted by

�

d. This value tends to increase with time. Further assume that

P

j

z

j

� 0,

appropriate for a random (Gaussian) distribution in z. Then, dropping the i subscript:

F

z

' �

Nm

�

d

3

z:

Thus

�z ' �

�

2

+

Nm

�

d

3

�

z;

which for
 = 1 describes a simple harmonic oscillator with period

T

new

=

�

1 +

Nm

�

d

3

�

�

1

2

' 1 �

Nm

2

�

d

3

:

For the simulation illustrated in Fig. 5.1, N = 100 and m = 8�10

�11

. If

�

d is set to about

half the initial average distance between planetesimals (viz.

�

d �

1

2

s, where the box size

s = 0:04), then

T

new

' 1� 0:004 � T + �T:

Note that �T � 1, justifying the expansion to �rst order of the inverse square root. The

new oscillation period is smaller than the fundamental period, as expected for an overall

gravitational enhancement.

Since the sampling shown in Fig. 5.1 has an interval of exactly T , a spurious oscillation

of period T=�T � T results (T=2�T on the dispersion graph). To prove this, consider a

sinusoid of the form:

y = sin

2

4

2�

T

1 +

�T

T

!

�1

x

3

5

:

60

If �T � T ,

y ' sin

"

2�

T

1�

�T

T

!

x

#

;

= sin

2�x

T

�

2��Tx

T

2

!

;

= sin

2�x

T

cos

2��Tx

T

2

+ cos

2�x

T

sin

2��Tx

T

2

:

Now if x = nT , where n is a positive integer,

y ' sin 2�

�T

T

n;

which is a sinusoid of period � T=�T . Hence in the case worked out above, a spurious

signal in �

z

with period � 100 yr would be expected as a result of the choice of sampling

frequency. This period would increase with time as the mean planetesimal separation

increases, to as much as � 200 yr in the present case, in rough agreement with the plot

shown in Fig. 5.1. Spurious oscillations are not seen in �

x

or �

y

, most likely because inter-

particle gravity is more evenly balanced parallel to the orbital plane than perpendicular

to it, especially in the presence of surrounding ghost particles.

It should be noted that the amplitude of the oscillations (both the fundamental os-

cillation and its spurious counterpart) have been found to decrease with increasing N .

This is due to the fact that the randomness of the planetesimal distribution improves as

more particles are added to the system. Ideally, the velocity dispersions should initially

be free of all systematic oscillations resulting from the 1 yr period, regardless of whether

or not interparticle gravity is included, since a purely random distribution should give un-

correlated positions and velocities. Individual particles will exhibit the oscillations, but

there should be no net periodicity (see below however). Whether or not some degree of

coherence can develop later in the simulations due to some other mechanism has not been

investigated, but it is felt that the sampling phenomenon adequately describes systematic

oscillations seen to date. In any case, it would be di�cult to distinguish between true

long-period oscillations and the spurious oscillation without an improved description of

the quasi-periodicity introduced by particle perturbations.

The existence, at least initially, of a net 1 yr oscillation in the velocity dispersions

may be explained by considering the solution for z in the equations of motion for the case

of no interparticle forces. The solution in z is a simple harmonic oscillator which can be

written in the form:

z = � cos(
t� �)

where � and � are constants of integration. Note that time is being measured in units of

2�. Di�erentiating,

_z = ��
sin(
t� �):

Assuming equal masses for simplicity, the velocity dispersion in z is given by the super-

position of N harmonic oscillators:

�

2

z

=

1

N

X

j

_z

j

2

;

=

1

N

X

j

�

2

j

2

sin

2

(
t� �

j

);

61

where N is the total number of particles. Use the identity:

sin

2

x =

1

2

(1� cos 2x)

and introduce complex notation to give:

X

j

�

2

j

cos(2
t� 2�

j

) = <

2

6

6

6

6

6

4

0

@

X

j

�

2

j

e

�i2�

j

1

A

| {z }

Ae

i�

e

i2
t

3

7

7

7

7

7

5

;

where

A

2

=

0

@

X

j

�

2

j

cos 2�

j

1

A

2

+

0

@

X

j

�

2

j

sin 2�

j

1

A

2

�

0

@

X

j

�

2

j

1

A

2

;

tan � = �

P

j

�

2

j

sin 2�

j

P

j

�

2

j

cos 2�

j

:

Taking the real part,

�

2

z

=

2

2N

2

4

X

j

�

2

j

�A cos(2
t+ �)

3

5

;

which gives rise to a 0.5 yr oscillation in the dispersion. The magnitude of the initial

oscillation can be minimized by choosing su�ciently large N (a few hundred or more).

For example, if �

j

2 [0; 1), then:

lim

N!1

X

j

�

2

j

=

N

3

;

whereas A ! 0 as N ! 1. This fact is used when choosing initial values of z

j

and _z

j

(see Appendix).

5.3 Planetary Rings

Although the initial aim of box tree was to investigate planetesimal dynamics in the

early solar system, it is possible to apply the code to a di�erent kind of planetesimal

dynamics, namely planetary rings. After all, box tree is based on the box method used

by WT in their study of Saturn's rings. But box tree o�ers several enhancements over

these initial studies, most importantly \true" interparticle gravity and spinning particles.

It was decided, therefore, to return to the planetary ring problem with these new tools in

hand. The remainder of the chapter is devoted to this investigation and the interesting

results derived from it.

5.3.1 Model Parameters

Six models were investigated, the �rst three reproducing the earlier WT results as a check,

and the remainder exploring the new regimes of self-gravity, mass ranges, and particle

spin. An attempt was made to conform as much as possible to the initial conditions

and analysis method used in WT. In particular: box sizes were �xed by the number of

particles and the desired optical depth; initial particle positions were chosen randomly

62

within the box, with a uniform distribution in z up to a preset distance above and below

the plane; particles were placed in pairs symmetrically (mass-weighted in the case of non-

uniform sizes | see x3.3.1) to make the centre of mass coincide with the origin; particle

velocities were chosen randomly in each coordinate with a uniform distribution up to

 times the maximum particle radius, with the velocity of the last particle (the largest

particle in the case of a mass distribution) being set so that the centre-of-mass velocity

was zero. Initial disk thicknesses varied for the models, initially ten particle radii but later

�fteen when problems developed in packing the box. Generally, initial disk thickness is

not important so long as the initial con�guration is not too close to equilibrium. Most

runs consisted of 30 orbits of 50 central particles (slightly more particles than were used

in WT). Collection of statistics was performed at �xed intervals, typically every tenth

of an orbit. Quantities measured included the CPU time, the number of collisions, the

velocity dispersion in each coordinate, the �lling factor at the midplane (z = 0), the mean

free path, the local viscosity, and the vertical particle distribution. Non-local viscosity

data were collected for every tenth collision. Equilibrium properties were determined by

estimating the onset of equilibrium from a plot of the number of collisions per particle per

orbit, and averaging the desired quantities over the equilibrium interval. Errors reported

are the standard deviation of the mean. It was found that a simple estimate of equilibrium

onset is su�cient; a precise determination makes little di�erence to the results. Note that

the WT technique of inhibiting the \sliding phase"|where two or more particles come to

rest and begin to roll around one another (Petit & H�enon 1987)|was also incorporated

into box tree.

Non-uniform particle sizes complicate the de�nitions of some of the basic model pa-

rameters used in WT. For example, the dynamical optical depth � (which �xes the box

size) is de�ned by:

� �

P

N

i=1

�R

2

i

L

2

: (5.2)

If necessary, the sum in equation (5.2) can be estimated using the technique described in

x3.3.1. New expressions for the local and non-local viscosity must also be derived for the

case of non-uniform particle sizes. Using the notation of WT, the local viscosity (LV) is

given by:

�

L

=

3

2

<

P

i

m

i

_x

i

_y

r;i

>

t

P

i

m

i

; (5.3)

where _x

i

is the radial speed of particle i, _y

r;i

� _y

i

+

1

2

x

i

is the tangential speed relative

to the mean shear at x

i

, and < �>

t

denotes a time average measured from the onset

of equilibrium to the end of the run. The non-local viscosity (NLV), which arises from

collisional transport of angular momentum, is given by:

�

NL

=

3

2

1

N�T

P

m

>

(x

>

� x

<

)� _y

>

m

>

; (5.4)

where the subscripts \<" and \>" denote particles with x < x

0

and x > x

0

, respectively,

where x

0

is the radial coordinate of the impact point (that is, the surface contact point

between the two particles), � _y

>

is the change in y-velocity of the particle with x > x

0

,

and the sum is over all collisions between the onset of equilibrium and the end of the run,

a total time �T .

For the �rst �ve models, twenty values of � were used, ranging from 0.2 to 4.0 in steps

of 0.2 (WT studied 0:2 � � � 3:0). A few � values were chosen in each model for more

detailed study. The models are:

63

Table 5.1: Some equilibrium values of �

z

for models (i) & (ii).

Model � �

z

(cm/s) WT �

z

(cm/s)

(i) 0.2 0:0454 � 0:0004 0:0450 � 0:0007

(i) 1.0 0:0294 � 0:0002 0:0292 � 0:0003

(ii) 1.0 0:0217 � 0:0001 0:0218 � 0:0003

(ii) 2.0 0:0187 � 0:0001 0:0193 � 0:0002

(i) velocity-dependent (normal) coe�cient of restitution as obtained from experiment

by Bridges, Hatzes & Lin (1984): �

n

(v

n

) = min[0:34v

�0:234

n

; 1], with v

n

in cm/s (note

the factor of 0.34 is actually given as 0.32 in the original Bridges et al. paper).

(ii) velocity-independent restitution coe�cient �

n

= 0:5.

(iii) �

n

= 0:5 as for model (ii) with mean self-gravity vertical frequency enhancement

g = 3:6 such that �z = F

z

� g

2

2

z in equation (2.7).

(iv) velocity-dependent �

n

as for model (i) with full interparticle gravity using the tree

code with �

C

= 0:6 and monopole and quadrupole time-step coe�cients of 0.001

and 0.01, respectively.

(v) velocity-dependent �

n

as for model (i), velocity-independent transverse restitution

coe�cient �

t

= 0:5, full interparticle gravity, and a smooth size distribution (cf.

x3.3.1) with �

?

= �3 (� = �

5

3

). The exponent was chosen on the basis of obser-

vational data obtained by Voyager (Cuzzi et al. 1984). For this preliminary model,

a conservative size range of 0.5{1 m was chosen (the observed range is �1 cm{5 m

for the R

�3

power law).

(vi) as for model (v) but with several test cases for larger values of N and greater size

ranges, including a comparison with work by Salo (1992b). Only a few values of �

were investigated, owing to the signi�cant CPU expense of these models.

Particle radii of R = 100 cm and a transverse coe�cient of restitution �

t

= 1:0 were used

for all models except models (v) & (vi). The density of water ice (� = 1 g/cm

3

) was used

for the particles in models (iv) and (v), and � = 0:9 g/cm

3

was used for comparisons with

Salo (1992b) in model (vi). Models (i), (ii), and (iii) had a time-step coe�cient � = 0:05

in equation (3.6) (x3.5.1) while models (iv), (v), and (vi) used � = 0:005 in equation (3.7).

Models (i) and (ii) had " = 0 while model (iii) used " = 0:99. Any other exceptions will

be noted as appropriate.

5.3.2 Models (i){(iii): Comparison With WT

Table 5.1 gives equilibrium z velocity dispersions (�

z

) for two dynamical optical depths

in model (i) and two in model (ii). The fourth column lists the equilibrium values found

by WT (these are the only numerical values available from the paper; most results were

presented graphically). The agreement is excellent and demonstrates the stability of the

technique. The errors in the WT data are consistently larger, presumably due to the fact

that fewer particles and a shorter integration time were used.

A vertical distribution histogram is given in Fig. 5.8 for model (i) with � = 0:2

64

Figure 5.8: Histogram of the relative particle number density as a function of height

above and below the z = 0 plane averaged over the equilibrium interval for model (i) with

� = 0:2. The curve represents equation (5.5).

65

Figure 5.9: Filling factor at the midplane versus optical depth for models (i) (circles) and

(ii) (diamonds). Note the turn-up in the model (ii) curve for � > 2:5.

(compare with Fig. 3 of WT). The dashed curve is the analytical model of Goldreich and

Tremaine (1978):

n(z) = n

max

exp

�

�

1

2

g

2

2

=�

2

z

�

; (5.5)

which is a good approximation at low optical depth. It can be seen that box tree repro-

duces the expected behaviour quite well.

Figure 5.9 is a plot of the �lling factor at the midplane FF(0) versus dynamical optical

depth for models (i) and (ii). This should be compared with Fig. 15 of WT. Note the

change in behaviour of the two curves for �

>

�

2:5: the model (i) curve seems to have

reached a constant slope while the model (ii) curve bends upward. This behaviour is

suggested in the WT data, but the extended range in � in Fig. 5.9 allows the e�ect

to be seen more clearly. The behaviour can be understood by noting that the velocity-

dependent coe�cient of restitution makes collisions more elastic in model (i) as the velocity

dispersion decreases, i.e. at higher optical depth. The �lling factor still increases because

the particles become more con�ned with optical depth, but the increase levels out as the

collisions become more elastic. The constant coe�cient of restitution in model (ii) allows

the particles to bunch more strongly together with increasing � , beyond the con�nement

e�ect.

Comparison with model (iii) begins with a plot of the Cartesian components of the

velocity dispersion (Fig. 5.10). This plot in analogous to Fig. 17 of WT. The dispersions

are even more nearly equal in the box tree run, emphasizing the uid nature of the ring

66

Figure 5.10: Cartesian components of the equilibrium velocity dispersion versus optical

depth for model (iii). The (radial) x-component is traced by diamonds (dotted line), y

by squares (dashed line), and z by circles (solid line). Note the event near � = 2:4; this

region is magni�ed in Fig. 5.12(a).

67

Figure 5.11: Filling factor at the midplane versus optical depth for model (iii). A blow

up of the region near � = 2:4 is shown in Fig. 5.12(b).

in this model. The splitting at �

>

�

3:6 is not understood. The most intriguing feature of

the plot, however, is the strong downward spike near � = 2:4, which is not seen in the WT

data. A corresponding feature is also seen in a plot of the �lling factor (Fig. 5.11; compare

with Fig. 20 of WT). Blowups of the regions are shown in Fig. 5.12(a) and (b). From

the magni�ed plots, it would appear that some kind of critical point lies in the region

2:45

<

�

�

<

�

2:55. Figure 5.13 gives the vertical distribution for � = 2.5. The histogram

shows that the system has developed almost perfect strati�cation, with three equally-

populated layers in the middle and two strongly underpopulated layers on the outside.

This can be understood by noting that N = 50 and � ' 2:5 give a box size of s � 8R in

equation (5.2). This would result in 4 � 4 packing on three levels, with two particles left

over, presumably one either side. Note that for close-packed sheets of spherical particles,

the spheres on one level �ll the gaps between spheres on neighbouring levels, hence the

peaks in Fig. 5.13 do not occur at exact multiples of the particle size (except for the plane

of particles at z = 0). Figure 5.14 illustrates what close packing actually looks like as

seen looking down on the shearing plane. It should be emphasized that such layering is

probably unphysical as it depends on the ratio of the particle size to the (arbitrary) box

size.

Other critical values of � can be estimated by choosing positive integers n such that

s = 2nR and n

2

� N . For N = 50, there are four possible critical points in the range

0:2 � � � 4:0, namely 2.45 (3 layers, 2 particles left over), 1.57 (2 layers, 0 left over),

1.09 (1 layer, 14 left over), and 0.80 (1 layer, 1 left over). The number density would

be expected to nearly vanish at z = 0 for an even number of layers since the particles

68

Figure 5.12: Blowups of the 2:2 � � � 2:6 regions for the velocity dispersions (a) and

�lling factor (b) of model (iii). The transition is rapid but smooth.

69

Figure 5.13: Vertical distribution of particles for model (iii) with � = 2:5. Five strati�ed

layers have developed at this critical � value.

Figure 5.14: View looking down onto the ring plane for model (iii), � = 2:5, during the

equilibrium phase. The central box plus all 8 ghost boxes are shown (450 particles in

all, most hidden behind the top layer). At this critical � value, several strati�ed sheets

have formed, with particles lined up in y (bottom to top) to minimize resistance to the

shearing ow.

70

Figure 5.15: Number density histogram for model (iii) with � = 1:3. Though this value

of � gives a local minimum in FF(0) (cf. Fig. 5.11), the midplane is still moderately

populated.

would straddle the midplane, rather than lie completely within it. This behaviour only

partly explains the apparent oscillations in FF(0) for model (iii) however, because a local

minimum occurs at � � 1:3, not � = 1:57 as might be expected (although a test was

performed to con�rm that n(0) does indeed vanish for � = 1:57). A number density

histogram for � = 1:3 shows the z = 0 level to be moderately populated (Fig. 5.15;

compare with Fig. 23 of WT). This discrepancy comes about because the overall increasing

trend in FF(0) causes the critical values of � to be shifted somewhat from their expected

values.

5.3.3 Model (iv): Improved Gravity Model

The �rst step towards a more realistic planetary ring simulation is the inclusion of full

interparticle gravity. As a test of the reliability of the force calculations, the entire 0:2 �

� � 4:0 range was tested as before. Note that model (iv) lies somewhere between model

(iii) and the zero gravity case: the enhancement of the vertical frequency in model (iii)

represented the contribution of the entire disk, whereas in model (iv) only the gravity of

the central particles and their ghosts is included. Compensation for this could be made

by increasing the particle density �, or by introducing a smaller z frequency enhancement

than was used in model (iii), but such detail was not considered important for these

experiments. The particle number N was kept at 50: a plot of equilibrium velocity

dispersion versus particle number was found to be essentially at for N

>

�

20 (cf. Fig. 1

71

Figure 5.16: Equilibrium velocity dispersions for model (iv).

of WT).

Figure 5.16 shows the equilibrium velocity dispersions for model (iv) (compare with

Fig. 5.10). Note that �

z

remains consistently smaller than �

x

and �

y

in this case. The

blip near � = 2:5 still occurs, but with reduced signi�cance. However, the �lling factor

(Fig. 5.17) shows that close packing still occurs to some extent in this model, though not as

strongly. This behaviour is consistent with the reduced nature of the gravity enhancement

compared with model (iii). The close packing is also noticeable in a plot of �� versus �

(Fig. 5.18), where the slope goes negative in the region of � = 2:5, indicating a viscous

instability associated with the (unphysical) close packing. With the exception of another

unphysical point at � = 4:0, the slope of �� remains positive. Lastly, Fig. 5.19 shows the

vertical distributions for four values of � , clearly demonstrating that strati�cation persists

in this model.

These models show that inclusion of particle self-gravity yields results that are similar

to the mean self-gravity model. As will be shown below, however, full interparticle gravity

becomes much more important once an initial size distribution is introduced into the

system.

5.3.4 Model (v): Size Distribution Model with Rough Spheres

Size distributions complicate the dynamics of numerical simulations considerably in the

presence of interparticle gravity. As the system evolves, the largest particles gravitation-

ally excite the smaller ones, making dynamical equilibrium harder to attain. The problem

becomes more acute at low optical depth where there is little collisional dissipation. At

72

Figure 5.17: Midplane �lling factor for model (iv).

73

Figure 5.18: Dimensionless height-averaged kinematic viscosity times � , versus � for model

(iv). The local contribution (circles) is much smaller than the total contribution (dia-

monds) for moderate to large � . The slope changes sign near the critical point � � 2:5,

indicating a regime of viscous instability.

74

Figure 5.19: Number density vs. jzj histograms for model (iv) for � = 0.5, 1.0, 2.0, and

3.0. Strati�cation is still seen in this model.

75

Figure 5.20: Equilibrium velocity dispersions for model (v).

higher optical depths, aggregates may form and further complicate the dynamics. An-

other problem is posed by the nature of the power law distribution itself. As pointed out

by Salo (1992a), N must be chosen large enough to provide statistically sound sampling

of the size distribution. These aspects will be examined in greater detail in x5.3.5.

As a �rst test, and to provide a bridge between WT simulations and later work by

Salo, a series of runs in the spirit of model (iv) was performed for the conservative size

range �R = 50{100 cm. Although the size only varies by a factor of 2, the mass varies by

a factor of 8, providing a good range of gravitational forces for this preliminary model. In

addition, surface friction was incorporated in the form of a constant tangential coe�cient

of restitution, �

t

= 0:5, in order to investigate the equilibrium distribution of particle

spins. All spins were initially zero with respect to the local frame. The choice of N = 50

was checked in the usual way by verifying that the equilibrium velocity dispersion varied

little for N 2 [10; 100] with � = 1; N = 50 also provides adequate sampling of the size

distribution given the limited range.

Figures 5.20{5.22 show the usual statistical quantities for this model. The velocity

dispersions (Fig. 5.20) behave much the same as for model (iv) (Fig. 5.16; note the change

in scale). The midplane �lling factor (Fig. 5.21) is seen to attain and sustain a higher

level, consistent with the improved packing e�ciency of a size distribution. The curve

is quite smooth with the exception of an unexplained blip at � � 3:3. The viscosity

curve (Fig. 5.22) is very smooth and shows no evidence of viscous instability in the range

0:2 � � � 4. Note that the size distribution e�ectively eliminates the \crystalization"

phenomenon found in models (iii) and (iv) for certain critical values of � .

Figures 5.23{5.25 give the height, spin, and obliquity distributions for � = 0.5, 1.0,

76

Figure 5.21: Midplane �lling factor for model (v).

77

Figure 5.22: The quantity �� vs. � for model (v). There is no evidence of viscous insta-

bility.

78

Figure 5.23: Histograms of number density vs. jzj for model (v) and four values of � . The

particles continue to pile up at high optical depth but layering is not as well de�ned since

smaller particles can start �lling the gaps between larger particles.

2.0, and 3.0. The vertical distribution (Fig. 5.23) is similar to Fig. 5.19, though the dips

are not as well de�ned and the mean height is smaller due to the tighter packing. The

spin distribution (Fig. 5.24) evidently varies little with optical depth. The dashed curve

superimposed on each histogram is given by:

n(!) = !e

�!

: (5.6)

This curve is drawn for reference only, without physical justi�cation. Note that in all

cases each particle has su�ered at least one collision, so there are no zero spins remaining.

The distribution in obliquity, or the angle between the spin axis
^
! and the positive

z-axis
^
z (Fig. 5.25), also varies little with optical depth, but shows a strong tendency

toward retrograde spin (> 90

�

). Recall that all spin properties are with respect to the

local (rotating) frame of reference; in the �xed frame, the spins would be slightly prograde

on average.

Further aspects of this model with be presented in the following section.

79

Figure 5.24: Relative number density as a function of spin magnitude ! for model (v).

The dashed curve is given by equation (5.6). There is little dependence on optical depth

for this model.

80

Figure 5.25: Relative number density as a function of spin obliquity (angle between spin

and orbital momentum vectors) for model (v). Again there is little dependence on � . The

plots show most particles are spinning retrograde with respect to their orbital motion

when viewed from the rotating frame.

81

Table 5.2: Binned equilibrium data for models (v) and (vi).

Model N �R � �T FF(0) N

b

�

?

! jzj v

(m) (orb) (
) (
) (

�

) (m) (cm/s)

20 0.37 2:47 � 0:01 105:9 � 0:5 0:769 � 0:007 0:0482 � 0:0003

(v.1) 50 0.50{1.0 0.5 4{30 0.243 50 0.36 1:853 � 0:008 113:8 � 0:3 0:640 � 0:004 0:0414 � 0:0002

4 0.32 0:98 � 0:01 135 � 1 0:373 � 0:008 0:0298 � 0:0004

20 0.22 2:20 � 0:01 110:7 � 0:5 0:744 � 0:005 0:0385 � 0:0003

(v.2) 50 0.50{1.0 1.0 3{30 0.465 50 0.264 1:676 � 0:007 118:7 � 0:3 0:623 � 0:002 0:0336 � 0:0001

4 0.36 0:87 � 0:01 138:0 � 0:9 0:389 � 0:008 0:0245 � 0:0003

20 0.23 2:34 � 0:01 108:8 � 0:5 1:074 � 0:007 0:0400 � 0:0004

(v.3) 50 0.50{1.0 2.0 4{30 0.631 50 0.27 1:786 � 0:007 116:1 � 0:3 0:923 � 0:002 0:0358 � 0:0004

4 0.36 0:92 � 0:01 133:3 � 0:9 0:54 � 0:01 0:0291 � 0:0005

20 0.23 2:45 � 0:02 108:2 � 0:5 1:38 � 0:01 0:0399 � 0:0003

(v.4) 50 0.50{1.0 3.0 3{30 0.690 50 0.264 1:880 � 0:008 115:4 � 0:3 1:228 � 0:003 0:0366 � 0:0003

4 0.29 0:99 � 0:01 136:6 � 0:9 0:82 � 0:01 0:0306 � 0:0004

135 0.38 4:00 � 0:02 99:9 � 0:1 3:10 � 0:01 0:2192 � 0:0009

(vi.1) 200 1.15{5.0 1.0 3{10 0.373 200 0.432 3:22 � 0:01 102:3 � 0:1 2:96 � 0:01 0:2124 � 0:0009

5 0.707 0:655 � 0:006 116:8 � 0:7 3:23 � 0:03 0:236 � 0:002

326 0.19 7:39 � 0:03 97:1 � 0:1 4:84 � 0:06 0:274 � 0:001

(vi.2) 400 0.70{5.0 1.0 4{10 0.178 400 0.27 6:43 � 0:02 97:8 � 0:1 4:80 � 0:06 0:269 � 0:001

4 0.43 1:17 � 0:01 120:3 � 0:5 6:25 � 0:08 0:332 � 0:003

518 0.13 10:16 � 0:03 95:60 � 0:06 5:81 � 0:08 0:313 � 0:002

(vi.3) 600 0.55{5.0 1.0 3{10 0.145 600 0.20 9:13 � 0:03 95:97 � 0:07 5:77 � 0:08 0:310 � 0:002

4 0.990 1:044 � 0:006 88:6 � 0:5 7:2� 0:1 0:368 � 0:003

715 0.18 12:39 � 0:04 94:66 � 0:08 4:13 � 0:03 0:309 � 0:002

(vi.4) 800 0.46{5.0 1.0 2{5 0.193 800 0.23 11:36 � 0:04 94:99 � 0:08 4:08 � 0:03 0:305 � 0:002

4 0.86 1:217 � 0:008 97� 1 7:0� 0:1 0:385 � 0:004

914 0.12 14:40 � 0:08 94:17 � 0:06 4:28 � 0:04 0:302 � 0:002

(vi.5) 1000 0.40{5.0 1.0 1{3 0.177 1000 0.16 13:40 � 0:08 94:68 � 0:07 4:23 � 0:04 0:299 � 0:002

4 0.76 1:11 � 0:02 102:9 � 0:4 6:9� 0:1 0:376 � 0:004

2820 0.128 12:4 � 0:1 94:98 � 0:04 4:86 � 0:04 0:341 � 0:002

(vi.6) 3200 0.50{5.0 0.4 1{3 0.0854 3200 0.197 11:2 � 0:1 95:27 � 0:05 4:69 � 0:04 0:335 � 0:002

16 0.979 0:76 � 0:01 92:2 � 0:2 5:80 � 0:05 0:350 � 0:003

3109 0.27 32:1 � 0:1 92:09 � 0:05 5:54 � 0:09 0:333 � 0:003

(vi.7) 3200 0.20{5.0 1.0 0.5{1 0.13 3200 0.28 31:3 � 0:1 92:36 � 0:06 5:52 � 0:09 0:331 � 0:003

3 0.502 0:825 � 0:007 125:6 � 0:1 10:5 � 0:3 0:41 � 0:01

5.3.5 Model (vi): Large N Models

In order to model a realistic size range at optical depths of order unity or higher in a

statistically valid way, larger values of N must be used. Conversely, for a given value of

N , the size range is constrained. For example, suppose a conservative box size s = 10R

max

is imposed. If � = 1 and R

max

= 5 m, then R

min

can be determined for a given value of

N by integrating the equivalent of equation (3.1) in R. This gives:

R

min

�

20

p

N�

5

; (5.7)

where �

5

� ln(5=R

min

) and sizes are measured in metres. Equation (5.7) can be solved

iteratively for R

min

. Models (vi.1{5) and (vi.7) were obtained by choosing N = 200, 400,

600, 800, 1 000, and 3 200, respectively, in equation (5.7). The results are summarized

in Table 5.2. Also included in the table are the four runs � = 0.5, 1.0, 2.0, and 3.0

from model (v), labeled models (v.1{4). Model (vi.6) reproduces a run by Salo (1992b)

and will be discussed in more detail below. The table shows the chosen equilibrium

interval �T for each run as well as the mean midplane �lling factor (error bars omitted

to conserve space). The mean spin magnitude and obliquity as seen in the local frame,

the mean vertical distance from the plane, and the mean velocity magnitude are given

for each run, split into three cases according to size bin. The mean z-spin as seen from

the �xed inertial frame (�

?

= !

z

+
) is included for comparison with Araki (1991), who

found �

?

� 0:3 for the equal-mass case. None of the quantities are mass-weighted since

the binning automatically di�erentiates between the low- and high-mass regimes. It was

found that �ve size bins gave adequate sampling (usually at least four particles in the

82

largest bin): �R

b

=

1

5

�R. The top line of each set is for R

min

� R � R

min

+ �R

b

,

the middle line is for the complete range R

min

� R � R

max

, and the bottom line is for

R

max

� �R

b

� R � R

max

. The number of particles in each bin is listed in the column

labeled N

b

.

Note that the quantity �

?

varies between 0.15 and 0.45 when averaged over all particles

in each model, and there is a suggestion that the value decreases as the size range increases,

possibly due to a stronger random contribution from the increasing number of smaller

particles. This is supported by the fact that the mean z-spin in the large particle bins is

typically much larger than that for the small particle bins (recall that at t = 0, !

z

= 0

and so �

?

= 1 for all particles initially). Evidently there is a preferred prograde spin of

about 0.3 for the particles when viewed from the planet frame (for reference note that in

such a frame, Earth's moon would have a prograde spin of unity). The other statistical

quantities in the table will be discussed below within the contexts of models (v) and (vi).

The data for models (v.1{4) con�rm the trends shown in Fig. 5.20{5.25. The data

also show that the smallest particles have the largest spin, consistent with equipartition

of rotational energy (this will be illustrated for model (vi.1) below). Interestingly, the

smallest particles also have their mean spin axes most nearly orthogonal to the mean

orbital axis, though the peak of the distribution is rather wide (Fig. 5.25). It should be

noted, however, that when the Cartesian components of the particles' spins are averaged

separately, the x- and y-components turn out to have means �
, leaving the spin in z

dominant (i.e. �

?

� 0:3 as discussed above). This implies that the components of the spin

vectors that lie in the orbital plane are isotropically distributed. As will be illustrated

below, the mean component spins for all models have Lorentz pro�les. Finally, note that

the smallest particles have the largest z excursion and mean velocity, consistent with

energy injection by gravitational scattering o� the largest particles.

Models (vi.1{5) were studied for shorter intervals because of the increased CPU ex-

pense. This increase is due primarily to the scaling with N , but there is also an increase

due to inhomogeneities in the particle distribution, namely the formation of cigar-shaped

clumps or aggregates. These associations tend to pack quite tightly, increasing the force

derivatives on the constituent particles and resulting in shorter time-steps according to

equation (3.7). Figure 5.26 illustrates one such aggregate. This snapshot of model (vi.4)

was taken at t = 3 looking down the z-axis. Animations of the formation and evolution

of these aggregates show several common features: (1) they have a characteristic pitch

angle � � 30

�

measured with respect to the positive y-axis (the direction of mean orbital

motion); (2) they tend to form around the largest particles; (3) they form and \dissolve"

within a few fractions of an orbit; (4) they are not seen when interparticle gravity is

switched o�. Aggregate formation will be discussed further below.

Particle aggregates help explain some of the anomalies seen in Table 5.2 for models

(vi.1{5), namely the fact that the largest particles now seem to slightly dominate the

z excursion and mean velocity, contrary to the case of models (v.1{4). Evidently the

aggregates behave like \super-particles", trapping the smaller particles and reducing their

contributions to the dispersions. The larger particles, meanwhile, are strongly perturbed

by the clumps, so their contributions are increased.

The mean spin as a function of particle moment of inertia for model (vi.1) is shown

in Fig. 5.27. The plot demonstrates that in the equilibrium state rotational energy is

distributed according to moment of inertia: smaller particles generally spin faster or

have a greater range of spin energy. The dashed line shown in the plot is the isocurve

I!

2

= I

max

2

, tracing an upper envelope to the spin distribution.

Model (vi.6) was designed to be a direct comparison with a recent result by Salo

(1992b, Fig. 1, B ring). The box size, dynamical optical depth, and size distribution were

83

Figure 5.26: View of model (vi.4) at t = 3 looking along the negative z-axis. The box is

50 m on a side.

Figure 5.27: Mean spin as a function of moment of inertia for model (vi.1). The spins lie

below an equipartition envelope I!

2

= I

max

2

.

84

Figure 5.28: Number density vs. jzj histogram for model (vi.6) after three orbits.

identical, as was the velocity-dependent (normal) coe�cient of restitution. Tangential

friction was included in model (vi.6), unlike the Salo model, but was not expected to

a�ect the dynamics appreciably. The run was carried out for only 3 orbits owing to

the CPU expense, but reached an acceptable equilibrium after 1 orbit. A combination

of equations (3.6) and (3.7) was used for computing time-steps to improve the speed.

Figure 5.28 shows a very smooth vertical distribution, packed tighter than the curve

given for the theoretical equal-size case without self-gravity. The spin distributions (all

three components plus the spin magnitude) are shown in Fig. 5.29. Lorentzians of the

form 1=(!

2

i

+10) have been drawn for the !

x

, !

y

, and !

z

distributions as an aid to the eye.

Similar Lorentz distributions in spin components occur for all models that include spin

e�ects. The curve for the spin magnitude distribution is equation (5.6) with ! weighted

by a factor of 0.2 to approximate the actual width of the distribution. The spin rates are

much higher in this model, again dominated by the smaller particles. The spin obliquities

are shown in Fig. 5.30. The obliquity distribution is very broad (FWHM � 120

�

), and

only very slightly retrograde on average.

Figure 5.31 shows snapshots at t =0 and 3 (left and right), with views along the neg-

ative z-axis (top) and along the positive y-axis (bottom). The top right image should be

compared with Fig. 1 of Salo (1992b). The system has evidently developed the gravita-

tional wakes or density transients reported by Salo, and predicted by Julian and Toomre

(1966) for rotationally supported disks that undergo gravitational perturbation. The

snapshot shows that aggregates are generally associated with these unstable waves. In-

deed, the equilibrium state for model (vi) in general appears to be the continual formation

and dissolution of such structures. Their orientation can be explained qualitatively by

85

Figure 5.29: Spin distributions for model (vi.6). The dashed curves for !

x

, !

y

, and !

z

are

Lorentzians, while the curve for ! (bottom right) is of the form xe

�x

. Though impossible

to discern by eye, the !

z

distribution is centred slightly o� zero, with !

z

� 0:2.

86

Figure 5.30: Obliquity distribution for model (vi.6). The FWHM is approximately 120

�

,

or 2=3 of the complete range. On average, particles spin slightly retrograde.

87

Figure 5.31: Views of model (vi.6) at time t = 0 (left) and t = 3 (right), looking down

on the z-plane (top) and along the y-axis (bottom). Notice the symmetry in the starting

conditions, recalling the mass-weighted balancing about the centre of mass. The evolved

system shows several transient density features. Here the box is 170 m on a side.

88

Figure 5.32: View looking down the z-axis at model (vi.7) after one quarter of an orbit.

The view includes the ghost boxes, each of size 50 m. The optical depth is unity. A

transient density feature is already forming; note how it seems to extend beyond the

central box.

the di�erential rotation of the disk: any condensations that form su�er from shear in

the �y-directions relative to their centres of mass, twisting and pulling the clumps into

con�gurations that minimize the net di�erential force until other disruptive impacts oc-

cur. The observed pitch angle (� 30

�

) is consistent with values found by Salo (1992b)

for three-dimensional simulations. Also note the evolution in z illustrated by the images

at the bottom of Fig. 5.31: the system was started very at (only a few R

max

) to en-

courage faster attainment of equilibrium; by t = 3 the system has relaxed into a typical

equilibrium con�guration.

The last entry in Table 5.2, model (vi.7), provides the most realistic simulation so

far of conditions at the centre of Saturn's B ring, with a large size range �R = 0.2{5 m

and optical depth of unity. Unfortunately, because of the high density and large particle

number, it is also the slowest to compute, taking several CPU days on a DEC Alpha

workstation just to follow one complete orbit. Figure 5.32 is a snapshot of the system

at t = 0:27, already showing the formation of a transient density feature. The central

box and surrounding ghost boxes are shown to emphasize the presence of the density

enhancement. Though not yet at equilibrium, the statistical properties for this system

given in Table 5.2 are consistent with trends seen in the other model (vi) runs.

It turns out that a size distribution is not required in order to form aggregates as long

as the central box is big enough. Figure 5.33 shows four snapshots of a system of 5 000

equal-size (R = 5 m) particles in a box � 1 km on a side (� = 0:4). The images are

for t = 0, 0.75, 1.5, and 2.2. The strong striations are clearly visible here, developing

rapidly from the uniform distribution and evolving into thicker bands after a few orbits.

In contrast, the model (iv) runs showed no evidence of aggregation and the model (v) runs

formed only loose associations. The critical factors governing aggregate formation in the

box model for systems with interparticle gravity are evidently the number of particles and

the ratio s=R between the box size and the particle radius. In Fig. 5.33, these quantities

(N and s=R) are much larger than for any of the previous models. At the same time note

that the density was relatively low, so the dynamical optical depth is not as important

89

Figure 5.33: Snapshots at t = 0 (top left), 0.75 (top right), 1.5 (bottom left), and 2.2

(bottom right) of a system of 5 000 equal-size particles. The box size is 1 km and the

particle radii are 5 m. The dynamical optical depth is 0.4.

90

for aggregate formation.

A disturbing aspect of some of the large-scale features reported here is that they

can be comparable in size to the central box, and indeed may even extend beyond the

box (see Fig. 5.32 for example, and Fig. 5.33 in particular). For a model that employs

periodic boundary conditions, this means that such a structure may actually interact with

itself, confusing the interpretation of the results. One possible consequence is that such

structures break up and reform more often in these models than they would in reality,

or at least are truncated in size. Another related problem is that the mean velocities

are fairly large in model (vi), implying large radial excursions (which are in fact seen

in animations), possibly invalidating the local nature of the model. These problems can

only be addressed, however, with larger box sizes, necessitating much larger values of N

to test models with comparable density. Longer integrations would also help address the

question of the long term stability of the aggregation process.

91

Chapter 6

Other Applications & Future Work

Although box tree was designed as a tool for modelling planetesimal dynamics, the code

was written in a su�ciently general fashion for it to be applied successfully to other

unrelated problems. Nonetheless, there are many avenues open for further development

of box tree. This chapter outlines work done to date with box tree on gravitational

microlensing and galaxy-galaxy collision simulations, and closes with a discussion of the

most important improvements that could be made to the code.

6.1 Code Generality

The box tree header �le params.h and the run-time parameter �le (described fully in the

Appendix) allow the user to tailor the behaviour of box tree to a particular problem. The

most important parameter is the choice of reference frame, which includes, for example,

the rotating frame described in Chapter 2, and the option of an inertial frame. In principle,

any problem can be treated in the inertial frame, but many problems are better suited to

specialized frames, especially if interparticle gravity is included only as a perturbation on

a dominant force. In fact, box tree uses an inertial frame by default, applying external

potentials and coordinate transformations to change the reference frame as desired. This

simpli�es the procedure of adding a new frame of reference, as was done for the galaxy

collision simulations described below.

Another important parameter that improves the code generality is the choice of bound-

ary conditions. Currently choices include periodic and unbounded systems. The periodic

boundary condition option can be used in either the rotating or inertial frame. In the

rotating frame, shear is taken into account during a boundary crossing, while in the in-

ertial frame the particle velocity remains unchanged. Ghost boxes may even be used in

the inertial frame, though they remain stationary with respect to the central box. For

the unbounded case, the concept of a \box" no longer applies, and particles are free to

move anywhere. This is particularly useful when an entire complex system (such as two

galaxies) is being modelled.

The tree code can be used in any frame and with any boundary conditions. Recall

however that the tree is never rebuilt in its entirety to keep it up to date; rather, the tree

is repaired on a node-by-node basis as needed (x3.4.1). This poses a problem in the un-

bounded case, since box tree would normally complain if a particle tried to move outside

the tree. Consequently, the user may specify a tree expansion factor in the parameter

�le at run time: if a particle exits the tree at any time, the root size is expanded by the

supplied factor as many times as necessary to encompass all the particles. Once the new

size has been determined, the old tree is destroyed and the new tree is constructed. For-

tunately, this relatively expensive procedure is needed only infrequently during a typical

92

unbounded simulation.

There are other useful run-time parameters that extend the code generality. These

include: an option to read initial conditions from a �le; an option to use softened poten-

tials, thereby disabling collisions; an option to turn o� interparticle gravity; an option to

disable mergers; and an option to enable or disable the tree. Options that can be changed

at compile time include the tree dimension and the maximum number of particles allowed

in the simulation. It is felt that this level of exibility is essential for box tree to be of

maximum bene�t.

6.2 Gravitational Microlensing

In a recent study of gravitational microlensing (Lewis et al. 1993), a stripped-down 2D

version of box tree was used to reduce the time required to evaluate the microlensing

equation. Since there was no integration as such to perform, only the components of

box tree directly related to the tree code were used. In simplistic terms, the study of

gravitational microlensing involves tracing changes in the observed ux from a distant

source as the light passes through an intervening mass distribution consisting of dis-

crete gravitational potentials, such as the stars and other compact objects that make

up a galaxy. The intervening potentials split the source light into many images (a phe-

nomenon called microlensing); changes in the summed ux of these images caused by

relative motions of the source and lenses can be measured.

6.2.1 New Multipole Expansion

The microlensing equation describes the deection su�ered by a ray of light traveling

through the mass distribution. The equation involves a sum over all lenses of the form:

X

i

m

i

(x� x

i

)

jx� x

i

j

2

;

where the subscript i labels stars in the image plane. This sum is reminiscent of the

expression for the net gravitational acceleration due to a distribution of point masses,

except that the sum above varies as 1=r instead of 1=r

2

. To use the tree code to approx-

imate these contributions to the light curve, a formula for the multipole expansion of a

1=r law is required. Appendix A of Lewis et al. (1993) describes the derivation in detail.

Implementation of the new expansion was straightforward and provided a considerable

reduction in the computation time required to generate a given light curve.

6.2.2 Discontinuity Problem

Part of the technique used in generating light curves involves numerically tracing roots

(zero points) on a plane, evaluating the microlensing equation at each point. However,

the deection angle may change discontinuously from one point to the next if a particular

node expansion is performed at one point and not at the other. Recall that the expansion

criterion depends only on the angle subtended by the node at the point in question.

Discontinuities can be removed by using a weighted average of the contribution to the

deection angle from the node and from its immediate children if the opening angle is

within a small �xed interval of �

C

. The actual formula used can be found in Appendix A

of Lewis et al. (1993). This simple yet important technique for eliminating discontinuities

may prove useful in other applications that incorporate tree code.

93

6.3 Galaxy Collisions

An ongoing project (Thomson & Richardson, in preparation) uses box tree to model

grazing collisions between a small galaxy in a near parabolic encounter with a galaxy ten

times more massive. The large galaxy is left relatively undisturbed by such an encounter,

but recent test particle simulations suggest the disk of the small galaxy is disrupted

violently into three main parts (Thomson 1992): an accretion ring about the massive

galaxy, a large \shred" that escapes the system, and a bulge remnant. A key question is

whether the shred, or a signi�cant portion of it, can hold together under self-gravity. If so,

then this model may explain observed features of Centaurus A and some of its immediate

neighbours (namely the prominent dust lane seen in Centaurus A, and the con�guration of

a nearby dwarf elliptical galaxy and an irregular bar-shaped galaxy). To test the properties

of the shred thoroughly, however, requires � 10

4

or more self-gravitating particles, which

is why box tree has been adapted for this problem.

Since the large galaxy remains relatively intact following the collision, it is modelled

by a single large Plummer potential. Initially the smaller galaxy was modelled by a �xed

bulge component (also a Plummer potential) and a disk component of self-gravitating

particles with a �xed softening parameter. Later a halo component of particles with

larger softening was added to help stabilize the disk. Later still a gas component was

introduced to see how it would be a�ected by the galaxy collision (it is believed that

the gas may collect at the tip of the shred, becoming a bright star-forming region | see

Schweizer 1978; Mirabel, Dottori, Lutz 1992). The gas is actually modelled by particles

of �xed size that are allowed to undergo dissipative collisions with each other (Noguchi

1988). The evolution of these components is best seen in animations, using di�erent

colours for each component. Initial conditions are supplied through a data �le generated

by an external program and are based on Barnes (1992). A 3D tree is used since the initial

collision trajectory may be inclined to the disk and the particles are typically scattered

in all directions after the encounter, making a 2D tree ine�cient.

6.3.1 Accelerated Frame of Reference

Since the tree currently assumes the system is more or less stationary, it is convenient to

use a frame centred on the bulge of the smaller galaxy. This allows the bulge component

to simply be added in as an external potential for the other particles. The massive galaxy

is then treated as a single particle with large softening and, for maximum e�ciency,

it is excluded from the tree structure. The new frame is non-inertial due to the mutual

acceleration between the two galaxies; this e�ect must be accounted for in the equations of

motion of the particles. The derivation of the frame acceleration is similar to the derivation

of the equations of motion of protoplanets in the heliocentric frame (cf. \Cowell's Method"

in Brouwer & Clemence, 1961). If R

i

is the position of the ith particle in the inertial

frame (where i = 0 denotes the large galaxy), then the position in the new frame is given

by r

i

=R

i

�R

b

, where R

b

is the position vector of the bulge of the small galaxy in the

inertial frame. The accelerations of the ith particle and the bulge in the inertial frame

are given by:

�

R

i

= �

Gm

b

r

i

r

3

i

�G

X

j 6=i

m

j

(r

i

� r

j

)

jr

i

� r

j

j

3

= F �

Gm

b

r

i

r

3

i

;

and,

�

R

b

= �G

X

j

m

j

r

j

r

3

j

' �

Gm

0

r

0

r

3

0

;

94

where r

0

is the position vector of the massive galaxy in the new frame, and where it has

been assumed m

0

is large compared to the m

j

's of the small galaxy, and that the r

j

's

of the small galaxy are symmetrically distributed about the bulge and therefore largely

cancel. Hence the acceleration of a particle in the new frame is given by:

�
r

i

= F �

Gm

b

r

i

r

3

i

�

Gm

0

r

0

r

3

0

: (6.1)

The �rst term is calculated by the tree code, the remaining terms are added afterwards.

Recall that the massive galaxy is treated just like any other particle, so it is included in

F and is subject to equation (6.1).

6.3.2 Softening

The box tree code was originally designed to remove potential singularities by enforcing

particle collisions since the evolution of discrete particles was of chief interest. For galaxy

simulations, however, it is completely beyond the means of present-day computers to

follow each star individually. Instead softened forces of the form:

F

ij

= �

Gm

j

r

ij

�

r

2

ij

+ �

2

�

3=2

are used to smooth over the discreteness. In fact, if softening is being used, box tree

takes the radius of each particle as it's softening parameter, and uses the maximum value

� = max[�

i

; �

j

] for the new potential. This is intended for use with only a small number of

di�erent classes of object. In the present case, there are three classes: the disk and halo

particles, and the massive galaxy. A more consistent treatment of softening is discussed

in Dyer & Ip (1993).

To ensure correct behaviour, it is necessary to include the softening when performing

multipole expansions. Only the softening of the particle for which the new force is being

calculated is used, i.e. �

2

i

is added to r

2

in equation (2.9).

6.3.3 Early Results

Figure 6.1 shows a top and side view of a typical post-encounter con�guration. The

collision occurred at time t = 10; the views are for time t = 50. The plane of the orbit

is inclined 15

�

to the disk of the small galaxy. Both halo and disk particles are shown

(1 000 of each); there is no gas component in this simulation. The halo is very di�use

after the collision and tends to �ll the space between the heavier concentrations of disk

particles. A tenuous shred is seen in both views, near the top of the �rst and at the right

of the second. Also clearly seen is the bulge remnant and the larger accretion ring about

the big galaxy. Note the clumping seen in the shred, suggesting that portions are being

held together by self-gravity (also see Barnes & Hernquist 1992; Elmegreen, Kaufman

& Thomasson 1993). The number of particles is too small in this simulation to form a

well-de�ned shred. For reference, the small galaxy was originally � 10 kpc in radius; in

the views shown, the large galaxy is � 160 kpc away from the bulge remnant. Since the

orbit was originally parabolic and energy was lost to the shred and halo, the bulge is

now bound to the large galaxy. At this post-encounter stage the expansion is basically

self-similar, so that the con�guration at any future time can be inferred by simple scaling.

In this way, and by rotating positions in 3D, it is possible to reproduce a con�guration

similar to that seen in the sky for the Centaurus A system.

95

Figure 6.1: Top (left) and side (right) view of a galaxy-galaxy encounter with 15

�

incli-

nation. In the top view, the large galaxy looped around the left side of the small galaxy,

from the top right (20 kpc away) to the current position in the bottom right (160 kpc

away). In the side view, the large galaxy is moving to the left and towards the observer.

The shred, bulge remnant, and accretion ring primarily consist of disk particles, while the

halo is spread out di�usely in between.

Simulations are currently in progress to examine the e�ects of varying the inclination

angle of the orbit and of adding a gaseous component. Investigation of hyperbolic en-

counters will also be performed. To study the shred more fully, large N simulations will

be carried out as well.

6.4 Future Work

There are several major aspects of box tree that could be improved. Some of the most

important are discussed in this section.

6.4.1 Fragmentation

Currently in box tree when two particles collide they either bounce or merge. The entire

merging process is assumed to occur instantaneously, and all the details are ignored.

Such details probably include melting and cooling and a certain amount of fragmentation,

especially at high rotation rates. Any fragments are assumed to fall back onto the new

mass before they can interact with any other bodies. However, at very high impact

energies, the colliding bodies may shatter completely, resulting in many new particles.

Such fragmentation may provide a balance to runaway accretion, slowing the formation

of the largest bodies but at the same time repopulating the planetesimal swarm.

Beaug�e & Aarseth (1990) used a model based on work by Greenberg et al. (1978)

that divided the collision outcome into three cases depending on the magnitude of the

relative velocity and the impact energy of the colliders: (1) if the relative velocity is less

than a critical velocity that depends on the material strength of the colliders, the bodies

either bounce or merge; (2) if the relative velocity exceeds the critical velocity, but the

impact energy is low enough, cratering occurs, resulting in a transfer of mass between

the colliders (the ejecta are assumed to remain bound to the two-body system); (3) if the

impact energy is su�ciently high, one or both of the bodies shatter, forming new particles.

96

A model based on experiment is used to approximate the mass and velocity distribution

of the fragments that result from case (3). In Beaug�e & Aarseth (1990), each fragmenting

body was divided into four smaller bodies plus the remaining core. A conservative number

of fragments was chosen to prevent the simulation from becoming unmanageable.

It would be straightforward to accommodate fragmentation in box tree. Each new

body is easily placed in the tree, and the code is already set up to handle particles of

di�erent mass. A model would be required, however, for the spin distribution, such that

the total angular momentum of the system is conserved. In addition, a minimum mass

would need to be de�ned to prevent the formation of in�nitesimally small bodies.

6.4.2 Gas Drag

Gas drag has the e�ect of removing both energy and angular momentum from solid

bodies, causing even circular orbits to spiral inwards (Adachi, Hayashi & Nakazawa 1976;

Weidenschilling 1977; Beaug�e, Aarseth & Ferraz-Mello, in preparation). Though box tree

makes provision for a simple treatment of gas drag, it has never been tested in a proper

simulation. One di�culty is that by de�nition gas drag will increase the radial velocity

dispersion, which may invalidate the box model assumptions. However, with careful

monitoring, gas drag may add an important component to planetesimal simulations. In

particular, since the drag is inversely proportional to the particle radius, it would have

a systematically greater e�ect on low mass particles, sweeping them between the larger

particles and possibly enhancing the accretion rate.

6.4.3 Hermite Integrator & Block Steps

As described in x3.1, box tree uses a standard individual time-step scheme for integrating

the equations of motion. One drawback to this method is the fact that the integrator

requires a history of the previous few time-steps to form its correction to particle positions

and velocities. In the Hermite scheme (Makino 1991; Makino & Aarseth 1992), the �rst

time derivative of the force is calculated explicitly, eliminating the need for memory of

previous time-steps. This is possible because the second and third order derivatives of

the force can be interpolated from the force itself and its �rst derivative using a third-

order Hermite polynomial. Explicit calculation of the �rst derivative of the force increases

the CPU expense, but, according to Makino & Aarseth (1992), the improved stability of

the technique makes it possible to use times-steps that are nearly twice as long. From

these considerations alone, on balance, the Hermite scheme should give slightly better

performance.

There is another advantage, however. As pointed out in x3.6, the force polynomials

of particles involved in boundary crossings, collisions, and mergers must be reinitialized

under the current scheme. Much of this process could be eliminated under the Hermite

scheme since the second and third force derivatives are not required in advance. This

would necessitate, however, a change in the time-step formula for initialization, since

equation (3.7) makes use of the higher order derivatives. In this case a simpler expres-

sion, say �

F=

_

F

or equation (3.6) could be used, possibly with a smaller �, and only for

initialization. An added bene�t is that external potentials would be much simpler to

program, as there would be no need to explicitly code the higher order derivatives (see

Appendix).

In order to obtain both the force and its �rst derivative, the tree code would need

to be modi�ed. In particular, the multipole expansion would become considerably more

97

complex. For example, the �rst derivative of equation (2.9) is given by:

_

F = �M

"

r

2

_
r � 3 (r�

_
r) r

r

5

#

+

r

2

�

_

Q�r +Q�
_
r

�

� 5 (r�
_
r) (Q�r)

r

7

+

5

2

8

<

:

r

2

h�

_
r�Q�r + r�

_

Q�r + r�Q�
_
r

�

r + (r�Q�r)
_
r

i

� 7 (r�
_
r) (r�Q�r) r

r

9

9

=

;

;

where

_

Q is given in equation (3.2). Each term in this equation is straightforward to

calculate, but there will certainly be a large penalty for the extra work. Furthermore,

_

Q would need to be calculated for each node as well. It may be that with the Hermite

scheme it would only be advantageous to perform a multipole expansion over a node if

there is a minimum number of children in the node, say four or more.

The e�ciency of a code employing the Hermite scheme can be further improved

through the use of block time-steps (Aarseth, private communication). Particles retain

individual time-steps with this method, but the steps are allowed to take on only discrete

values, typically in powers of 2. This simpli�es predictions considerably, and also elim-

inates round-o� error problems that plague timing routines (see Appendix). Although

block time-steps could be used in the existing integration scheme, they are found to be

of greater advantage in the Hermite scheme. Note that block time-steps are also used in

tree codes (MA), but mostly in the context of vectorization (see following section).

6.4.4 Parallelization

Tree code does not lend itself well to parallelization due to its inherently recursive and

unbalanced nature. A version of the code that incorporates limited vectorization (where

simple arithmetic is performed on an array of numbers using dedicated hardware) was

successfully implemented by Hernquist (1987) for use on CRAY supercomputers equipped

with Fortran compilers that support recursive function calls. In this case the tree walk

for determining the force on a particle is vectorized by �rst obtaining a list of all nodes

with s=d < �

C

, then performing multipole expansions over these nodes in a vector loop.

True parallelization, however, involves farming out complex but balanced tasks to

multiple processors. In principle, a factor N

p

improvement in speed is possible, where N

p

is the number of (identical) processors available. In practice, a collisional N -body code

would be unlikely to ever attain this limit, since only parts of such codes are suitable for

parallel execution (namely those that involve loops over all the particles, or all the nodes

in the tree); there would still be many sequential steps in between.

The simplest parallelization of box tree would probably involve modifying just the

tree walk, which is currently the most expensive routine (see x4.2). Each processor would

be given a starting node, and would return the force contribution from that node. Starting

nodes would be chosen in sequence from level (1=n) log

2

N

p

in the tree, where n is the

tree dimension (for simplicity it is assumed N

p

is a power of 2). Unless the tree was

uniformly populated, however, the processors would not be balanced; to do better would

probably require fundamental changes to the code. Also, since just the tree walk is

being parallelized, only a modest improvement (a few factors of 2) would be expected.

Nonetheless, a parallel implementation of the tree walk would probably do better than

vectorized versions, especially if the tree were stored in a global memory that could be

accessed by all the processors, to minimize software data passing.

98

6.4.5 Miscellaneous

There are other miscellaneous items on the box tree \to-do" list. These include: im-

provement of the initial conditions code, adding more options and a friendlier interface;

streamlining of the time-step formula routines; an option to rebuild the tree at user-

speci�ed intervals; an option to display the closest binaries at a given time; and full

ANSI C function prototyping. As they are fairly straightforward in nature, many of these

improvements are likely to be implemented in the near future.

99

Chapter 7

Conclusions

A new tree code for fast simulation of planetesimal dynamics in a thin disk has been

presented. The box tree code combines elements of existing techniques, namely the box

code method of WT, which employs a self-similarity argument to con�ne the region of in-

terest to a small orbiting patch with periodic boundary conditions and uniform Keplerian

shear, and the tree code method given by BH, which considerably reduces the expense

of force calculations in an N -body system by recursively expanding hierarchical groups

of particles into corresponding gravitational moments. Several new techniques have been

introduced to eliminate special problems and to minimize both the computation time and

the force errors relative to a direct summation method: (1) tree repair to update parts

of the tree as needed, rather than rebuilding the tree every time-step or in average block

steps; (2) node updates and prediction to give a more accurate representation of the force;

(3) node packing to deal with overlapping particle projections in a 2D tree; (4) stretchable

nodes to allow for the rapid shearing motion in the system as well as to give a realistic

node size in a 2D tree for nodes containing children that are extended perpendicular to the

plane; and (5) position and velocity corrections to compensate for the fact that collisions

are detected only after penetration has occurred.

With all these elements in place, a considerable gain in e�ciency and accuracy has been

achieved. The box tree code is several times faster than the recent N -body box code of

ALP for moderate values of N (a few hundred), while maintaining force errors close to the

theoretical limit for quadrupole expansions. The code becomes increasingly advantageous

for larger values of N , in a manner consistent with an O(N logN) algorithm. Although

fairly optimized already, there are several ways in which the code e�ciency could be

improved further. One possibility is the incorporation of a fast square root algorithm, as

the square root function is currently the third most expensive routine in box tree. Other

possibilities include the use of a Hermite integrator or even the use of parallel processors.

Two major simulations were presented in this thesis, one for early planet-forming

planetesimals and the other for planetary rings. In the former, a large N model in 2D was

shown to develop runaway accretion, forming several large planetesimals many hundreds

of times larger than the starting mass in a short period of time. Equipartition of energy

was evident, with the largest masses having the smallest velocity and spin dispersions in

general. An explanation for oscillations in the z velocity dispersion seen in an ALP model

was also given, where it was argued that a �xed 1 yr sampling interval coupled with a

slight perturbation from the mean 1 yr orbital period due to interparticle gravity could

give rise to an apparent long-term oscillation. Also, the origin of initial oscillations was

explained to arise from the �nite-number statistics of a random velocity distribution.

The second major simulation took advantage of the provisions for interparticle grav-

ity, size distributions, and spin in box tree to generate new models of the dynamics in

100

Saturn's B ring, extending the original work of WT and others. Comparisons with WT

models were presented and showed excellent agreement overall. Improved detail allowed

a closer look at layering phenomena. Extensions into the self-gravity and small size dis-

tribution regimes showed behaviour similar to the earlier models, and there was still no

evidence for overall viscous instability. Larger size ranges at moderate optical depth gave

rise to aggregate formation and gravitational wakes, also seen in similar simulations by

Salo. The most realistic simulation so far (�R = 0.2{5 m, � = 1) was presented, and

also formed density transients. Since all size range models showed the rapid development

of some form of association, it must be concluded that such systems strongly favour ag-

gregate formation on very short time scales (less than one orbital revolution), and this

may help explain the non-uniformities seen in Saturn's outer rings. It should be noted

that the wake lengths in these local simulations may be limited by the choice of box size.

Particle spins in these later models were found to lie inside a rotational energy equipar-

tition envelope at equilibrium and were retrograde on average in the local frame, though

the particles generally had a large spread in obliquities.

During the development of box tree, an e�ort was made to keep the code as general

as possible. This allowed the adaptation of the code for use with gravitational microlens-

ing and galaxy collision simulations, as well as other simulations that required di�erent

reference frames. Equally important, the general nature of the code allows relatively

straightforward implementation of such re�nements as particle fragmentation, an impor-

tant dynamical e�ect in planetesimal evolution that has not yet been considered with

box tree.

There are other possible re�nements that have not been discussed. For example, frost

layers on centimetre-sized particles have been shown by experiment to increase dramati-

cally the chance of sticking (Hatzes et al. 1991; Bridges, Supulver & Lin 1993), a possi-

bility that may apply to ring particles. In addition, there are improved elasticity models,

also based on actual experiment. Recent results suggest collisions are more elastic than

previously thought (thereby increasing the mean equilibrium thickness of the disk and

possibly reducing the compactness of aggregates), and it has been found that the trans-

verse coe�cient of restitution may also be velocity-dependent (Supulver, Bridges & Lin

1993). Other enhancements that need to be made in future include the introduction of

non-spherical particles (e.g. ellipsoids with a distribution in axis ratio), although keeping

track of position angles and evaluating torque e�ects correctly will be challenging.

The Cassini mission to Saturn o�ers the exciting possibility of testing recent numerical

studies of planetary rings directly. To make the most of this opportunity, it is important

that as many improvements as possible be made to existing techniques. Some basic

re�nements have already been mentioned, but there are also many aspects of existing

models that need to be explored further in order to determine the best approach towards

future development. Particle aggregates in particular merit much further study: the

maximum aggregate size needs to be determined, requiring larger scale simulations; a

better picture of how the aggregates form and dissolve needs to be obtained; and a

determination of the role aggregates may play in reducing the rate of angular momentum

transport is also needed. As computing facilities improve, these problems will become

increasingly easier to address.

The source code of box tree and other major related programs is freely available to

researchers (see the Preface for details). The code includes a package for generating and

viewing movies of the planetesimal and tree dynamics. Movie generation has not only

proved invaluable as a diagnostic tool but has also turned out to be a very instructive

way of examining the non-intuitive particle motions that occur in the rotating frame.

Appendix A is a guide for those who wish to use the box tree package on their own. Full

101

source listings of box tree with introductory comments by �le are given in Appendix B

to simplify the process of modifying the code. Users that register with the author will be

noti�ed of any future updates to box tree.

It is hoped that box tree will prove a useful tool for future research in planetesimal

dynamics and other areas of study.

102

REFERENCES

Aarseth S. J., 1985, in Brackill J. U., Cohen B. I., eds, Multiple Time Scales, Academic

Press, New York, p. 377

Aarseth S. J., 1994, in Benz W., Barnes J., M�uller E., Norman M., eds, Computational

Astrophysics: Gas Dynamics and Particle Methods. Springer-Verlag, New York, in

press

Aarseth S. J., Lin D. N. C., Palmer P. L., 1993, ApJ, 403, 351 (ALP)

Adachi I., Hayashi C., Nakazawa K., 1976, Prog. Theor. Phys., 56, 1756

Araki S., 1991, Icarus, 90, 139

Araki S., Tremaine S., 1986, Icarus, 65, 83

Barnes J., Hut P., 1986, Nat, 324, 446 (BH)

Barnes J., Hut P., 1989, ApJS, 70, 389

Barnes J. E., 1992, ApJ, 393, 484

Barnes J. E., Hernquist L., 1992, Nat, 360, 715

Beaug�e C., Aarseth S. J., 1990, MNRAS, 245, 30

Binney J., Tremaine S., 1987, Galactic Dynamics. Princeton University Press, Princeton,

NJ

Bridges F. G., Hatzes A., Lin D. N. C., 1984, Nat, 309, 333

Bridges F. G., Supulver K. D., Lin D. N. C., 1993, Icarus, submitted

Brouwer D., Clemence G. M., 1961, Methods of Celestial Mechanics, Academic Press,

New York

Burns J. A., Showalter M. R., Mor�ll G. E., 1984, in Greenberg R., Brahic A., eds,

Planetary Rings. University of Arizona Press, Tucson, Arizona, p. 200

Cuzzi J. N., Lissauer J. J., Esposito L. W., Holberg J. B., Marouf E. A., Tyler G. L.,

Boischot A., 1984, in Greenberg R., Brahic A., eds, Planetary Rings. University of

Arizona Press, Tucson, Arizona, p. 73

Dyer C. C., Ip P. S. S., 1993, ApJ, 409, 60

Elmegreen B. G., Kaufman M., Thomasson M., 1993, ApJ, 412, 90

Emori H., Ida S., Nakazawa K., 1993, PASJ, 45, 321

Goldreich P., Ward W. R., 1973, ApJ, 183, 1051

Goldreich P., Tremaine S., 1978, Icarus, 34, 227

Goldstein H., 1980, Classical Mechanics, 2nd ed, Addison-Wesley, Reading, MA

Greenberg R., Brahic A., eds, 1984, Planetary Rings. University of Arizona Press,

Tucson, Arizona

103

Greenberg R., Wacker J. F., Hartmann W. K., Chapman C. R., 1978, Icarus, 35, 1

Hatzes A. P., Bridges F., Lin D. N. C., Sachtjen S., 1991, Icarus, 89, 113

Hernquist L., 1987, ApJS, 64, 715

Hernquist L., 1990, J. Comp. Phys., 87, 137

Julian W. H., Toomre A., 1966, ApJ, 146, 810

Lewis G. F., Miralda-Escud�e J., Richardson D. C., Wambsganss J., 1993, MNRAS, 261,

647

McMillan S. L. W., Aarseth S. J., 1993, ApJ, 414, 200 (MA)

Makino J., 1990, J. Comp. Phys., 87, 148

Makino J., 1991, ApJ, 369, 200

Makino J., Aarseth S. J., 1992, PASJ, 44, 141

Marion J. B., Heald M. A., 1980, Classical Electromagnetic Radiation, 2nd ed. Academic

Press, Orlando, Florida

Mirabel I. F., Dottori H., Lutz D., 1992, A&A, 256, L19

Nakagawa Y., Hayashi C., Nagazawa K., 1983, Icarus, 54, 361

Palmer P. L., Lin D. N. C., Aarseth S. J., 1993, ApJ, 403, 336

Petit J. M., H�enon M., 1987, A&A, 173, 389

Press W. H., Flannery B. P., Teukolsky S. A., Vetterling W. T., 1988, Numerical Recipes

in C (The Art of Scienti�c Computing). Cambridge University Press, Cambridge

Press W. H., Spergel D. N., 1988, ApJ, 325, 715

Richardson D. C., 1993a, MNRAS, 261, 396

Richardson D. C., 1993b, MNRAS, submitted

Safronov V. S., 1969, Evolution of the Protoplanetary Cloud and the Formation of the

Earth and Planets. Nauka Press, Moscow

Salo H., 1991, Icarus, 90, 254 (also Erratum, Icarus, 92, 367)

Salo H., 1992a, Icarus, 96, 85

Salo H., 1992b, Nat (Let), 359, 619

Schweizer F., 1978, in Berkhuijsen E. M., Wielebinski R., eds, Proc. IAU Symp. 77,

Structure and Properties of Nearby Galaxies. Reidel, Dordrecht, p. 279

Supulver K. D., Bridges F. G., Lin D. N. C., 1993, Icarus, submitted

Szebehely V., Peters C. F., 1967, AJ, 72, 876

Thomson R. C., 1992, MNRAS, 257, 689

104

Ward W. R., 1984, in Greenberg R., Brahic A., eds, Planetary Rings. University of

Arizona Press, Tucson, Arizona, p. 660

Weidenschilling S. J., 1977, MNRAS, 180, 56

Wetherill G. W., 1980, ARA&A, 18, 77

Wetherill G. W., Stewart G. R., 1989, Icarus, 77, 330

Wisdom J., Tremaine S., 1988, AJ, 95, 925 (WT)

105

Appendix A

User Manual

This appendix is a guide to using box tree in a workstation environment. For simplicity,

it is assumed the workstation is running SunOS 4.1.x, though the code can be compiled

on other systems (xA.2). Some familiarity with Unix and C is assumed. Reference will

be made to the main thesis text in order to minimize duplication of material. The source

code for box tree and the parameter �le parser rdpar are given in Appendix B. Other

programs and macros designed for use with box tree (particularly for examining the

output), are included in the source distribution. Unix-style \man pages" for box tree

are included as well. Instructions on how to obtain the source distribution are given in

the Preface.

A.1 Overview

A typical box tree simulation can be broken down into several steps. First a \run"

directory is created and the box tree executable and a default parameter �le are copied

into it. Next the parameter �le is edited as appropriate for the desired simulation. The

code is then run for a speci�ed length of time, or until interrupted by a user request. After

termination the output is analyzed and one or more restarts are carried out if desired.

Often the output is monitored as the code is running in order to verify that the simulation

is evolving correctly or to check whether it has reached some equilibrium state and may be

terminated. All these steps will be considered in greater detail in the following sections.

A.2 Compiling

Each major C program distributed with box tree comes with its own \make�le" (a �le

found in the source directory and usually called Makefile). A make�le consists of a list

of commands and dependency rules for compiling source code. The Unix command make

reads the make�le and performs the necessary operations. Only the box tree make�le

will be discussed here; the other make�les are similar but less complex.

A.2.1 Make�le Options

By default, when the user types make in the box tree source directory, an unoptimized

executable is created. This is the fastest compilation option. Other options require a

single argument to be given to the make command. The options and their e�ects are

summarized in Table A.1.

106

Table A.1: Make�le arguments for box tree.

Argument E�ect

opt uses \cc -O" and strips executable

debug uses \cc -g" to include symbol info suitable for dbx

pro�le uses \cc -pg -Bstatic" for pro�ling

gcc uses gcc with maximum optimization and source checking

lint runs lint to check the source

cow generates owchart from code

clean removes redundant �les, including object �les

backup makes backup of code and important subdirectories

The command \make opt" uses the SunOS C compiler to generate optimized and

symbol-stripped code. However, if the GNU compiler gcc is available, it should be used

in preference to cc (i.e. type \make gcc"). It is widely recognized that gcc is a better

optimizer than cc, and the GNU compiler also carries out a number of useful checks on

the source code that cc omits. All GNU software is freely available, so there should be

no di�culty in obtaining a copy of gcc. For debugging, however (\make debug"), the cc

compiler is still used, as it is more compatible with the dbx and dbxtool debugging pack-

ages available with SunOS 4.1.x and OpenWindows. The user is of course free to change

this so that the GNU versions are used instead. Debugging packages such as dbxtool have

proved invaluable during the development of box tree. Note that executables created for

debugging will generally run slower than the default or optimized versions.

The \make profile" option is used to generate an executable suitable for pro�ling.

This option adds instructions to the executable to automatically generate a �le called

gmon.out at termination that contains the pro�ling information. To read the �le, the

SunOS utility gprof must be used. Note that it is not possible to optimize and pro�le at

the same time, so the pro�ling information must be considered only a rough guide to the

best code performance. A typical pro�le run is discussed in x4.2.

The remaining make�le options do not create a box tree executable. The command

\make lint" runs the SunOS utility lint on the code to check for potential problems that

the compiler may have missed. The \make cflow" command writes a simple program

owchart to a �le called cflow.out using the SunOS cflow utility. The \make clean"

option removes all extraneous �les from the source directory, including object �les. The

box tree executable is not deleted however, contrary to the usual practice. Finally,

the command \make backup" uses the SunOS utilities tar and compress to create a

compressed archive of the source code and important subdirectories containing utilities,

plotting macros, and test data. The resulting �le is called box tree.tar.Z and should

be copied somewhere else for safety.

A.2.2 Recompiling

The box tree make�le uses the special \.KEEP STATE:" directive to create dependency

�les in the source directory when compiling. These �les contain information that make

uses on subsequent compilation requests to determine which source �les need to be re-

compiled. If only one source �le is modi�ed, for example, only that �le is recompiled.

The resulting object �le is linked with the others to form the updated executable. This

saves considerable time when making small changes to the code. In fact, this behaviour

occurs automatically even without the \KEEP STATE:" directive. With it, however, make

107

can detect changes to header �les or even the make�le itself and determine which source

�les need to be recompiled as a consequence (usually all of them). For this reason, there

is no need to delete object �les or the executable between invocations of, for example,

\make debug" and \make gcc"; the code will automatically be recompiled as required.

Note that \KEEP STATE:" may not be available on other platforms.

One typical reason for recompiling is to put into e�ect changes made to one or more

of the parameters in the params.h header �le. These parameters include the maximum

number of particles allowed and the tree dimension. See xB.1 for more information.

A.2.3 Other Platforms

The box tree code has been compiled successfully in the past on System V (e.g. Solaris

2.1) and DEC Alpha platforms. Recent changes to the code may have introduced a few

incompatibilities, but due to di�culties arranging access to foreign platforms there has

been no opportunity to identify any new problems. However, such porting di�culties

are easily dealt with using preprocessor macros. An examination of the source code

(xB.1) will reveal that de�ning the empty macros SYSV and ALPHA will eliminate most

incompatibilities for these systems. Examples of how to set these macros are given in the

make�le. Note that some of the special features used in box tree, such as built-in movie

generation, are not supported on foreign platforms.

A.3 Running

A typical invocation of box tree on a Unix platform running the csh shell might look

something like this:

nice +19 box_tree >&! output &

Here the program has been put in the background at reduced priority and the output

(stdout and stderr) has been redirected to the �le output. The exclamation mark (\!")

instructs the shell to overwrite the output �le if it already exists. It is recommended that

each box tree run be carried out in a new directory because, in addition to the stdout

and stderr output, box tree can generate a large number of sequentially numbered data

�les for later analysis (xA.5). Although box tree will automatically make backups of

existing �les before writing new ones, a run directory can quickly become cluttered.

Only two �les are needed to start a run: the parameter �le (described in xA.4.2)

and the executable itself, both of which should be copied into the run directory. It is

preferable to copy the executable (rather than link to it, for example) because depending

on the circumstance, the operating system may not load the executable in its entirety into

memory while running. Consequently, any changes made to the executable may cause any

current runs to crash. Also, with a copy of the executable, it will always be possible to

restart the run from the save �le (xA.5.6); new executables may have incompatible save

�les.

A box tree run will terminate when: (1) the simulation clock reaches a user-supplied

termination time; (2) the run reaches a user-supplied CPU limit; (3) the empty �le STOP

is created by the user (e.g. \touch STOP" in the run directory); (4) an interactive session

is interrupted by pressing <CTRL><C>; (5) the user executes a kill command; (6) the

machine crashes; or (7) the code crashes with an error. Simulation and CPU time limits

are speci�ed in the parameter �le (xA.4.2). However, if the user does not know in advance

when to terminate the simulation, large limits may be speci�ed to allow the program to

108

Table A.2: Command line arguments for box tree.

Argument E�ect

-b disables auto backup of existing output �les

-l log�le sets \log�le" as name of �le for logging

-p par�le sets \par�le" as name of parameter �le

-r attempts a restart from most recent save �le

-s sav�le sets \sav�le" as name of save �le

-x disables logging

run inde�nitely. To stop the run cleanly in this case and generate an up-to-date save

�le (cf. xA.5.6), the \touch STOP" facility should be used. If restarts are not important,

the job can simply be killed, using the SunOS kill command for background jobs, or by

pressing <CTRL><C> for foreground (interactive) jobs. The run can still be restarted, but

only from the last save �le. Nothing can be done about a machine crash except to restart

from the last save �le. In the event of a code crash, see xA.6.

A.4 Input

The parameter �le, and optionally a �le of preset initial conditions, uniquely de�ne a

box tree run. It is possible to restart a run without a parameter �le, but this is not

recommended practice; the parameter �le should always be kept with the executable and

the output. If nothing else, it will help identify the run for later analysis. The parameter

�le and the format for supplied initial conditions are discussed in this section. There are

also a few command line arguments available which are discussed �rst.

A.4.1 Command Line Arguments

Table A.2 summarizes the command line arguments available with box tree. These

options must be read before the parameter �le, which is why they are speci�ed on the

command line.

The \-b" option suppresses the default behaviour of backing up existing data �les

before writing new ones. For example, if the statistics �le box tree.stats already exists

at the beginning of a new run, it is moved to the �le box tree.stats% in case the user

did not mean to overwrite it. Turning o� this feature may be advantageous for short

runs that are I/O-intensive. The \-b" option also has the e�ect of disabling the check for

existing save �les when starting a new run. Normally box tree assumes that if a save

�le exists, the user would want to restart from it (option \-r"); if no restart is speci�ed,

box tree halts with an error message. To start a new run in a directory containing a save

�le without using the \-b" option, simply delete the save �le �rst.

The \-l", \-p", and \-s" options alter the default log, parameter, and save �le names,

respectively. The default values are speci�ed in the source �le params.h: the default

log �le name is box tree.log, the parameter �le is box tree.par, and the save �le

is box tree.sav. Note that a small number of the most recent save �les may be set

aside temporarily if desired (cf. xA.4.2). By default, the current save �le is always

box tree.sav; this �le is backed up to box tree.sav0, box tree.sav1, etc., as appro-

priate before each subsequent dump. These backups are gradually overwritten as the run

progresses.

109

The \-r" command instructs box tree to attempt a restart from the current save

�le (assumed to be box tree.sav unless overridden by the \-s" option). Section A.5.6

discusses save �les and restarts in greater detail. The \-x" command disables logging

(xA.5.2).

The following example illustrates the use of box tree command line arguments:

nice +19 box_tree -p test.par -r -s old_run -b >&! test &

In this example, a low-priority job is submitted that restarts from the �le old run.sav

using new parameters speci�ed in test.par. File backups are disabled for this run. The

log will be kept in box tree.log. Note that the command line arguments need not be

speci�ed in any particular order, although any �lename arguments must appear beside

their ags.

A.4.2 The Parameter File

Perhaps the easiest way to familiarize the user with the box tree parameter �le is to

examine a typical example in detail. In this section, the default parameter �le supplied

with box tree is presented line-by-line from start to �nish, with detailed explanations

after each major block of related parameters. The actual parameter �le contains short

descriptive comments between these blocks to help the user when editing.

The parameter �le consists of lines of the form:

keyword value ! comment

The keywords are labels for the data value. The comment is ignored; it serves only as an

aid to the user. The \#" symbol may also be used to denote comments. Note that \!"

and \#" must not appear in string constants, as they will still be construed as comment

markers (cf. rdpar source code in xB.2). The keyword and value must be separated

by whitespace, generally <TAB>s or <space>s. The lines containing the keywords and

associated data may appear in any order, but currently they are read by box tree in

almost the same order they are given in the sample parameter �le. There should be no

need to change this. Generally the \read-once" parameters are at the beginning of the

�le, while those parameters that may be altered each restart make up the rest of the �le.

Real values (as opposed to integer values) may be given in oating point or exponential

notation. Double quotes (\") around string constants are optional. Some parameters

are multi-valued; the proper syntax will be described as needed. Other details about the

parameter �le format can be found in xB.2.

Many parameters require data that have dimension, such as length, velocity, etc. In

general, box tree assumes such supplied data are in scaled units (cf. x5.1). However, mks

units can be used in most cases by giving a negative value. For example, a box size of

0.01 could mean 0.01 AU while �100 would mean 100 m). Any exceptions will be noted

below.

The box tree parameters will now be described in order, with one or more lines of

the sample �le being given �rst, followed by the detailed description.

Comment line "box_tree test: 3D N 100 rot per w/ghosts w/tree"

The �rst parameter is an optional descriptive comment for �le headers. The comment

line appears in several output �les, as well as the general output. It is a good idea to

use the comment line facility in case the output from multiple runs gets confused. The

comment line may be changed for a restart if desired.

110

Reference frame 1 ! 1=rotating,2=inertial,3=galaxy

Currently there are three choices of reference frame. The choice of reference frame

may place limits on which other parameters may be used, or the range of values certain

parameters may take. Any such restrictions will be noted as appropriate below. The

inertial frame (option 2) is described briey in x6.1. The rotating frame (option 1) is

the subject of much of the main thesis text. The galaxy frame (option 3) is for use with

the simulations described in x6.3. The choice of frame largely determines which external

potentials (if any) will be applied to the particles during integration. Attempts to change

the reference frame for a restart are ignored. In fact, all of the following parameters, up

to but not including the verbosity level, are read only once, at the start of a new run.

Length scale 1.49597892e11 ! In metres

Mass scale 1.989e30 ! In kilograms

Time scale 3.1558149984e7 ! In seconds

In order to convert from mks units to the scaled units, box tree needs to know the

length, mass, and time scales for the simulation. The example shown here is for 1 AU,

1 M

�

, and 1 sidereal yr. See x5.1 for other scales. In the rotating frame, times are

multiplied by 2� internally (i.e. the factor of 2� is dropped for outputs). The velocity

scale in the rotating frame also includes a factor of 2�, so that for the current example,

the velocity scale is 30 km/s (the rotation speed at 1 AU). This factor is not removed for

output. These factors of 2� are included so that the mean angular velocity
 can be set

identically to 1 and hence be omitted from all calculations. Note that if only scaled units

are used in the parameter �le, and the particle density is not needed (to convert from

radii to masses), there is no need to set the length, mass, and time scales.

Random number seed 0 ! Must be non-negative (0 for "random")

Init cond option 1 ! 1=align,2=unif,3=WT,4=packed,5=supplied

The initial conditions for the simulation are speci�ed by the random number seed and

the initial conditions option. If a positive number is given for the seed, that value will be

used. This allows multiple runs to be performed on the same set of initial conditions. A

random seed can be requested by setting the value to zero. In this case box tree sets the

seed to the process ID number of the job. The value is output in various places and saved

in the restart �le (as are all the other parameters), in case it is necessary to reproduce

the exact initial conditions at a later date.

Currently there are �ve initial conditions options. Each one requires a certain number

of other parameters to be speci�ed (described below), and in many cases more than one

option uses the same subset of parameters. Option 1 (\aligned c-o-m") places particles

randomly in the central box and adjusts the positions and velocities so that the centre-

of-mass position and velocity of the system are both zero. Option 2 (\uniform random")

places particles in a grid superimposed on the box, with equal numbers of particles dis-

tributed in each subdivision in a uniformly random manner. The centre-of-mass position

is not adjusted in this case, but should lie close to the origin if there are a su�cient number

of particles and subdivisions. Option 3 (\WT") applies the initial conditions described

in x5.3 for planetary ring simulations. Option 4 (\close-packed") places the particles in

layers reminiscent of a cubic lattice. This requires that N=n

l

be a perfect square, where

n

l

is the number of particle layers. The centre-of-mass velocity is also set to zero with

this option. Option 5 (\supplied IC's") reads a separate data �le for the initial conditions

(xA.4.3). Only option 5 can currently be used with the inertial or galaxy frames.

111

Bdry cond option 1 ! 1=periodic,2=unbounded,3=disabled

There are three choices of boundary conditions. The �rst two|periodic and un-

bounded boundary conditions|are described in x6.1. The third option stipulates that

particles not be allowed to leave the box; an error is generated if a particle attempts to

do so. Note that only periodic boundary conditions can be used in the rotating frame.

Use ghost particles? 1 ! 0=NO,1=YES (NO if unbounded BC's)

Box size 0.04 ! Box size in length units

Initial clock time 0.0 ! Starting time in time units

Initial x vel disp 3.0e-4 ! Initial x vel disp in velocity units

Initial y vel disp 1.5e-4 ! Initial y velocity dispersion

Initial z vel disp 1.5e-4 ! Initial z velocity dispersion

Use small dispersions? 0 ! Toggle (may override x/y/z vel disp)

These parameters may be used with any initial conditions option. As with all toggles,

the \Use ghost particles?" has two possible values: 0 (NO) and 1 (YES). Ghosts may

not be used with unbounded simulations, but are otherwise allowed, even in the inertial

frame (the ghost boxes remain stationary in this case). The box size must be speci�ed if

the simulation is bounded and the initial conditions are not WT-type (where the optical

depth may be used to determine the box size). Note that the box size is expected to be

supplied in length units, but mks units may be speci�ed by prepending a minus sign. The

initial clock time may be set if desired, but currently the only reason for setting it to a

non-zero value is to obtain an \evolved" ghost box con�guration (i.e. sheared from the

initial 3 � 3 grid), usually for drawing movie frames.

Initial velocity dispersions may be speci�ed in x, y, and z if desired. In the case of

supplied initial conditions, the initial velocity dispersions are added as a perturbation to

the supplied velocities. Currently WT simulations ignore the initial dispersions. When

using initial dispersions, the x- and y-velocity (or the perturbation in the case of supplied

velocities) of each particle is set to the corresponding initial dispersion times a random

Gaussian deviate with zero mean and unit variance. For close-packed and supplied initial

conditions, the z-velocity perturbation is determined in the same way. For the other initial

condition options however (which are only used in the rotating frame), the z-position and

velocity are constrained by the requirement of simple harmonic motion [cf. equation (2.7)].

If a vertical scale height is not speci�ed (see below), the initial position and velocity in z

of each particle is set according to:

z

i

=

p

2 �

0

z

i

cos(�

i

);

_z

i

= �

p

2 �

0

z

i

sin(�

i

);

where �

0

z

is the initial z velocity dispersion,

i

is a Gaussian deviate, and �

i

is a phase

angle chosen randomly from a uniform distribution between 0 and 2�. It can be shown

from the formalism presented in x5.2.4 that for su�ciently large N , the velocity dispersion

of the _z

i

's given above equals �

0

z

. In the case of a mass distribution, the z-components

of position and velocity, as well as the x and y velocity components, are weighted by

(m=m

i

), where m is the mean mass (cf. x3.3.1). This ensures that the largest particles

are not given excessively large initial velocities. Note that this factor was chosen so that

it does not change the initial dispersions.

The \Use small dispersions?" ag currently only works with close-packed initial con-

ditions. If set, the initial velocity dispersions are changed to
R, where R is the particle

radius, overriding any other initial velocity dispersions.

112

Number of particles 100 ! Between 1 and MAX_NUM_PARTICLES

Smallest initial mass 8.0e-11 ! Smallest initial mass in mass units

Largest initial mass 8.0e-11 ! Largest initial mass in mass units

Particle density 1.4 ! Particle density in g/cm^3

Smallest initial radius 0.0 ! Overrides mass if not 0 (length units)

Largest initial radius 0.0 ! Overrides mass if not 0 (length units)

These parameters apply to the �rst four initial conditions options (i.e. everything

except supplied initial conditions). First, the number of particles N must be speci�ed,

between 1 and the maximum number set in the params.h header �le (currently 10 000).

A range of masses may be set by specifying the upper and lower limits to the distribution.

If the limits are equal, the particles will all have the same size. For the close-packed

case, the limits must be equal. A particle density in cgs units (negative for mks units)

must be speci�ed for simulations that allow particle collisions. A range of radii can be

speci�ed, and will override the mass range if given. In this case the particle density must

be speci�ed in order to determine the particle masses.

Mass function exponent 0.0 ! Mass function exponent (0 ==> constant)

Seed mass 0.0 ! Optional init mass of particle 0

If a mass or radius range has been speci�ed for the aligned, uniform, or WT initial

conditions, the mass function exponent [� in equation (3.1)] must be given. A zero value

implies a linear function between the mass or radius limits (i.e. equal numbers of small-

and high-mass particles). Currently the initial mass function is sampled smoothly (cf.

x3.3.1). A seed mass may also be speci�ed if desired. This mass will be given to particle

0, which will be excluded from the initial mass or radius function. The seed mass is placed

at the centre of the box with zero initial velocity.

Use softening? 0 ! 0=NO,1=YES

For the aligned, uniform, or supplied initial conditions, softening may be turned on.

Section 6.3.2 describes the form of softening currently used in box tree. Note that with

softening turned on, particle collisions are disabled. The particle radii become the soft-

ening lengths.

Reject init. binaries? 1 ! 0=NO,1=YES (checks within 10 R_roche)

Vertical scale height 0.0 ! Scale height in R_roche (0.0 to ignore)

For the aligned and uniform initial conditions, potential initial binaries may be rejected

if desired. Currently only particle pairs separated by less than 10 Roche radii (cf. x5.2)

are considered for rejection. In the case of a mass distribution, the Roche radius of the

largest mass is used for the limit. Overlapping particles are rejected automatically with

this option (this is also done for WT initial conditions). Otherwise a pair is considered a

binary if the semi-major axis [cf. equation (3.20)] is positive but smaller than the largest

Roche radius. Note that this rejection algorithm is expensive to compute [O(N

2

)], since

all pairs must be considered. Fortunately, it is only used to set the initial conditions at

the beginning of the run.

A vertical scale height in maximum Roche radii may be speci�ed if desired. This over-

rides the use of the initial z velocity dispersion for setting initial positions and velocities

in z (see above).

113

Number of x divisions 0 ! No. unif. random div. in x direction

Number of y divisions 0 ! No. unif. random div. in y direction

For the uniform initial conditions, the number of divisions in x and y for the particle

placement grid must be speci�ed. If both values are set to 1, the entire box is used at

once for particle placement. Note that the product of the number of divisions in x and y

should not exceed the particle number N .

Optical depth 0.0 ! Overrides box size if not 0

Disk thickness 10.0 ! Initial disk thickness in radii

These parameters are used with the WT initial conditions. The dynamical optical

depth � [cf. equation (5.2)] may be speci�ed, overriding the box size (since the particle

radii are known). The initial disk thickness must be speci�ed, and is given in (maximum)

particle radii.

Number of layers 0 ! No. particle layers in z for packing

Expand radii? 0 ! 0=NO,1=YES (overrides density & radii)

Stagger in z? 0 ! 0=NO,1=YES

For close-packing, the number of particle layers (at least one) must be speci�ed. The

layers are distributed evenly above and below the z = 0 plane. If \Expand radii?" is set,

the particle radii are expanded so that the particles are just touching, both within a layer

and between layers. If \Stagger in z?" is true, each layer is alternately o�set horizontally

by a particle radius so that the particle centres of every second layer overlap the gaps

between particles in the neighbouring layers. If both the latter ags are set, the layers

are compressed in the z-direction so that the particles interlock (maximum packing).

Init cond filename "dat000.out"

No. header lines 0 ! No. lines before first line of data

Add shear? 1 ! 0=NO,1=YES

The supplied initial conditions option has three parameters. First the �lename of the

data �le must be speci�ed (see xA.4.3 for the �le format). Next the number of header

lines (if any) to skip in the �le must be given. Finally, there is an option to add shear to

the supplied velocities. The shear parameter is only recognized in the rotating frame.

Verbosity level 1 ! 0=NONE,1=VERBOSE,2=VERY_VERBOSE

Debug level 1 ! 0=NONE,1=ERROR_CHECK,2=MONITOR,3=TRACK

These options and most of the remaining parameters may be changed for restarts. The

verbosity level controls how much output is sent to stdout. The nature of this output is

described in greater detail in xA.5.1. The debug level controls how much internal checking

is performed during a run. When set to 0, only mandatory checks are performed. At level

1, various simple diagnostics are enabled, and some warnings will be printed if necessary.

Level 2 performs detailed and often costly checks, particularly regarding the tree code

accuracy. Level 3 is used primarily to track speci�c particles (see below) one step at a

time, displaying information such as the current position and velocity, and the nearest

neighbour. Note that the higher levels include all the lower levels, so a verbosity level of 2

and debug level of 3 will generate maximum output and perform all built-in tests. Often

both the debug and verbosity levels are consulted to decide whether certain warnings

should be printed. A brief search of the source code is perhaps the best way to see how

these parameters are used (cf. xB.1).

114

Stop check 1000 ! Check for STOP every n steps (or 0)

CPU check 0 ! Check for time limit expiration

Safety dump 100000 ! Safety dump every n steps

Log time stamp 10000 ! Output time stamp every n steps

These parameters control the frequency at which box tree performs various book-

keeping functions. The parameter values are in time-steps, with 0 indicating that the

corresponding task should not be performed. Note that the time-steps in box tree are

irregular, so the frequency at which these tasks are performed bears no relation to the

simulation time. Rather, the parameter values are more closely tied with the elapsed

CPU time of the process.

The �rst parameter controls the rate at which checks for the STOP �le are performed

(cf. xA.3). Each check involves an I/O operation so it is prudent not to perform these too

often. However, fast response is desirable if it becomes necessary to stop a job quickly and

cleanly. An interval of 1 000 steps generally gives a detection time of about one minute.

Checks for CPU expiry are performed only periodically as they involve system calls.

The \CPU check" parameter controls the frequency. The \Safety dump" parameter con-

trols the rate at which restart �les are written to disk (cf. xA.5.6). A value of 100 000

typically results in one dump per hour. The last parameter controls the frequency of time

stamps in the log �le (cf. xA.5.2).

Output interval 0.1 ! Main output int. in time units (or 0)

Stats interval 0.1 ! Stats summary output interval (or 0)

Dat interval 0.1 ! Particle data output interval (or 0)

Evol par interval 0.1 ! Interval to recalc evol. params (or 0)

Movie interval 0.01 ! Movie frame output interval (or 0)

Debug/check interval 0.0 ! Debug/check interval (or 0)

Termination time 1.0 ! Final termination time in time units

Run time 0.0 ! Max duration for this run (in CPU mins)

These parameters control the major simulation data output and diagnostic intervals

as well as the duration of the simulation. The intervals are given in simulation time units,

as is the termination time. The output and diagnostic intervals are checked in the order

they are given here. For example, at t = 0:2 the stats �le will be updated before the

next particle data �le is created. The clocks are checked each time-step to ensure that

all output occurs at the correct time and in the correct order. Particle positions and

velocities are predicted to high (third) order for output. Details regarding the various

forms of output may be found in xA.5. Particular output can be disabled by setting the

corresponding interval to 0. Note that output is generated at t = 0 as well.

The termination time is the simulation time at which the run is to terminate. A �nal

output check is performed at termination. A restart �le is always created at termination,

regardless of whether periodic safety dumps are enabled. If the �nal parameter|the run

time in CPUminutes|is non-zero and CPU checks are enabled, the run will be terminated

if the elapsed CPU exceeds the given run time. A save �le will also be generated in this

case.

No. backup save files 3 ! Specify between 0 and 9

TSF option 2 ! 1=RV only,2=RV and F,3=F only

Time-step coefficient 0.02 ! Coefficient in time-step formula (TSF)

Minimum time-step 0.0 ! Min time-step in time units (0 ignores)

Maximum time-step 0.005 ! Max time-step in time units (0=no lim)

115

Include self-gravity? 1 ! 0=NO,1=YES

Z grav enhance factor 1.0 ! Rotating frame only, must be >= 1

CP sum of radii factor 0.99 ! For use in time-step formula

Radial restitut'n coef. 0.5 ! Between 0 and 1 (or -9.9 for vel-dep)

Trans. restitut'n coef. 0.5 ! Between -1 and 1 (or -9.9 for vel-dep)

Inhibit sliding phase? 1 ! 0=NO,1=YES

Apply coll'n velo adj? 0 ! 0=NO,1=YES

Include gas drag? 0 ! 0=NO,1=YES

Drag coef in x 0.0

Drag coef in y 0.0

Drag coef in z 0.0

Constant drag in y 0.0 ! (scaled by 10^-3)

Allow mergers? 1 ! 0=NO,1=YES

Use tree? 1 ! 0=NO,1=YES

These parameters control various aspects of the simulation. Most of these quantities

are self-explanatory, so they will only be described briey. The �rst parameter controls

the number of backup save �les box tree is to maintain, up to a maximum of nine (so

that only a single digit is required to di�erentiate between the �les). After this number

of backup save �les has been generated, the oldest is overwritten at the next dump, and

so on. The \TSF option" controls which time-step formula to use. Option 1 (RV only)

uses equation (3.6), option 3 (F only) uses equation (3.7), and option 2 (RV and F) uses

the �rst equation if a particle's closest neighbour is approaching, and the second if it is

receding. Note that only option 3 can be used with simulations that include softening.

The time-step coe�cient is the value � in these equations. The minimum and maximum

time-steps to use (if any) may also be speci�ed.

The \Include self-gravity?" ag controls whether or not interparticle gravity is in-

cluded in the simulation. This can be switched on and o� for subsequent restarts if

desired. Note that for simulations in the inertial frame where there is no external poten-

tial, the �rst time-step formula option (RV only) must be used if there is no interparticle

gravity (since this implies there are no forces at all acting on the particles). The \Z grav

enhance factor" is the quantity g de�ned for model (iii) of the WT simulations (cf. x5.3);

this may only be used in the rotating frame. The \CP sum of radii factor" is the value "

in equation (3.6). This quantity must be less than one for the \RV only" TSF option; it

is ignored for the \F only" option.

The radial and transverse coe�cients of restitution are the values �

n

and �

t

, respec-

tively, in equation (3.13). If either value is given as -9.9, the Bridges et al. (1984) velocity-

dependent formula is used instead (cf. x5.3). Note that this formula is empirical in nature

and applies only to small ice spheres. If \Inhibit sliding phase?" is true, particles that col-

lide with a very small relative radial velocity are forced to bounce elastically (cf. x5.3). If

\Apply coll'n velo adj?" is true, the velocity corrections described in x3.5.4 are performed

before a collision.

The gas drag parameters will not be discussed here, as they have not been used in

any proper box tree simulations to date. For further details, refer to the source listings

(xB.1).

The �nal two parameters in this set control whether particle mergers are allowed, and

whether or not to use the tree code to speed up interparticle force calculations. Note that

currently the tree cannot be switched on for a restart; the tree code must be used from

the beginning.

Stats filename "box_tree.stats" ! For statistics summary

116

Dat file basename "box_tree" ! For particle data

Starting dat file no. -1 ! Use -1 for default

NLV output filename "" ! For non-local viscosity

These are miscellaneous output parameters. First the name of the statistics �le (cf.

xA.5.3), then the base name for particle data �les and the starting �le number (cf. xA.5.4).

A �le number of -1 may be speci�ed for the \default" value, namely 0 at the start of the run

or one more than the number of the last data �le generated before a restart. Specifying any

other non-negative number will instruct box tree to begin sequential numbering at that

value, regardless of what has gone before. Currently 999 is the largest �le number allowed

(cf. params.h). For future reference, a numbered �le has the following components: the

base name (e.g. box tree), the �le number (e.g. 999), and the extension (e.g. .dat in

the case of particle data �les). Thus by default the �rst particle data �le generated is

box tree000.dat.

The �lename for output of non-local viscosity data [cf. equation (5.4)] is the �nal

parameter in this set. Currently the data is generated every collision, so the �le can

grow quickly and much time can be spent on I/O operations. If no �lename is speci�ed,

NLV data is not calculated. This option is included only for comparison with the WT

simulations and may not be supported in future versions of the code. See the source

listings (xB.1) for the �le format.

Tree size 0 ! In length units (0=box size)

Expansion factor 1 ! For resizing, use > 1 (1=no expansion)

Maximum opening angle 0.6 ! Max. subtended angle for mult. exp.

Use quadrupole? 1 ! 0=NO,1=YES

Use minimum repair? 1 ! 0=use RemoveFromTree(),1=MoveInTree()

Use hi-ord. prediction? 0 ! 0=NO,1=YES

Predict monopole? 1 ! 0=NO,1=YES

Predict quadrupole? 1 ! 0=NO,1=YES

Check update times? 1 ! 0=NO,1=YES

Mono time-step coef 0.001 ! Coeff. for node monopole time-steps

Quad time-step coef 0.01 ! Coeff. for node quadrupole time-steps

Exclude particle NULL ! For initial conditions only

These parameters control the behaviour of the tree code. First the tree size must be

speci�ed. If the size is 0, the tree size will be set to the box size. Recall however that

an unbounded simulation is not constrained to a box so in this case the tree size must be

set explicitly. The expansion factor controls how quickly the tree will resize if a particle

moves outside the root node in an unbounded simulation (cf. x6.1). A value of 1 disables

expansions.

The opening angle �

C

is the next parameter to be speci�ed. The value is given in

radians and may be zero. A warning will be generated if �

C

exceeds n

�1=2

, where n

is the tree dimension (cf. x3.4.5). The next six parameters are all toggles that control

the multipole expansions and node predictions. If \Use quadrupole?" is set, both the

monopole and quadrupole will be used for expansions; otherwise only the monopole will

be used. Note that currently the quadrupole cannot be turned on for a restart. If \Use

minimum repair?" is set, tree repair following particle updates will be as described in

x3.4.1; otherwise each updated particle will be completely removed then replaced in the

tree. The former option is much faster, but the latter gives better accuracy since all

the ancestors of the particle in the tree are updated, rather than the minimum number

required for e�cient tree repair. If \Use hi-ord. prediction" is true, leaf particles are

117

predicted to high order when updating nodes. This is expensive and o�ers only a modest

improvement in accuracy. The \Predict monopole?" and \Predict quadrupole?" ags are

self-explanatory. Note however that monopole prediction must be enabled for quadrupole

prediction to take place. If \Check update times?" is true, nodes are given time-steps

according to equations (3.3) and (3.4) using the time-step coe�cients speci�ed by \Mono

time-step coef" (�

M

) and \Quad time-step coef" (�

Q

). If the monopole or quadrupole of

a node is found to be out of date, it is updated immediately before being used.

The last item in this set is the �rst example of a multi-valued parameter. Here a list of

particles to be excluded from the tree at the start of the simulation may be given (the list

is currently ignored for restarts). Each particle to be excluded must appear on a separate

line, preceded by the \Exclude particle" keyword. The list must be terminated by the

value \NULL" as shown. The massive galaxy (particle 0) described in x6.3 was excluded

from the tree in this way.

File basenames "movie" ! Basename for movie files

Starting frame number -1 ! Use -1 for default

Frame size 400 ! In pixels (square frame)

View size 0 ! In length units

View centre 0 0 ! Coords of view centre (length units)

Draw tree? 1 ! 0=NO,1=YES

Particle shape 5 ! 0=DOT,1=CIRC,2=SQ,3=DIAM,4=DISK,5=SPH

Radius magnification 500.0 ! Particle size magnification

Viewing distance 0.1 ! Viewing distance in length units

Z magnification 25.0 ! Exaggeration of z dispersion

Hide blocked objects? 1 ! 0=NO,1=YES

Draw velocity vectors? 1 ! 0=NO,1=YES

Default color 255 ! 255=WHITE (other colors given below)

These parameters control box tree movie generation (cf. xA.5.5). The parameters

begin with the base name for the movie frames and the starting frame number. Next

the size of each frame in pixels must be speci�ed. Currently the frames are square. For

reference, a typical Sun workstation has a screen resolution of � 1 150 � 900 pixels. The

view size is given in the same units as the box and tree sizes. If the view size is zero, the

initial tree size is used if applicable, otherwise the box size is used (assuming a bounded

simulation). If the view size is negative, the absolute value is taken as a multiple of the

box size. For example, a view size of �3 would include the surrounding ghost boxes if

applicable. The centre of view in x and y may also be speci�ed (note \View centre" is a

di�erent kind of multi-valued parameter: one keyword with two values).

If the tree is enabled, it will be drawn if \Draw tree?" is set. Both 2D and 3D trees

can be accommodated, although currently the 3D version is rotated to match the 2D

view (such that the xy-plane is seen face-on | see source listing for draw.c in xB.1).

Section A.5.5 describes the various features drawn.

Currently there are six choices of particle shape for drawing: single dot, open circle,

solid square, solid diamond, solid disk, and shaded sphere. The sizes of the shapes are

scaled to the particle size, with an optional radius magni�cation. The single dot should

be used when softening is enabled, as the softening lengths tend to be large. A viewing

distance and magni�cation in z can also be speci�ed to exaggerate the sizes of \nearby"

foreground objects (large z). If \Hide blocked objects?" is true, the particles are sorted

in z before drawing; particles with small z are drawn �rst so that those with larger z

(closer to the viewer) are drawn overtop. Otherwise the particles are drawn in their index

order. Velocity vectors will be drawn if \Draw velocity vectors?" is true. The vector

118

Table A.3: Drawing colours supported by box tree.

Index Color Index Color

0 black 6 purple

1 red 7 cyan

2 pink 8 blue

3 yellow 9{254 grey scale

4 green 255 white

5 orange

lengths correspond to the distance that would be traveled by each particle in 0.001 time

units if all gravity was switched o�. The vectors are correctly projected onto the viewing

surface. The last movie parameter is the default drawing colour for particles. The colours

currently de�ned in box tree are given in Table A.3.

Track particle NULL NULL

This multi-valued parameter allows the user to tag particles for tracking (see \Debug

level" above) or for drawing in di�erent colors. This is a null-terminated list with two

values to be speci�ed on each line, the �rst being the particle index and the second being

the desired color. If the color is the default color (see above), box tree just marks the

particle for tracking.

Check tree? 0 ! 0=NO,1=YES

Check multipoles? 0 ! 0=NO,1=YES

Check force? 0 ! 0=NO,1=YES

The last parameters in the �le are toggles for various checking routines, currently all

associated with the tree. These are only used if the debug/check interval (see above)

is non-zero. The �rst option, if set, enables a self-consistency check for the tree. The

second option instructs box tree to check the multipoles after initial tree construction,

and to check the accuracy of multipole predictions at subsequent check intervals. The

�nal option enables checking of the tree force on a periodic basis. Error statistics are

accumulated with this option and displayed at the end of the run. For more details, see

xA.5.1 and xB.1.

A.4.3 Supplied Initial Conditions

Since it is impractical for box tree to generate all conceivable initial conditions, the

user has the option of supplying a text (ASCII) �le containing all the data necessary to

describe the initial state of each particle in the simulation. This feature can also be used

to \restart" a simulation if there is no save �le. Note that precision will be lost in such a

restart so the actual evolution may di�er from its original course.

The format of the data �le is the same as the format of the long output from dat read

(xA.5.4). Each line of the �le consists of the data for one particle:

i i

0

m R x y z _x _y _z _y

r

!

x

!

y

!

z

c;

where: i is the index of the particle; i

0

is the original index of the particle before any

merger events; m is the mass; R is the radius; x, y, and z are the position components;

_x, _y, and _z are the velocity components, including any shear in the y-direction; _y

r

is

119

the y-velocity with respect to any mean shear (cf. x5.3); !

x

, !

y

, and !

z

are the spin

components; and c is the particle colour (a value of 0 is taken to indicate the default

colour). Any number of particles may be read in, up to the maximum limit set in the

params.h header �le. All units are in the scaled units, and positions, velocities, and spins

are with respect to the chosen coordinate system. The quantity _y

r

is actually redundant,

since an option exists to add shear to the initial supplied velocities. The column is

included to be compatible with the output format of dat read. Note that i

0

should be

the same as i at the start. If merging is not allowed, these indices will not change. Also

note that both the mass and radius of each particle are speci�ed, allowing particles with

di�erent densities to be simulated. Finally note that the positions are expected to lie

within the central box as well as the root node of the tree if applicable. Particles found to

lie outside the box will have their positions adjusted automatically through application

of the boundary conditions. However, if an initial particle position is outside the tree,

an error is generated. Currently it is up to the user to ensure that the initial tree size

accommodates all the supplied positions.

A.5 Output

For a numerical simulation to be useful, it must generate relevant output organized in

such a way that the user can examine it quickly and deduce any important results. There

are many forms of output generated by box tree, each with a di�erent level of detail. The

\standard" output is what would normally be directed to the screen, or to a �le using shell

redirection commands. This output can be very verbose at times, and often the user may

choose to discard it (by redirecting it to /dev/null for example). A log �le is generated

by default; it includes important parameter information and time stamps written out by

box tree at �xed intervals. A summary of various statistical quantities (given in full in

the standard output) is optionally accumulated in the \stats" �le. Data �les containing

all the information describing each particle in the simulation can be output at �xed

intervals. Movie frames can be generated as a graphical summary of the particle and tree

data. Finally, save �les containing all the information needed to perform an exact restart

can be output periodically. The details regarding all these forms of box tree output, and

how they may best be analyzed if applicable, will be presented in the following sections.

A.5.1 Standard Output

Depending on the verbosity level and the various output options, the standard output in-

cludes a complete account of all the parameters passed to box tree, the main periodic out-

put, the status of \evolving" parameters, collision data, results from various error checks,

and any warnings and error messages. Most of the standard output is self-explanatory,

so only important aspects of the main periodic output and the evolving parameters will

be discussed here. Information regarding warnings and errors can be found in xA.6.

The frequency of the main periodic output is controlled by the parameter \Output

interval" described in xA.4.2. Figure A.1 shows a sample output for reference that was

generated using the parameter �le discussed in xA.4.2. The output contains: the current

clock time, elapsed CPU, and time-step count; the centre-of-mass position and velocity of

the system and their initial values; the centre-of-mass velocity with respect to any mean

shear, divided by
s (cf. x4.4.1) | this is labeled as \P.v. err"; the velocity dispersion

with respect to any shear; data concerning the particle with the maximum mass; the

mean mass and corresponding radius and Roche radius (using an average density in the

120

Figure A.1: Sample main periodic output from a box tree run.

121

Figure A.2: Sample output of evolving box tree parameters.

case of supplied initial conditions); the mean distance and mean minimum distance be-

tween particles in the central box; data regarding the particle with the current maximum

absolute z (in the rotating frame, each particle also has a maximum z associated with its

simple harmonic motion: for an oscillator, _z

2

+

2

z

2

= E

osc

=

2

z

2

max

); the initial total

z angular momentum per unit mass, its adjusted current value, the di�erence between

the adjusted value and the initial value, and the RMS error | see x4.4.2; the initial total

energy, the adjusted current value, the di�erence, and the RMS error, followed by the

total kinetic energy, the net loss in KE due to collisions, the total rotational energy, and

the total gravitational potential energy | see x4.4.3; the mean eccentricity, scale height,

mean z oscillation energy, �lling factor at the midplane, mean collisions per particle per

orbit, mean free path, and the local viscosity (many of these are unde�ned outside of the

rotational frame); all the main counter variables; and any collision statistics.

In the example shown, particles 7 and 31 collided seven times before merging to form

a new particle 7 (particle 31 was deleted). Note that particles are referred to �rst by

their current index and second by their original index in parentheses. Thus the particle

with the largest z value was originally particle 52 but is now particle 51 as a result of the

merger. Also note that the run was performed in the rotating frame so the total energy is

unde�ned, although the collisional loss in KE is still shown. The single warning referred

to the fact that the initial TZAM was too close to zero to allow normalization of the

TZAM errors.

Figure A.2 shows the status of the evolving parameters for the same run. Evolving pa-

rameters are simply statistical quantities that box treemay use to make certain decisions

(currently only a few of the parameters are actually used). For example, the detection

zone for closest particle checks (\CP check zone") is currently set to 100 times the mean

Roche radius, which will change as particles merge to form larger particles. Similarly, the

minimum radial velocity before invoking the sliding phase (\CP min radial vel") is 0.01

times the mean velocity dispersion. The self-gravity check zone is 0.01 times the tree size

(cf. x3.4.5). These quantities are updated at a rate determined by \Evol par interval" in

the parameter �le (cf. xA.4.2).

A.5.2 The Log File

Figure A.3 shows the log �le generated for the sample run mentioned in the previous

section. The most important compile- and run-time parameters are echoed to this �le,

along with the date the run was started, the machine used, and any major warnings. In

this example, time stamps were generated every 10 000 steps, showing the real time, the

simulation time, and the elapsed CPU. At the end, the completion date of the run is

shown. Any fatal errors would also be recorded here. The log �le is intended as a backup

122

Figure A.3: Sample box tree log �le.

Table A.4: Stats �le format.

Data Format Data Format

simulation time

?

double TZAM double

elapsed CPU

?

double TZAM error (di�) double

no. of time-steps int TZAM RMS error

?

double

no. particles

?

int total energy double

no. collisions

?

int collisional �T double

no. 1st-time coll's

?

int total energy error (di�) double

c-o-m position 3 � double total energy RMS error

?

double

c-o-m velocity 3 � double mean eccentricity

?

double

velocity dispersion

?

3 � double scale height double

total mass double midplane �lling factor

?

double

maximum mass double collisions/particle/orbit

?

double

max. mass position 3 � double mean free path

?

double

max. mass velocity 3 � double local viscosity double

max. mass spin 3 � double

in case the standard output is lost or deliberately discarded.

A.5.3 The Stats File (stats read)

The stats �le contains a summary of information displayed in the main periodic output

(xA.5.1). New information is appended to the end of the �le as the run progresses. For

maximum e�ciency, the �le is in binary; Table A.4 shows the format (read down the

�rst column then down the second column for the correct byte ordering). Note that the

beginning of the �le contains the �rst MAX STR LEN (usually 256 | see params.h header

�le) bytes of the comment string. In order to access the data for plotting, the �le needs

to be converted to ASCII text format. The auxiliary program stats read (included in

the box tree distribution) was written for this purpose. Given the name of a parameter

�le and optionally the name of the statistics �le (default box tree.stats), stats read

reads the binary data and generates ASCII output in a format speci�ed by the supplied

parameters. Two parameter �les, stats read long.par and stats read short.par, are

included with the distribution. The former causes stats read to extract all the infor-

123

Figure A.4: Sample short form output from stats read.

mation from the statistics �le and dump it in long integer and exponential text format

to the screen (stdout). With the latter �le, stats read extracts a subset of the �elds

(indicated by asterixes in Table A.4) and prints the information in formatted columns

with a header line to the screen. Figure A.4 is an example of the short form generated

from the run discussed in the previous two sections. Note that there are extra switches

in these parameter �les to do things like print only every nth line, etc. In addition, the

ability to exclude certain columns when reading is provided for backwards compatibility

with older versions of box tree. See the source code in the distribution for more details.

It is convenient to de�ne the following csh aliases to facilitate the use of stats read:

alias srs '$bt_dir/Util/Stats_Read/stats_read{,_short.par}'

alias srl '$bt_dir/Util/Stats_Read/stats_read{,_long.par}

where in this example bt dir is a shell variable containing the path name of the box tree

source directory. Typing srs at any time during a run will generate the short form

output to the screen. Use srl to generate the long form. It may be helpful to append

\>! stats.out" at the end of the srl alias to automatically redirect output to a �le

called stats.out.

The long form of output is recommended for use with plotting packages. Included

in the box tree distribution is a set of sm macros speci�cally designed to plot the

stats data in an X11 window (and optionally generate hardcopies or postscript ver-

sions of the graphs). A csh executable script called stats plot is provided to auto-

matically invoke sm and plot the graphs. There are three �les containing the sm com-

mands and macros: stats plot.sm, which is read in by sm and executed a line at a

time; stats plot.sm.init, which contains macros for reading in the stats data; and

stats plot.sm.macros, which contains the actual plotting macros. The stats �le is as-

sumed to have the name stats.out and to reside in the plot directory (it is good practice

to copy|rather than move|the stats �le for this purpose). The plots are self-explanatory,

although the user may �nd it helpful to examine the macro �les for details. Note that

the macros also generate helpful equilibrium data in text form, complete with error bars

(standard deviation of the mean) for the most important quantities. The time range to be

used may be speci�ed in stats plot.sm.init. This is useful for generating equilibrium

statistics (cf. x5.3). Finally, the data �elds to be used and the maximum range of the

various quantities can also be set in stats plot.sm.init.

A.5.4 Data Files (dat read)

The particle data �les contain binary information regarding each particle in the simulation

at a speci�c time. The �les are output periodically at a rate determined by \Dat interval"

in the parameter �le (cf. xA.4.2). The �les are numbered sequentially, starting with

box tree000.dat by default. The �rst MAX STR LEN bytes of each �le contain the header

string. This is followed by a double precision value containing the simulation time at

124

output. The remainder of the �le contains N lines of binary data of the form described in

xA.4.3 (for the supplied initial conditions �le), using double or int format as appropriate.

Since the data �les are in binary to save space (and to preserve the data precision),

the program dat read was written to convert them to ASCII in various formats. This

program works much the same way as stats read described above, but there are impor-

tant di�erences. Since there are usually many data �les, dat read accepts a list of �les

after the parameter �le argument. In addition, the ASCII output is written to individ-

ual �les rather than to the screen, starting with dat000.out by default. There are four

parameter �les supplied with dat read: dat read long.par to generate long form out-

put; dat read movie.par to create �les suitable for reading by make movie (cf. xA.5.5);

dat read short.par for short form output; and dat read stats.par to perform various

statistical operations on the data �les and to generate binned data.

As for stats read, it is convenient to de�ne aliases to simplify the use of these pa-

rameter �les:

alias cpd 'cp $bt_dir/Util/Dat_Read/dat_read_stats.par .'

alias drd '$bt_dir/Util/Dat_Read/dat_read dat_read_stats.par'

alias drl '$bt_dir/Util/Dat_Read/dat_read{,_long.par}'

alias drm '$bt_dir/Util/Dat_Read/dat_read{,_movie.par}'

alias drs '$bt_dir/Util/Dat_Read/dat_read{,_short.par}'

The �rst alias copies the dat read stats.par �le into the current directory. This is

useful because when generating statistics there are a few extra parameters that must be

speci�ed that depend on the run in question. Rather than editing the original parameter

�le each time dat read is used on the same data set, it makes sense to make a copy of

the �le and use the copy instead. Hence the drd alias assumes the dat read stats.par

�le resides in the current run directory. The remaining aliases are of the same form as

those de�ned for stats read. It may be convenient to add the fragment:

\!*; if ($status == 0) more dat???.out

to the end of the drs alias to display the short form output on the screen.

The long and short form output are self-explanatory. The movie output will be dis-

cussed in the following section. The statistics and binned data output, however, require

more explanation. Basically, dat read collects statistics over the range of �les (and hence

the range of time) supplied on the command line. A restricted range of masses to con-

sider can be speci�ed in dat read stats.par. The statistics include the mean velocity

dispersions, the mean particle spin and obliquity, and the mean z excursion, complete

with the usual error estimates. This output was used to generate much of Table 5.2 for

example. In addition to these statistics, binned data is output in ASCII form to a �le

called bin stats.out. This data was used to generate the various histograms seen in

x5.3, such as the particle number density as a function of height above and below the

midplane.

Again as for stats read, there are sm macros included in the source distribution to

automatically generate plots from the �les output by dat read. The dat plot set takes a

single long form �le (dat000.out by default) and plots such things as the mass, velocity,

and spin distributions. Useful phase space plots are also generated. The bin plot set of

macros takes the bin stats.out �le and plots the associated histograms. Finally, column

labels and grouping data for use with the 3D data visualizer xgobi are also included (the

data �le is assumed to be dat000.out and must be in long format).

125

A.5.5 Movie Frames (make movie, xrastool)

One of the best ways of visualizing the evolution of complex dynamical systems is to use

graphical animation, or movies. To this end, a considerable amount of e�ort was devoted

to the development of xrastool (originally rastool), a utility for loading movie frames

into memory and displaying them rapidly in sequence. Currently xrastool supports

full-colour Sun raster�les of arbitrary size, and can achieve a display rate in excess of 50

frames per second for 400 � 400 pixel 8 bit images on a Sparc IPX or Sparc 10 running

an X window manager such as twm. The advantage of loading entire frames is that the

display rate is limited only by the size of frame, whereas an animation tool that displays

particles one at a time is limited by the total particle number. In addition, the frames

can be made as complex as desired, using shaded spheres for particles and including the

infrastructure of the tree for example. The other major advantage is that xrastool can

be used as a stand-alone animator for other applications; it is not specialized for use with

box tree. Full details of xrastool are provided with the source distribution. In fact,

xrastool has already been released to the public domain, so the distribution includes a

separate man page for the utility.

Movie frames for use with xrastoolmay be generated by box tree, in much the same

way as particle data �les (i.e. , one �le per frame, starting with movie000.ras by default).

The parameters for customizing the movie frames have already been discussed in xA.4.2.

A typical default frame shows the entirety of the central box seen from directly above

the xy-plane. Particles are represented by shaded spheres of varying size depending on

the particle radii and the apparent distance from the observer. Individual particles may

be assigned speci�c colours if desired. If the tree is drawn, each cell is represented by an

open square bordered in white. Centre-of-mass positions are shown by blue diamonds,

with blue lines connecting the centres of mass of parent cells with their children. Red

lines connect leaf particles to their parents. The centre-of-mass position of the root node

is drawn in pink to distinguish it from the rest. The choice of structures to be drawn and

their colours currently can only be changed in the source code itself (cf. draw.c). Note

that if ghost boxes are included in the picture (open squares bordered in yellow), the tree

is only drawn in the central box to minimize the drawing complexity, but would look the

same in each ghost box.

In certain cases it is desirable to view the particles from a di�erent direction (especially

in 3D), or to use a larger view size if many tree expansions have occurred in an unbounded

simulation (for example). It would be completely impractical to re-run box tree simply

to generate new movie frames, so the program make movie may be used instead. This

program reads ASCII particle data �les in the format output by dat read using the

dat read movie.par parameter �le (see previous section). The �le format is simply

x y z R c (in the notation of xA.4.3), so any application that generates particle data, not

just box tree, could make use of make movie. Indeed this was the original motivation for

writing the utility.

As with all of the auxiliary programs discussed so far, make movie has its own pa-

rameter �le for adjusting the default behaviour. The �le is called make movie.par and it

is good practice to copy the �le into the run directory and modify it there, rather than

editing the original. Since there is just the one parameter �le, there is no need to specify

it as a command line argument (although the \-p" argument option is included in case

a name other than make movie.par is used). The parameters themselves are fairly self-

explanatory. First a frame size in pixels is speci�ed. Next the minimum and maximum

values in all three Cartesian directions must be given (it is too time consuming to search

all the �les to determine the data range automatically). The remaining options include

126

the particle shapes to use, the colormap template (use option 3 for the colours listed in

Table A.3), and the viewing direction (along any of the three axes). There are also options

to disable reading of the radius and/or colour �elds if they are not present in the data

�les.

The make movie program takes a list of �les on the command line, and generates

the movie frames sequentially, starting with mm000.ras by default. As an example, the

following sequence of commands might be used to generate movie frames from the binary

particle data �les created during a typical box tree run:

drm box_tree*.dat

make_movie dat*.out

The movie frames could then be loaded for viewing with:

xrastool -fast mm*.ras

It is assumed that all the necessary data and parameter �les reside in the run directory in

this example. Also, the make movie and xrastool commands are assumed to be in the

execution path.

A.5.6 Save Files and Restarts

As explained previously, save �les may be dumped to disk periodically if desired to guard

against the unexpected termination of a run. In addition, a save �le is generated auto-

matically when box tree terminates without error at the end of a run. In order for runs

to be reproducible from restarts, it is necessary that all global program variables and

parameters that may change from run to run be saved. To minimize the risk of round-o�

error, the data must be saved in binary format (this also reduces the �le size consider-

ably). Further, the parameters set in params.h are also saved to ensure that this �le is

not changed between restarts.

Fortunately, it is relatively straightforward to dump all of the relevant program vari-

ables. This is because the vast majority of the variables and parameters are contained

in structures of known size that can be written out to disk with a single operation. This

includes the N structures containing all the particle data. Saving the tree is slightly more

complex, requiring a recursive procedure that writes out one node at a time starting from

the root node. The procedures for reading the save �le for restarts are analogous: simple

read commands to retrieve the structures followed by a recursive procedure to load the

tree. When reading, memory is allocated as required for the particle and node data. Fur-

ther details can be obtained by examining the main header �le box tree.h, which contains

the structure de�nitions, and the routines SaveRestartData() and ReadRestartData()

in misc.c, which perform the save and read operations.

To restart a run from the last save �le, use the command box_tree -r. Almost

everything will proceed as before the restart, with the minor exception of the TZAM and

total energy error statistics, which currently are reset following a restart for technical

reasons. Also, those �les to which data are appended (namely the stats and NLV �les)

may end up with redundant lines of data since the restart may begin some time before

the last output to these �les. The stats read program automatically accounts for this

by keeping track of the simulation time of each data line; if the current entry is found

to be for the same time as, or for a time previous to the last entry, the current line and

all subsequent lines are skipped until genuinely new data is detected. Currently there is

no provision to do this with NLV �les. Note that box tree will generate an extra main

output (xA.5.1) at the beginning of a restart so that the save �le integrity can be veri�ed.

Periodic output will then continue at the same time multiples as before the restart.

127

A.6 Warnings and Error Conditions

There are currently seven categories of warnings and error conditions, namely major

warnings, minor warnings, I/O errors, fatal I/O errors, fatal errors, halts, and system

errors. Major warnings and fatal errors are echoed to stderr and the log �le (cf. xA.5.2)

while minor warnings and non-fatal I/O errors just appear on stdout. The \halt" error is

not actually an error; it is generated when a run is legitimately interrupted by <CTRL><C>

or the STOP �le (cf. xA.3).

There are many types of warnings, varying from a message if �

C

is deemed too large,

to notices that node packing has been invoked. Output of warnings can be controlled

through the use of the verbosity and debug level parameters (cf. xA.4.2). Warnings do

not terminate execution.

An I/O error is generated if box tree is unable to open, read from, or write to a

�le. Some I/O errors, depending on the importance of the �le concerned, are considered

fatal, and result in program termination. Usually, however, the error is ignored and the

attempted operation is skipped. Thus if disk space runs out for output, box tree will not

crash. However, some data will inevitably be lost. Of course, it is possible that because

the disk is full, box tree will be unable to advise the user of the error, so it is a good

idea to check periodically to make sure there is no danger of running out of disk space

during a run. Note that box tree uses the perror() system call to tell the user the exact

nature of the I/O error if known.

Fatal errors can occur as a result of internal box tree checks (some of which can

be controlled through the debug level). For example, an invalid setting in the box tree

parameter �le will generate a fatal error, terminating the run. Most error messages are

self-explanatory; in the case of parameter errors, for example, the error message contains

a brief explanation of why the parameter is invalid. Note that the parameter �le parser

rdpar has its own built-in error traps for bad syntax or missing keywords; these will

override the box tree error handling routines (see source in xB.1).

A system error is also fatal. These can occur as the result of an arithmetic trap, a

segmentation fault, or a BUS error. These generally mean that something is wrong with

the code and any manifestations of these errors should be reported to the author. Note

that bu�ering of stdout is disabled so that the output should be up to date at the time

of the error, which will help in locating the problem. If possible, a debugger should be

used to try to reproduce the error under controlled conditions. Often this will expose

the o�ending line of code; the debugger can then be used to examine the values of any

relevant variables.

In order to make warnings and errors easy to �nd and interpret, they all take on a

similar form. For example, he following message is generated if an attempt is made to

de�ne a negative length scale in the parameter �le:

Reading parameter file "box_tree.par"...

@box_tree -- fatal error in GetParams(): Invalid choice/bad syntax.

(length scale must be positive).

*** FATAL ERROR in box_tree

Program halted at t = 0.00000e+00 (CPU 0.000e+00 min this run, 0 steps).

IOT trap (core dumped)

The main error message consists of the program name (box tree), the error type (fatal),

the routine in which the error occurred (GetParams()), and the nature of the error (in-

128

Table A.5: Miscellaneous supporting code, scripts, and macros.

Item Description

quad.c simple multipole tester used to generate Fig. 4.5.

nlv read.c code to calculate NLV data from from NLV �le (cf. x5.3).

error (csh script) script for automating tests of �

M

& �

Q

(cf. x4.3)

error.awk awk �le used in conjunction with error.

timing (csh script) script for automating timing tests (cf. Fig. 4.1 & 4.2).

timing.awk awk �le used in conjunction with timing.

wt (csh script) script for automating WT comparison tests (cf. x5.3).

e plot (csh script) script for using sm to generate plots from output of error.

e plot.sm sm �le used in conjunction with e plot.

e plot.sm.macros sm �le used in conjunction with e plot.

t plot (csh script) script for using sm to generate plots from output of timing.

t plot.sm sm �le used in conjunction with t plot.

t plot.sm.macros sm �le used in conjunction with t plot.

results (csh script) script for using sm to generate WT comparison plots (cf. wt).

results.sm sm �le used in conjunction with results.

results.sm.macros sm �le used in conjunction with results.

valid parameter). An optional subsidiary message in parentheses gives more information

(\length scale must be positive"). If the error was fatal, as it was in this case, a termina-

tion message is printed. A core dump will also be produced by box tree if possible (to

disable core dumps under csh, type \limit coredumpsize 0" at any shell prompt or in

a startup �le). Note the \@" symbol in the error message. This symbol is prepended to

any error message sent to stdout or the log �le to allow for easy detection of warnings

or other non-fatal errors (e.g. \grep @ output" under csh). Also note that, in the case

of major warnings or fatal errors, messages are sent to both stdout and stderr. Thus if

these I/O streams are directed to the same place, the error message will be duplicated.

Finally, major warnings and fatal errors have a \beep" code (<CTRL><G>) imbedded in

them to attract attention.

A.7 Miscellaneous Code, Scripts, and Macros

There are other pieces of code and various scripts and macros in the box tree source

distribution that have not been described. Some of these are out of date and are incom-

patible with current output formats. They are included both for historical reasons and to

serve as templates for building new box tree interfaces. Table A.5 briey describes these

miscellaneous items.

A.8 Test Suite

It is helpful to maintain test data with a complex program so that any problems that

develop during code development may be identi�ed quickly. In addition to the default

parameter �le, which instructs box tree to perform a simple planetesimal run for one

orbit, there are compressed tar �les in the source distribution containing parameter �les

and initial conditions for four separate tests. The �les are called collide, orbit, pool,

and pythag (omitting the \.tar.Z" extension). To perform one of these tests, �rst unpack

129

the associated �les. For example,

zcat pythag.tar.Z | tar xvf -

extracts the �les pythag.dat, box tree.par, and README and places them in a subdi-

rectory called pythag. Next cd pythag and copy the box tree executable into the new

subdirectory. Run the test with:

nice +19 box_tree >&! output &

Note that some of the tests (pythag in particular) may generate a large number of �les.

Follow the instructions given in xA.5 for examining the various forms of output. The

README �le accompanying each test package describes the expected behaviour, and may

include a TZAM and/or total energy conservation check for comparison. For reference,

the test packages will be described briey below.

The collide test was used extensively while developing the collision code. The sim-

ulation starts with seven equal-mass particles at rest in the z = 0 plane. The particles

begin to accelerate towards the centre of mass and eventually bounce into each other.

The bounces are nearly elastic (�

n

= 0:9, �

t

= 1:0), but nevertheless the particles con-

verge rapidly to the centre. The �nal con�guration should have no linear or angular

momentum.

The orbit test is a very simple two-body simulation with a mass ratio of 1 000:1. The

README �le lists the various starting velocities for the smaller particle that will result in

circular, elliptical, parabolic, or hyperbolic orbits. Refer to xA.4.3 for the initial conditions

�le format.

The pool test is another collision checker, this time with spin included but no inter-

particle gravity. For variety, stationary ghost boxes are drawn as well.

The �nal test, pythag, reproduces the classic three-body simulation known as the

\Pythagorean Problem". The movie output should be compared with the trajectories

drawn by Szebehely & Peters (1967). Since box tree conserves the total energy in this

run to better than 1 part in 10

8

, the agreement should be essentially exact. Note that

Szebehely & Peters used a form of two-body regularization to accurately integrate over

the several very close encounters that occur in the simulation. Regularization is not

supported in box tree, so a very small time-step coe�cient is needed instead. However

the entire simulation still takes less than 1 CPU minute to complete on a Sparc 10/51.

130

Appendix B

Source Listings

This appendix contains the complete source listings for box tree (xB.1) as well as rdpar

(xB.2). The code is presented a �le at a time with introductory comments as appropriate.

The source listings of the other auxiliary programs used with box tree are not presented

here but are available in the box tree distribution.

B.1 box tree

The box tree code is made up of 3 header �les and 17 source (\.c") �les. The header

�les will be presented �rst, in order of usage, followed by box tree.c. The remaining

�les are listed in alphabetical order.

B.1.1 box tree.h

This is the main box tree header �le. It loads in other header �les (both system �les

and the remaining box tree header �les), de�nes many preprocessor constants (aliases),

constructs new variable types, and declares all the global (external) variables and func-

tions. This �le is included by each \.c" �le, so a change here requires recompilation of

the entire source.

Most of the coding conventions used in box tree are illustrated in box tree.h. Pre-

processor aliases and macros are all in upper case, with words separated by underscores

(e.g. NUM COUNTERS and POW2()). New type de�nitions are also in upper case, with \ T"

appended (e.g. NODE T). The BOOLEAN type is the only exception to this rule. Global

variables and functions are capitalized; if more than one word makes up the name, all

the words are capitalized and no separator is used (e.g. RunPar and UpdateBoxPos()).

Automatic variables and functions (those that are most limited in scope) are all in lower

case, with words separated by underscores (e.g. ref frame and box tree()). When

declaring variables and functions, the following order of precedence is used: void, int

(loop variables and other simple indices �rst), any de�ned type (e.g. DATA T or NODE T),

char, double, and BOOLEAN. Other conventions (such as indentation and placement of

comments) are easily seen from the �le itself.

The header �le is fairly self-explanatory. Note that some of the aliases de�ned in

params.h (listed below) are used here (e.g. MAX NUM PARTICLES). Some use is made

of conditional preprocessor statements for portability reasons.

/�

� box tree.h { DCR 91-04-30

� ==========================

� Main header �le for box tree: includes, de�nitions, and declarations.

131

�

�/

/� Copyright notice... �/

#include "COPYRIGHT"

/� Other header �les to include... �/

#include <stdio.h> /� Standard I/O de�nitions �/

#include <string.h> /� De�nitions for string handling functions �/

#include <math.h> /� Math de�nitions �/

#include <malloc.h> /� De�nitions for memory allocation functions �/

#include "params.h" /� Main box tree compile-time parameters �/

#include "macros.h" /� Various box tree macros �/

/� Basic de�nitions... �/

#define NUM COUNTERS 19 /� Miscellaneous counters (c.f. Counter[]) �/

#define TIME STEPS 0 /� Total number of time-steps �/

#define MIN TIME STEPS 1 /� Number of minimum time-steps �/

#define MAX TIME STEPS 2 /� Number of maximum time-steps �/

#define COLLISIONS 3 /� Total number of collisions �/

#define FIRST TIME COLLISIONS 4 /� Number of �rst-time collisions �/

#define GHOST COLLISIONS 5 /� Number of ghost collisions �/

#define MERGERS 6 /� Total number of mergers �/

#define FORCED MERGERS 7 /� Number of forced mergers �/

#define BNDRY XINGS 8 /� Total number of boundary crossings �/

#define LATERAL BNDRY XINGS 9 /� Number of lateral (x) bndry crossings �/

#define GHOST BOX BNDRY XINGS 10 /� Number of ghost box boundary crossings �/

#define TOTAL MONO UPDATES 11 /� Total number of monopole updates �/

#define RECUR MONO UPDATES 12 /� Number of recursive monopole updates �/

#define TOTAL QUAD UPDATES 13 /� Total number of quadrupole updates �/

#define RECUR QUAD UPDATES 14 /� Number of recursive quadrupole updates �/

#define PACKINGS 15 /� Number of node packings �/

#define FORCE ERRORS 16 /� Number of large force errors �/

#define WARNINGS 17 /� Number of warnings �/

#define IO ERRORS 18 /� Number of non-fatal I/O errors �/

#define NUM TIMERS 6 /� Timers for event processing (c.f. CLOCK T) �/

#define OUTPUT 0 /� Main output �/

#define STATS 1 /� Statistics summary �/

#define DAT 2 /� Particle data output �/

#define EVOL 3 /� Evolving parameters �/

#define MOVIE 4 /� Movie frame output �/

#define CHECK 5 /� Debug/check output �/

#define ROTATING 1 /� Labels for reference frames �/

#define INERTIAL 2

#define GALAXY 3

#define ALIGNED COM 1 /� Labels for initial conditions options �/

#define UNIFORM RAN 2

#define WT 3

#define CLOSE PACKED 4

#define SUPPLIED 5

#define PERIODIC 1 /� Labels for boundary conditions options �/

132

#define UNBOUNDED 2

#define DISABLED 3

#define RV ONLY 1 /� Labels for time-step formula options �/

#define RV AND F 2

#define F ONLY 3

#define BHL FLAG -9.9 /� Coef of rest ag ==> BHL formula should be used �/

#define BC NONE 0 /� Flags for ApplyBndryCond() in bndry cond.c �/

#define BC BOX 1

#define BC TREE 2

#define DRAW TREE POW2(0) /� Bit ags for Draw() in draw.c �/

#define DRAW BOXES POW2(1)

#define PLOT POS POW2(2)

#define PLOT VEL POW2(3)

#define PLOT COM POW2(4)

#define COM LINES POW2(5)

#define NO UPDATE 0 /� Flags for PlaceInTree() in make tree.c �/

#define UPDATE 1

#define UPDATE CHILDREN 2

#define WARNING1 0 /� Flags for Error() in misc.c �/

#define WARNING2 1

#define IO 2

#define FATAL IO 3

#define FATAL 4

#define HALT 5

#define SYS ERR 6

#define ALL DONE 0 /� Flags for Terminate() in misc.c �/

#define ERROR 1

#define USER HALT 2

#define SUBM -1 /� Directives for UpdateBranchMoments() in update tree.c �/

#define ADDM 1

#define NO PRED 0 /� Particle position and velocity prediction ags �/

#define UN PRED 1

#define LO PRED 2

#define HI PRED 3

#define CP UNDEF -1 /� For cp structure (e.g. set time step() in integrate.c) �/

#define RED 1 /� Bright colors for drawing �/

#define PINK 2

#define YELLOW 3

#define GREEN 4

#define ORANGE 5

#define PURPLE 6

#define CYAN 7

#define BLUE 8

#define BLACK 0 /� Black should ALWAYS be de�ned as 0 �/

#define FIRST GRAY 9 /� Fill rest of colormap with gray scale �/

#define LAST GRAY 255

133

#define WHITE LAST GRAY /� White should ALWAYS be de�ned as 255 �/

#define DENSITY CGS TO MKS 1.0e3 /� Density conversion factor from cgs to mks �/

#define PI 3.141592653589793 /� Pi to 15 decimal places �/

#define TWO PI 6.283185307179586 /� Ditto for 2 Pi �/

#ifdef ALPHA

undef HUGE VAL

define HUGE VAL MAXFLOAT /� Alphas don't de�ne HUGE VAL (in�nity) �/

#endif

/� Useful abbreviations... �/

#define ROTATING FRAME (RunPar.ref frame == ROTATING)

#define INERTIAL FRAME (RunPar.ref frame == INERTIAL)

#define GALAXY FRAME (RunPar.ref frame == GALAXY)

#define GHOSTS (NumBoxes > 1)

#define BOX SIZE RunPar.box size

#define HALF BOX SIZE RunPar.half box size

#define SYS SIZE RunPar.sys size

#define HALF SYS SIZE RunPar.half sys size

#define SYS CENTRE RunPar.sys centre

#define TREE SIZE TreePar.tree size

#define HALF TREE SIZE TreePar.half tree size

#define TREE CENTRE SYS CENTRE

#define VIEW SIZE MoviePar.view size

#define HALF VIEW SIZE MoviePar.half view size

#define VIEW CENTRE MoviePar.view centre

#define BOX X OFFSET RunPar.box x o�set

#define BOX Y OFFSET RunPar.box y o�set

#define BOX POS RunPar.box pos

#define BOX VEL RunPar.box vel

/� Current clock time with 2 pi scaling removed for rotating frame �/

#define TIME (ROTATING FRAME ? Clock.time = TWO PI : Clock.time)

/�

� For maximum optimization, replace following macros with FALSE.

� e.g. #de�ne VERBOSE FALSE, #de�ne ERROR CHECK FALSE, etc.

�

�/

#define VERBOSE (RunPar.verbosity level > 0)

#define VERY VERBOSE (RunPar.verbosity level > 1)

#define ERROR CHECK (RunPar.debug level > 0)

#define MONITOR (RunPar.debug level > 1)

#define TRACK (RunPar.debug level > 2)

/� Simple type de�nitions... �/

/� Boolean type �/

#define BOOLEAN int /� Do it this way to avoid enumeration problems �/

#define FALSE 0 /� e.g. result of (0 == 1) �/

134

#define TRUE 1 /� e.g. result of (0 == 0) �/

/� De�nitions of NODE T, LEAF T, and BRANCH T, used in struct node s below �/

typedef struct node s NODE T;

#define LEAF T int

#define BRANCH T NODE T

/� Tree cell descriptors �/

typedef enum fEMPTY, BRANCH, LEAFg CELL T;

/� Object shapes for movies �/

typedef enum fPOINT, CIRCLE, SQUARE, DIAMOND, DISK, SPHEREg SHAPE T;

/� Color type de�nition �/

typedef unsigned char COLOR T;

/� Complex (structure) type de�nitions... �/

/� Def'n of random number generator data structure type (c.f. RunPar.ran) �/

typedef struct f

int seed; /� For Ran() in recipes.c �/

long int ix1, ix2, ix3;

double r[98];

int iset; /� For Gasdev() in recipes.c �/

double gset;

g RAN T;

/� Def'n of coe�. of restitution data structure type (c.f. RunPar.rest coef) �/

typedef struct f

double radial;

double transverse;

g REST COEF T;

/� De�nition of gas drag data structure type (c.f. RunPar.drag coef) �/

typedef struct f

double x;

double y;

double z;

double hdot;

g DRAG COEF T;

/�

� De�nition of run parameters structure type (one only, viz. RunPar).

� The structure is loosely patterned on the run-time parameter �le

� (e.g. box tree.par) and is therefore NOT in optimum alignment. Physical

� parameters (e.g. RunPar.box size) are in scaled units unless otherwise

� indicated.

�

�/

typedef struct f

135

char comment line[MAX STR LEN]; /� Simple user-supplied comment �/

/�

� The following parameters are read or calculated only once. Note that

� some parameters may not be used, depending on the choice of reference

� frame and initial conditions. Recall that some run parameters are

� global variables for convenience (notably NumBoxes & NumParticles).

�

�/

int ref frame; /� Reference frame �/

double length scale; /� Length scale in m �/

double mass scale; /� Mass scale in kg �/

double time scale; /� Time scale in s �/

double velocity scale; /� Velocity scale (may include factor of 2 pi) �/

double density conv; /� Density conversion from mks to scaled units �/

RAN T ran; /� Random number data storage �/

int ic opt; /� Initial conditions option �/

int bc opt; /� Boundary conditions option �/

double box size; /� Box size �/

double half box size; /� Half width of box �/

double sys size; /� System size �/

double half sys size; /� Half width of system �/

double sys centre[NUM BOX DIM]; /� Centre of system (currently always 0) �/

double init clock time; /� Initial clock time �/

double init x vel disp; /� Initial x-vel dispersion �/

double init y vel disp; /� Initial y-vel dispersion �/

double init z vel disp; /� Initial z-vel dispersion �/

BOOLEAN small disp; /� TRUE for "small" initial dispersions �/

double init min mass; /� Smallest initial mass �/

double init max mass; /� Largest initial mass �/

double density; /� Particle density (in scaled units) �/

double mass exponent; /� Mass function exponent �/

double seed mass; /� Initial mass of particle 0 if di�erent �/

BOOLEAN use softening; /� TRUE if radii are to be used as softenings �/

BOOLEAN rej init bin; /� TRUE to reject initial binaries �/

double init scale height; /� Initial vertical scale height �/

int num x div; /� Num x divisions for unif. random init. cond. �/

int num y div; /� Num y divisions for unif. random init. cond. �/

double optical depth; /� Dynamic optical depth �/

double init disk thickness; /� Initial disk thickness in particle radii �/

int num layers; /� Number of particle layers for close-packing �/

BOOLEAN expand radii; /� TRUE to expand radii for close-packing �/

BOOLEAN stagger in z; /� TRUE to stagger close-packed planes �/

char init cond �lename[MAX FILENAME LEN]; /� Filename for supplied IC �/

int num header lines; /� Number of header lines to skip in IC �le �/

BOOLEAN add shear; /� TRUE to add shear to supplied velocities �/

double total mass; /� Total mass of system (currently constant) �/

double box x o�set[MAX NUM BOXES]; /� x o�sets of ghost boxes �/

double box y o�set[MAX NUM BOXES]; /� y o�sets of ghost boxes �/

double box pos[MAX NUM BOXES][NUM BOX DIM]; /� Position of ghost boxes �/

double box vel[MAX NUM BOXES][NUM BOX DIM]; /� Velocity of ghost boxes �/

/� Remaining parameters can be changed every restart �/

int verbosity level; /� Verbosity level �/

int debug level; /� Debug level �/

long int stop check; /� STOP check interval (in time-steps) �/

long int cpu check; /� CPU check interval �/

long int safety dump; /� Safety dump interval �/

136

long int time stamp; /� Time stamp interval �/

double interval[NUM TIMERS]; /� Main timer intervals �/

double termination time; /� Program termination time in scaled units �/

double run time; /� Time to spend on run in CPU minutes �/

int num save �les; /� Number of backup save �les to maintain �/

int save �le index; /� Current save �le index �/

int tsf opt; /� Time-step formula option �/

double time step coef; /� Coe�cient in time-step formula �/

double min time step; /� Minimum allowed time-step �/

double max time step; /� Maximum allowed time-step �/

BOOLEAN self grav; /� TRUE to include interparticle gravity �/

double g factor sq; /� Enhancement to z oscillation frequency �/

double cp fac sq; /� Adjustment for �nite sizes in tsf �/

REST COEF T rest coef; /� Restitution coe�cient data �/

BOOLEAN no slide; /� TRUE to inhibit sliding phase �/

BOOLEAN conserve total energy; /� TRUE to make GPE constant after hit �/

BOOLEAN include drag; /� TRUE to include gas drag �/

DRAG COEF T drag coef; /� Gas drag data �/

BOOLEAN allow mergers; /� TRUE to allow particle mergers �/

BOOLEAN use tree; /� TRUE to use tree �/

int num to track; /� Number of particles for tracking �/

int track list[MAX NUM TO TRACK]; /� List of particles �/

COLOR T track colors[MAX NUM TO TRACK]; /� List of colors �/

char stats �lename[MAX FILENAME LEN]; /� Name for stats �le �/

char dat basename[MAX FILENAME LEN - MAX NUM FILENUM DIGITS - 4];

int dat number; /� Current data �le no. (base def'd above) �/

char nlv �lename[MAX FILENAME LEN]; /� Name for NLV data �le �/

g RUN PAR T;

/� De�nition of evolving parameters structure type (one only, viz. EvolPar) �/

typedef struct f

double vel disp; /� Velocity dispersion �/

double mean mass; /� Mean mass �/

double median mass; /� Median mass �/

double mean radius; /� Mean radius �/

double mean roche radius; /� Mean Roche radius �/

double min rad vel; /� Sliding phase limit �/

double cp zone sq; /� Max dist squared for closest-particle check �/

double self grav r2; /� Max dist squared for node self-grav check �/

double total cpu; /� Total CPU used so far �/

g EVOL PAR T;

/� De�nition of tree parameters structure type (one only, viz. TreePar) �/

typedef struct f

double tree size; /� Current tree size �/

double half tree size; /� Half width of tree �/

double expansion; /� Expansion factor for boundary crossing �/

double theta sq; /� Square of maximum opening angle �/

BOOLEAN use quad; /� TRUE to include quadrupole moment �/

BOOLEAN use move; /� TRUE to use "minimum" repair �/

BOOLEAN use high order; /� TRUE for high-order leaf prediction �/

BOOLEAN pred mono; /� TRUE to predict monopole �/

BOOLEAN pred quad; /� TRUE to predict quadrupole �/

BOOLEAN check update times; /� TRUE to check mono/quad update times �/

double mtsc; /� Monopole time-step coe�cient �/

double qtsc; /� Quadrupole time-step coe�cient �/

int num excluded; /� Number of particles to exclude from tree �/

int exclude list[MAX NUM TO EXCLUDE]; /� List of excluded particles �/

137

g TREE PAR T;

/� De�nition of movie parameters structure type (one only, viz. MoviePar) �/

typedef struct f

char basename[MAX FILENAME LEN - MAX NUM FILENUM DIGITS - 4];

int frame number; /� Current movie frame no. (base above) �/

int frame size; /� Frame size in pixels �/

double view size; /� View size in scaled units �/

double half view size; /� Half width of view �/

double view centre[NUM BOX DIM]; /� Centre of view (2D) �/

BOOLEAN draw tree; /� TRUE to draw tree structure �/

SHAPE T particle shape; /� Particle shape for drawing �/

double radius mag; /� Particle size magni�cation �/

double distance; /� Viewing distance �/

double z mag; /� Exaggeration of z dispersion �/

BOOLEAN hide blocked objects; /� TRUE to hide blocked objects �/

BOOLEAN plot vel; /� TRUE to plot velocity vectors �/

COLOR T dt color; /� Default particle color �/

g MOVIE PAR T;

/� De�nition of debug/check parameters struct type (one only, viz. DebugPar) �/

typedef struct f

BOOLEAN check tree; /� TRUE to perform tree checks �/

BOOLEAN check multipoles; /� TRUE to check multipoles �/

BOOLEAN check force; /� TRUE to check forces �/

int num force checks; /� Current number of force checks �/

double avg force; /� Current average force �/

double max force; /� Current maximum force �/

double total err; /� Total error (div. by #/checks for avg.) �/

double max err; /� Maximum recorded error �/

double com pos[NUM PHYS DIM]; /� Position of system centre of mass �/

double com vel[NUM PHYS DIM]; /� Velocity of system centre of mass �/

double tzam; /� Total z angular momentum �/

double tzam adj; /� Current adjustment to tzam �/

double tzam rms err; /� Current rms error in tzam �/

double total energy; /� Total energy of system �/

double collision dke; /� KE loss due to collisions �/

double total energy adj; /� Current adjustment to total energy �/

double total energy rms err; /� Current rms error in total energy �/

int num calls; /� Number of tzam/TE check calls �/

g DEBUG PAR T;

/� De�ntion of closest particle structure type (used in DATA T below) �/

typedef struct f

int index; /� Index of closest particle (or CP UNDEF) �/

int box; /� Index of box occupied by closest particle �/

double radius; /� Radius of closest particle �/

double rel pos sq; /� Square of separation �/

double pos[NUM PHYS DIM]; /� Low order position, ghost corrected �/

double vel[NUM PHYS DIM]; /� Low order velocity, ghost corrected �/

g CP T;

/� De�nition of data structure type (one per particle, c.f. Data[]) �/

typedef struct f

double mass; /� Particle mass �/

double radius; /� Particle radius �/

138

double radius sq; /� Square of radius �/

double inertia; /� Moment of inertia �/

double drag fac; /� Gas drag coe�cient �/

double pos0[NUM PHYS DIM]; /� Position at start of step �/

double pos[NUM PHYS DIM]; /� Current particle position �/

int pos status; /� NO , UN , LO , or HI PRED �/

double vel0[NUM PHYS DIM]; /� Velocity at start of step �/

double vel[NUM PHYS DIM]; /� Current particle velocity �/

int vel status; /� NO , UN , LO , or HI PRED �/

double f[NUM PHYS DIM]; /� Force (acceleration) on particle �/

double f dot[NUM PHYS DIM]; /� First derivative �/

double d1[NUM PHYS DIM]; /� First divided di�erence �/

double d2[NUM PHYS DIM]; /� Second divided di�erence �/

double d3[NUM PHYS DIM]; /� Third divided di�erence �/

double spin[NUM PHYS DIM]; /� Spin vector of particle �/

double t0, t1, t2, t3; /� Last four update times �/

double time step; /� Current update time-step �/

BOOLEAN in tree; /� TRUE if particle is in tree �/

NODE T �node; /� Pointer to particle's node �/

int node index; /� Leaf position in node �/

int orig index; /� Initial particle index �/

CP T cp; /� Closest particle data �/

int last collider; /� Index of last collider �/

int num collisions; /� No. collisions with last collider �/

BOOLEAN monitor; /� Flag for debug monitoring �/

COLOR T color; /� Color for movie tracking �/

g DATA T;

/� De�nition of clock structure type (one only, viz. Clock) �/

typedef struct f

double time; /� Current time �/

double tsl time; /� Update time for time-step list �/

double timer[NUM TIMERS]; /� Various timers �/

g CLOCK T;

/� De�nition of time-step list structure type (one only, viz. Tsl) �/

typedef struct f

int num on list; /� Number of particles on tsl �/

int index; /� Current position in list �/

int list[MAX NUM ON TSL]; /� List of particles �/

double times[MAX NUM ON TSL]; /� List of particle update times �/

double update interval; /� Current update interval �/

double stab, stab1, stab2; /� Update interval stabilizers �/

BOOLEAN short step; /� Used with stabilization procedure �/

g TSL T;

/� De�nition of cell union used in node s struct (see below) �/

typedef union f

LEAF T leaf; /� Leaf (particle) index... �/

BRANCH T �branch; /� ...or branch (node) pointer �/

g CHILD T;

/�

� Structure template for tree nodes (one per node, starting at Root).

� (Template used to avoid self-reference conict).

�

�/

139

struct node s f

int tree index; /� Node position in tree (index) �/

NODE T �parent; /� Pointer to parent node �/

int node index; /� Node position in cell (index) �/

double size; /� Physical size of node �/

double half size; /� Half size �/

double max ext; /� Maximum node extension �/

double max size; /� E�ective (max) size for tree force �/

double max size sq; /� Square of e�ective size �/

double centre[NUM TREE DIM]; /� Geometric centre of node in system �/

CELL T child type[MAX NUM CHILDREN]; /� Child types �/

CHILD T child[MAX NUM CHILDREN]; /� Child data (union) �/

int num leaves; /� Cumulative number of leaves �/

double mass; /� Total (cumulative) mass (mono moment) �/

double pos0[NUM PHYS DIM]; /� Centre-of-mass position at last update �/

double pos[NUM PHYS DIM]; /� Current centre-of-mass position �/

double vel[NUM PHYS DIM]; /� Current centre-of-mass velocity �/

double f[NUM PHYS DIM]; /� Acceleration of centre of mass �/

double f dot[NUM PHYS DIM]; /� First derivative �/

double mt0; /� Last monopole update time �/

double mts; /� Monopole time-step �/

double q mom0[NUM QUAD ELEM]; /� Quadrupole moment at last update �/

double q mom[NUM QUAD ELEM]; /� Current quadrupole moment �/

double q dot[NUM QUAD ELEM]; /� First derivative (at last update) �/

double q 2dot[NUM QUAD ELEM]; /� Second derivative �/

double q 3dot[NUM QUAD ELEM]; /� Third derivative �/

double qt0; /� Last quadrupole update time �/

double qts; /� Quadrupole time-step �/

BOOLEAN extended; /� TRUE if extended node �/

BOOLEAN packed; /� TRUE if packed node �/

g;

/� Global variable referencing declarations (also see extern.c) �/

extern FILE �Log�le; /� Pointer to log �le �/

extern char SaveFilename[MAX FILENAME LEN]; /� Save �le name �/

extern BOOLEAN BackupFiles; /� TRUE to backup existing �les �/

extern int NumParticles; /� Number of particles �/

extern int NumBoxes; /� Number of boxes (currently 0, 1, or 9) �/

extern RUN PAR T RunPar; /� Run parameters �/

extern EVOL PAR T EvolPar; /� Evolving parameters �/

extern TREE PAR T TreePar; /� Tree parameters �/

extern MOVIE PAR T MoviePar; /� Movie parameters �/

extern DEBUG PAR T DebugPar; /� Debug parameters �/

extern CLOCK T Clock; /� Clock structure �/

extern int Counter[NUM COUNTERS]; /� Counters �/

extern DATA T �Data[MAX NUM PARTICLES]; /� Particle data �/

extern TSL T Tsl; /� Time-step list �/

extern NODE T �Root; /� Pointer to root node of tree �/

extern int ChildIndexO�set[NUM TREE DIM]; /� Child indices/pos'ns �/

extern int ChildCoordO�set[NUM TREE DIM][MAX NUM CHILDREN];

extern char Workspace[WORKSPACE SIZE]; /� Work space for strings �/

extern char ErrorStr[WORKSPACE SIZE]; /� Work space for error messages �/

/� Handy fractions �/

extern double OneThird, TwoThirds, FourThirds, OneSixth, OneNinth, OneTwelfth;

/� Non-ANSI C may not declare these... �/

140

#ifndef STDIO H

ifndef ALPHA

extern void setbuf(); /� Note gcc free() is de�ned as (void) �/

extern int fclose(), �ush(), fprintf(), fread(), fscanf(), fwrite(),

gethostname(), getopt(), getpid(), getrusage(), gettimeofday(),

malloc debug(), malloc verify(), perror(), printf(), rename(),

system(), unlink();

endif

#endif

/� Global function referencing declarations for box tree code �/

extern void

UpdateBoxPos(), /� in bndry cond.c... �/

Bounce(), /� in bounce.c... �/

GetAngMom(),

CheckTree(), /� in check.c... �/

CheckMultipolePrediction(),

CheckForce(),

Draw(), /� in draw.c... �/

CalcTreeForce(), /� in force.c... �/

CalcDirectForce(),

AddGhostForce(),

TestTreeForce(),

SetInitCond(), /� in init cond.c... �/

InitLoOrderPoly(), /� in integrate.c... �/

InitHiOrderPoly(),

InitTsl(),

Integrate(),

MakeTree(), /� in make tree.c... �/

PlaceInTree(),

InitCp(), /� in misc.c... �/

CheckForCp1(),

CheckForCp2(),

CheckForCp3(),

PredictPosAndVelHi(),

PredictPosAndVelHiAll(),

PredictPosAndQMomAll(),

TimeStamp(),

SaveRestartData(),

ReadRestartData(),

Error(),

Terminate(),

LongOutput(), /� in output.c... �/

OpenStatsFile(),

OutputStats(),

CalcEvolPar(),

OutputDat(),

MakeMovieFrame(),

OutputNlvData(),

GetParams(), /� in params.c... �/

DisplayParams(),

Locate(), /� in recipes.c... �/

Sort(),

Sort2(),

MoveInTree(), /� in repair tree.c... �/

141

RemoveFromTree(),

DeallocTree(), /� in tree util.c... �/

GetO�spring(),

CalcTreeMoments(), /� in update tree.c... �/

UpdateBranchMoments(),

UpdateMonopole(),

UpdateQuadrupole();

extern int

ApplyBndryCond(), /� in bndry cond.c... �/

GetIndex(), /� in make tree.c... �/

CurrentIndex(), /� in misc.c... �/

BackupFile(),

TreeLevel(); /� in tree util.c... �/

extern NODE T �Node(); /� in tree util.c... �/

extern char

�GetDate(), /� in misc.c... �/

�GetHost(),

�Boolean(),

�MakeFilename(),

�NodeInfo(); /� in tree util.c... �/

extern double

InitMassFunc(), /� in misc.c... �/

EstMeanMass(),

Radius(),

Mass(),

Density(),

RocheRadius(),

MomentOfInertia(),

DragFactor(),

Median(),

Gpe(),

ElapsedCpu(),

TotalCpu(),

Ran(), /� in recipes.c... �/

Gasdev();

extern BOOLEAN

CheckMultipoles(), /� in check.c... �/

NotO�spring(); /� in tree util.c... �/

/� box tree.h �/

B.1.2 params.h

This header �le de�nes all of the compile-time parameters that a user is most likely to

want to change. Since this �le is included by box tree.h, complete recompilation of the

source is required for any changes made here to come into e�ect. Note that this �le should

not be changed between restarts. The comments are fairly extensive and should serve to

adequately explain the details.

/�

� params.h { DCR 91-05-01

� ========================

� Parameter include �le for box tree code. This �le contains de�nitions

� that users may want to change before compiling (such as the number of

142

� tree dimensions to use). Note that SaveRestartData() records these values;

� they must not be changed for restarts.

�

�/

/�

� Some default �le names (c.f. read cmd line args() in box tree.c).

� Note that these strings MUST be less than MAX FILENAME LEN in length.

�

�/

#define DFLT LOG FILENAME "box tree.log" /� (c.f. Log�le) �/

#define DFLT PAR FILENAME "box tree.par" /� (used in params.c) �/

#define DFLT SAV FILENAME "box tree.sav" /� (c.f. SaveFilename) �/

/�

� Physical (spatial), tree, and box dimensions to use for simulation.

� RESTRICTIONS: NUM PHYS DIM currently MUST be 3; NUM TREE DIM can be

� 2 or 3; NUM BOX DIM must always be 2. Note that NUM PHYS DIM = 3 is

� implicitly assumed in many places.

�

�/

#define NUM PHYS DIM 3 /� For particles �/

#define NUM TREE DIM 2 /� For tree structure �/

#define NUM BOX DIM 2 /� For ghost boxes �/

/� Maximum number of particles (for assigning array storage) �/

#define MAX NUM PARTICLES 10000 /� (also see MAX NUM ON TSL below) �/

/� Maximum number of ghost boxes (do not change) �/

#define MAX NUM BOXES 9 /� One "real" box plus eight "ghost" boxes �/

/�

� Some dimension-dependent quantities, hard-wired to optimize execution.

� The formula versions of these quantities are given by:

� #de�ne NUM QUAD ELEM (2 � NUM PHYS DIM - 1)

� #de�ne MAX NUM CHILDREN POW2(NUM TREE DIM)

� #de�ne MAX TREE LEVEL (31 / NUM TREE DIM)

�

�/

#define NUM QUAD ELEM 5 /� Number of unique elements in Q tensor �/

#if (NUM TREE DIM == 2)

define MAX NUM CHILDREN 4

define MAX TREE LEVEL 15

define CHILD INDEX OFFSET ARRAY f1, 2g

define CHILD COORD OFFSET ARRAY ff-1, 1, -1, 1g, f-1, -1, 1, 1gg

#else

define MAX NUM CHILDREN 8

define MAX TREE LEVEL 99 /� (should be 10, but too small) �/

define CHILD INDEX OFFSET ARRAY f1, 2, 4g

define CHILD COORD OFFSET ARRAY ff-1, 1, -1, 1, -1, 1, -1, 1g, n

f-1, -1, 1, 1, -1, -1, 1, 1g, n

f-1, -1, -1, -1, 1, 1, 1, 1gg

#endif

143

/� Largest membership on N-body time-step list (see integrate.c) �/

#define MAX NUM ON TSL MAX NUM PARTICLES /� Could be smaller in most cases �/

/� Maximum number of particles allowed for simultaneous tracking �/

#define MAX NUM TO TRACK 10 /� Adjust as required �/

/� Maximum number of particles allowed on tree exclusion list �/

#define MAX NUM TO EXCLUDE 10 /� Adjust as required �/

/� Maximum number of simultaneous save �les to use �/

#define MAX NUM SAVE FILES 10 /� Must not exceed 10 �/

/� Maximum number of digits in output �le �lenumbers �/

#define MAX NUM FILENUM DIGITS 3 /� Allows for 000 to 999 �/

/� Maximum number of characters in a �lename (should be <� 100 chars) �/

#define MAX FILENAME LEN 81 /� Remember to add one for NULL character at end �/

/� Character appended to �lenames for backups �/

#define BACKUP MARKER '%' /� Note this is a character, not a string �/

/� Default maximum string length in bytes �/

#define MAX STR LEN 256 /� Don't make this any smaller �/

/� Bytes allocated to workspace bu�er (for string manipulation) �/

#define WORKSPACE SIZE MAX STR LEN /� Don't make this any smaller either �/

/� Precision used in "APPROX" macros when checking double-precision numbers �/

#define PRECISION 1.0e-9 /� This is the best value found so far... �/

/� params.h �/

B.1.3 macros.h

The third header �le contains all of the global macros used in box tree, that is, all

preprocessor de�nitions that take one or more arguments. Simple mathematical functions

are de�ned �rst, followed by macros for rough comparison of double-precision numbers.

The latter half of the �le contains macro functions for fast vector operations and other in-

line optimizations. Most of these optimizations simply eliminate a loop variable, so that

operations on each component of the argument are \unwound" and written out explicitly.

/�

� macros.h { DCR 93-06-03

� ==========================

� Useful macro de�nitions for box tree.

�

�/

/� Mathematical macro de�nitions �/

144

#define POW2(n) (1 � (n)) /� 2 to nth power �/

#define EXP10(n) (pow(10.0, (double) (n))) /� 10 to nth power �/

#define SQ(x) ((x) � (x)) /� Square of x �/

#define CUBE(x) ((x) � (x) � (x)) /� Cube of x �/

#define ABS(x) ((x) < 0 ? (- (x)) : (x)) /� Abs val of x �/

#define SGN(x) ((x) == 0 ? 0 : ((x) < 0 ? (-1) : 1)) /� Signum of x �/

#define MIN(x,y) ((x) < (y) ? (x) : (y)) /� Min of x and y �/

#define MAX(x,y) ((x) > (y) ? (x) : (y)) /� Max of x and y �/

/� Macros for rough comparisons of double-precision numbers �/

#define APPROX EQ(x,y) (ABS((x) - (y)) � PRECISION � MAX(ABS(x), ABS(y)))

#define APPROX LT(x,y) ((y) - (x) > PRECISION � ABS(y))

#define APPROX GT(x,y) ((x) - (y) > PRECISION � ABS(x))

#define APPROX LE(x,y) (APPROX EQ((x),(y)) jj APPROX LT((x),(y)))

#define APPROX GE(x,y) (APPROX EQ((x),(y)) jj APPROX GT((x),(y)))

/� Following macro returns TRUE if its argument is an empty string �/

#define EMPTY STR(str) (str[0] == 'n0')

/� De�nitions for box macros �/

#define CENTRE 0

#define LOWER LEFT 1

#define LOWER CENTRE 2

#define LOWER RIGHT 3

#define CENTRE LEFT 4

#define CENTRE RIGHT 5

#define UPPER LEFT 6

#define UPPER CENTRE 7

#define UPPER RIGHT 8

/� Macros for locating particles in zones �/

#define IN FAST ZONE(b) n

((b) == LOWER LEFT jj (b) == CENTRE LEFT jj (b) == UPPER LEFT)

#define IN CENTRE ZONE(b) n

((b) == LOWER CENTRE jj (b) == CENTRE jj (b) == UPPER CENTRE)

#define IN SLOW ZONE(b) n

((b) == LOWER RIGHT jj (b) == CENTRE RIGHT jj (b) == UPPER RIGHT)

#define IN LOWER ROW(b) n

((b) == LOWER LEFT jj (b) == LOWER CENTRE jj (b) == LOWER RIGHT)

#define IN CENTRE ROW(b) n

((b) == CENTRE LEFT jj (b) == CENTRE jj (b) == CENTRE RIGHT)

#define IN UPPER ROW(b) n

((b) == UPPER LEFT jj (b) == UPPER CENTRE jj (b) == UPPER RIGHT)

#define IN CORNER(b) n

((b) == LOWER LEFT jj (b) == UPPER LEFT jj n

(b) == LOWER RIGHT jj (b) == UPPER RIGHT)

/� Returns TRUE if "pos" outside centre box (assumes SYS CENTRE = (0,0)) �/

145

#define OUTSIDE CENTRE(pos) n

(ABS(pos[0]) > HALF BOX SIZE jj ABS(pos[1]) > HALF BOX SIZE)

/� Returns TRUE if position "pos" is inside "box" �/

#define INSIDE BOX(pos, box) n

(ABS(pos[0] - BOX POS[box][0]) < HALF BOX SIZE && n

ABS(pos[1] - BOX POS[box][1]) < HALF BOX SIZE)

/� Returns TRUE if position "pos" is outside tree (assumes origin = 0) �/

#if (NUM TREE DIM == 2)

define OUTSIDE TREE(pos) n

(ABS(pos[0]) > HALF TREE SIZE jjn

ABS(pos[1]) > HALF TREE SIZE)

#else

define OUTSIDE TREE(pos) n

(ABS(pos[0]) > HALF TREE SIZE jjn

ABS(pos[1]) > HALF TREE SIZE jjn

ABS(pos[2]) > HALF TREE SIZE)

#endif

/� Returns TRUE if position "pos" is outside "node" �/

#if (NUM TREE DIM == 2)

define OUTSIDE NODE(pos,node) n

(ABS(pos[0] - node!centre[0]) > node!half size jj n

ABS(pos[1] - node!centre[1]) > node!half size)

#else

define OUTSIDE NODE(pos,node) n

(ABS(pos[0] - node!centre[0]) > node!half size jj n

ABS(pos[1] - node!centre[1]) > node!half size jj n

ABS(pos[2] - node!centre[2]) > node!half size)

#endif

/� Optimization macros, starting with simple vector operations �/

#define ZERO(v) fn

v[0] = v[1] = v[2] = 0;n

g

#define COPY(v1, v2) fn

v2[0] = v1[0];n

v2[1] = v1[1];n

v2[2] = v1[2];n

g

#define NORM(v, c) fn

double n = 1.0 = (c);n

v[0] � = n;n

v[1] � = n;n

v[2] � = n;n

g

#define ADD(v1, v2, v) fn

v[0] = v1[0] + v2[0];n

v[1] = v1[1] + v2[1];n

v[2] = v1[2] + v2[2];n

g

146

#define SUB(v1, v2, v) fn

v[0] = v1[0] - v2[0];n

v[1] = v1[1] - v2[1];n

v[2] = v1[2] - v2[2];n

g

#define CROSS(v1, v2, v) fn

v[0] = v1[1] � v2[2] - v1[2] � v2[1];n

v[1] = v1[2] � v2[0] - v1[0] � v2[2];n

v[2] = v1[0] � v2[1] - v1[1] � v2[0];n

g

#define DOT(v1, v2)n

(v1[0] � v2[0] + v1[1] � v2[1] + v1[2] � v2[2])

#define MAG(v)n

(sqrt(DOT(v, v)))

#define CROSS Z(v1, v2)n

(v1[0] � v2[1] - v1[1] � v2[0])

/� Macros for quickly applying ghost correction to supplied centre position �/

#define ADD BOX OFFSET(pos, box) fn

pos[0] += BOX POS[box][0];n

pos[1] += BOX POS[box][1];n

g

#define SUB BOX OFFSET(pos, box) fn

pos[0] -= BOX POS[box][0];n

pos[1] -= BOX POS[box][1];n

g

/� Macros for adding or subtracting shear to supplied velocity �/

#define ADD SHEAR(ptr) fn

ptr!vel[1] -= (ROTATING FRAME ? 1.5 � ptr!pos[0] : 0);n

g

#define SUB SHEAR(ptr) fn

ptr!vel[1] += (ROTATING FRAME ? 1.5 � ptr!pos[0] : 0);n

g

#define ADD BOX SHEAR(vel, box) fn

vel[1] += BOX VEL[box][1];n

g

#define SUB BOX SHEAR(vel, box) fn

vel[1] -= BOX VEL[box][1];n

g

/� Macro for applying bndry adj to y component of "pos" (SYS CENTRE[1] = 0) �/

#define WRAP(pos) fn

while (ABS((pos)[1]) > HALF SYS SIZE)n

(pos)[1] -= SGN((pos)[1]) � SYS SIZE;n

g

/� Macro for applying bndry adj to both x and y (assumes SYS CENTRE = (0,0)) �/

147

#define REDUCE(pos) fn

while (ABS((pos)[0]) > HALF SYS SIZE)n

(pos)[0] -= SGN((pos)[0]) � SYS SIZE;n

while (ABS((pos)[1]) > HALF SYS SIZE)n

pos[1] -= SGN((pos)[1]) � SYS SIZE;n

g

/�

� Macro for predicting position of particle pointed to by "ptr" to low order

� if position has not already been predicted this time-step. Note that

� boundary adjustments are NOT applied.

�

�/

#define PREDICT POS LO(ptr) fn

if ((ptr)!pos status == UN PRED) fn

double dt = Clock.time - (ptr)!t0;n

(ptr)!pos[0] = (((ptr)!f dot[0] � dt + (ptr)!f[0]) � dt +n

(ptr)!vel0[0]) � dt + (ptr)!pos0[0];n

(ptr)!pos[1] = (((ptr)!f dot[1] � dt + (ptr)!f[1]) � dt +n

(ptr)!vel0[1]) � dt + (ptr)!pos0[1];n

(ptr)!pos[2] = (((ptr)!f dot[2] � dt + (ptr)!f[2]) � dt +n

(ptr)!vel0[2]) � dt + (ptr)!pos0[2];n

(ptr)!pos status = LO PRED;n

gn

g

/� Ditto for velocity �/

#define PREDICT VEL LO(ptr) fn

if ((ptr)!vel status == UN PRED) fn

double dt = Clock.time - (ptr)!t0;n

(ptr)!vel[0] = (3 � (ptr)!f dot[0] � dt +n

2 � (ptr)!f[0]) � dt + (ptr)!vel0[0];n

(ptr)!vel[1] = (3 � (ptr)!f dot[1] � dt +n

2 � (ptr)!f[1]) � dt + (ptr)!vel0[1];n

(ptr)!vel[2] = (3 � (ptr)!f dot[2] � dt +n

2 � (ptr)!f[2]) � dt + (ptr)!vel0[2];n

(ptr)!vel status = LO PRED;n

gn

g

/� Macro for predicting c-o-m position of "node" �/

#define PREDICT COM POS(node) fn

double dt = Clock.time - (node)!mt0;n

(node)!pos[0] = (((node)!f dot[0] � dt + (node)!f[0]) � dt +n

(node)!vel[0]) � dt + (node)!pos0[0];n

(node)!pos[1] = (((node)!f dot[1] � dt + (node)!f[1]) � dt +n

(node)!vel[1]) � dt + (node)!pos0[1];n

(node)!pos[2] = (((node)!f dot[2] � dt + (node)!f[2]) � dt +n

(node)!vel[2]) � dt + (node)!pos0[2];n

g

/� Ditto for quadrupole moment (assumes NUM QUAD ELEM = 5) �/

#define PREDICT Q MOM(node) fn

double dt = Clock.time - (node)!qt0;n

(node)!q mom[0] = (((node)!q 3dot[0] � dt + (node)!q 2dot[0]) � dt +n

(node)!q dot[0]) � dt + (node)!q mom0[0];n

148

(node)!q mom[1] = (((node)!q 3dot[1] � dt + (node)!q 2dot[1]) � dt +n

(node)!q dot[1]) � dt + (node)!q mom0[1];n

(node)!q mom[2] = (((node)!q 3dot[2] � dt + (node)!q 2dot[2]) � dt +n

(node)!q dot[2]) � dt + (node)!q mom0[2];n

(node)!q mom[3] = (((node)!q 3dot[3] � dt + (node)!q 2dot[3]) � dt +n

(node)!q dot[3]) � dt + (node)!q mom0[3];n

(node)!q mom[4] = (((node)!q 3dot[4] � dt + (node)!q 2dot[4]) � dt +n

(node)!q dot[4]) � dt + (node)!q mom0[4];n

g

/� macros.h �/

B.1.4 box tree.c

This source �le is listed �rst because it contains main(), which is the entry point to

all C programs. Note the convention used for the preamble at the beginning of each

\.c" �le: the header �le include statements are given �rst, followed by any additional

preprocessor de�nitions local to the �le, all local (static) variable de�nitions, and all local

function declarations. Global functions are listed in the comment at the very beginning.

The function de�nitions themselves, after the preamble, are generally arranged in order of

usage with the global functions �rst and the local functions last, although some exceptions

exist.

The box tree.c �le, in addition to main(), contains arithmetic, segmentation fault,

and BUS error trapping functions, as well as the routine for reading the command line

arguments (read cmd line args()), a function to check the validity of the params.h

parameters (check params()), a routine for displaying important start-up information,

much of which is echoed to the log �le (display session info()), and the main routine

that initiates the simulation (box tree()). Note that although the error trapping func-

tions are de�ned locally, they are registered with system routines ieee handler() and

signal() so that they can be accessed from anywhere. The other local functions can only

be invoked by main(). The routine to read the parameter �le GetParams() (see params.c

below) is also called by main(), as is, optionally, the routine to echo the parameters to

stdout (DisplayParams()).

Note the use of the local BOOLEAN variable restart in this �le, which is set to TRUE if

the user requests a restart. This variable is checked in several places. It is also passed to

GetParams() (along with the name of the parameter �le itself).

The box tree() function is responsible for initializing various global variables, includ-

ing the simulation clocks and timers. The routine also calls certain global functions in

order to set the initial conditions, initialize the force polynomials and time-step list, and

construct the tree if applicable. It's main purpose, however, is to call Integrate() (cf.

integrate.c), where control remains until the end of the simulation.

/�

� box tree.c { DCR 91-04-25

� ==========================

� Startup functions and event handlers for box tree.

�

� Global functions: main().

�

�/

/� Include �les �/

#include "box tree.h"

149

#ifndef SYSV

ifndef ALPHA

include <floatingpoint.h> /� For IEEE error trapping �/

endif

#endif

#include <signal.h> /� For bus and segv error trapping �/

/� Local variables �/

static char �par �lename; /� Name of user-supplied parameter �le �/

static BOOLEAN restart; /� TRUE if this is a restart �/

/� Local functions �/

static void

interrupt(),

trap division by zero(),

trap invalid result(),

trap overow(),

trap underow(),

trap bus(),

trap segv(),

read cmd line args(),

check params(),

display session info(),

box tree();

/� End of preamble �/

int main(argc, argv)

int argc;

char �argv[];

f

/�

� Execution begins here.

�

� Return values:

�

� 0 { execution terminated normally

� 1 { execution terminated as a result of an error condition

�

�/

/� Trap all Ctrl-C's if foreground job �/

if (signal(SIGINT, SIG IGN) 6= SIG IGN)

(void) signal(SIGINT, interrupt);

/� Disable bu�ering to stdout �/

setbuf(stdout, (char �) NULL);

/� Title �/

(void) printf("nn");

(void) printf("box tree ver 1.0.0 -- DCR 93-09-30nn");

(void) printf("==================================nn");

(void) printf("nn");

150

(void) printf("See source code for license and copyright details.nn");

/� Assume no log �le initially �/

Log�le = (FILE �) NULL;

/� Get command line arguments and/or set defaults �/

read cmd line args(argc, argv);

/�

� Check options in params.h (done AFTER reading command line args

� to ensure log�le open for error messages if desired).

�

�/

check params();

/�

� Read restart �le if requested (may change counters and time).

� Otherwise abort if a save �le exists (must be explicitly deleted).

�

�/

if (restart) f

(void) printf("nnUser RESTART requested -- reading data...nn");

ReadRestartData();

(void) printf("Done.nn");

g

else if (BackupFiles && fopen(SaveFilename, "r"))

Error(FATAL, "main(): Save file detected.", "");

/� Now read parameter �le, if it exists �/

GetParams(par �lename, restart);

/� Trap FPEs, bus errors, and segmentation violations if debugging �/

if (ERROR CHECK) f

#ifndef SYSV

ifndef ALPHA

(void) ieee handler("set", "division", trap division by zero);

(void) ieee handler("set", "invalid", trap invalid result);

(void) ieee handler("set", "overflow", trap overow);

(void) ieee handler("set", "underflow", trap underow);

endif

#endif

(void) signal(SIGBUS, trap bus);

(void) signal(SIGSEGV, trap segv);

g

/�

� If �rst run, initialize random number generator. If requested, a

� "random" seed is constructed from the process ID number.

�

�/

if (!restart) f

if (!RunPar.ran.seed)

151

RunPar.ran.seed = getpid();

RunPar.ran.seed = - RunPar.ran.seed; /� Neg. seed req'd to init. �/

(void) Ran();

RunPar.ran.iset = 0; /� For Gasdev() �/

g

/� Display session info (always) �/

display session info();

/� Display program parameters if desired �/

if (VERBOSE)

DisplayParams();

/� Call main routine (does not return) �/

box tree();

/� Following line should never be reached �/

return 0;

g

/� Event handlers �/

static void interrupt()

f

Error(HALT, "User INTERRUPT detected", "");

g

static void trap division by zero()

f

Error(SYS ERR, "Floating division by zero has occured", "");

g

static void trap invalid result()

f

Error(SYS ERR, "Floating invalid result has occured", "");

g

static void trap overow()

f

Error(SYS ERR, "Floating overflow has occured", "");

g

static void trap underow()

f

Error(SYS ERR, "Floating underflow has occured", "");

g

static void trap bus()

f

Error(SYS ERR, "BUS error has occured", "");

g

static void trap segv()

f

Error(SYS ERR, "Segmentation violation (SEGV) has occured", "");

g

152

/� Remaining local functions �/

#define ERROR MSG(msg) fn

(void) sprintf(ErrorStr, "%s%s", msg0, msg);n

Error(FATAL, ErrorStr, usage);n

g

static void read cmd line args(argc, argv)

int argc;

char �argv[];

f

/�

� Reads command-line arguments and overrides some defaults if

� applicable. The getopt() function and the associated externals

� optarg and optind are described on page 1002 of the SunOS 4.1

� reference manual.

�

� Currently the following command line arguments are recognized:

�

� "-b" { disables auto backup of existing output �les

� "-l" { sets argument as name of �le for logging

� "-p" { sets argument as name of parameter �le

� "-r" { attempts a restart from a .sav �le

� "-s" { sets argument as base name of save �les

� "-x" { disables logging

�

�/

extern char �optarg;

extern int optind;

int c;

char �msg0 = "read cmd line args(): ", usage[MAX STR LEN], �log �lename;

BOOLEAN use log�le;

/� Set defaults �/

log �lename = DFLT LOG FILENAME;

par �lename = DFLT PAR FILENAME;

(void) strcpy(SaveFilename, DFLT SAV FILENAME);

use log�le = TRUE;

BackupFiles = TRUE;

restart = FALSE;

/� Construct usage message �/

(void) sprintf(usage, "usage: %s %s", argv[0],

"[-b] [-l log-file] [-p par-file] [-r] [-s sav-file] [-x]");

/� Read options if any �/

while ((c = getopt(argc, argv, "bl:p:rs:x")) 6= -1)

switch (c) f

case 'b':

BackupFiles = FALSE;

break;

case 'l':

153

log �lename = optarg;

if (EMPTY STR(log �lename))

ERROR MSG("-l requires filename.");

if (strlen(log �lename) � MAX FILENAME LEN)

ERROR MSG("-l filename too long.");

use log�le = TRUE;

break;

case 'p':

par �lename = optarg;

if (EMPTY STR(par �lename))

ERROR MSG("-p requires filename.");

if (strlen(par �lename) � MAX FILENAME LEN)

ERROR MSG("-p filename too long.");

break;

case 'r':

restart = TRUE;

break;

case 's':

(void) strcpy(SaveFilename, optarg);

if (EMPTY STR(SaveFilename))

ERROR MSG("-s requires filename.");

if (strlen(SaveFilename) � MAX FILENAME LEN - 1)

ERROR MSG("-s filename too long.");

break;

case 'x':

use log�le = FALSE;

break;

case ' ?':

ERROR MSG("Syntax error.");

g

/� Final check �/

if (optind 6= argc)

ERROR MSG("Missing or invalid argument.");

/� Open log �le if requested �/

if (use log�le) f

if (BackupFiles)

(void) BackupFile(log �lename, BACKUP MARKER);

if ((Log�le = fopen(log �lename, "w")) == NULL)

Error(IO, "read cmd line args()", log �lename);

else

setbuf(Log�le, (char �) NULL);

g

g

#undef ERROR MSG

#define ERROR MSG(msg) fn

(void) sprintf(ErrorStr, "%s%s", msg0, msg);n

Error(FATAL, ErrorStr, "");n

g

static void check params()

f

/� Checks validity of de�nitions in params.h �/

154

char �msg0 = "params.h: ";

if (NUM PHYS DIM 6= 3)

ERROR MSG("This version requires NUM PHYS DIM = 3.");

if (NUM BOX DIM 6= 2)

ERROR MSG("Invalid box dimension.");

if (NUM TREE DIM 6= 2 && NUM TREE DIM 6= 3)

ERROR MSG("Invalid tree dimension.");

if (NUM TREE DIM > NUM PHYS DIM) /� (currently redundant) �/

ERROR MSG("Tree dimension > physical dimension.");

if (MAX TREE LEVEL > 31 = NUM TREE DIM)

Error(WARNING1, "check params(): Tree indices may be incorrect.", "");

g

#undef ERROR MSG

static void display session info()

f

/� Writes out some session info, starting with the date and host �/

(void) sprintf(Workspace, " %s on %snn", GetDate(), GetHost());

(void) printf("nnExecution begins %s", Workspace);

if (Log�le)

(void) fprintf(Log�le, "Session begun %s", Workspace);

/� Message if non-standard architecture �/

#ifdef SYSV

(void) printf("nnWARNING: System V architecture...nn");

(void) printf(" -- self-timing features disablednn");

(void) printf(" -- existing file backup disablednn");

(void) printf(" -- ieee error trapping disablednn");

(void) printf(" -- movie generation disablednn");

if (Log�le)

(void) fprintf(Log�le, "System V architecturenn");

#endif

#ifdef ALPHA

(void) printf("nnWARNING: Alpha architecture...nn");

(void) printf(" -- movie generation disablednn");

if (Log�le)

(void) fprintf(Log�le, "Alpha architecturenn");

#endif

/� Display compiler options �/

#if de�ned(OPTIMIZE)

(void) printf("nn[Code compiled for optimization]nn");

if (Log�le)

(void) fprintf(Log�le, "Code compiled for optimizationnn");

#elif de�ned(DEBUG)

(void) printf("nn[Code compiled for debugging]nn");

if (Log�le)

(void) fprintf(Log�le, "Code compiled for debuggingnn");

#elif de�ned(PROFILE)

155

(void) printf("nn[Code compiled for profiling]nn");

if (Log�le)

(void) fprintf(Log�le, "Code compiled for profilingnn");

#endif

/� Display compile time if possible �/

#ifdef GNUC

(void) printf("nn[Code compiled with gcc %s %s]nn", DATE , TIME);

if (Log�le)

(void) fprintf(Log�le, "Code compiled with gcc %s %snn",

DATE , TIME);

#endif

/� Display physical and tree dimensions �/

(void) printf("nnPhysical dimension = %i tree dimension = %inn",

NUM PHYS DIM, NUM TREE DIM);

if (Log�le)

(void) fprintf(Log�le, "Phys dim = %i, tree dim = %inn",

NUM PHYS DIM, NUM TREE DIM);

/� Message if restart �/

if (restart) f

(void) printf("nnRESTART (restarting from %s)nn", SaveFilename);

if (Log�le)

(void) fprintf(Log�le, "Restart from %snn", SaveFilename);

g

/� Parameter �le �/

if (Log�le)

(void) fprintf(Log�le, "Parameters read from %snn", par �lename);

/� Comment line �/

if (Log�le)

(void) fprintf(Log�le, "%snn", RunPar.comment line);

/� Reference frame and unit conversions �/

if (Log�le) f

(void) fprintf(Log�le, "Reference frame = %snn",

(ROTATING FRAME ? "ROTATING" : (INERTIAL FRAME ?

"INERTIAL" : (GALAXY FRAME ? "GALAXY" : "UNKNOWN"))));

(void) fprintf(Log�le, "Length units = %g mnn", RunPar.length scale);

(void) fprintf(Log�le, "Mass units = %g kgnn", RunPar.mass scale);

(void) fprintf(Log�le, "Time units = %g snn", RunPar.time scale);

g

/� Random number seed �/

if (Log�le)

(void) fprintf(Log�le, "Random number seed = %inn", RunPar.ran.seed);

g

static void box tree()

f

156

/� Performs various initializations and calls Integrate() �/

int i;

/� Following initializations not required if restart �/

if (!restart) f

/� Set system centre at origin �/

ZERO(SYS CENTRE);

/� Initialize "box o�set" arrays �/

for (i = 0; i < MAX NUM BOXES; i++) f /� (MAX NUM BOXES must be 9) �/

if (IN FAST ZONE(i))

BOX X OFFSET[i] = - BOX SIZE;

else if (IN CENTRE ZONE(i))

BOX X OFFSET[i] = 0;

else if (IN SLOW ZONE(i))

BOX X OFFSET[i] = BOX SIZE;

else f

(void) sprintf(ErrorStr, "box %i", i);

Error(FATAL, "box tree(): Invalid box index.", ErrorStr);

g

if (IN LOWER ROW(i))

BOX Y OFFSET[i] = - BOX SIZE;

else if (IN CENTRE ROW(i))

BOX Y OFFSET[i] = 0;

else if (IN UPPER ROW(i))

BOX Y OFFSET[i] = BOX SIZE;

else f

(void) sprintf(ErrorStr, "box %i", i);

Error(FATAL, "box tree(): Invalid box index.", ErrorStr);

g

BOX POS[i][0] = BOX X OFFSET[i];

BOX POS[i][1] = BOX Y OFFSET[i];

BOX VEL[i][0] = 0;

BOX VEL[i][1] = (ROTATING FRAME ? - 1.5 � BOX X OFFSET[i] : 0);

g

/� Reset all clocks and timers �/

Clock.time = Clock.tsl time = RunPar.init clock time;

for (i = 0; i < NUM TIMERS; i++)

Clock.timer[i] = RunPar.init clock time;

/� If init. clock time not 0, update ghost box pos'ns if applicable �/

if (ROTATING FRAME && GHOSTS && RunPar.init clock time)

UpdateBoxPos();

/� Set or read particle initial conditions as appropriate �/

if (VERBOSE)

(void) printf("Initializing particle data...nn");

157

SetInitCond();

if (VERBOSE)

(void) printf("Done.nn");

/� Initialize all particle force polynomials and set time-steps �/

if (VERBOSE)

(void) printf("Initializing force polynomials...nn");

for (i = 0; i < NumParticles; i++) /� Low order �rst �/

InitLoOrderPoly(i);

for (i = 0; i < NumParticles; i++) /� Then high order �/

InitHiOrderPoly(i);

if (VERBOSE)

(void) printf("Done.nn");

/� Initialize time-step list �/

(void) printf("Initializing time-step list...nn");

if (Counter[MAX TIME STEPS] > MAX NUM ON TSL) f

(void) sprintf(ErrorStr, "max steps %i > max on tsl %i",

Counter[MAX TIME STEPS], MAX NUM ON TSL);

Error(FATAL, "box tree(): Too many maximum time-steps.", ErrorStr);

g

InitTsl();

if (VERBOSE)

(void) printf("Done.nn");

/� Now construct tree if desired �/

if (RunPar.use tree) f

if (VERBOSE)

(void) printf("Constructing tree...nn");

MakeTree(TREE SIZE, TREE CENTRE);

if (VERBOSE)

(void) printf("Done.nn");

g

/� Check multipoles if desired �/

if (DebugPar.check multipoles) f

if (VERBOSE)

(void) printf("Checking multipoles from root...nn");

if (CheckMultipoles(Root) && VERBOSE)

(void) printf("No errors.nn");

g

/� Backup output �les if necessary �/

if (BackupFiles) f

(void) BackupFile(RunPar.stats �lename, BACKUP MARKER);

(void) BackupFile(RunPar.nlv �lename, BACKUP MARKER);

g

158

/� Prepare statistics �le �/

if (RunPar.interval[STATS])

OpenStatsFile();

g /� if not restart �/

else f

/� Perform output and check tree before resuming integration �/

if (RunPar.interval[OUTPUT] && Clock.timer[OUTPUT] > Clock.time)

LongOutput();

if (DebugPar.check tree && Clock.timer[CHECK] > Clock.time) f

if (VERBOSE)

(void) printf("Checking tree on restart...nn");

CheckTree(Root);

if (VERBOSE)

(void) printf("No errors detected.nn");

g

g

/� Output some info �/

(void) printf("nnIntegration begins at CPU time = ");

(void) printf("%.2e min (current run)...nn", ElapsedCpu());

/� Stamp log �le if it exists �/

if (Log�le)

TimeStamp();

/� Begin integration �/

Integrate();

/� All done �/

(void) printf("nnIntegration completed!nn");

if (MONITOR && DebugPar.num force checks)

(void) printf("Force error status: avg abs err %.5e max err %.5enn",

DebugPar.total err = DebugPar.num force checks, DebugPar.max err);

(void) printf("Elapsed CPU this run = %.2e min.nn", ElapsedCpu());

(void) printf("Total CPU (all runs) = %.2e min. (%i time-steps).nn",

TotalCpu(), Counter[TIME STEPS]);

Terminate(ALL DONE);

g

/� box tree.c �/

B.1.5 bndry cond.c

The remaining source �les are listed in alphabetical order. The bndry cond.c �le contains

two global functions: UpdateBoxPos() for adjusting the y-displacement of the ghost boxes,

and ApplyBndryCond() for applying boundary conditions to a given particle. The ghost

box positions are used to determine ghost particle positions, so UpdateBoxPos() is called

immediately after the simulation clock has been set at the beginning of each pass through

159

the main integration loop. A ghost box boundary crossing counter is used to ensure the

ghost box centres stay within one box half-width in the y-direction of the system origin.

The routine takes a negligible amount of CPU so it is not particularly optimized. If ghost

particles are not being included explicitly, UpdateBoxPos() need only be called when

there is a particle boundary crossing.

The function ApplyBndryCond() is called to check whether a particle has crossed a

box or tree boundary, and to apply the appropriate boundary conditions. The function

returns BC NONE if there was no boundary crossing, BC BOX is there was a box crossing,

or BC TREE if there was a tree crossing. In the case of a box crossing, various corrections

are made to any conservation variables a�ected by the change in particle position and

velocity (cf. x4.4). The routine makes use of the local function get box() to determine

the index of the ghost box the central particle is entering. In the event of an allowed tree

boundary crossing, the tree is expanded and completely rebuilt.

/�

� bndry cond.c { DCR 92-03-13

� ============================

� Code for handling box tree boundary conditions.

�

� Global functions: UpdateBoxPos(), ApplyBndryCond().

�

�/

/� Include �les �/

#include "box tree.h"

/� Local functions �/

static int get box();

/� End of preamble �/

void UpdateBoxPos()

f

/�

� Updates y-position of ghost boxes to current time for rotating

� frame. This routine should be called after Clock.time has been

� updated if ghost particles are being used. (If there are NO ghost

� particles, this function need only be called when determining which

� ghost would have replaced the current particle in the event of a

� central box boundary crossing). Note that this routine assumes

� Clock.time always increases.

�

�/

static double last time = 0;

int i;

double shear;

/� Return if clock hasn't changed �/

if (last time == Clock.time)

return;

/� Calculate shear �/

160

shear = 1.5 � Clock.time - Counter[GHOST BOX BNDRY XINGS];

/� Adjust for box boundary crossings �/

while (shear > 0.5) f

++Counter[GHOST BOX BNDRY XINGS];

--shear;

g

/� Apply shear �/

for (i = 0; i < NumBoxes; i++)

BOX POS[i][1] = BOX Y OFFSET[i] - shear � BOX X OFFSET[i];

/� Store time �/

last time = Clock.time;

g

#define MAX NUM EXPANSIONS 100 /� For tree resizing �/

int ApplyBndryCond(particle)

int particle;

f

/�

� Determines whether "particle" has crossed a box or tree boundary

� (depending on boundary condition option). If so, the appropriate

� boundary conditions are applied. In the case of periodic boundary

� conditions in the central box, it is up to the calling function to

� ensure the particle is correctly reinitialized.

�

� Return values:

�

� BC NONE { particle is within box and tree boundaries

� BC BOX { box boundary condition was applied to particle

� BC TREE { tree boundary condition was applied to particle

�

�/

DATA T �ptr = Data[particle];

/� First check if box is bounded and particle outside box �/

if (RunPar.bc opt 6= UNBOUNDED && OUTSIDE CENTRE(ptr!pos)) f

int k, box;

double old gpe = 0;

/� Error if no BC's allowed �/

if (RunPar.bc opt == DISABLED) f

(void) sprintf(ErrorStr, "particle %i (%i) x %g y %g t %g",

particle, ptr!orig index, ptr!pos[0], ptr!pos[1], TIME);

Error(FATAL,

"ApplyBndryCond(): Particle outside boundary but BCs disabled.",

ErrorStr);

g

/� Update ghost boxes for case of no ghost particles (if applicable) �/

if (ROTATING FRAME && !GHOSTS)

161

UpdateBoxPos();

/� Determine index of box that particle is ENTERING �/

box = get box(ptr!pos);

/� Mandatory error check �/

if (box == -1) f

(void) sprintf(ErrorStr, "particle %i (%i) x %g y %g",

particle, ptr!orig index, ptr!pos[0], ptr!pos[1]);

Error(FATAL, "ApplyBndryCond(): Destination box not found.",

ErrorStr);

g

if (box == CENTRE) f

(void) sprintf(ErrorStr, "particle %i (%i) x %g y %g",

particle, ptr!orig index, ptr!pos[0], ptr!pos[1]);

Error(FATAL, "ApplyBndryCond(): Particle still in centre!",

ErrorStr);

g

/� Get current GPE if required before applying boundary condition �/

if (ERROR CHECK jj RunPar.conserve total energy)

old gpe = Gpe(); /� (assumes all pos'ns predicted to low order...) �/

/� Replace particle with ghost image, now in centre box �/

for (k = 0; k < NUM BOX DIM; k++) f

ptr!pos[k] -= BOX POS[box][k];

ptr!vel[k] -= BOX VEL[box][k];

g

/�

� Adjust centre-of-mass position and velocity if applicable.

� Note that this correction applies only at the time of boundary

� crossing: until the system becomes symmetric again there will

� be a systematic motion of the centre-of-mass position.

�

�/

if (ERROR CHECK) f

double r = ptr!mass = RunPar.total mass;

for (k = 0; k < NUM BOX DIM; k++) f /� (assume SYS CENTRE = (0,0) �/

DebugPar.com pos[k] -= r � BOX POS[box][k];

DebugPar.com vel[k] -= r � BOX VEL[box][k];

g

g

/� Correct total z angular momentum if applicable �/

if (ERROR CHECK) f

if (ROTATING FRAME)

DebugPar.tzam adj +=

ptr!mass � (BOX VEL[box][1] + 2 � BOX POS[box][0]);

else if (INERTIAL FRAME)

DebugPar.tzam adj +=

ptr!mass � CROSS Z(BOX POS[box], ptr!vel);

162

g

/� Adjust GPE if applicable �/

if (ERROR CHECK jj RunPar.conserve total energy)

DebugPar.total energy adj -= Gpe() - old gpe;

/� Increment counters �/

++Counter[BNDRY XINGS];

if (IN FAST ZONE(box) jj IN SLOW ZONE(box))

++Counter[LATERAL BNDRY XINGS];

return BC BOX;

g

/� Otherwise check if box is unbounded but particle outside tree �/

if (RunPar.bc opt == UNBOUNDED && ptr!in tree && OUTSIDE TREE(ptr!pos)) f

int i, n;

/� Error if not allowed to expand tree �/

if (Root == NULL jj TreePar.expansion � 1) f

(void) sprintf(ErrorStr, "particle %i (%i) x %g y %g z %g t %g",

particle, ptr!orig index, ptr!pos[0], ptr!pos[1],

ptr!pos[2], TIME);

Error(FATAL, "ApplyBndryCond(): Particle outside tree.", ErrorStr);

g

/� Get new tree size, warning if it's taking too long... �/

n = 0;

while (OUTSIDE TREE(ptr!pos)) f

if (++n == MAX NUM EXPANSIONS)

Error(WARNING1, "ApplyBndryCond(): Infinite loop?", "");

TREE SIZE � = TreePar.expansion;

HALF TREE SIZE � = TreePar.expansion;

g

/� Reconstruct tree �/

DeallocTree(Root);

PredictPosAndVelHiAll();

if (TreePar.pred mono) f

for (i = 0; i < NumParticles; i++)

InitLoOrderPoly(i);

for (i = 0; i < NumParticles; i++)

InitHiOrderPoly(i);

InitTsl();

g

MakeTree(TREE SIZE, TREE CENTRE);

(void) sprintf(ErrorStr, "%i expansion(s), time %g, new size %e", n,

TIME, TREE SIZE);

Error(WARNING1, "ApplyBndryCond(): Tree resized.", ErrorStr);

return BC TREE;

g

163

return BC NONE;

g

#undef MAX NUM EXPANSIONS

static int get box(pos)

double �pos;

f

/� Returns index of box containing "pos" (-1 if not found) �/

int box = -1;

double dx = pos[0], dy = pos[1]; /� (assume SYS CENTRE = (0,0)) �/

/� Error check �/

if (ERROR CHECK && (dx > BOX SIZE jj dy > BOX SIZE)) f

(void) sprintf(ErrorStr, "dx %g dy %g", dx, dy);

Error(FATAL, "get box(): Position too far out.", ErrorStr);

g

/� Determine box index �/

if (dx < - HALF BOX SIZE) f

if (INSIDE BOX(pos, LOWER LEFT))

box = LOWER LEFT;

else if (INSIDE BOX(pos, CENTRE LEFT))

box = CENTRE LEFT;

else if (INSIDE BOX(pos, UPPER LEFT))

box = UPPER LEFT;

g

else if (dx > HALF BOX SIZE) f

if (INSIDE BOX(pos, LOWER RIGHT))

box = LOWER RIGHT;

else if (INSIDE BOX(pos, CENTRE RIGHT))

box = CENTRE RIGHT;

else if (INSIDE BOX(pos, UPPER RIGHT))

box = UPPER RIGHT;

g

else f

if (dy < - HALF BOX SIZE)

box = LOWER CENTRE;

else if (dy > HALF BOX SIZE)

box = UPPER CENTRE;

else

box = CENTRE;

g

return box;

g

/� bndry cond.c �/

B.1.6 bounce.c

This �le contains code for determining new particle velocities once a two-body collision

has been established and for checking the consistency of the calculations. The global

routine Bounce() is called only by collision() (cf. integrate.c). The routine takes as

arguments pointers to the colliders' data structures, the initial positions, velocities, and

164

spins, and addresses for storing the �nal velocities and spins. Many local variables are

de�ned to simplify the calculation process and much use is made of the vector macros

de�ned in params.h. The formulae used for calculating the �nal velocities and spins are

given by equations (3.14){(3.17). An optional calculation of the change in kinetic energy

is also included [equation (3.18)]. In addition, the local function check bounce() may be

called to verify the conservation properties of the collision equations. If velocity-dependent

coe�cients of restitution are in use, the local routine bhl formula() is called to determine

the appropriate values. The check bounce() routine makes use of GetAngMom() and

get lin mom() to calculate the angular and linear momentum, respectively, of a two-

body system. The former routine is global because it is also called from the routine

merge() in integrate.c.

/�

� bounce.c { DCR 92-02-03

� ========================

� Code for calculating two-body collision dynamics.

�

� Global functions: Bounce(), GetAngMom().

�

�/

/� Include �les �/

#include "box tree.h"

/� Local functions �/

static double bhl formula();

static void check bounce(), get lin mom();

/� End of preamble �/

#define MAX SEP ERR 0.01 /� Warning if colliders exceed this fract. penet. �/

void Bounce(ptr1, ptr2, pos1, pos2, v1 i, v2 i, w1 i, w2 i, v1 f, v2 f,

w1 f, w2 f)

DATA T �ptr1, �ptr2;

double �pos1, �pos2, �v1 i, �v2 i, �w1 i, �w2 i, �v1 f, �v2 f, �w1 f, �w2 f;

f

/�

� Calculates linear velocities v1 f & v2 f and angular velocities

� w1 f & w2 f following collision between particles ptr1 & ptr2 at

� positions pos1 & pos2, with initial linear velocities v1 i & v2 i

� and initial angular velocities w1 i & w2 i.

�

� NOTE: Memory economy has been sacri�ced in favour of readability

� in this routine.

�

�/

int k;

/� Working variables... �/

double

r1, /� Radius of particle 1 �/

r2, /� Radius of particle 2 �/

r, /� Particle separation (sum of radii) �/

165

m1, /� Mass of particle 1 �/

m2, /� Mass of particle 2 �/

m, /� Total mass (m1 + m2) �/

i1, /� Moment of inertia of particle 1 �/

i2, /� Moment of inertia of particle 2 �/

alpha, /� Useful quantity in formulae �/

mu, /� Reduced mass �/

beta, /� Reciprocal of 1 + alpha mu �/

n hat[NUM PHYS DIM], /� Unit vector in normal (radial) direction �/

v[NUM PHYS DIM], /� Initial relative linear velocity �/

s1[NUM PHYS DIM], /� Initial spin velocity of 1st particle �/

s2[NUM PHYS DIM], /� Initial spin velocity of 2nd particle �/

s[NUM PHYS DIM], /� Initial relative spin velocity �/

u[NUM PHYS DIM], /� Initial relative total velocity �/

u n[NUM PHYS DIM], /� Initial n component of u �/

u t[NUM PHYS DIM], /� Initial t component of u �/

eps n, /� Radial component of coef. of restitution �/

eps t, /� Transverse component of coef. of restitution �/

nxu[NUM PHYS DIM], /� Cross product of n hat and u �/

p[NUM PHYS DIM], /� Useful working vector �/

q[NUM PHYS DIM], /� Ditto �/

w[NUM PHYS DIM], /� Radius-weighted sum of angular velocities �/

dum dbl; /� Useful dummy variable �/

/� Load working variables �/

r1 = ptr1!radius;

r2 = ptr2!radius;

r = r1 + r2;

m1 = ptr1!mass;

m2 = ptr2!mass;

m = m1 + m2;

i1 = ptr1!inertia;

i2 = ptr2!inertia;

alpha = ptr1!radius sq = i1 + ptr2!radius sq = i2;

mu = m1 � m2 = m;

beta = 1 = (1 + alpha � mu);

/� Calculate normal vector at impact site �/

SUB(pos2, pos1, n hat);

dum dbl = MAG(n hat);

if (ERROR CHECK) f

if (dum dbl == 0)

Error(FATAL, "Bounce(): Particles coincide!", "");

if (!APPROX EQ(r, dum dbl)) f

(void) sprintf(ErrorStr, "dist = %e r1 + r2 = %e", dum dbl, r);

Error(WARNING2, "Bounce(): Distance discrepancy.", ErrorStr);

g

g

NORM(n hat, dum dbl);

/� Calculate relative linear velocity �/

SUB(v2 i, v1 i, v);

/� Calculate relative spin velocity �/

166

CROSS(w1 i, n hat, s1);

CROSS(w2 i, n hat, s2);

for (k = 0; k < NUM PHYS DIM; k++)

s[k] = - (r1 � s1[k] + r2 � s2[k]);

/� Hence calculate total relative velocity �/

ADD(v, s, u);

/� Get n and t components of total relative velocity �/

dum dbl = DOT(u, n hat);

for (k = 0; k < NUM PHYS DIM; k++)

u n[k] = dum dbl � n hat[k];

SUB(u, u n, u t);

/� Get cross product of n hat and u �/

CROSS(n hat, u, nxu);

/� Set coe�cient of restitution components, checking for sliding cond. �/

if ((dum dbl = MAG(u n)) < EvolPar.min rad vel)

eps n = 1;

else if ((eps n = RunPar.rest coef.radial) == BHL FLAG)

eps n = bhl formula(dum dbl);

if ((eps t = RunPar.rest coef.transverse) == BHL FLAG)

eps t = bhl formula(MAG(u t));

/� Construct new vectors p, q, and w to simplify things later on... �/

for (k = 0; k < NUM PHYS DIM; k++) f

p[k] = (1 + eps n) � u n[k] + beta � (1 - eps t) � u t[k];

q[k] = mu � beta � (1 - eps t) � nxu[k];

w[k] = r1 � w1 i[k] + r2 � w2 i[k];

g

/� Print out info if desired �/

if (ERROR CHECK && VERY VERBOSE)

(void) printf(" Coef of rest: n %.2f t %.2fnn", eps n, eps t);

/� Obtain �nal velocities and spins �/

for (k = 0; k < NUM PHYS DIM; k++) f

v1 f[k] = v1 i[k] + (m2 = m) � p[k];

v2 f[k] = v2 i[k] - (m1 = m) � p[k];

w1 f[k] = w1 i[k] + (r1 = i1) � q[k];

w2 f[k] = w2 i[k] + (r2 = i2) � q[k];

g

/� Adjust total energy of system to reect collisional loss �/

if (ERROR CHECK jj RunPar.conserve total energy) f

double dke;

167

dke = 0.5 � mu � DOT(p, p) + 0.5 � alpha � DOT(q, q) -

mu � DOT(v, p) + DOT(w, q); /� Analytic expression �/

DebugPar.collision dke += dke;

DebugPar.total energy adj -= dke;

g

/� Check results if desired �/

if (MONITOR)

check bounce(ptr1, ptr2, pos1, pos2, v1 i, v2 i, w1 i, w2 i,

v1 f, v2 f, w1 f, w2 f);

g

#undef MAX SEP ERR

static double bhl formula(v)

double v;

f

/�

� Returns coe�cient of restitution corresponding to relative

� velocity "v" using "Bridges-Hatzes-Lin"-type formula (speci�c

� to ice balls).

�

�/

if (v == 0)

return 1.0;

/� Factor of 100 converts from mks to cgs �/

return MIN(0.34 � pow(v � RunPar.velocity scale � 100, - 0.234), 1.0);

g

#define ACCURACY 5.0e-04 /� Desired conservation accuracy before warning �/

static void check bounce(ptr1, ptr2, pos1, pos2, v1 i, v2 i, w1 i, w2 i,

v1 f, v2 f, w1 f, w2 f)

DATA T �ptr1, �ptr2;

double �pos1, �pos2, �v1 i, �v2 i, �w1 i, �w2 i, �v1 f, �v2 f, �w1 f, �w2 f;

f

/�

� Checks for linear and angular momentum conservation following

� collision and outputs some quantities if desired.

�

�/

double m1, m2, i1, i2, pi[NUM PHYS DIM], pi mag, pf[NUM PHYS DIM],

dp[NUM PHYS DIM], dp mag, li[NUM PHYS DIM], li mag,

lf[NUM PHYS DIM], dl[NUM PHYS DIM], dl mag, ke i, ke f,

v1, v2, w1, w2;

/� Get standard quantities �/

m1 = ptr1!mass;

m2 = ptr2!mass;

i1 = ptr1!inertia;

i2 = ptr2!inertia;

168

/� Linear momentum check �/

get lin mom(m1, v1 i, m2, v2 i, pi);

get lin mom(m1, v1 f, m2, v2 f, pf);

SUB(pf, pi, dp);

pi mag = MAG(pi);

if (APPROX GT(pi mag, 0))

NORM(dp, pi mag);

dp mag = MAG(dp);

if (dp mag > ACCURACY)

Error(WARNING2, "check bounce(): Poor lin. mom. conservation.", "");

if (VERBOSE) f

(void) printf(" Change in linear momentum / initial mag:nn");

(void) printf(" dx = %+9.2e dy = %+9.2e dz = %+9.2e",

dp[0], dp[1], dp[2]);

(void) printf(" (mag %9.3e)nn", dp mag);

g

/� Angular momentum check �/

GetAngMom(m1, pos1, v1 i, i1, w1 i, m2, pos2, v2 i, i2, w2 i, li);

GetAngMom(m1, pos1, v1 f, i1, w1 f, m2, pos2, v2 f, i2, w2 f, lf);

SUB(lf, li, dl);

li mag = MAG(li);

if (APPROX GT(li mag, 0))

NORM(dl, li mag);

dl mag = MAG(dl);

if (dl mag > ACCURACY)

Error(WARNING2, "check bounce(): Poor ang. mom. conservation.", "");

if (VERBOSE) f

(void) printf(" Change in angular momentum / initial mag:nn");

(void) printf(" dx = %+9.2e dy = %+9.2e dz = %+9.2e",

dl[0], dl[1], dl[2]);

(void) printf(" (mag %9.3e)nn", dl mag);

g

/� Kinetic energy check �/

v1 = MAG(v1 i);

v2 = MAG(v2 i);

w1 = MAG(w1 i);

w2 = MAG(w2 i);

ke i = 0.5 � (m1 � SQ(v1) + m2 � SQ(v2) + i1 � SQ(w1) + i2 � SQ(w2));

v1 = MAG(v1 f);

v2 = MAG(v2 f);

w1 = MAG(w1 f);

w2 = MAG(w2 f);

ke f = 0.5 � (m1 � SQ(v1) + m2 � SQ(v2) + i1 � SQ(w1) + i2 � SQ(w2));

169

if (APPROX GT(ke f, ke i))

Error(WARNING2, "check bounce(): K.E. gain after collision!", "");

if (VERBOSE)

(void) printf(" KE before %9.3e, after %9.3e, change %9.3enn",

ke i, ke f, ke f - ke i);

g

#undef ACCURACY

void GetAngMom(m1, r1, v1, i1, w1, m2, r2, v2, i2, w2, l)

double m1, �r1, �v1, i1, �w1, m2, �r2, �v2, i2, �w2, �l;

f

/� Sets "l" to angular momentum of two-body system w.r.t. c-o-m �/

int k;

double norm, rc k, rc1[NUM PHYS DIM], rc2[NUM PHYS DIM], vc k,

vc1[NUM PHYS DIM], vc2[NUM PHYS DIM], rxv1[NUM PHYS DIM],

rxv2[NUM PHYS DIM];

norm = 1 = (m1 + m2);

/� Calculate quantities w.r.t. c-o-m �/

for (k = 0; k < NUM PHYS DIM; k++) f

rc k = (m1 � r1[k] + m2 � r2[k]) � norm;

rc1[k] = r1[k] - rc k;

rc2[k] = r2[k] - rc k;

vc k = (m1 � v1[k] + m2 � v2[k]) � norm;

vc1[k] = v1[k] - vc k;

vc2[k] = v2[k] - vc k;

g

/� Get cross products �/

CROSS(rc1, vc1, rxv1);

CROSS(rc2, vc2, rxv2);

/� Calculate angular momentum �/

for (k = 0; k < NUM PHYS DIM; k++)

l[k] = m1 � rxv1[k] + m2 � rxv2[k] + i1 � w1[k] + i2 � w2[k];

g

static void get lin mom(m1, v1, m2, v2, p)

double m1, �v1, m2, �v2, �p;

f

/� Sets "p" to linear momentum of two-body system �/

int k;

for (k = 0; k < NUM PHYS DIM; k++)

p[k] = m1 � v1[k] + m2 � v2[k];

g

/� bounce.c �/

170

B.1.7 check.c

The check.c �le contains various error checking routines, currently all associated with the

tree. There are four global functions and two local functions in the �le. The CheckTree()

routine performs a variety of simple tests, checking node sizes, child properties, etc. The

routine is recursive, checking the tree from the top down. The local function node error()

is used in conjunction with CheckTree() to generate error messages (any errors are fatal).

The CheckMultipoles() routine is also recursive, and is dedicated to calculating the

multipole moments of the tree explicitly as a check. The time derivatives of the quadrupole

are also checked. The routine assumes all particle and tree data are up to date, so it is

currently only called after initial tree construction. The CheckMultipolePrediction()

function compares the predicted multipole moments of the tree with the actual multipole

moments and reports any large discrepancies. The routine itself is actually only a driver

for the recursive function check multipole prediction r() which does the bulk of the

work. Finally, the CheckForce() routine calculates the current force on each particle

using: (1) the direct method; (2) the tree method with the monopole approximation;

(3) the tree with quadrupole; and (4) a direct method that allows for node boundary

conditions (cf. x4.3). The forces are compared and di�erences are reported. This routine

is not as useful as check force() in force.c, which performs a node-by-node force

comparison, but it can still be helpful.

/�

� check.c { DCR 91-09-11

� =======================

� Miscellaneous self-check routines for box tree code. Many of these routines

� are based on or inspired by code developed by SLM.

�

� Global functions: CheckTree(), CheckMultipoles(), CheckMultipolePrediction(),

� CheckForce().

�

�/

/� Include �les �/

#include "box tree.h"

/� Additional de�nitions �/

#define TOLERANCE 1.0e-06 /� Tolerance level for multipole checks �/

/� Local functions �/

static void node error(), check mult pred r();

/� Local variables �/

static LEAF T o�spring[MAX NUM PARTICLES]; /� Mass storage �/

/� End of preamble �/

void CheckTree(node)

NODE T �node;

f

/�

� Performs a number of tests to check tree integrity. This function

� is recursive, so it must be provided with a tree node to start,

� usually Root. The function node error() is used for more e�cient

171

� handling of error messages.

�

�/

int i, k, particle, num leaves, index;

DATA T �ptr;

CHILD T �child;

double mass;

/� Check tree index �/

/� due to possible integer overow, this test is not implemented

if (Node(node->tree index) != node) f

(void) sprintf(ErrorStr, "tree index = %i", node->tree index);

node error((NODE T �) NULL, "Tree index/node mismatch.", ErrorStr);

g

�/

/� Check parent and node index �/

if (node == Root) f

if (node!parent 6= NULL) f

(void) sprintf(ErrorStr, "parent = %p", (void �) node!parent);

node error((NODE T �) NULL, "Root parent not NULL", ErrorStr);

g

if (node!node index 6= -1) f

(void) sprintf(ErrorStr, "node index = %i", node!node index);

node error((NODE T �) NULL, "Root node index not -1.", ErrorStr);

g

g

else if (node!parent!child[node!node index].branch 6= node) f

(void) sprintf(ErrorStr, "tree index = %i", node!tree index);

node error((NODE T �) NULL, "Node/parent mismatch.", ErrorStr);

g

/� Check sizes �/

if (node == Root && node!size 6= TREE SIZE) f

(void) sprintf(ErrorStr, "expected %g got %g", TREE SIZE, node!size);

node error((NODE T �) NULL, "Root size incorrect.", ErrorStr);

g

else if (node 6= Root && !APPROX EQ(node!size, node!parent!half size)) f

(void) sprintf(ErrorStr, "expected %g got %g",

node!parent!half size, node!size);

node error(node, "Node size incorrect.", ErrorStr);

g

if (APPROX LT(node!max size, 2 � node!max ext)) f

(void) sprintf(ErrorStr, "%g < %g", node!max size, 2 � node!max ext);

node error(node, "Node max size smaller than 2 � max ext.", ErrorStr);

g

if (node!size > node!max size) f

(void) sprintf(ErrorStr, "node size %g > max size %g", node!size,

node!max size);

node error(node, "Node size exceeds max size.", ErrorStr);

g

if (!APPROX EQ(SQ(node!max size), node!max size sq)) f

(void) sprintf(ErrorStr, "expected %g got %g", node!max size sq,

172

SQ(node!max size));

node error(node, "Max size sq inconsistency.", ErrorStr);

g

/� Check centre �/

if (node == Root) f

for (k = 0; k < NUM TREE DIM; k++)

if (!APPROX EQ(node!centre[k], TREE CENTRE[k]))

node error((NODE T �) NULL, "Root centre incorrect.", "");

g

else

for (k = 0; k < NUM TREE DIM; k++)

if (!APPROX EQ(node!centre[k], node!parent!centre[k] +

ChildCoordO�set[k][node!node index] � node!half size))

node error(node, "Node centre incorrect.", "");

/� Check children �/

for (i = 0; i < MAX NUM CHILDREN; i++) f

child = &node!child[i];

switch (node!child type[i]) f

case EMPTY:

if (child!leaf 6= -1) f

(void) sprintf(ErrorStr, "child %i value %i", i,

child!leaf);

node error(node, "Empty cell incorrect code.", ErrorStr);

g

break;

case LEAF:

ptr = Data[particle = child!leaf];

if (particle < 0 jj particle � NumParticles) f

(void) sprintf(ErrorStr, "child %i value %i", i, particle);

node error(node, "Invalid leaf index.", ErrorStr);

g

if (ptr!node 6= node) f

(void) sprintf(ErrorStr, "child %i value %i", i, particle);

node error(node, "Leaf/node mismatch.", ErrorStr);

g

if (ptr!node index 6= i) f

(void) sprintf(ErrorStr, "child %i value %i", i, particle);

node error(node, "Leaf/node index mismatch.", ErrorStr);

g

if ((index = GetIndex(particle, ptr!pos0, node)) == -1) f

(void) sprintf(ErrorStr, "child %i value %i", i, particle);

node error(node, "Leaf t0 pos'n outside node.", ErrorStr);

g

if (index 6= i && !node!packed) f

(void) sprintf(ErrorStr, "child %i value %i index %i)", i,

particle, index);

node error(node, "Leaf index mismatch.", ErrorStr);

g

break;

case BRANCH:

if (child!branch == NULL) f

(void) sprintf(ErrorStr, "child %i", i);

node error(node, "Child branch is NULL.", ErrorStr);

g

break;

default:

173

(void) sprintf(ErrorStr, "child type %i", node!child type[i]);

node error(node, "Unknown child type.", ErrorStr);

g /� switch �/

g /� for �/

/� Check number of leaves and node mass against children �/

for (mass = 0.0, num leaves = i = 0; i < MAX NUM CHILDREN; i++) f

child = &node!child[i];

if (node!child type[i] == LEAF) f

++num leaves;

mass += Data[child!leaf]!mass;

g

else if (node!child type[i] == BRANCH) f

num leaves += child!branch!num leaves;

mass += child!branch!mass;

g

g

if (num leaves 6= node!num leaves) f

(void) sprintf(ErrorStr, "expected %i got %i", num leaves,

node!num leaves);

node error(node, "Node leaf count incorrect.", ErrorStr);

g

if (!APPROX EQ(mass, node!mass)) f

(void) sprintf(ErrorStr, "expected %g got %g", mass, node!mass);

node error(node, "Node mass incorrect.", ErrorStr);

g

/� Also check update times and time-steps �/

if (TreePar.check update times) f

if (node!mt0 < 0 jj APPROX GT(node!mt0, Clock.time)) f

(void) sprintf(ErrorStr, "mt0 = %g", node!mt0);

node error(node, "Invalid monopole t0 time.", ErrorStr);

g

if (node!mts � 0) f

(void) sprintf(ErrorStr, "mts = %g", node!mts);

node error(node, "Invalid monopole time-step.", ErrorStr);

g

if (TreePar.pred quad) f

if (node!qt0 < 0 jj APPROX GT(node!qt0, Clock.time)) f

(void) sprintf(ErrorStr, "qt0 = %g", node!qt0);

node error(node, "Invalid quadrupole t0 time.", ErrorStr);

g

if (node!qts � 0) f

(void) sprintf(ErrorStr, "qts = %g", node!qts);

node error(node, "Invalid quadrupole time-step.", ErrorStr);

g

g

g

/� Finally, display message if node is "extended" and/or "packed" �/

if (node!extended)

(void) printf("Extended node: %s.nn", NodeInfo(node));

174

if (node!packed)

(void) printf("Packed node: %s.nn", NodeInfo(node));

/� Repeat procedure for any child branches �/

for (i = 0; i < MAX NUM CHILDREN; i++)

if (node!child type[i] == BRANCH)

CheckTree(node!child[i].branch);

g

static void node error(node, msg1, msg2)

NODE T �node;

char �msg1, �msg2;

f

/� Displays any error messages generated by CheckTree(). �/

char str1[MAX STR LEN], str2[MAX STR LEN];

(void) sprintf(str1, "CheckTree(): %s", msg1);

if (node)

(void) sprintf(str2, "tree index %i: %s", node!tree index, msg2);

else

(void) strcpy(str2, msg2);

Error(FATAL, str1, str2);

g

BOOLEAN CheckMultipoles(node)

NODE T �node;

f

/�

� Checks centre of mass (but not derivatives), and quadrupole moments &

� derivatives of branch "node" by summing up contributions from all

� leaves of "node" and its descendants. This routine will also check

� all branches that have "node" as their ancestor, in the same way.

� All data is assumed to be up to date, so this routine should only be

� called immediately after "node" and its children have been

� (re)constructed, and Data[]->pos & Data[]->vel should be correct

� for the current time. "TRUE" is returned if there is no output from

� this routine (i.e. no errors).

�

�/

int i, k, num leaves = 0;

DATA T �ptr;

BOOLEAN error ag = FALSE;

/� Working variables �/

double xx[3], qq[5], qd[5], qd2[5], qd3[5], mass, error;

double dx, dy, dz, du, dv, dw, dx2, dy2, dz2, dr2, dr, xdotv, vv2, vv,

dfx, dfy, dfz, djx, djy, djz, xdotf, vdotf, xdotj, xsc, qsc,

qdsc, qd2sc, qd3sc;

/� Initialize to keep GCC happy (no problem if no quadrupole...) �/

du = dv = dw = xdotv = vv2 = vv = dfx = dfy = dfz = djx = djy = djz =

xdotf = vdotf = xdotj = qsc = qdsc = qd2sc = qd3sc = 0;

175

/� Error check �/

if (node == NULL)

Error(FATAL, "CheckMultipoles(): Invalid argument.", "");

/� Get a list of all leaves on and below this node �/

GetO�spring(node, &num leaves, o�spring);

if (num leaves 6= node!num leaves) f

(void) sprintf(ErrorStr, "%i != %i", node!num leaves, num leaves);

Error(FATAL, "CheckMultipoles(): Inconsistent leaf count.", ErrorStr);

g

/� Initialize �/

ZERO(xx);

xsc = 0;

if (TreePar.use quad) f

for (i = 0; i < NUM QUAD ELEM; i++)

qq[i] = 0;

qsc = 0;

if (TreePar.pred quad) f

for (i = 0; i < NUM QUAD ELEM; i++)

qd[i] = qd2[i] = qd3[i] = 0;

qdsc = qd2sc = qd3sc = 0;

g

g

/� Add in contributions from each particle �/

for (i = 0; i < num leaves; i++) f

/� Get pointer to particle data �/

if ((ptr = Data[o�spring[i]]) == NULL) f

(void) sprintf(ErrorStr, "offspring = %i", o�spring[i]);

Error(FATAL, "CheckMultipoles(): Offspring not found.", ErrorStr);

g

mass = ptr!mass;

/� Get quantities relative to computed centre of mass �/

dx = ptr!pos[0] - node!pos[0];

dy = ptr!pos[1] - node!pos[1];

dz = ptr!pos[2] - node!pos[2];

dx2 = SQ(dx); dy2 = SQ(dy); dz2 = SQ(dz);

dr2 = dx2 + dy2 + dz2; dr = sqrt(dr2);

if (TreePar.pred quad) f

du = ptr!vel[0] - node!vel[0];

dv = ptr!vel[1] - node!vel[1];

dw = ptr!vel[2] - node!vel[2];

xdotv = dx � du + dy � dv + dz � dw;

176

vv2 = SQ(du) + SQ(dv) + SQ(dw); vv = sqrt(vv2);

dfx = ptr!f[0] - node!f[0];

dfy = ptr!f[1] - node!f[1];

dfz = ptr!f[2] - node!f[2];

djx = ptr!f dot[0] - node!f dot[0];

djy = ptr!f dot[1] - node!f dot[1];

djz = ptr!f dot[2] - node!f dot[2];

xdotf = dx � dfx + dy � dfy + dz � dfz;

vdotf = du � dfx + dv � dfy + dw � dfz;

xdotj = dx � djx + dy � djy + dz � djz;

g

/� Accumulate magnitudes for error scaling �/

xsc += mass � dr;

if (TreePar.use quad) f

qsc += mass � dr2;

if (TreePar.pred quad) f

double � = sqrt(SQ(dfx) + SQ(dfy) + SQ(dfz));

qdsc += mass � dr � vv;

qd2sc += mass � (dr � � + vv2);

qd3sc += mass � (� � vv +

dr � sqrt(SQ(djx) + SQ(djy) + SQ(djz)));

g

g

/� Accumulate error components �/

xx[0] += mass � dx;

xx[1] += mass � dy;

xx[2] += mass � dz;

if (TreePar.use quad) f

/�

� NOTE: Quadrupole terms are computed using PREDICTED

� centre of mass.

�

�/

qq[0] += mass � (2 � dx2 - dy2 - dz2);

qq[1] += 3 � mass � dx � dy;

qq[2] += 3 � mass � dx � dz;

qq[3] += mass � (2 � dy2 - dx2 - dz2);

qq[4] += 3 � mass � dy � dz;

if (TreePar.pred quad) f

qd[0] += mass � (6 � dx � du - 2 � xdotv);

qd[1] += 3 � mass � (du � dy + dx � dv);

qd[2] += 3 � mass � (du � dz + dx � dw);

qd[3] += mass � (6 � dy � dv - 2 � xdotv);

qd[4] += 3 � mass � (dv � dz + dy � dw);

177

/�

� Note below that f & f dot and qd2 & qd3 each contain

� factors of 1/2 and 1/6, respectively.

�

�/

qd2[0] += mass � (6 � dx � dfx + 3 � SQ(du) - 2 � xdotf - vv2);

qd2[1] += 3 � mass � (dx � dfy + dy � dfx + du � dv);

qd2[2] += 3 � mass � (dx � dfz + dz � dfx + du � dw);

qd2[3] += mass � (6 � dy � dfy + 3 � SQ(dv) - 2 � xdotf - vv2);

qd2[4] += 3 � mass � (dz � dfy + dy � dfz + dw � dv);

qd3[0] += mass � (6 � dx � djx + 6 � du � dfx -

2 � (xdotj + vdotf));

qd3[1] += 3 � mass � (dx � djy + dy � djx +

du � dfy + dv � dfx);

qd3[2] += 3 � mass � (dx � djz + dz � djx +

du � dfz + dw � dfx);

qd3[3] += mass � (6 � dy � djy + 6 � dv � dfy -

2 � (xdotj + vdotf));

qd3[4] += 3 � mass � (dz � djy + dy � djz +

dw � dfy + dv � dfz);

g

g

g /� for �/

/� Check monopole terms �/

for (k = 0; k < NUM PHYS DIM; k++) f

error = (xsc == 0 ? 0 : xx[k] = xsc);

if (TRACK jj ABS(error) > TOLERANCE) f

(void) printf("CHECK: mono %s error[%i] = %gnn",

NodeInfo(node), k, error);

error ag = TRUE;

g

g

/� Check quadrupole terms as applicable �/

if (TreePar.use quad) f

for (i = 0; i < NUM QUAD ELEM; i++) f

error = (qsc == 0 ? 0 : (qq[i] - node!q mom[i]) = qsc);

if (TRACK jj ABS(error) > TOLERANCE) f

(void) printf("CHECK: quad %s error [%i] = %gnn",

NodeInfo(node), i, error);

error ag = TRUE;

g

g

if (TreePar.pred quad) f

/� First derivative �/

for (i = 0; i < NUM QUAD ELEM; i++) f

error = (qdsc == 0 ? 0 : (qd[i] - node!q dot[i]) = qdsc);

if (TRACK jj ABS(error) > TOLERANCE) f

(void) printf("CHECK: qdot %s error [%i] = %gnn",

NodeInfo(node), i, error);

error ag = TRUE;

178

g

g

/� Second derivative �/

for (i = 0; i < NUM QUAD ELEM; i++) f

error = (qd2sc == 0 ? 0 : (qd2[i] - node!q 2dot[i]) = qd2sc);

if (TRACK jj ABS(error) > TOLERANCE) f

(void) printf("CHECK: dq2 %s error [%i] = %gnn",

NodeInfo(node), i, error);

error ag = TRUE;

g

g

/� Third derivative �/

for (i = 0; i < NUM QUAD ELEM; i++) f

error = (qd3sc == 0 ? 0 : (qd3[i] - node!q 3dot[i]) = qd3sc);

if (TRACK jj ABS(error) > TOLERANCE) f

(void) printf("CHECK: dq3 %s error [%i] = %gnn",

NodeInfo(node), i, error);

error ag = TRUE;

g

g

g

g

/� Now check branches attached to this branch �/

for (i = 0; i < MAX NUM CHILDREN; i++)

if (node!child type[i] == BRANCH)

(void) CheckMultipoles(node!child[i].branch);

return (error ag == TRUE ? FALSE : TRUE);

g

void CheckMultipolePrediction()

f

/�

� Checks monopole and quadrupole moments of all tree nodes by

� predicting all particle positions and node moments to the current

� time and comparing. This routine acts as a driver for the

� recursive function check multipole prediction r().

�

�/

int i, num nodes = 0;

double me, me max, qe, qe max;

/�

� Predict all particle positions (and velocities) to LOW order,

� to conform with maximum order saved for multipole predictions.

�

�/

for (i = 0; i < NumParticles; i++) f

Data[i]!pos status = Data[i]!vel status = UN PRED;

PREDICT POS LO(Data[i]);

PREDICT VEL LO(Data[i]);

g

179

/� Predict monopole and quadrupole for all nodes �/

PredictPosAndQMomAll(Root);

/� Initialize �/

me = me max = 0;

if (TreePar.use quad)

qe = qe max = 0;

/� Now descend tree, checking each node in turn �/

check mult pred r(Root, &num nodes, &me, &me max, &qe, &qe max);

/� Output results of check �/

(void) printf("CHECK -- multipole prediction (time %g):nn", TIME);

(void) printf(" Monopole avg err %g, max err %gnn",

sqrt(me) = num nodes, sqrt(me max));

if (TreePar.use quad)

(void) printf(" Quadrupole avg err %g, max err %gnn",

sqrt(qe) = num nodes, sqrt(qe max));

g

static void check mult pred r(node, num nodes, me, me max, qe, qe max)

NODE T �node;

int �num nodes;

double �me, �me max, �qe, �qe max;

f

/� Recursive counterpart to CheckMultipolePrediction() �/

int i, num leaves = 0;

DATA T �ptr;

/� Working variables... �/

double xx[3], qq[5], xsc, qsc, mass, errx, errq;

double dx, dy, dz, dx2, dy2, dz2, dr2, dr;

/� Increment node counter �/

++(�num nodes);

/� Get a list of all leaves on and below this node �/

GetO�spring(node, &num leaves, o�spring);

if (num leaves 6= node!num leaves) f

(void) sprintf(ErrorStr, "%i != %i", node!num leaves, num leaves);

Error(FATAL, "check mult pred r(): Inconsistent leaf count.", ErrorStr);

g

/� Initialize moments and scale factors �/

ZERO(xx);

180

xsc = qsc = 0;

if (TreePar.use quad)

qq[0] = qq[1] = qq[2] = qq[3] = qq[4] = 0; /� (qq is not a 3-vector) �/

/� Add in contributions of each particle in tree �/

for (i = 0; i < num leaves; i++) f

/� Get pointer to particle data �/

if ((ptr = Data[o�spring[i]]) == NULL) f

(void) sprintf(ErrorStr, "offspring = %i", o�spring[i]);

Error(FATAL, "check mult pred r(): Offspring not found.", ErrorStr);

g

mass = ptr!mass;

/� Get quantities relative to node centre of mass �/

dx = ptr!pos[0] - node!pos[0];

dy = ptr!pos[1] - node!pos[1];

dz = ptr!pos[2] - node!pos[2];

dx2 = SQ(dx); dy2 = SQ(dy); dz2 = SQ(dz);

dr = sqrt(dr2 = dx2 + dy2 + dz2);

/� Add scaled quantities to error factors and arrays �/

xsc += mass � dr;

qsc += mass � dr2;

xx[0] += mass � dx;

xx[1] += mass � dy;

xx[2] += mass � dz;

/� Add contribution to quadrupole moment if applicable �/

if (TreePar.use quad) f

qq[0] += mass � (2.0 � dx2 - dy2 - dz2);

qq[1] += 3 � mass � dx � dy;

qq[2] += 3 � mass � dx � dz;

qq[3] += mass � (2 � dy2 - dx2 - dz2);

qq[4] += 3 � mass � dy � dz;

g

g

/� Determine RMS error in moments for this node �/

errx = (xsc == 0 ? 0 : DOT(xx, xx) = SQ(xsc));

if (TRACK jj errx > TOLERANCE)

(void) printf("CHECK: mono %s pred error = %gnn",

NodeInfo(node), sqrt(errx));

�me += errx;

�me max = MAX(�me max, errx);

if (TreePar.use quad) f

errq = 0;

181

if (qsc > 0) f

for (i = 0; i < NUM QUAD ELEM; i++)

errq += SQ(qq[i] - node!q mom[i]);

errq /= SQ(qsc);

g

if (TRACK jj errq > TOLERANCE)

(void) printf("CHECK: quad %s pred error = %gnn",

NodeInfo(node), sqrt(errq));

�qe += errq;

�qe max = MAX(�qe max, errq);

g

/� Perform same calculations for all branches of this node �/

for (i = 0; i < MAX NUM CHILDREN; i++)

if (node!child type[i] == BRANCH)

check mult pred r(node!child[i].branch, num nodes, me, me max,

qe, qe max);

g

void CheckForce()

f

/�

� Checks accuracy of tree force (both mono and quad) against direct

� force, and displays the results.

�

�/

int i;

DATA T �ptr;

double old force[NUM PHYS DIM], direct force[NUM PHYS DIM],

tree force m[NUM PHYS DIM], tree force q[NUM PHYS DIM],

direct tree force[NUM PHYS DIM], df, tfm, tfq, dtf, dfe,

me, qe, mme, mqe, err sum df, err sum m, err sum q;

int debug = RunPar.debug level, verbosity = RunPar.verbosity level;

BOOLEAN updates = TreePar.check update times, use quad = TreePar.use quad;

/� Initialize �/

me = qe = mme = mqe = err sum df = err sum m = err sum q = 0;

/� Switch o� debugging ags and multipole update checks �/

RunPar.debug level = RunPar.verbosity level = 0;

TreePar.check update times = FALSE;

/� Message �/

(void) printf("Checking force on particles (time %g)...nn", TIME);

/� Check each particle in turn �/

for (i = 0; i < NumParticles; i++) f

ptr = Data[i];

/�

182

� Predict position and velocity of current particle to high order

� (pos'n and velo of other particles reset in force routines).

�

�/

ptr!pos status = ptr!vel status = UN PRED;

PredictPosAndVelHi(ptr);

/� Save current force �/

COPY(ptr!f, old force);

/� Calculate direct force �/

CalcDirectForce(i);

COPY(ptr!f, direct force);

/� Calculate tree force using monopoles �/

TreePar.use quad = FALSE;

CalcTreeForce(i);

COPY(ptr!f, tree force m);

/� Ditto using quadrupoles if applicable �/

if (use quad) f

TreePar.use quad = TRUE;

CalcTreeForce(i);

COPY(ptr!f, tree force q);

g

/� Finally, calculate direct force but follow tree expansions �/

TestTreeForce(i);

COPY(ptr!f, direct tree force);

/� Restore original force �/

COPY(old force, ptr!f);

/� Now compare and print �/

df = MAG(direct force);

tfm = MAG(tree force m);

tfq = (use quad ? MAG(tree force q) : 0);

dtf = MAG(direct tree force);

dfe = (dtf == 0 ? 0 : ABS(df - dtf) = dtf);

me = (dtf == 0 ? 0 : ABS(tfm - dtf) = dtf);

mme = MAX(mme, me);

if (use quad) f

qe = (dtf == 0 ? 0 : ABS(tfq - dtf) = dtf);

mqe = MAX(mqe, qe);

g

183

if (verbosity) f

(void) printf("CHECK: %4i (%4i) tree index %11i", i,

ptr!orig index, ptr!node!tree index);

(void) printf(" df/dtf %8.2e", dfe);

(void) printf(" mono %8.2e", me);

if (use quad) f

(void) printf(" quad %8.2e", qe);

if (qe > me)

(void) printf("�");

g

(void) printf("nn");

g

/� Accumulate statistics �/

err sum df += dfe;

err sum m += me;

if (use quad)

err sum q += qe;

g /� for �/

/� Display RMS force error �/

(void) printf("CHECK: Avg force error df/dtf %8.2e",

err sum df = NumParticles);

(void) printf(" mono %8.2e max %8.2e", err sum m = NumParticles, mme);

if (use quad)

(void) printf(" quad %8.2e max %8.2e", err sum q = NumParticles, mqe);

(void) printf("nn");

/� Restore ags �/

TreePar.check update times = updates;

RunPar.verbosity level = verbosity;

RunPar.debug level = debug;

g

/� check.c �/

B.1.8 draw.c

This �le contains the code for generating movie frames (Sun raster�les). There is one

global function (Draw()) and many local functions. The Draw() routine is called by

MakeMovieFrame() in output.c. The routine accepts an integer containing various draw-

ing options, selected bit-wise using the preprocessor aliases de�ned in box tree.h (e.g.

DRAW TREE, etc.). On the �rst call, Draw() sets up a colormap for use with the raster

drawing operations. The local functions perform various tasks, such as rotating coordi-

nates and drawing particular shapes. Note that if SYSV or ALPHA are de�ned, the entire

draw.c �le is ignored. For information on raster operations and the pixrect library, refer

to the SunOS 4.1 user manual \Pixrect Reference".

/�

� draw.c { DCR 91-05-08

� ======================

� Routines for generating raster �les for movies from particle/tree data.

� These routines will only work for Suns/Sparcs running SunOS 4.

184

�

� Global functions: Draw().

�

�/

/� Skip if incompatible operating system or architecture �/

#ifndef SYSV

#ifndef ALPHA

/� Include �les �/

#include "box tree.h"

#include <rasterfile.h>

#include <pixrect/pixrect.h>

#include <pixrect/memvar.h>

#include <pixrect/pr io.h>

/� Additional de�nitions �/

#define NUM COLORS 256 /� Use all available colors �/

#define MAX COLOR INTENSITY 255

#define FRAME SIZE MoviePar.frame size /� For convenience �/

/� Rotation angles for cube �/

/� Uncomment for rotated cube (doesn't quite work)...

#de�ne ALPHA 0.5 � PI

#de�ne BETA 0.2 � PI

#de�ne GAMMA 0.2 � PI

�/

#define ALPHA 0.0 /� Degenerate cube (2D) �/

#define BETA 0.0

#define GAMMA 0.0

#define RAY0 100 /� Light source vector for sphere (RAY0 is magnitude) �/

#define RAY1 48

#define RAY2 -36

#define RAY3 80

#define SHADING 0.6 /� Shading factor for sphere �/

#define NUM VERTICES MAX NUM CHILDREN /� Also 2^n �/

/� Local variables �/

static Pixrect �mpr; /� Memory pixrect �/

static colormap t colormap; /� Colormap �/

/� Local functions �/

static void

make colormap(),

draw tree(),

draw boxes(),

plot pos(),

plot vel(),

185

plot com(),

draw cell(),

draw box(),

make 2d(),

rotate(),

scale(),

draw line(),

draw object(),

draw point(),

draw circle(),

draw square(),

draw diamond(),

draw disk(),

draw sphere();

/� End of preamble �/

void Draw(options)

int options;

f

/� Main drawing routine �/

static BOOLEAN �rst call = TRUE;

char �movie �lename;

FILE �ras�le;

/� Prepare output �le �/

if ((movie �lename = MakeFilename(MoviePar.basename,

MoviePar.frame number++, ".ras")) == NULL) f

Error(WARNING2, "Draw(): Movie frame skipped.", "");

return;

g

(void) printf("Writing movie frame %i (time %g)...nn",

MoviePar.frame number, TIME);

if (BackupFiles)

(void) BackupFile(movie �lename, BACKUP MARKER);

if ((ras�le = fopen(movie �lename, "w")) == NULL) f

Error(IO, "Draw()", movie �lename);

return;

g

/� Construct colormap if �rst call to Draw() �/

if (�rst call) f

make colormap();

�rst call = FALSE;

g

/� Make space for pixrect �/

if ((mpr = mem create(FRAME SIZE, FRAME SIZE, 8)) == NULL) f

(void) sprintf(ErrorStr, "frame size = %i", FRAME SIZE);

Error(WARNING2, "Draw(): Unable to allocate pixrect memory.", ErrorStr);

(void) fclose(ras�le);

return;

186

g

/� Plot data in ascending order of importance �/

if (options & DRAW TREE)

draw tree(Root);

if (options & DRAW BOXES)

draw boxes();

if (options & PLOT COM)

plot com(Root, options);

if (options & PLOT POS)

plot pos();

if (options & PLOT VEL)

plot vel();

/� Output raster and close �le �/

if (pr dump(mpr, ras�le, &colormap, 2, 0) 6= 0) f

(void) sprintf(ErrorStr, "Draw(): pr dump() error, code %i", PIX ERR);

Error(IO, ErrorStr, movie �lename);

g

if (pr close(mpr) 6= 0) f

(void) sprintf(ErrorStr, "Draw(): pr close() error, code %i", PIX ERR);

Error(IO, ErrorStr, movie �lename);

g

if (fclose(ras�le) == EOF)

Error(IO, "Draw()", movie �lename);

g

static void make colormap()

f

/� Constructs colormap with simple colors plus gray scale �/

int i;

COLOR T red[NUM COLORS], green[NUM COLORS], blue[NUM COLORS];

double gray scale;

colormap.type = RMT EQUAL RGB;

colormap.length = NUM COLORS;

for (i = 0; i < 3; i++)

colormap.map[i] = (COLOR T �) malloc(NUM COLORS � sizeof(COLOR T));

red[BLACK] = 0; green[BLACK] = 0; blue[BLACK] = 0;

red[RED] = 255; green[RED] = 0; blue[RED] = 0;

red[PINK] = 255; green[PINK] = 0; blue[PINK] = 159;

red[YELLOW] = 255; green[YELLOW] = 255; blue[YELLOW] = 0;

red[GREEN] = 0; green[GREEN] = 255; blue[GREEN] = 0;

red[ORANGE] = 255; green[ORANGE] = 191; blue[ORANGE] = 0;

red[PURPLE] = 255; green[PURPLE] = 0; blue[PURPLE] = 255;

red[CYAN] = 0; green[CYAN] = 255; blue[CYAN] = 255;

red[BLUE] = 0; green[BLUE] = 0; blue[BLUE] = 255;

gray scale = (double) MAX COLOR INTENSITY = (LAST GRAY - FIRST GRAY);

187

for (i = FIRST GRAY; i � LAST GRAY; i++)

red[i] = green[i] = blue[i] = gray scale � (i - FIRST GRAY);

for (i = 0; i < colormap.length; i++) f

colormap.map[0][i] = red[i];

colormap.map[1][i] = green[i];

colormap.map[2][i] = blue[i];

g

g

static void draw tree(node)

NODE T �node;

f

/� Routine to draw connected cell boxes (recursive) �/

int i, j, k;

double r, x[NUM TREE DIM][NUM VERTICES];

r = 0.5 � node!half size;

for (i = 0; i < MAX NUM CHILDREN; i++) f

switch (node!child type[i]) f

case EMPTY:

case LEAF:

for (j = 0; j < NUM VERTICES; j++) f

for (k = 0; k < NUM TREE DIM; k++)

x[k][j] = node!centre[k] + ChildCoordO�set[k][i] � r +

ChildCoordO�set[k][j] � r;

make 2d(&x[0][j], NUM VERTICES);

g

draw cell(x, WHITE);

break;

case BRANCH:

draw tree(node!child[i].branch);

g

g

g

static void draw boxes()

f

/� Routine to draw ghost boxes (2D tree only) �/

int i, k;

double centre[NUM BOX DIM];

for (i = 0; i < NumBoxes; i++) f

for (k = 0; k < NUM BOX DIM; k++)

centre[k] = SYS CENTRE[k] + BOX POS[i][k];

draw box(centre, HALF BOX SIZE, YELLOW);

g

g

static void plot pos()

f

/� Routine to draw points at particle positions �/

int i, j, k, index[MAX NUM PARTICLES];

DATA T �ptr;

double z[MAX NUM PARTICLES], x[NUM PHYS DIM][MAX NUM BOXES],

188

pos[NUM PHYS DIM];

/� Get positions, preparing "z" for sorting if required �/

for (i = 0; i < NumParticles; i++) f

index[i] = i;

if (MoviePar.hide blocked objects) f

ptr = Data[i];

if (RunPar.use tree && NUM TREE DIM == 3) f

for (j = 0; j < NumBoxes; j++) f

COPY(ptr!pos, pos);

ADD BOX OFFSET(pos, j);

if (RunPar.bc opt == PERIODIC)

REDUCE(pos);

for (k = 0; k < NUM PHYS DIM; k++)

x[k][j] = pos[k];

make 2d(&x[0][j], MAX NUM BOXES);

g

z[i] = x[2][0];

g

else

z[i] = ptr!pos[2];

g

g

/� Sort by "z" (i.e. projected) component �/

if (MoviePar.hide blocked objects)

Sort2(NumParticles, z, index);

/� Draw particles �/

for (i = 0; i < NumParticles; i++) f

ptr = Data[index[i]];

for (j = 0; j < NumBoxes; j++) f

COPY(ptr!pos, pos);

ADD BOX OFFSET(pos, j);

if (RunPar.bc opt == PERIODIC)

REDUCE(pos);

for (k = 0; k < NUM PHYS DIM; k++)

x[k][j] = pos[k];

make 2d(&x[0][j], MAX NUM BOXES);

g

for (j = 0; j < NumBoxes; j++)

draw object(x[0][j], x[1][j], x[2][j], ptr!radius,

MoviePar.particle shape, ptr!color);

g

g

#define DELTA T 0.001 /� Arbitrary velocity scaling �/

static void plot vel()

f

/� Routine to draw velocity vectors at particle positions �/

int i, j, k;

double pos[NUM PHYS DIM], vel[NUM PHYS DIM], x[NUM PHYS DIM][2];

for (i = 0; i < NumParticles; i++)

189

for (j = 0; j < NumBoxes; j++) f

COPY(Data[i]!pos, pos);

ADD BOX OFFSET(pos, j);

COPY(Data[i]!vel, vel);

ADD BOX SHEAR(vel, j);

if (RunPar.bc opt == PERIODIC)

REDUCE(pos);

for (k = 0; k < NUM PHYS DIM; k++) f

x[k][0] = pos[k];

x[k][1] = x[k][0] + vel[k] � DELTA T;

g

make 2d(&x[0][0], 2);

make 2d(&x[0][1], 2);

draw line(0, 1, x[0], x[1], PIX SRC, GREEN);

g

g

#undef DELTA T

static void plot com(node, options)

NODE T �node;

int options;

f

/�

� Routine to draw points at centre-of-mass positions, optionally

� connecting lines between points (recursive).

�

�/

int i, k;

double x[NUM PHYS DIM];

if (TreePar.pred mono)

PREDICT COM POS(node);

COPY(node!pos, x);

make 2d(x, 1);

draw object(x[0], x[1], 0.0, 0.01 � VIEW SIZE = MoviePar.radius mag,

DIAMOND, (COLOR T) (node == Root ? PINK : BLUE));

if (options & COM LINES) f

int j, particle;

CHILD T �child;

COLOR T c[MAX NUM CHILDREN];

double v[NUM PHYS DIM][MAX NUM CHILDREN + 1];

for (j = i = 0; i < MAX NUM CHILDREN; i++) f

child = &node!child[i];

switch (node!child type[i]) f

case EMPTY:

break;

case BRANCH:

if (TreePar.pred mono)

PREDICT COM POS(child!branch);

for (k = 0; k < NUM PHYS DIM; k++)

v[k][j] = (child!branch)!pos[k];

c[j] = BLUE;

++j;

190

break;

case LEAF: /� (note particles already predicted) �/

particle = child!leaf;

for (k = 0; k < NUM PHYS DIM; k++)

v[k][j] = Data[particle]!pos[k];

c[j] = RED;

++j;

g

g

if (j > 0) f

v[0][j] = x[0];

v[1][j] = x[1];

for (i = 0; i < j; i++) f

make 2d(&v[0][i], MAX NUM CHILDREN + 1);

draw line(i, j, v[0], v[1], PIX SRC, c[i]);

g

g

g

/� Repeat for child branches �/

for (i = 0; i < MAX NUM CHILDREN; i++)

if (node!child type[i] == BRANCH)

plot com(node!child[i].branch, options);

g

static void draw cell(x, color)

double x[NUM TREE DIM][NUM VERTICES];

COLOR T color;

f

/� Draws a single cell �/

int op = PIX SRC;

double �xp = x[0], �yp = x[1];

if (NUM TREE DIM == 2) f

draw line(0, 1, xp, yp, op, color);

draw line(1, 3, xp, yp, op, color);

draw line(3, 2, xp, yp, op, color);

draw line(2, 0, xp, yp, op, color);

g

else f

draw line(0, 1, xp, yp, op, color); /� Bottom plane �/

draw line(1, 3, xp, yp, op, color);

draw line(3, 2, xp, yp, op, color);

draw line(2, 0, xp, yp, op, color);

draw line(4, 5, xp, yp, op, color); /� Top plane �/

draw line(5, 7, xp, yp, op, color);

draw line(7, 6, xp, yp, op, color);

draw line(6, 4, xp, yp, op, color);

draw line(0, 4, xp, yp, op, color); /� Vertical "struts" �/

draw line(1, 5, xp, yp, op, color);

draw line(2, 6, xp, yp, op, color);

draw line(3, 7, xp, yp, op, color);

g

g

static void draw box(centre, half size, color)

double �centre, half size;

COLOR T color;

191

f

/� Draws a box (2D only) �/

int i, k;

double x[NUM BOX DIM][NUM VERTICES];

if (NUM TREE DIM 6= 2) /� (will do better than this someday...) �/

return;

for (i = 0; i < NUM VERTICES; i++) f

for (k = 0; k < NUM BOX DIM; k++)

x[k][i] = centre[k] + ChildCoordO�set[k][i] � half size;

make 2d(&x[0][i], NUM VERTICES);

g

draw cell(x, color);

g

static void make 2d(x, inc)

double �x;

int inc;

f

/�

� Converts 2- or 3- dimensional coordinates to appropriate

� two-dimensional drawing coordinates.

�

�/

if (NUM TREE DIM == 3)

rotate(x, x + inc, x + 2 � inc); /� Parallel projection �/

scale(x, x + inc);

g

static void rotate(x, y, z)

double �x, �y, �z;

f

/� Rotates 3D coordinates by angles ALPHA, BETA, and GAMMA �/

double xx, yy, zz;

xx = �x;

yy = �y;

zz = �z;

�x = cos(ALPHA) � cos(BETA) � xx + (sin(ALPHA) � cos(GAMMA) +

cos(ALPHA) � sin(BETA) � sin(GAMMA)) � yy + (sin(ALPHA) � sin(GAMMA) -

cos(ALPHA) � sin(BETA) � cos(GAMMA)) � zz;

�y = - sin(ALPHA) � cos(BETA) � xx + (cos(ALPHA) � cos(GAMMA) -

sin(ALPHA) � sin(BETA) � sin(GAMMA)) � yy + (cos(ALPHA) � sin(GAMMA) +

sin(ALPHA) � sin(BETA) � cos(GAMMA)) � zz;

�z = sin(BETA) � xx - cos(BETA) � sin(GAMMA) � yy +

cos(BETA) � cos(GAMMA) � zz;

g

static void scale(x, y)

double �x, �y;

f

192

/� Scales and shifts coordinates to pixel positions on raster �/

�x = (�x - VIEW CENTRE[0] + HALF VIEW SIZE) � FRAME SIZE = VIEW SIZE;

�y = (HALF VIEW SIZE - �y + VIEW CENTRE[1]) � FRAME SIZE = VIEW SIZE;

g

static void draw line(v1, v2, x, y, op, color)

int v1, v2, op;

double x[], y[];

COLOR T color;

f

/� Draws line between two vertices �/

pr vector(mpr, (int) x[v1], (int) y[v1], (int) x[v2], (int) y[v2], op,

color);

g

static void draw object(x, y, z, r, object, color)

double x, y, z, r;

SHAPE T object;

COLOR T color;

f

/� Draws object of speci�ed size and color at speci�ed position �/

double denom, size;

if ((denom = MoviePar.distance - z � MoviePar.z mag) == 0 jj

(size = (r = VIEW SIZE) � FRAME SIZE � MoviePar.radius mag �

MoviePar.distance = denom) < 0 jj size > FRAME SIZE) f

Error(WARNING2, "draw object(): Too large -- not drawn.", "");

return;

g

switch (object) f

case POINT:

draw point(x, y, color);

break;

case CIRCLE:

draw circle(x, y, size, color);

break;

case SQUARE:

draw square(x, y, size, color);

break;

case DIAMOND:

draw diamond(x, y, size, color);

break;

case DISK:

draw disk(x, y, size, color);

break;

case SPHERE:

draw sphere(x, y, size, color);

break;

default:

(void) sprintf(ErrorStr, "object type = %i", object);

Error(FATAL, "draw object(): Unknown object type.", ErrorStr);

g

g

static void draw point(x, y, color)

double x, y;

193

COLOR T color;

f

/� Plots a single pixel �/

(void) pr put(mpr, (int) x, (int) y, color);

g

static void draw circle(x, y, r, color)

double x, y, r;

COLOR T color;

f

/� Draws a circle �/

int i, num pix, ix, iy;

double theta;

num pix = TWO PI � r;

for (i = 0; i < num pix; i++) f

theta = i = r;

ix = x + r � cos(theta);

iy = y + r � sin(theta);

(void) pr put(mpr, ix, iy, color);

g

g

static void draw square(x, y, size, color)

double x, y, size;

COLOR T color;

f

/� Draws a square �/

int i, j;

for (i = - size; i � size; i++)

for (j = -size; j � size; j++)

(void) pr put(mpr, (int) x + i, (int) y + j, color);

g

static void draw diamond(x, y, size, color)

double x, y, size;

COLOR T color;

f

/� Draws a diamond (square rotated 45 degrees) �/

int i, j;

for (i = - size; i � size; i++)

for (j = ABS(i) - size; j � size - ABS(i); j++)

(void) pr put(mpr, (int) x + i, (int) y + j, color);

g

static void draw disk(x, y, r, color)

double x, y, r;

COLOR T color;

f

/� Draws a disk (�lled-in circle) �/

int xx, yy, ix, iy;

194

xx = r;

for (ix = -xx; ix � xx; ix++) f

yy = sqrt((double) (SQ(r) - SQ(ix)));

for (iy = -yy; iy � yy; iy++)

(void) pr put(mpr, (int) x + ix, (int) y + iy, color);

g

g

static void draw sphere(x, y, r, color)

double x, y, r;

COLOR T color;

f

/�

� Draws a shaded sphere (based on algorithm "spheres.c" 1.4 88/02/05

� Copyright 1986 Sun Microsystems).

�

�/

int xx, yy, ix, iy;

double limit;

limit = r � RAY0 � SHADING;

xx = r;

for (ix = -xx; ix � xx; ix++) f

yy = sqrt(SQ(r) - SQ(ix));

for (iy = -yy; iy � yy; iy++) f

if (Ran() � limit � RAY1 � ix + RAY2 � iy +

RAY3 � sqrt(SQ(r) - SQ(ix) - SQ(iy)))

(void) pr put(mpr, (int) x + ix, (int) y + iy, color);

else

(void) pr put(mpr, (int) x + ix, (int) y + iy, BLACK);

g

g

g

#endif

#endif

/� draw.c �/

B.1.9 extern.c

This �le simply contains the global variable declarations that are referenced with the

extern keyword in box tree.h. Note that some of the global variables are initialized

here.

/�

� extern.c { DCR 91-04-30

� ========================

� External variable declarations for box tree.

�

�/

/� Include �les �/

#include "box tree.h"

195

/� Log�le: pointer to log �le (NULL if logging disabled) �/

FILE �Log�le;

/� SaveFilename: Name of �le for restart data �/

char SaveFilename[MAX FILENAME LEN];

/� BackupFiles: TRUE to move existing �les rather than overwrite them �/

BOOLEAN BackupFiles;

/� NumParticles: Number of particles �/

int NumParticles;

/� NumBoxes: Number of boxes to use (0, 1, or 9) �/

int NumBoxes;

/� RunPar: Other main parameters to use for each run �/

RUN PAR T RunPar;

/� EvolPar: Evolving parameters (e.g. velocity dispersion, etc.) �/

EVOL PAR T EvolPar;

/� TreePar: Parameters for tree �/

TREE PAR T TreePar;

/� MoviePar: Parameters for movies �/

MOVIE PAR T MoviePar;

/� DebugPar: Debugging/self-check parameters �/

DEBUG PAR T DebugPar;

/� Clock: Various program timers �/

CLOCK T Clock;

/� Counter: Array of performance-monitoring counters �/

int Counter[NUM COUNTERS];

/� Data: Array of pointers to particle data structures �/

DATA T �Data[MAX NUM PARTICLES];

/� Tsl: Time-step list for Integrate() �/

TSL T Tsl;

/� Root: Pointer to root cell (node structure) of tree �/

NODE T �Root;

196

/� Initialize tree index and coordinate o�set arrays �/

int ChildIndexO�set[NUM TREE DIM] = CHILD INDEX OFFSET ARRAY;

int ChildCoordO�set[NUM TREE DIM][MAX NUM CHILDREN] =

CHILD COORD OFFSET ARRAY;

/� Workspace: Dummy character array for string manipulation �/

char Workspace[WORKSPACE SIZE];

/� ErrorStr: Storage for error messages �/

char ErrorStr[WORKSPACE SIZE];

/� External variables for mathematical macros/de�nitions �/

double OneThird = (double) 1 = 3;

double TwoThirds = (double) 2 = 3;

double FourThirds = (double) 4 = 3;

double OneSixth = (double) 1 = 6;

double OneNinth = (double) 1 = 9;

double OneTwelfth = (double) 1 = 12;

/� End of preamble �/

/� extern.c �/

B.1.10 force.c

All of the box tree force calculation routines are contained in this �le. The func-

tions CalcTreeForce() and CalcDirectForce() are self-explanatory, returning the force

per unit mass on a given particle using the corresponding calculation method. The

AddGhostForce() routine simply calculates the force contribution of ghost particles using

the direct method (the function is called by InitLoOrderPoly() in integrate.c). The

TestTreeForce() routine uses the direct method but takes into account the fact that

ghost nodes may be wrapped around the box system if necessary to minimize asymmetry

(cf. x3.4.2). With the exception of AddGhostForce(), these routines all call the local func-

tion initialize() to zero the force on the given particle, initialize the structure that will

contain data concerning the closest particle, and reset the prediction ags (used to pre-

vent re-predicting particle positions and velocities unnecessarily). The add tree force()

routine is used with CalcTreeForce() exclusively. The routine is recursive, and descends

the tree in the manner described in x2.2 to calculate the force contributions of nodes

and particles. Node contributions are added in using add node multipole force(); par-

ticle contributions are added using add direct force(). The latter routine is used by

CalcDirectForce() and AddGhostForce() as well. It is also used by the other two global

force routines for any particles that are excluded from the tree. In addition to calculating

the force contribution of a particle, add direct force() checks to see if the particle is

a candidate for being the closest neighbour, using CheckForCp1() or CheckForCp3() as

appropriate (see misc.c).

There are other local functions in force.c that are used only for tree force checking.

The routine add direct tree force() is the equivalent of add tree force() and is for

use with TestTreeForce(). The function add node direct force() sums up the force

contribution of all the particles in a node and is the direct equivalent of the function

add node multipole force(). The routine quick direct force() is a stripped-down

197

version of add direct force() for use with the test routines. Note that this version does

not include a neighbour check. The function check force() compares the direct force and

multipole force contribution of a node, and calls the routine check multipole force()

if the discrepancy is large. This latter function performs an exhaustive check on the force

contribution of the node, and includes a calculation of the octupole component as well.

Note the use of the local macro CALC R2 DATA() for calculating the relative posi-

tion and square distance between two given position vectors. The results are stored in

rel pos[] and r2, respectively, which are variables local to the �le. Such in-line coding

provides a noticeable improvement in CPU e�ciency.

/�

� force.c { DCR 91-05-17

� =======================

� Routines for calculating forces (accelerations) on particles.

�

� Global functions: CalcTreeForce(), CalcDirectForce(), AddGhostForce(),

� TestTreeForce().

�/

/� Include �les �/

#include "box tree.h"

/� Additional de�nitions (in-line code for faster execution) �/

#define CALC R2 DATA(pos1, pos2) fn

rel pos[0] = pos1[0] - pos2[0];n

rel pos[1] = pos1[1] - pos2[1];n

rel pos[2] = pos1[2] - pos2[2];n

r2 = SQ(rel pos[0]) + SQ(rel pos[1]) + SQ(rel pos[2]);n

g

/� Local variables �/

static double rel pos[NUM PHYS DIM], r2; /� (see CALC R2 DATA() above) �/

/� Local function declarations �/

static void

initialize(),

add tree force(),

add direct force(),

add node multipole force(),

add direct tree force(),

add node direct force(),

quick direct force(),

check force(),

check multipole force();

/� End of preamble �/

void CalcTreeForce(particle)

int particle;

f

/�

� Obtains force on "particle" using current tree. Contributions

� from ghost particles are obtained from ghost trees if desired.

� This routine also obtains closest particle data for "particle".

� This data and the new force are stored in the particle's data

198

� structure.

�

�/

int i, j;

/� Initialize force and closest-particle structure �/

initialize(particle);

/� Loop over central and ghost boxes �/

for (i = 0; i < NumBoxes; i++)

add tree force(particle, i, Root);

/� Use direct force with any excluded particles �/

for (i = 0; i < TreePar.num excluded; i++)

for (j = 0; j < NumBoxes; j++)

if (TreePar.exclude list[i] 6= particle jj j 6= CENTRE)

add direct force(particle, TreePar.exclude list[i], j);

g

void CalcDirectForce(particle)

int particle;

f

/�

� Obtains force on "particle" by direct summation over all other

� particles (and ghosts if desired). Also obtains data concerning

� closest particle, if any.

�

�/

int i, j;

initialize(particle);

for (i = 0; i < NumParticles; i++)

for (j = 0; j < NumBoxes; j++)

if (i 6= particle jj j 6= CENTRE)

add direct force(particle, i, j);

g

void AddGhostForce(particle)

int particle;

f

/�

� Adds contribution to force on "particle" due to ghost particles

� only, by direct summation. Note that it is assumed that a call

� to initialize() is not required.

�

�/

int i, j;

for (i = 0; i < NumParticles; i++)

for (j = 0; j < NumBoxes; j++)

if (j 6= CENTRE)

add direct force(particle, i, j);

g

199

void TestTreeForce(particle)

int particle;

f

/�

� Obtains force on "particle" by direct summation but on a node-by-

� node basis, using the opening angle rule of the tree. This prevents

� particles in a ghost node from wrapping around in the y direction

� before the node itself is wrapped. If there are no ghosts, this

� routine should give the same result as AddTreeForce(). Note that

� closest particle info is NOT generated.

�

�/

int i, j;

initialize(particle);

for (i = 0; i < NumBoxes; i++)

add direct tree force(particle, i, Root);

for (i = 0; i < TreePar.num excluded; i++)

for (j = 0; j < NumBoxes; j++)

if (TreePar.exclude list[i] 6= particle jj j 6= CENTRE)

add direct force(particle, TreePar.exclude list[i], j);

g

static void initialize(particle)

int particle;

f

/� Initializes "particle" data in preparation for force calculations �/

static double last time = 0;

int i;

DATA T �ptr = Data[particle];

/� Zero force �/

ZERO(ptr!f);

/� Initialize closest-particle structure �/

InitCp(particle);

/� Reset prediction ags of all other particles if new time �/

if (Clock.time == last time)

return;

for (i = 0; i < NumParticles; i++)

if (i 6= particle)

Data[i]!pos status = Data[i]!vel status = UN PRED;

last time = Clock.time;

g

static void add tree force(particle, box, node)

int particle, box;

NODE T �node;

200

f

/�

� Adds contribution to force on "particle" due to "node" in "box"

� depending on whether angle subtended by node from particle is

� small enough. Otherwise contributions from node's children are

� considered recursively. Checks for closest particle are performed

� only on leaves that are summed over directly. Called from

� CalcTreeForce().

�

�/

DATA T �ptr = Data[particle];

double node pos[NUM PHYS DIM];

/� Update monopole if necessary, otherwise predict c-o-m position �/

if (TreePar.pred mono) f

if (TreePar.check update times && Clock.time - node!mt0 > node!mts) f

UpdateMonopole(node);

++Counter[TOTAL MONO UPDATES];

g

else

PREDICT COM POS(node);

g

/� Apply ghost correction if applicable �/

COPY(node!pos, node pos);

if (box 6= CENTRE) f

ADD BOX OFFSET(node pos, box);

WRAP(node pos);

g

/� Get distance info for branch centre of mass �/

CALC R2 DATA(ptr!pos, node pos);

/�

� If angle subtended by node size at centre of mass is small enough,

� use multipole expansion to approximate force. Otherwise, recursively

� consider node children, using direct force on any leaves.

�

� Note: the maximum node size is used when calculating the opening

� angle (c.f. get max size() in update tree.c). Also, node "self-

� gravity" problems are checked for only if the particle-node distance

� squared is less than EvolPar.self grav r2 (because checking is quite

� expensive). Also note that any changes made to the expansion

� criterion here must also be made in the corresponding check routine

� (viz. add direct tree force()).

�

�/

if (node!max size sq < TreePar.theta sq � r2 &&

(r2 > EvolPar.self grav r2 jj NotO�spring(particle, node))) f

/� Message if self-gravity self grav r2 criterion insu�cient... �/

if (MONITOR && box == CENTRE && !NotO�spring(particle, node)) f

(void) sprintf(ErrorStr, "particle %i (%i) dist %e %s",

201

particle, ptr!orig index, sqrt(r2), NodeInfo(node));

Error(WARNING2, "add tree force(): Self-grav problem detected.",

ErrorStr);

g

/� Check multipole expansion if desired, otherwise just accept it �/

if (DebugPar.check force) f

double old force[NUM PHYS DIM];

COPY(ptr!f, old force);

add node multipole force(particle, box, node);

check force(particle, box, node, old force);

g

else

add node multipole force(particle, box, node);

g

else f

int i;

CHILD T �child;

/� Consider node children �/

for (i = 0; i < MAX NUM CHILDREN; i++) f

child = &node!child[i];

if (node!child type[i] == BRANCH)

add tree force(particle, box, child!branch);

else if (node!child type[i] == LEAF &&

(child!leaf 6= particle jj box 6= CENTRE)) f

add direct force(particle, child!leaf, box);

g

g

g

g

static void add direct force(particle0, particle, box)

int particle0, particle, box;

f

/�

� Adds contribution to force on "particle0" due to "particle" in "box"

� using Newtonian law for point masses. Checks for closest particle

� are also performed.

�

�/

DATA T �ptr0 = Data[particle0], �ptr = Data[particle];

double cp pos[NUM PHYS DIM], r2 inv, f;

/� Predict position of "particle" to �rst order in force derivative �/

PREDICT POS LO(ptr);

/�

� Get distance info between passed position and particle, allowing

� for ghost particle case.

�

�/

COPY(ptr!pos, cp pos);

202

if (box 6= CENTRE) f

ADD BOX OFFSET(cp pos, box);

WRAP(cp pos);

g

CALC R2 DATA(ptr0!pos, cp pos);

/� Check whether this is closest particle distance so far �/

if (r2 < EvolPar.cp zone sq) f

if (RunPar.self grav)

CheckForCp1(particle0, particle, box, cp pos, r2);

else

CheckForCp3(particle0, particle, box, cp pos, r2, rel pos);

g

/� Return now if self-gravity switched o� �/

if (!RunPar.self grav)

return;

/� Otherwise add contribution to force, including softening if desired �/

if (RunPar.use softening)

r2 += MAX(ptr0!radius sq, ptr!radius sq);

r2 inv = 1 = r2;

f = - ptr!mass � r2 inv � sqrt(r2 inv);

ptr0!f[0] += f � rel pos[0];

ptr0!f[1] += f � rel pos[1];

ptr0!f[2] += f � rel pos[2];

g

static void add node multipole force(particle, box, node)

int particle, box;

NODE T �node;

f

/�

� Adds contribution of "node" to force on "particle" using multipole

� expansion about centre of mass. This routine is for use with

� add tree force().

�

�/

DATA T �ptr = Data[particle];

double node pos[NUM PHYS DIM], r2 inv, r3 inv, f mag, qrx, qry, qrz,

rqr, r5 inv;

/� Return if self-gravity switched o� �/

if (!RunPar.self grav)

return;

/� Add ghost correction if applicable �/

COPY(node!pos, node pos);

if (box 6= CENTRE) f

203

ADD BOX OFFSET(node pos, box);

WRAP(node pos);

g

/� Get distance info �/

CALC R2 DATA(ptr!pos, node pos);

/� Monopole term �/

if (RunPar.use softening)

r2 += ptr!radius sq;

r2 inv = 1 = r2;

r3 inv = r2 inv � sqrt(r2 inv);

f mag = node!mass � r3 inv;

ptr!f[0] -= f mag � rel pos[0];

ptr!f[1] -= f mag � rel pos[1];

ptr!f[2] -= f mag � rel pos[2];

/� Return now if not using quadrupole �/

if (TreePar.use quad == FALSE)

return;

/� Update quadrupole if necessary �/

if (TreePar.pred quad) f

if (TreePar.check update times && Clock.time - node!qt0 > node!qts) f

UpdateQuadrupole(node);

++Counter[TOTAL QUAD UPDATES];

g

else

PREDICT Q MOM(node);

g

/� Calculate Q dot r �/

qrx = node!q mom[0] � rel pos[0] + node!q mom[1] � rel pos[1] +

node!q mom[2] � rel pos[2];

qry = node!q mom[1] � rel pos[0] + node!q mom[3] � rel pos[1] +

node!q mom[4] � rel pos[2];

qrz = node!q mom[2] � rel pos[0] + node!q mom[4] � rel pos[1] -

(node!q mom[0] + node!q mom[3]) � rel pos[2];

/� Calculate r dot Q dot r and multiply by 5/2r^2 �/

rqr = 2.5 � r2 inv �

(rel pos[0] � qrx + rel pos[1] � qry + rel pos[2] � qrz);

r5 inv = r2 inv � r3 inv;

/� Now add quadrupole contribution �/

ptr!f[0] += (qrx - rqr � rel pos[0]) � r5 inv;

ptr!f[1] += (qry - rqr � rel pos[1]) � r5 inv;

ptr!f[2] += (qrz - rqr � rel pos[2]) � r5 inv;

g

204

static void add direct tree force(particle, box, node)

int particle, box;

NODE T �node;

f

/�

� Same as AddTreeForce() except add node direct force() and

� quick direct force() are used in place of add multipole force()

� and add direct force(), respectively. This routine is for use

� with TestTreeForce().

�

�/

DATA T �ptr0 = Data[particle];

double node pos[NUM PHYS DIM], node o�set = 0;

/� Predict c-o-m position if desired (update NOT performed) �/

if (TreePar.pred mono)

PREDICT COM POS(node);

/� Obtain distance info, recording wrap-around if ghost node �/

COPY(node!pos, node pos);

if (box 6= CENTRE) f

double o�set;

ADD BOX OFFSET(node pos, box);

while (ABS(node pos[1]) > HALF SYS SIZE) f

o�set = SGN(node pos[1]) � SYS SIZE;

node pos[1] -= o�set;

node o�set += o�set;

g

g

CALC R2 DATA(ptr0!pos, node pos);

/� Perform opening angle check �/

if (node!max size sq < TreePar.theta sq � r2 &&

(r2 > EvolPar.self grav r2 jj NotO�spring(particle, node)))

add node direct force(particle, box, node, node o�set);

else f

int i;

CHILD T �child;

for (i = 0; i < MAX NUM CHILDREN; i++) f

child = &node!child[i];

if (node!child type[i] == BRANCH)

add direct tree force(particle, box, child!branch);

else if (node!child type[i] == LEAF &&

(child!leaf 6= particle jj box 6= CENTRE)) f

DATA T �ptr = Data[child!leaf];

double leaf pos[NUM PHYS DIM];

PREDICT POS LO(ptr);

COPY(ptr!pos, leaf pos);

if (box 6= CENTRE) f

ADD BOX OFFSET(leaf pos, box);

205

WRAP(leaf pos);

g

quick direct force(ptr0, ptr, leaf pos);

g

g

g

g

static void add node direct force(particle, box, node, o�set)

int particle, box;

NODE T �node;

double o�set;

f

/�

� Performs direct summation of forces over leaves in "node",

� o�setting positions as required for ghost box wrap-around.

� For use with add direct tree force() and check force().

�

�/

int i, num leaves = 0;

DATA T �ptr0 = Data[particle], �ptr;

LEAF T o�spring[MAX NUM PARTICLES];

double leaf pos[NUM PHYS DIM];

GetO�spring(node, &num leaves, o�spring);

for (i = 0; i < num leaves; i++) f

if (VERBOSE && particle == o�spring[i]) f

Error(WARNING2, "add node direct force(): self-grav problem.", "");

continue;

g

ptr = Data[o�spring[i]];

PREDICT POS LO(ptr);

COPY(ptr!pos, leaf pos);

ADD BOX OFFSET(leaf pos, box);

leaf pos[1] -= o�set;

quick direct force(ptr0, ptr, leaf pos);

g

g

static void quick direct force(ptr0, ptr, pos)

DATA T �ptr0, �ptr;

double �pos;

f

/� Calculates Newtonian force between "ptr0" and "ptr" (at "pos") �/

double r2 inv, f;

CALC R2 DATA(ptr0!pos, pos);

if (RunPar.use softening)

r2 += MAX(ptr0!radius sq, ptr!radius sq);

r2 inv = 1 = r2;

f = - ptr!mass � r2 inv � sqrt(r2 inv);

ptr0!f[0] += f � rel pos[0];

ptr0!f[1] += f � rel pos[1];

206

ptr0!f[2] += f � rel pos[2];

g

#define LARGE ERROR 0.25 /� Message if error exceeds this �/

#define HUGE ERROR 1.0 /� Crash if error exceeds this �/

#define ERROR STATS INTERVAL 250000 /� Stats output interval in time-steps �/

static void check force(particle, box, node, old force)

int particle, box;

NODE T �node;

double �old force;

f

/�

� Compares "old force" obtained from "node" with direct force,

� accumulating error statistics in DebugPar and printing out

� messages if the errors are large. Called from add tree force().

�

�/

DATA T �ptr = Data[particle];

DEBUG PAR T �ptrd = &DebugPar;

double node pos[NUM PHYS DIM], node o�set = 0, tf[NUM PHYS DIM],

new force[NUM PHYS DIM], df[NUM PHYS DIM], dfm, tfm, err;

/� Increment counter �/

++(ptrd!num force checks);

/� Get distance info, allowing for ghost case �/

COPY(node!pos, node pos);

if (box 6= CENTRE) f

double o�set;

ADD BOX OFFSET(node pos, box);

while (ABS(node pos[1]) > HALF SYS SIZE) f

o�set = SGN(node pos[1]) � SYS SIZE;

node pos[1] -= o�set;

node o�set += o�set;

g

g

/� ptr->f contains "old force" plus force due to "node" �/

COPY(ptr!f, new force);

/� Hence obtain force due to "node" in isolation �/

SUB(new force, old force, tf);

/� Obtain direct force from particles in node, allowing for wrap-around �/

ZERO(ptr!f);

add node direct force(particle, box, node, node o�set);

COPY(ptr!f, df);

207

/� Restore new force �/

COPY(new force, ptr!f);

/� Accumulate statistics and calculate errors �/

dfm = MAG(df);

tfm = MAG(tf);

ptrd!avg force += dfm;

ptrd!max force = MAX(ptrd!max force, dfm);

err = ABS(dfm - tfm) = dfm;

/� Message if large error, and check multipoles explicitly �/

if (err > LARGE ERROR) f

++Counter[FORCE ERRORS];

(void) printf("MONITOR: %i (%i) t = %g: abs err %.0f%%",

particle, ptr!orig index, TIME, 100 � err);

if (ptrd!max force > 0)

(void) printf(" (%%avg %.1e %%max %.1e)nn",

100 � ptrd!num force checks � tfm = ptrd!avg force,

100 � tfm = ptrd!max force);

else

(void) printf("nn");

(void) printf(" box %i particle pos %e %e %enn", box,

ptr!pos[0], ptr!pos[1], ptr!pos[2]);

(void) printf(" node info: %snn", NodeInfo(node));

(void) printf(" node geom pos %e %e %enn",

node pos[0], node pos[1], node pos[2]);

check multipole force(particle, box, node, df, tf);

if (err > HUGE ERROR)

Error(FATAL, "check force(): Error too large.", "");

g

/� Display error statistics at regular intervals �/

ptrd!total err += err;

ptrd!max err = MAX(ptrd!max err, err);

if (ptrd!num force checks % ERROR STATS INTERVAL == 0) f

(void) printf("MONITOR -- Force error, t %g: ", TIME);

(void) printf("avg abs err = %.2g%%, max err = %.2g%%nn",

100 � ptrd!total err = ptrd!num force checks,

100 � ptrd!max err);

g

g

#undef ERROR STATS INTERVAL

#undef HUGE ERROR

#undef LARGE ERROR

static void check multipole force(particle, box, node, df, tf)

int particle, box;

NODE T �node;

double �df, �tf;

f

/�

� Calculates monopole, quadrupole, and octupole contributions

208

� of "node" in "box" to force on "particle" explicitly and

� compares with supplied direct ("df") and tree ("tf") forces.

� Called from check force().

�

�/

DATA T �ptr0 = Data[particle], �ptr;

int i, k, num leaves = 0;

LEAF T o�spring[MAX NUM PARTICLES];

double node pos[NUM PHYS DIM], node o�set = 0, leaf pos[NUM PHYS DIM],

true pos[NUM PHYS DIM], total mass, node posm, true posm, pose,

tfm[NUM PHYS DIM], tfq[NUM PHYS DIM], tfo[NUM PHYS DIM];

/� Working variables... �/

double m, q11, q22, q21, q31, q32, s11, s22, s33, s12, s13, s21, s23,

s31, s32, s123, dx, dy, dz, dx2, dy2, dz2, r, r inv, r2 inv,

r3 inv, r5 inv, r7 inv, r9 inv, qrx, qry, qrz, rqr, sd1, sd2,

sd3, phioct, dfm, tfx, tfmm, tfqm, tfom, tfe, tfme, tfqe, tfoe;

/� Get node leaves and adjust positions for any wrap-around �/

COPY(node!pos, node pos);

if (box 6= CENTRE) f

double o�set;

ADD BOX OFFSET(node pos, box);

while (ABS(node pos[1]) > HALF SYS SIZE) f

o�set = SGN(node pos[1]) � SYS SIZE;

node pos[1] -= o�set;

node o�set += o�set;

g

g

GetO�spring(node, &num leaves, o�spring);

/� Calculate "true" centre of mass �/

ZERO(true pos);

total mass = 0;

for (i = 0; i < num leaves; i++) f

ptr = Data[o�spring[i]];

PREDICT POS LO(ptr);

COPY(ptr!pos, leaf pos);

ADD BOX OFFSET(leaf pos, box);

leaf pos[1] -= node o�set;

m = ptr!mass;

total mass += m;

for (k = 0; k < NUM PHYS DIM; k++)

true pos[k] += m � leaf pos[k];

g

NORM(true pos, total mass);

(void) printf("Predicted node c-o-m position: %12.5e %12.5e %12.5enn",

node pos[0], node pos[1], node pos[2]);

209

(void) printf("Actual node c-o-m position: %12.5e %12.5e %12.5enn",

true pos[0], true pos[1], true pos[2]);

node posm = sqrt(SQ(node pos[0]) + SQ(node pos[1]) + SQ(node pos[2]));

true posm = sqrt(SQ(true pos[0]) + SQ(true pos[1]) + SQ(true pos[2]));

pose = 100 � ABS(node posm - true posm) = true posm;

(void) printf("Absolute error: %11.5e%%nn", pose);

/� Calculate multipole moments �/

q11 = q21 = q31 = q22 = q32 = 0;

s11 = s22 = s33 = s12 = s13 = s21 = s23 = s31 = s32 = s123 = 0;

for (i = 0; i < num leaves; i++) f

ptr = Data[o�spring[i]];

COPY(ptr!pos, leaf pos);

ADD BOX OFFSET(leaf pos, box);

leaf pos[1] -= node o�set;

if (num leaves < 10 && pose < 10)

(void) printf("Leaf %i (%i) pos %12.5e %12.5e %12.5enn",

o�spring[i], ptr!orig index, leaf pos[0],

leaf pos[1], leaf pos[2]);

/� Monopole moment is total mass �/

m = ptr!mass;

/� Quadrupole moment �/

CALC R2 DATA(leaf pos, true pos);

dx = rel pos[0];

dy = rel pos[1];

dz = rel pos[2];

dx2 = SQ(dx);

dy2 = SQ(dy);

dz2 = SQ(dz);

q11 += m � (3 � dx2 - r2);

q22 += m � (3 � dy2 - r2);

q21 += 3 � m � dx � dy;

q31 += 3 � m � dx � dz;

q32 += 3 � m � dy � dz;

/� Octupole moment �/

s11 += m � (dx2 - 1.5 � (dy2 + dz2)) � dx;

s22 += m � (dy2 - 1.5 � (dx2 + dz2)) � dy;

s33 += m � (dz2 - 1.5 � (dx2 + dy2)) � dz;

s12 += 6 � m � (dx2 - 0.25 � (dy2 + dz2)) � dy;

s13 += 6 � m � (dx2 - 0.25 � (dy2 + dz2)) � dz;

s21 += 6 � m � (dy2 - 0.25 � (dx2 + dz2)) � dx;

s23 += 6 � m � (dy2 - 0.25 � (dx2 + dz2)) � dz;

s31 += 6 � m � (dz2 - 0.25 � (dx2 + dy2)) � dx;

s32 += 6 � m � (dz2 - 0.25 � (dx2 + dy2)) � dy;

s123 += 15 � m � dx � dy � dz;

g

/� Calculate multipole expansions of force �/

210

CALC R2 DATA(ptr0!pos, true pos);

dx = rel pos[0];

dy = rel pos[1];

dz = rel pos[2];

dx2 = SQ(dx);

dy2 = SQ(dy);

dz2 = SQ(dz);

r = sqrt(r2);

r inv = 1 = r;

r2 inv = SQ(r inv);

/� Monopole contribution �/

r3 inv = r inv � r2 inv;

tfm[0] = - total mass � dx � r3 inv;

tfm[1] = - total mass � dy � r3 inv;

tfm[2] = - total mass � dz � r3 inv;

/� Quadrupole contribution �/

qrx = q11 � dx + q21 � dy + q31 � dz;

qry = q21 � dx + q22 � dy + q32 � dz;

qrz = q31 � dx + q32 � dy - (q11 + q22) � dz;

rqr = qrx � dx + qry � dy + qrz � dz;

r5 inv = r2 inv � r3 inv;

r7 inv = r2 inv � r5 inv;

tfq[0] = tfm[0] + qrx � r5 inv - 2.5 � rqr � dx � r7 inv;

tfq[1] = tfm[1] + qry � r5 inv - 2.5 � rqr � dy � r7 inv;

tfq[2] = tfm[2] + qrz � r5 inv - 2.5 � rqr � dz � r7 inv;

/� Octupole contribution �/

sd1 = s11 � dx + s12 � dy + s13 � dz;

sd2 = s21 � dx + s22 � dy + s23 � dz;

sd3 = s31 � dx + s32 � dy + s33 � dz;

r9 inv = r2 inv � r7 inv;

phioct = - 7 � r9 inv � (dx2 � sd1 + dy2 � sd2 + dz2 � sd3 +

dx � dy � dz � s123);

tfo[0] = tfq[0] + dx � phioct + (2 � dx � sd1 + dx2 � s11 + dy2 � s21 +

dz2 � s31 + dy � dz � s123) � r7 inv;

tfo[1] = tfq[1] + dy � phioct + (2 � dy � sd2 + dx2 � s12 + dy2 � s22 +

dz2 � s32 + dx � dz � s123) � r7 inv;

tfo[2] = tfq[2] + dz � phioct + (2 � dz � sd3 + dx2 � s13 + dy2 � s23 +

dz2 � s33 + dx � dy � s123) � r7 inv;

/� Evaluate performance... �/

211

dfm = sqrt(SQ(df[0]) + SQ(df[1]) + SQ(df[2]));

tfx = sqrt(SQ(tf[0]) + SQ(tf[1]) + SQ(tf[2]));

tfmm = sqrt(SQ(tfm[0]) + SQ(tfm[1]) + SQ(tfm[2]));

tfqm = sqrt(SQ(tfq[0]) + SQ(tfq[1]) + SQ(tfq[2]));

tfom = sqrt(SQ(tfo[0]) + SQ(tfo[1]) + SQ(tfo[2]));

tfe = 100 � ABS(tfx - dfm) = dfm;

tfme = 100 � ABS(tfmm - dfm) = dfm;

tfqe = 100 � ABS(tfqm - dfm) = dfm;

tfoe = 100 � ABS(tfom - dfm) = dfm;

(void) printf("method f x f y f z fnn");

(void) printf("direct %12.5e %12.5e %12.5e %11.5enn",

df[0], df[1], df[2], dfm);

(void) printf("tree %12.5e %12.5e %12.5e %11.5enn",

tf[0], tf[1], tf[2], tfx);

(void) printf("m only %12.5e %12.5e %12.5e %11.5enn",

tfm[0], tfm[1], tfm[2], tfmm);

(void) printf("q only %12.5e %12.5e %12.5e %11.5enn",

tfq[0], tfq[1], tfq[2], tfqm);

(void) printf("o only %12.5e %12.5e %12.5e %11.5enn",

tfo[0], tfo[1], tfo[2], tfom);

(void) printf("errors t-d %f%% m-d %f%% q-d %f%% o-d %f%% ",

tfe, tfme, tfqe, tfoe);

if (tfqe > tfme)

(void) printf("���");

if (tfoe > tfqe)

(void) printf("###");

if (tfoe > tfme)

(void) printf("!!!");

(void) printf("nn");

g

/� force.c �/

B.1.11 init cond.c

The various routines for generating or loading initial conditions are in this �le. There is

only one global function, SetInitCond(), which calls various local functions depending

on the initial conditions option. Memory for particle data structures is allocated in this

�le (note that lint may complain about malloc() commands that allocate memory for

complex structures; these messages can safely be ignored). After obtaining the basic

particle data, SetInitCond() performs various initializations, such as zeroing collision

counters and assigning particle colours. A boundary condition check is also performed for

supplied initial conditions. Finally, a call is made to CalcEvolPar() (cf. output.c) in

order to initialize various data-dependent parameters, such as the self-gravity check zone

(cf. xA.5.1).

The various local functions will only be described briey. The �rst of these functions,

set aligned com(), generates the \aligned c-o-m" initial conditions. This is accom-

plished by choosing particle positions in uniform random fashion, subtracting the centre-

of-mass position of the resulting con�guration, and repositioning any particles that end

up outside the box as a result of the centre-of-mass shift. This process in repeated until

all particles are inside the box. The set uniform ran() routine places sets of particles

in grids laid out across the box, choosing positions in each grid from a uniform ran-

dom distribution. Any particles left over are distributed randomly throughout the entire

box. The centre-of-mass position is not adjusted to coincide with the origin. However,

212

as with set aligned com(), the centre-of-mass velocity is set to zero by o�setting each

particle velocity (the local function sub com vel() is used for this purpose). Both rou-

tines make use of place particle(), which chooses a random position in a region of the

central box in which to place a given particle. The function also sets the mass, radius,

moment of inertia, and drag factor of the particle (choosing from a mass distribution if

desired). The velocity is also set, using any initial dispersions (see xA.4.2). Currently the

initial spin is set to zero. To eliminate initial overlaps or (if desired) potential binaries,

place particle() calls the BOOLEAN function rejected particle(), which returns TRUE

if the current particle position should be rejected.

The routines wt() and pack box() generate WT-type and close-packed initial condi-

tions, respectively. The wt() function makes use of the BOOLEAN function check pos()

to prevent particle overlaps, including overlaps with ghosts (something which is not done

in rejected particle()). Finally, the function read init cond() is used to read a text

�le containing preset initial conditions.

/�

� init cond.c { DCR 91-06-27

� ===========================

� Routines for initializing particle data.

�

� Global functions: SetInitCond().

�

�/

/� Include �les �/

#include "box tree.h"

/� Additional de�nitions �/

#define SX RunPar.init x vel disp

#define SY RunPar.init y vel disp

#define SZ RunPar.init z vel disp

/� Local functions �/

static void

set aligned com(),

set uniform ran(),

place particle(),

wt(),

pack box(),

read init cond(),

sub com vel();

static BOOLEAN rejected particle(), check pos();

/� Local variables �/

static BOOLEAN particle placed[MAX NUM PARTICLES]; /� place particle() ags �/

static int num rejects = 0; /� For rejected particle() �/

static double est mean mass = 0.0; /� Estimated mean mass �/

static double max rr = 0.0; /� Maximum Roche radius �/

/� End of preamble �/

#define IC OPT ptr!ic opt

213

void SetInitCond()

f

/�

� Allocates memory for particle data, assigns initial positions,

� velocities, and spins (according to initial conditions option)

� and initializes several other quantities.

�

�/

int i, j;

COLOR T color;

DATA T �ptrd;

RUN PAR T �ptr = &RunPar;

if (IC OPT 6= SUPPLIED) f

/� Assign storage space �/

for (i = 0; i < NumParticles; i++)

Data[i] = (DATA T �) malloc(sizeof(DATA T));

/� Assign default colors �/

for (i = 0; i < NumParticles; i++)

Data[i]!color = MoviePar.dt color;

/� Initialize ags if required �/

if (IC OPT == ALIGNED COM jj IC OPT == UNIFORM RAN) f

for (i = 0; i < NumParticles; i++)

particle placed[i] = FALSE;

max rr = RocheRadius(RunPar.init max mass);

g

if (IC OPT == ALIGNED COM jj IC OPT == UNIFORM RAN jj IC OPT == WT) f

est mean mass = EstMeanMass();

(void) printf("Estimated mean mass = %enn", est mean mass);

g

g

/� Place particles in box according to desired scheme �/

switch (IC OPT) f

case ALIGNED COM:

set aligned com();

break;

case UNIFORM RAN:

set uniform ran();

break;

case CLOSE PACKED:

pack box();

break;

case WT:

wt();

break;

case SUPPLIED:

read init cond();

break;

default:

(void) sprintf(ErrorStr, "init cond opt = %i", IC OPT);

214

Error(FATAL, "SetInitCond(): Unknown/invalid option.", ErrorStr);

g

/� Perform other initializations for each particle �/

ptr!total mass = 0;

for (i = 0; i < NumParticles; i++) f

ptrd = Data[i];

ptr!total mass += ptrd!mass;

/� Apply shear to particle y-velocity (within box) if req'd �/

if (IC OPT 6= SUPPLIED jj ptr!add shear)

ADD SHEAR(ptrd);

/� Set original-particle-number array entry �/

if (IC OPT 6= SUPPLIED)

ptrd!orig index = i;

/� Disable predictions until integration has begun �/

ptrd!pos status = ptrd!vel status = NO PRED;

/� Initialize collision counters �/

ptrd!last collider = -1;

ptrd!num collisions = 0;

/� Set default tree occupancy ag �/

ptrd!in tree = ptr!use tree;

/� Initialize particle node data �/

ptrd!node = NULL; ptrd!node index = -1;

/� Assign monitor ags and tracking colors �/

ptrd!monitor = FALSE;

for (j = 0; j < ptr!num to track; j++)

if (ptrd!orig index == ptr!track list[j]) f

if ((color = ptr!track colors[j]) 6= MoviePar.dt color) f

ptrd!monitor = TRUE;

if (color == BLACK)

color = MoviePar.dt color;

g

ptrd!color = color;

break;

g

g /� for �/

/� Exclude particles from tree if requested �/

if (ptr!use tree)

for (i = 0; i < TreePar.num excluded; i++)

215

Data[TreePar.exclude list[i]]!in tree = FALSE;

/� Check boundary conditions for supplied positions �/

if (IC OPT == SUPPLIED && RunPar.bc opt 6= UNBOUNDED) f

for (i = 0; i < NumParticles; i++)

if (OUTSIDE CENTRE(Data[i]!pos)) f

(void) sprintf(ErrorStr, "particle %i (%i) x %g y %g", i,

Data[i]!orig index, Data[i]!pos[0], Data[i]!pos[1]);

Error(WARNING2,

"SetInitCond(): Particle outside centre -- applying BCs",

ErrorStr);

(void) ApplyBndryCond(i);

g

g

/� Calculate/set initial evolving parameters �/

CalcEvolPar();

/� Check mass estimate �/

if (IC OPT == ALIGNED COM jj IC OPT == UNIFORM RAN jj IC OPT == WT) f

double x;

if ((x = ABS(EvolPar.mean mass - est mean mass) = est mean mass)

> 0.01) f

(void) sprintf(ErrorStr, "mean mass dev = %f%%", 100 � x);

Error(WARNING2, "SetInitCond(): Poor statistics?", ErrorStr);

g

g

/� Zero CPU timer �/

EvolPar.total cpu = 0.0;

g

#undef IC OPT

static void set aligned com()

f

/�

� Arranges particles randomly in centre box but adjusts positions

� and velocities so that c-o-m position = SYS CENTRE and c-o-m

� velocity = 0. An iterative procedure is used to ensure all

� particles are con�ned to centre box after adjustements.

�

�/

int i, j, k, num active particles, active list[MAX NUM PARTICLES],

num outside;

double total mass, com pos[NUM PHYS DIM], x;

(void) printf("Aligning centre of mass and box centre...nn");

if (!ROTATING FRAME)

Error(WARNING2, "set aligned com(): Assuming SHM in z.", "");

/� Initialize �/

216

total mass = 0;

ZERO(com pos);

num active particles = NumParticles;

for (i = 0; i < NumParticles; i++)

active list[i] = i;

/� Keep looping until all particles �t inside box �/

while (num active particles) f

/� Assign positions and velocities and add to centre of mass �/

for (i = 0; i < num active particles; i++) f

j = active list[i];

place particle(j, SYS CENTRE, BOX SIZE, BOX SIZE);

total mass += Data[j]!mass;

for (k = 0; k < NUM PHYS DIM; k++)

com pos[k] += Data[j]!mass � Data[j]!pos[k];

g

/� Check if c-o-m correction leaves any particles outside box �/

for (num outside = i = 0; i < NumParticles; i++) f

for (k = 0; k < NUM BOX DIM; k++) f

x = Data[i]!pos[k] - com pos[k] = total mass;

if (ABS(x) > HALF BOX SIZE) f

(void) printf("Particle %i outside box.nn", i);

active list[num outside++] = i;

break;

g

g

g

(void) printf("No. particles outside box = %inn", num outside);

/� Remove contribution to c-o-m of outside particles �/

num active particles = num outside;

for (i = 0; i < num active particles; i++) f

j = active list[i];

total mass -= Data[j]!mass;

for (k = 0; k < NUM PHYS DIM; k++)

com pos[k] -= Data[j]!mass � Data[j]!pos[k];

particle placed[j] = FALSE;

g

g /� while �/

/� Finally, align c-o-m by subtracting components from positions �/

NORM(com pos, total mass);

for (i = 0; i < NumParticles; i++)

SUB(Data[i]!pos, com pos, Data[i]!pos);

/� Output some statistics �/

217

(void) printf("Done! %i rejected pair(s), dx = %f, dy = %fnn",

num rejects, com pos[0], com pos[1]);

/� Finally, align centre-of-mass velocity as well �/

sub com vel();

g

static void set uniform ran()

f

/� Arranges particles in 2-D uniform random fashion in (centre) box �/

int i, ix, iy, particle, nx = RunPar.num x div, ny = RunPar.num y div,

subbox num particles = NumParticles = (nx � ny);

double subbox size x = BOX SIZE = nx, subbox size y = BOX SIZE = ny,

subbox centre[NUM BOX DIM], o�set x, o�set y;

if (!ROTATING FRAME)

Error(WARNING2, "set uniform ran(): Assuming SHM in z.", "");

particle = 0;

/� Loop over subboxes �/

for (ix = 0; ix < nx; ix++)

for (iy = 0; iy < ny; iy++) f

o�set x = (ix - 0.5 � (nx - 1)) � subbox size x;

o�set y = (iy - 0.5 � (ny - 1)) � subbox size y;

subbox centre[0] = SYS CENTRE[0] + o�set x;

subbox centre[1] = SYS CENTRE[1] + o�set y;

for (i = 0; i < subbox num particles; i++)

place particle(particle++, subbox centre, subbox size x,

subbox size y);

g

/� Place any leftover particles randomly �/

for (i = particle; i < NumParticles; i++)

place particle(i, SYS CENTRE, BOX SIZE, BOX SIZE);

/�

� Subtract c-o-m velocity from all particles if rotating frame.

� This ensures tzam is conserved (actually only need x component

� of c-o-m velocity to be zero).

�

�/

if (ROTATING FRAME) /� (redundant: currently must be rotating frame) �/

sub com vel();

g

static void place particle(particle, centre, size x, size y)

int particle;

double �centre, size x, size y;

f

/�

� Places "particle" randomly in subbox with position "centre" and

� dimension "size x" and "size y". Initial velocities are weighted by

� by the dispersions "SX", "SY", and "SZ".

�

218

�/

DATA T �ptr = Data[particle];

double sqrt2 = sqrt(2.0), vel norm, pos[NUM PHYS DIM], vel[NUM PHYS DIM],

phase;

/� Error checks �/

if (ERROR CHECK) f

if (centre[0] + size x > SYS CENTRE[0] + BOX SIZE jj

centre[0] - size x < SYS CENTRE[0] - BOX SIZE jj

centre[1] + size y > SYS CENTRE[1] + BOX SIZE jj

centre[1] - size y < SYS CENTRE[1] - BOX SIZE)

Error(FATAL, "place particle(): Subbox too big!", "");

if (particle placed[particle]) f

(void) sprintf(ErrorStr, "particle %i", particle);

Error(FATAL, "place particle(): Particle already placed.",

ErrorStr);

g

g

/� Choose mass then set radius and moment of inertia �/

if (particle == 0 && RunPar.seed mass)

ptr!mass = RunPar.seed mass;

else

ptr!mass = InitMassFunc(Ran());

ptr!radius = Radius(ptr!mass);

ptr!radius sq = SQ(ptr!radius);

ptr!inertia = MomentOfInertia(ptr!mass, ptr!radius);

/� Velocity dispersion normalization for non-uniform masses �/

vel norm = sqrt(est mean mass = ptr!mass);

/� Calculate drag factor �/

ptr!drag fac = DragFactor(ptr!mass);

/� Choose position and velocity, rejecting close pairs �/

do f

if (particle == 0 && RunPar.seed mass) f

ZERO(pos);

ZERO(vel);

break;

g

pos[0] = centre[0] + size x � (Ran() - 0.5);

pos[1] = centre[1] + size y � (Ran() - 0.5);

vel[0] = vel norm � SX � Gasdev();

vel[1] = vel norm � SY � Gasdev();

/� z position and velocity assigned assuming unit SHM frequency �/

phase = TWO PI � Ran();

if (RunPar.init scale height == 0) f

219

double z max = SZ � Gasdev();

pos[2] = sqrt2 � vel norm � z max � cos(phase);

vel[2] = - sqrt2 � vel norm � z max � sin(phase);

g

else f

double z max = max rr � RunPar.init scale height;

pos[2] = vel norm � z max � cos(phase);

vel[2] = - vel norm � z max � sin(phase);

g

g while(rejected particle(particle, ptr!radius, pos, vel));

/� Save particle position and velocity �/

COPY(pos, ptr!pos);

COPY(vel, ptr!vel);

/� Set spin to zero initially �/

ZERO(ptr!spin);

/� Set ag �/

particle placed[particle] = TRUE;

g

#define MAX NUM REJECTS NumParticles /� Allow this many rejects maximum �/

static BOOLEAN rejected particle(particle, radius, pos, vel)

int particle;

double radius, �pos, �vel;

f

/�

� Returns TRUE if "particle" is too close to another.

� Note that ghost particles are currently not considered.

�

�/

int i, k;

double r2, sum radii sq;

BOOLEAN reject;

/� If using softening and initial binaries are ok, just return �/

if (RunPar.use softening && !RunPar.rej init bin)

return FALSE;

/� Loop over placed particles �/

for (i = 0; i < NumParticles; i++) f

if (i == particle jj !particle placed[i])

continue;

/� Reset ag �/

reject = FALSE;

220

/�

� Reject if overlapping and not using softening, otherwise check

� for binary and reject it if desired.

�

�/

sum radii sq = SQ(radius + Data[i]!radius);

for (r2 = 0.0, k = 0; k < NUM PHYS DIM; k++)

r2 += SQ(pos[k] - Data[i]!pos[k]);

if (!RunPar.use softening && r2 < sum radii sq)

reject = TRUE;

else if (RunPar.rej init bin) f

/� Only consider particles within 10 maximum Roche radii �/

if (r2 < 100 � SQ(max rr)) f

double v2, semi inv;

for (v2 = 0.0, k = 0; k < NUM PHYS DIM; k++)

v2 += SQ(vel[k] - Data[i]!vel[k]);

semi inv = 2 = sqrt(r2) - v2 = (Data[particle]!mass +

Data[i]!mass);

/� Reject binary �/

if (semi inv > 0 && 1 = semi inv < max rr)

reject = TRUE;

g

g

/� Increment counter and abort if too many rejects �/

if (reject) f

if (++num rejects > MAX NUM REJECTS)

Error(FATAL, "rejected particle(): Too many rejects.", "");

return TRUE;

g

g /� for �/

return FALSE;

g

#undef MAX NUM REJECTS

#define MAX NUM TRIES 100000 /� Maximum number of placement attempts allowed �/

static void wt()

f

/�

� Assigns initial conditions conforming with Wisdom J., Tremaine S.,

� 1988, AJ, 95, 925. For use in rotating frame only.

�

�/

int odd, n, i0, i, k, counter;

DATA T �ptr1, �ptr2;

double r, h, f, m ratio, mri, tau;

221

BOOLEAN need pos;

/� Need N odd if seed mass, even otherwise �/

odd = (n = NumParticles) % 2;

n -= (i0 = (RunPar.seed mass ? 1 : 0));

odd -= i0;

if (i0 && odd)

Error(FATAL, "wt(): Unable to create seed mass -- use odd N.", "");

if (odd)

Error(FATAL, "wt(): Odd N not supported for WT init. cond.", "");

/� Heuristic check �/

r = Radius(RunPar.init max mass);

h = RunPar.init disk thickness � r;

if (0.1 � h � SQ(BOX SIZE) = CUBE(r) < NumParticles)

Error(WARNING2, "wt(): Insufficient space for particles?", "");

/� Construct seed mass if desired �/

if (i0) f

ptr1 = Data[0];

ptr1!mass = RunPar.seed mass;

ptr1!radius = Radius(ptr1!mass);

ptr1!radius sq = SQ(ptr1!radius);

ptr1!inertia = MomentOfInertia(ptr1!mass, ptr1!radius);

ptr1!drag fac = DragFactor(ptr1!mass);

ZERO(ptr1!pos);

ZERO(ptr1!vel);

ZERO(ptr1!spin);

(void) printf("[seed mass placed at origin]nn");

g

/� Place particles pair-wise �/

for (i = i0; i < n; i += 2) f

ptr1 = Data[i];

ptr2 = Data[i + 1];

/�

� Following gives smooth mass distribution, going from biggest

� to smallest to aid positioning.

�

�/

f = 1 - (double) (i - i0) = (n - 1);

ptr1!mass = InitMassFunc(f);

f = 1 - (double) (i + 1 - i0) = (n - 1);

ptr2!mass = InitMassFunc(f);

if (ptr1!mass < ptr2!mass)

Error(FATAL, "wt(): Mass increasing.", "");

ptr1!radius = Radius(ptr1!mass);

ptr1!radius sq = SQ(ptr1!radius);

ptr2!radius = Radius(ptr2!mass);

ptr2!radius sq = SQ(ptr2!radius);

222

/� Attempt to place particles in box �/

counter = 0;

need pos = TRUE;

while (need pos) f

if (counter++ > MAX NUM TRIES)

Error(FATAL, "wt(): Too many positioning attempts.", "");

m ratio = ptr2!mass = ptr1!mass;

ptr1!pos[0] = m ratio � BOX SIZE � (Ran() - 0.5);

ptr1!pos[1] = m ratio � BOX SIZE � (Ran() - 0.5);

ptr1!pos[2] = m ratio � h � (Ran() - 0.5);

need pos = check pos(ptr1!pos[0], ptr1!pos[1], ptr1!pos[2],

ptr1!radius, i);

if (need pos)

continue;

mri = - 1 = m ratio;

for (k = 0; k < NUM PHYS DIM; k++)

ptr2!pos[k] = mri � ptr1!pos[k];

need pos = check pos(ptr2!pos[0], ptr2!pos[1], ptr2!pos[2],

ptr2!radius, i + 1);

g

/� Assign velocities �/

for (k = 0; k < NUM PHYS DIM; k++) f

ptr1!vel[k] = (2 � Ran() - 1) � ptr1!radius;

ptr2!vel[k] = (2 � Ran() - 1) � ptr2!radius;

g

/� Compute remaining quantities �/

ZERO(ptr1!spin);

ZERO(ptr2!spin);

ptr1!inertia = MomentOfInertia(ptr1!mass, ptr1!radius);

ptr2!inertia = MomentOfInertia(ptr2!mass, ptr2!radius);

ptr1!drag fac = DragFactor(ptr1!mass);

ptr2!drag fac = DragFactor(ptr2!mass);

g

/� Ensure zero c-o-m velocity �/

ptr1 = Data[i0]; /� Largest mass (excluding seed) �/

ZERO(ptr1!vel);

for (i = i0 + 1; i < n; i++)

for (k = 0; k < NUM PHYS DIM; k++)

ptr1!vel[k] -= Data[i]!mass � Data[i]!vel[k];

NORM(ptr1!vel, ptr1!mass);

(void) printf("[Particle %i vel set to %e %e %e]nn", i0,

ptr1!vel[0], ptr1!vel[1], ptr1!vel[2]);

/� Calculate true dynamical optical depth �/

for (tau = 0.0, i = 0; i < NumParticles; i++)

tau += PI � Data[i]!radius sq;

tau /= SQ(BOX SIZE);

(void) printf("[Actual dynamical optical depth = %e]nn", tau);

g

223

#undef MAX NUM TRIES

static BOOLEAN check pos(x, y, z, r, n)

double x, y, z, r;

int n;

f

/�

� Returns TRUE if a sphere of radius "r" at "x", "y", "z" is

� unable to �t in central box due to overlap with any of the

� �rst "n" particles (and their ghosts) in Data[] (recursive).

�

�/

int i, ix, iy;

DATA T �ptr;

/� Check for overlap �/

for (i = 0; i � n; i++) f

if (i == n && ABS(x) < HALF BOX SIZE && ABS(y) < HALF BOX SIZE)

continue;

ptr = Data[i];

if (SQ(ptr!pos[0] - x) + SQ(ptr!pos[1] - y) +

SQ(ptr!pos[2] - z) < SQ(r + ptr!radius))

return TRUE;

g

/� Loop over ghost boxes �/

if (GHOSTS && ABS(x) < HALF BOX SIZE && ABS(y) < HALF BOX SIZE)

for (ix = -1; ix � 1; ix++)

for (iy = -1; iy � 1; iy++) f

if (ix == 0 && iy == 0)

continue;

if (check pos(x + ix � BOX SIZE, y + iy � BOX SIZE, z, r, n))

return TRUE;

g

return FALSE;

g

static void pack box()

f

/�

� Packs box so that all particles are touching (assumes

� equal-sized particles, i.e. min mass = max mass).

�

�/

int num layers, num on side, ix, iy, iz;

DATA T �ptr;

double half size, radius, dxy, dz, xypos0, zpos0,

mass = RunPar.init min mass;

/� Calculate number of particles on a side in (centre) box �/

num layers = RunPar.num layers;

num on side = sqrt((double) NumParticles = num layers);

/� Calculate half particle separation length �/

224

half size = HALF BOX SIZE = num on side;

/� Assign new density if appropriate (expanded radius = half size) �/

if (RunPar.expand radii) f

radius = half size;

if (radius < RocheRadius(mass)) f

(void) sprintf(ErrorStr, "radius = %g", radius);

Error(WARNING2, "pack box(): Roche > particle radius.", ErrorStr);

g

(void) printf("[close packing: radii = %g]nn", radius);

/� Assign new particle density �/

RunPar.density = Density(mass, radius);

(void) printf("[close packing: new density = %g g/cm^3]nn",

RunPar.density = RunPar.density conv = DENSITY CGS TO MKS);

g

else

radius = Radius(mass);

/� Reset initial velocity dispersions if applicable �/

if (RunPar.small disp) f

SZ = SY = SX = radius;

(void) printf("[close packing: new vel disp = %g]nn", SZ);

g

/� Output optical depth �/

(void) printf("[close packing: dynamical optical depth = %g]nn",

NumParticles � PI � SQ(radius) = SQ(BOX SIZE));

/� Get starting position in x & y �/

xypos0 = (1 - num on side) � half size;

/� Ensure centre-of-mass remains at origin �/

if (RunPar.stagger in z)

xypos0 -= (num layers = 2) � (half size = num layers);

/� Squish in z-direction if appropriate �/

dz = (RunPar.expand radii && RunPar.stagger in z ?

(2 - sqrt(3.0)) � half size : 0);

/� Get starting position in z �/

zpos0 = (1 - num layers) � half size + (num layers = 2) � dz;

/� Assign data �/

for (iz = 0; iz < num layers; iz++) f

dxy = (RunPar.stagger in z ? iz % 2 : 0);

225

for (iy = 0; iy < num on side; iy++)

for (ix = 0; ix < num on side; ix++) f

ptr = Data[ix + (iy + iz � num on side) � num on side];

ptr!mass = mass;

ptr!radius = radius;

ptr!radius sq = SQ(radius);

ptr!inertia = MomentOfInertia(mass, radius);

ptr!drag fac = DragFactor(mass);

ptr!pos[0] = xypos0 + (2 � ix + dxy) � half size;

ptr!vel[0] = SX � Gasdev();

ptr!pos[1] = xypos0 + (2 � iy + dxy) � half size;

ptr!vel[1] = SY � Gasdev();

ptr!pos[2] = zpos0 + iz � (2 � half size - dz);

ptr!vel[2] = SZ � Gasdev(); /� (ignore any z SHM) �/

ZERO(ptr!spin);

g

g

/� Subtract centre-of-mass velocity from system �/

sub com vel();

g

#define NUM FIELDS 15 /� Number of data items per particle in data �le �/

static void read init cond()

f

/� Reads initial conditions from RunPar.init cond �lename �/

int status, i, oi, c;

FILE �fp;

DATA T �ptr;

double m, r, x, y, z, vx, vy, vz, sx, sy, sz, dum dbl, avg density = 0;

(void) printf("Reading initial conditions from n"%sn"...nn",

RunPar.init cond �lename);

NumParticles = 0;

/� Try to open �le �/

if ((fp = fopen(RunPar.init cond �lename, "r")) == NULL)

Error(FATAL IO, "read init cond()", RunPar.init cond �lename);

/� Discard header lines �/

(void) printf("[skipping %i line(s) of header]nn", RunPar.num header lines);

while (RunPar.num header lines-- > 0)

if (fgets(Workspace, WORKSPACE SIZE, fp) == NULL)

Error(FATAL IO, "read init cond()", RunPar.init cond �lename);

/� Reset mass data �/

RunPar.init min mass = HUGE VAL;

RunPar.init max mass = 0;

RunPar.mass exponent = 0; /� Actual mass function NOT determined... �/

/� Read data �/

226

while ((status = fscanf(fp, "%i%i%lf%lf%lf%lf%lf%lf%lf%lf%lf%lf%lf%lf%i",

&i, &oi, &m, &r, &x, &y, &z, &vx, &vy, &vz, &dum dbl, &sx, &sy, &sz,

&c)) 6= EOF) f

if (status 6= NUM FIELDS)

Error(FATAL IO, "read init cond()", RunPar.init cond �lename);

if (i 6= NumParticles) f

(void) sprintf(ErrorStr, "index %i reset to %i", i, NumParticles);

Error(WARNING2, "read init cond(): Index mismatch.", ErrorStr);

i = NumParticles;

g

if (i == MAX NUM PARTICLES) f

Error(WARNING1,

"read init cond(): Too many particles -- skipping...", "");

break;

g

ptr = Data[i] = (DATA T �) malloc(sizeof(DATA T));

if (oi < 0 jj oi > MAX NUM PARTICLES) f

(void) sprintf(ErrorStr, "par %i org idx %i reset to %i", i, oi, i);

Error(WARNING2, "read init cond(): Orig index out of range.",

ErrorStr);

oi = i;

g

if (oi 6= i) f

(void) sprintf(ErrorStr, "par %i orig index %i", i, oi);

Error(WARNING2, "read init cond(): Orig index not unique?",

ErrorStr);

g

ptr!orig index = oi;

if (m � 0) f

(void) sprintf(ErrorStr, "particle %i (%i) mass %g", i, oi, m);

Error(FATAL, "read init cond(): Invalid mass.", ErrorStr);

g

RunPar.init min mass = MIN(RunPar.init min mass, m);

RunPar.init max mass = MAX(RunPar.init max mass, m);

ptr!mass = m;

if (r � 0) f

(void) sprintf(ErrorStr, "particle %i (%i) radius %g", i, oi, r);

Error(FATAL, "read init cond(): Invalid radius.", ErrorStr);

g

ptr!radius = r;

ptr!radius sq = SQ(r);

ptr!inertia = MomentOfInertia(m, r);

ptr!drag fac = DragFactor(ptr!mass);

avg density += Density(m, r);

ptr!pos[0] = x;

ptr!pos[1] = y;

ptr!pos[2] = z;

ptr!vel[0] = vx + SX � Gasdev();

ptr!vel[1] = vy + SY � Gasdev();

ptr!vel[2] = vz + SZ � Gasdev(); /� (no z SHM) �/

ptr!spin[0] = sx;

ptr!spin[1] = sy;

ptr!spin[2] = sz;

ptr!color = (c == BLACK ? MoviePar.dt color : c);

++NumParticles;

g /� while �/

(void) fclose(fp);

(void) printf("Done!...%i particle(s) read in.nn", NumParticles);

227

if (NumParticles == 0)

Error(FATAL, "read init cond(): No data found!", "");

/� Determine average density �/

RunPar.density = avg density = NumParticles;

(void) printf("[average particle density = %g g/cm^3]nn",

RunPar.density = RunPar.density conv = DENSITY CGS TO MKS);

/� Check ability to conserve tzam in rotating frame �/

if (ROTATING FRAME) f

double com vel x = 0;

for (i = 0; i < NumParticles; i++)

com vel x += Data[i]!mass � Data[i]!vel[0];

if (!APPROX EQ(com vel x, 0))

Error(WARNING1,

"read init cond(): com vel != 0 ==> no tzam conserv.", "");

g

g

#undef NUM FIELDS

static void sub com vel()

f

/� Removes centre-of-mass velocity from particle velocities �/

int i, k;

double com vel[NUM PHYS DIM], total mass = 0;

ZERO(com vel);

for (i = 0; i < NumParticles; i++) f

for (k = 0; k < NUM PHYS DIM; k++)

com vel[k] += Data[i]!mass � Data[i]!vel[k];

total mass += Data[i]!mass;

g

if (total mass == 0)

Error(FATAL, "sub com vel(): Zero total mass.", "");

NORM(com vel, total mass);

for (i = 0; i < NumParticles; i++)

SUB(Data[i]!vel, com vel, Data[i]!vel);

g

/� init cond.c �/

B.1.12 integrate.c

This �le is at the heart of the box tree code. It is also the largest source �le, with just

under 2 000 lines of code (including comments). The polynomial initialization routines

are found here, along with the integrator itself and routines for collision detection and

particle merging. Various time-step functions and the output timer routines are also in

228

this �le.

The functions InitLoOrderPoly() and InitHiOrderPoly() perform low-order (force

and �rst derivative) and high-order (second and third derivative) polynomial initializations

on a given particle. When reinitializing a set of particles, the low-order routine must be

called �rst for each particle before the high-order routine is called. This is because the

high-order routine requires the force and �rst derivative of all particles to be correct in

order to calculate the higher derivatives (cf. Aarseth 1985). The routines assume the

positions and velocities of all particles are up to date, so unless these quantities have

just been assigned, the function PredictPosAndVelHiAll() (cf. misc.c) should be called

�rst. As explained in x3.6, polynomial reinitialization takes place after each collision and

boundary crossing event. Note that ghost particles are used only in the calculation of

the force, not of the derivatives. The contributions from any external potentials must be

included, although higher derivatives could perhaps be ignored in some cases by choosing

a smaller initial time-step instead. The high order routine is responsible for assigning a

new time-step and resetting the previous update times of the particle. It also converts

the force derivatives from Taylor series form to divided di�erences and initializes the

start-of-step position and velocity variables.

The InitTsl() function is used to initialize the time-step list. The TSL facilitates the

search for the next particle to update by keeping track of a subset of the particles that are

due for updating in the near future. The TSL update interval is adjusted automatically

to stabilize the list membership on � N

1=2

. The local functions make tsl(), sort tsl(),

change pos on tsl(), remove from tsl(), and add to tsl() are used to maintain the

list. Several of these functions are called by the integrator as well as the collision and

merger routines. For example, if two particles are merged it may be necessary to remove

the TSL entry of the second particle using remove from tsl(). Similarly, the new particle

may need to be replaced on the list using change pos on tsl() if the particle still has a

short step after initialization. See the code for further examples.

The function Integrate() controls the entire run once the simulation has started. The

routine is called only once, by box tree() in box tree.c. The routine consists of an outer

in�nite while loop that is broken only when the run is complete. The loop may also be

exited if a fatal error is detected or if a halt is requested. On each pass of the loop, the next

particle for updating is determined. This particle is used for all subsequent calculations

until the end of the loop. Once a particle is selected, the integration proceeds as outlined

in x3.1 for a predictor-evaluator-corrector algorithm, calling global functions to calculate

forces, check boundary conditions, etc., as required. In addition to the TSL functions

mentioned above, Integrate() calls the local functions process any other events() to

check the output timers, collision() to check for a collision, and stop run() in the

event of CPU expiry or a STOP �le halt.

The set time step() function for assigning particle time-steps is a bit complicated,

mostly because of the variety of TSF options. For example, if the \RV only" option

is being used and a close neighbour was not found for the current particle, a warning

is printed and the set max step() routine is called to assign a maximum step (which

may or may not be de�ned in the parameter �le). If applicable, a check for a \missed

collision" (cf. x3.5.5) is made in the time-step routine as well. If the full expression using

the forces and derivatives is to be used for calculating the time-step [cf. equation (3.7)],

the routine calls either sts before() or sts after(), depending on whether the Taylor

series derivatives or the divided di�erences, respectively, are available. The former is

faster, but generally can be used only when reinitializing.

The process any other events() function checks the clock against any de�ned out-

put timers and processes the corresponding events if they are due to occur. An event is due

229

to occur if the current simulation time has exceeded the event time, or if the simulation

is due to terminate and the simulation time matches the event time. A special BOOLEAN

variable local to integrate.c (last loop) is used to ag the end of the simulation. A

series of nested loops that call the local BOOLEAN functions event(), do event(), and

do event loop() are required to ensure that all events occur in the correct order. Much

use is made of the rough comparison macros de�ned in macros.h to minimize problems

introduced by the �nite precision of oating point numbers.

The BOOLEAN function collision() performs all of the tasks outlined in x3.5 to de-

termine whether the current particle and its closest neighbour (if any) have collided. If

so, the routine calls Bounce() to apply the collision equations. Any adjustments to the

conservation variables are also made as appropriate (cf. x4.4). If merging is enabled, the

function merge() will be called if applicable (cf. x3.5.7). Particle reinitialization, tree

updates, and TSL checks are performed in both collision() and merge(). The collision

function returns TRUE if a collision occurred, and FALSE otherwise.

/�

� integrate.c { DCR 91-06-12

� ===========================

� Main N-body integration routines (includes collision detection & merging).

�

� Note: Particle "forces" are really accelerations, i.e. forces per unit mass.

�

� Global functions: InitLoOrderPoly(), InitHiOrderPoly(), InitTsl(),

� Integrate().

�

�/

/� Include �les �/

#include "box tree.h"

/� Additional de�nitions �/

#define BULGE MASS 1.0 /� For GALAXY FRAME �/

#define BULGE SCALE 0.3

#define STS BEFORE sts before /� For set time step() �/

#define STS AFTER sts after

/� Local variables �/

static BOOLEAN last loop = FALSE; /� TRUE if run is about to terminate �/

/� Local functions �/

static void

set time step(),

set max step(),

make tsl(),

sort tsl(),

change pos on tsl(),

remove from tsl(),

add to tsl(),

process any other events(),

merge(),

stop run();

static double

230

sts before(),

sts after();

static BOOLEAN

event(),

do event(),

do event loop(),

collision();

/� End of preamble �/

void InitLoOrderPoly(particle)

int particle;

f

/�

� Calculates total force and �rst derivative on "particle" explicitly.

� Also �nds closest particle. If there is no interparticle gravity,

� only the force due to any external potential is calculated.

�

� Note: the high order terms MUST be initialized after calling this

� routine, but only after low order terms for ALL particles are up to

� date. Also, particle positions and velocities (i.e. ptr->pos and

� ptr->vel) must be up to date before calling (e.g. use

� PredictPosAndVelHiAll()).

�

�/

int i;

DATA T �ptr = Data[particle];

double rel pos[NUM PHYS DIM], rel vel[NUM PHYS DIM], r2, rv, w0, w1, w2;

/� Initialize �/

ZERO(ptr!f);

ZERO(ptr!f dot);

ZERO(ptr!d2);

ZERO(ptr!d3);

InitCp(particle);

/� Loop over other particles �/

for (i = 0; i < NumParticles; i++) f

if (i == particle)

continue;

/� Relative positions and velocities �/

SUB(Data[i]!pos, ptr!pos, rel pos);

SUB(Data[i]!vel, ptr!vel, rel vel);

r2 = DOT(rel pos, rel pos);

rv = DOT(rel pos, rel vel);

/� Check whether this is a "close" particle �/

if (r2 < EvolPar.cp zone sq) f

if (RunPar.self grav)

CheckForCp1(particle, i, CENTRE, Data[i]!pos, r2);

else if (rv < 0)

231

CheckForCp2(particle, i, Data[i]!pos, r2);

g

/� Skip next part if no interparticle gravity �/

if (!RunPar.self grav)

continue;

/� Add softening term if desired �/

if (RunPar.use softening)

r2 += MAX(ptr!radius sq, Data[i]!radius sq);

/� Useful quantities �/

w0 = 1 = r2;

w1 = Data[i]!mass � w0 � sqrt(w0);

w2 = 3 � rv � w0;

/� Total force (note rel pos is "backwards") �/

ptr!f[0] += w1 � rel pos[0];

ptr!f[1] += w1 � rel pos[1];

ptr!f[2] += w1 � rel pos[2];

/� First derivative �/

ptr!f dot[0] += (rel vel[0] - w2 � rel pos[0]) � w1;

ptr!f dot[1] += (rel vel[1] - w2 � rel pos[1]) � w1;

ptr!f dot[2] += (rel vel[2] - w2 � rel pos[2]) � w1;

g

/� Add contribution of ghost particles (f dot ignored) �/

if (GHOSTS)

AddGhostForce(particle);

/� Add force and derivative due to external potential as applicable �/

if (ROTATING FRAME) f /� Coriolis and linear term �/

ptr!f[0] += 2 � ptr!vel[1] + 3 � ptr!pos[0];

ptr!f[1] -= 2 � ptr!vel[0];

ptr!f[2] -= RunPar.g factor sq � ptr!pos[2];

ptr!f dot[0] += 2 � ptr!f[1] + 3 � ptr!vel[0];

ptr!f dot[1] -= 2 � ptr!f[0];

ptr!f dot[2] -= RunPar.g factor sq � ptr!vel[2];

g

else if (GALAXY FRAME) f /� Acceleration due to large galaxy �/

/� Origin is bulge of small galaxy; particle 0 is large galaxy �/

int k;

DATA T �ptri, �ptr0;

double mi, m0, ri2, r02, inv ri2, inv r02, inv ri3, inv r03, ai, a0,

�[NUM PHYS DIM], f0[NUM PHYS DIM];

ptri = ptr;

ptr0 = Data[0];

232

mi = BULGE MASS;

m0 = Data[0]!mass;

ri2 = DOT(ptri!pos, ptri!pos); /� From bulge to particle �/

r02 = DOT(ptr0!pos, ptr0!pos); /� From bulge to big galaxy �/

if (RunPar.use softening) f

ri2 += SQ(BULGE SCALE);

r02 += SQ(BULGE SCALE);

g

inv ri2 = 1 = ri2;

inv r02 = 1 = r02;

inv ri3 = inv ri2 � sqrt(inv ri2);

inv r03 = inv r02 � sqrt(inv r02);

for (k = 0; k < NUM PHYS DIM; k++) f

�[k] = - mi � ptri!pos[k] � inv ri3;

f0[k] = - m0 � ptr0!pos[k] � inv r03;

ptr!f[k] += �[k] + f0[k];

g

ai = DOT(ptri!pos, ptri!vel) � inv ri2;

a0 = DOT(ptr0!pos, ptr0!vel) � inv r02;

for (k = 0; k < NUM PHYS DIM; k++)

ptr!f dot[k] += (

- mi � ptri!vel[k] � inv ri3 - 3 � ai � �[k]

- m0 � ptr0!vel[k] � inv r03 - 3 � a0 � f0[k]

);

g /� GALAXY �/

/� Include gas drag if desired �/

if (RunPar.include drag) f

DRAG COEF T �ptrd = &RunPar.drag coef;

ptr!f[0] -= ptr!drag fac � ptrd!x � ptr!vel[0];

ptr!f[1] -= ptr!drag fac � ptrd!y � ptr!vel[1];

ptr!f[2] -= ptr!drag fac � ptrd!z � ptr!vel[2];

ptr!f dot[0] -= ptr!drag fac � ptrd!x � ptr!f[0];

ptr!f dot[1] -= ptr!drag fac � ptrd!y � ptr!f[1];

ptr!f dot[2] -= ptr!drag fac � ptrd!z � ptr!f[2];

if (ROTATING FRAME) f

ptr!f[1] -= ptr!drag fac � (1.5 � ptr!pos[0] � ptrd!y +

ptrd!hdot);

ptr!f dot[1] -= 1.5 � ptr!drag fac � ptrd!y � ptr!vel[0];

g

g

g

void InitHiOrderPoly(particle)

int particle;

f

/�

� Initializes second and third force derivative for "particle"

� and updates data arrays (including time-step).

233

�

� Note: This routine should only be called when low order terms

� of ALL other particles are up to date (see InitLoOrderPoly()).

�

�/

DATA T �ptr = Data[particle];

int i, k;

double rel pos[NUM PHYS DIM], rel vel[NUM PHYS DIM],

rel f[NUM PHYS DIM], rel f dot[NUM PHYS DIM];

/� Working variables... �/

double r2, rv, v2, rf, vf, rf dot, f1dotk, f2dotk, f3dotk, dt, w0, w1,

w2, w3, w4, w5, w6, w7, w8, w9;

/� Obtain second and third force derivatives �/

if (RunPar.self grav)

for (i = 0; i < NumParticles; i++) f

if (i == particle)

continue;

/� Relative positions, velocities, and forces �/

SUB(Data[i]!pos, ptr!pos, rel pos);

SUB(Data[i]!vel, ptr!vel, rel vel);

r2 = DOT(rel pos, rel pos);

rv = DOT(rel pos, rel vel);

v2 = DOT(rel vel, rel vel);

SUB(Data[i]!f, ptr!f, rel f);

SUB(Data[i]!f dot, ptr!f dot, rel f dot);

rf = DOT(rel pos, rel f);

vf = DOT(rel vel, rel f);

rf dot = DOT(rel pos, rel f dot);

if (RunPar.use softening)

r2 += MAX(ptr!radius sq, Data[i]!radius sq);

w0 = 1 = r2;

w1 = Data[i]!mass � w0 � sqrt(w0);

w2 = rv � w0;

w3 = w2 � w2;

w4 = 3 � w2;

w5 = 6 � w2;

w6 = 9 � w2;

w7 = 3 � ((v2 + rf) � w0 + w3);

w8 = 3 � w7;

w9 = (9 � vf + 3 � rf dot) � w0 + w4 � (w7 - 4 � w3);

/� Second and third force derivatives �/

for (k = 0; k < NUM PHYS DIM; k++) f

f1dotk = rel vel[k] - w4 � rel pos[k];

f2dotk = (rel f[k] - w5 � f1dotk - w7 � rel pos[k]) � w1;

f3dotk = (rel f dot[k] - w8 � f1dotk - w9 � rel pos[k]) � w1 -

w6 � f2dotk;

ptr!d2[k] += f2dotk;

234

ptr!d3[k] += f3dotk;

g

g /� for �/

/� External potentials �/

if (ROTATING FRAME) f

ptr!d2[0] += 2 � ptr!f dot[1] + 3 � ptr!f[0];

ptr!d2[1] -= 2 � ptr!f dot[0];

ptr!d2[2] -= RunPar.g factor sq � ptr!f[2];

ptr!d3[0] += 2 � ptr!d2[1] + 3 � ptr!f dot[0];

ptr!d3[1] -= 2 � ptr!d2[0];

ptr!d3[2] -= RunPar.g factor sq � ptr!f dot[2];

g

else if (GALAXY FRAME) f

DATA T �ptri, �ptr0;

double �[NUM PHYS DIM], f0[NUM PHYS DIM], � dot[NUM PHYS DIM],

f0 dot[NUM PHYS DIM], � 2dot[NUM PHYS DIM], f0 2dot[NUM PHYS DIM];

double mi, m0, ri2, r02, inv ri2, inv r02, inv ri3, inv r03, ai, a0,

bi, b0, ci, c0;

ptri = ptr;

ptr0 = Data[0];

mi = BULGE MASS;

m0 = ptr0!mass;

ri2 = DOT(ptri!pos, ptri!pos);

r02 = DOT(ptr0!pos, ptr0!pos);

if (RunPar.use softening) f

ri2 += SQ(BULGE SCALE);

r02 += SQ(BULGE SCALE);

g

inv ri2 = 1 = ri2;

inv r02 = 1 = r02;

inv ri3 = inv ri2 � sqrt(inv ri2);

inv r03 = inv r02 � sqrt(inv r02);

for (k = 0; k < NUM PHYS DIM; k++) f

�[k] = - mi � ptri!pos[k] � inv ri3;

f0[k] = - m0 � ptr0!pos[k] � inv r03;

g

ai = DOT(ptri!pos, ptri!vel) � inv ri2;

a0 = DOT(ptr0!pos, ptr0!vel) � inv r02;

for (k = 0; k < NUM PHYS DIM; k++) f

� dot[k] = - mi � ptri!vel[k] � inv ri3 - 3 � ai � �[k];

f0 dot[k] = - m0 � ptr0!vel[k] � inv r03 - 3 � a0 � f0[k];

g

bi = SQ(ai) + (DOT(ptri!vel, ptri!vel) + DOT(ptri!pos, ptri!f)) �

inv ri2;

b0 = SQ(a0) + (DOT(ptr0!vel, ptr0!vel) + DOT(ptr0!pos, ptr0!f)) �

inv r02;

235

for (k = 0; k < NUM PHYS DIM; k++) f

� 2dot[k] = - mi � ptri!f[k] � inv ri3 - 6 � ai � � dot[k] -

3 � bi � �[k];

f0 2dot[k] = - m0 � ptr0!f[k] � inv r03 - 6 � a0 � f0 dot[k] -

3 � b0 � f0[k];

ptr!d2[k] += � 2dot[k] + f0 2dot[k];

g

ci = c0 = 0;

for (k = 0; k < NUM PHYS DIM; k++) f

ci += (3 � ptri!vel[k] � ptri!f[k] +

ptri!pos[k] � ptri!f dot[k]) � inv ri2;

c0 += (3 � ptr0!vel[k] � ptr0!f[k] +

ptr0!pos[k] � ptr0!f dot[k]) � inv r02;

g

ci += ai � (3 � bi - 4 � SQ(ai));

c0 += a0 � (3 � b0 - 4 � SQ(a0));

for (k = 0; k < NUM PHYS DIM; k++)

ptr!d3[k] += (

- mi � ptri!f[k] � inv ri3 - 9 � ai � � 2dot[k] -

9 � bi � � dot[k] - 3 � ci � �[k]

- m0 � ptr0!f[k] � inv r03 - 9 � a0 � f0 2dot[k] -

9 � b0 � f0 dot[k] - 3 � c0 � f0[k]

);

g /� GALAXY �/

/� Add gas drag terms if desired �/

if (RunPar.include drag) f

DRAG COEF T �ptrd = &RunPar.drag coef;

ptr!d2[0] -= ptr!drag fac � ptrd!x � ptr!f dot[0];

ptr!d2[1] -= ptr!drag fac � ptrd!y � ptr!f dot[1];

ptr!d2[2] -= ptr!drag fac � ptrd!z � ptr!f dot[2];

ptr!d3[0] -= ptr!drag fac � ptrd!x � ptr!d2[0];

ptr!d3[1] -= ptr!drag fac � ptrd!y � ptr!d2[1];

ptr!d3[2] -= ptr!drag fac � ptrd!z � ptr!d2[2];

if (ROTATING FRAME) f

ptr!d2[1] -= 1.5 � ptr!drag fac � ptrd!y � ptr!f[0];

ptr!d3[1] -= 1.5 � ptr!drag fac � ptrd!y � ptr!f dot[0];

g

g

/� Initialize time-step, using max step if de�ned, unity otherwise �/

ptr!time step = (RunPar.max time step ? RunPar.max time step : 1);

/�

� Set time-step, noting that the force derivatives have not yet been

� converted to divided di�erences, so that a faster time-step

� algorithm (viz. sts before()) can be used if appropriate.

�

�/

set time step(particle, STS BEFORE);

236

/� Set last update time to current time �/

ptr!t0 = Clock.time;

/� Set remaining update times using constant steps before Clock.time �/

dt = ptr!time step;

ptr!t1 = Clock.time - dt;

ptr!t2 = Clock.time - 2 � dt;

ptr!t3 = Clock.time - 3 � dt;

/�

� Convert from Taylor series derivatives to divided di�erences and

� initialize primary coordinates and velocities.

�

�/

for (k = 0; k < NUM PHYS DIM; k++) f

ptr!d1[k] = (OneSixth � ptr!d3[k] � dt -

0.5 � ptr!d2[k]) � dt + ptr!f dot[k];

ptr!d2[k] = 0.5 � (ptr!d2[k] - ptr!d3[k] � dt);

ptr!d3[k] � = OneSixth;

/� Use reduced quantities for fast prediction �/

ptr!f[k] � = 0.5;

ptr!f dot[k] � = OneSixth;

g

COPY(ptr!pos, ptr!pos0);

COPY(ptr!vel, ptr!vel0);

g

void InitTsl()

f

/� Initializes time-step list �/

int i;

double dt = 0;

/� Make initial time-step list update interval 1/4 the average step �/

for (i = 0; i < NumParticles; dt += Data[i]!time step, i++)

/� (empty) �/;

Tsl.update interval = 0.25 � dt = NumParticles;

/� Try to stabilize on root N �/

Tsl.stab = sqrt((double) NumParticles);

Tsl.stab1 = Tsl.stab2 = 1 = 1.1; /� Will be 1 when �rst used �/

make tsl();

g

void Integrate()

f

/�

237

� Core of box tree: selects next particle on time-step list, sets

� new time accordingly, and checks for other events (data output,

� movie frame, etc.) that should be processed �rst. Integration

� proceeds by predicting position and velocity of selected particle

� to high order, obtaining force on particle, setting new di�erences,

� adding fourth order correction, checking for collisions and boundary

� conditions, setting new time-step, and checking for stop conditions.

� This process is repeated until termination time is reached.

�

� This routine is modeled on the fourth-order "Predictor-Evaluator-

� Corrector" algorithm described by Sverre J. Aarseth (1985) in

� Brackill J. U., Cohen B. I., eds, Multiple Time Scales, Academic

� Press, New York, p. 377.

�

�/

int k, particle;

DATA T �ptr;

double new time;

BOOLEAN exit loop = FALSE;

/� Working variables... �/

double dt, t1pr, t2pr, t12pr, dt06, dt19, dt12, dt34, dt32, dt20,

f0[NUM PHYS DIM], f2dotk, f4dotk, dt1, dt2, dt3, t3pr, s2, s3, s4, s5,

s6, s7, a1, a2, a3, a4, ak4, ak7, ak10;

/� Main loop �/

while(TRUE) f

/�

� Find next body to be treated and set new time, constructing

� new time-step list if necessary.

�

�/

if (Tsl.index == Tsl.num on list)

make tsl();

new time = Tsl.times[Tsl.index];

particle = Tsl.list[Tsl.index];

/� Error checks �/

if (ERROR CHECK && new time < Clock.time) f

(void) sprintf(ErrorStr, "new time %e < clock time %e", new time,

Clock.time);

Error(FATAL, "Integrate(): Backwards step.", ErrorStr);

g

if (ERROR CHECK && !APPROX EQ(new time, Data[particle]!t0 +

Data[particle]!time step)) f

(void) sprintf(ErrorStr, "particle %i (%i)", particle,

Data[particle]!orig index);

Error(FATAL, "Integrate(): Corrupted time-step list.", ErrorStr);

g

if (ERROR CHECK && new time > Clock.tsl time) f

(void) sprintf(ErrorStr, "new time %e > tsl time %e", new time,

238

Clock.tsl time);

Error(FATAL, "Integrate(): Time-step list out of date.", ErrorStr);

g

/� Check for termination �/

if (new time > RunPar.termination time) f

new time = RunPar.termination time;

exit loop = TRUE;

g

/� Update clock �/

Clock.time = new time;

/� Check whether anything else should be done �rst �/

process any other events();

/� Calculate new ghost box positions if applicable �/

if (ROTATING FRAME && GHOSTS)

UpdateBoxPos();

/� Exit loop if integration completed �/

if (exit loop) f

if (VERBOSE)

(void) printf("��� At termination...exiting Integrate()...nn");

last loop = TRUE;

process any other events();

SaveRestartData();

break;

g

/� Calculate position and velocity of particle to high order �/

ptr = Data[particle];

dt = Clock.time - ptr!t0; /� (same as ptr->time step) �/

if (dt � 0) f

(void) sprintf(ErrorStr, "particle %i (%i), dt = %e", particle,

ptr!orig index, dt);

Error(FATAL, "Integrate(): Invalid time-step.", ErrorStr);

g

t1pr = ptr!t0 - ptr!t1;

t2pr = ptr!t0 - ptr!t2;

t12pr = t1pr + t2pr;

dt06 = 0.6 � dt;

dt19 = OneNinth � dt;

dt12 = OneTwelfth � dt;

dt34 = 0.75 � dt;

dt32 = 1.5 � dt;

dt20 = dt + dt;

for (k = 0; k < NUM PHYS DIM; k++) f

f2dotk = ptr!d3[k] � t12pr + ptr!d2[k];

ptr!pos[k] = ((((ptr!d3[k] � dt06 + f2dotk) � dt12 +

239

ptr!f dot[k]) � dt + ptr!f[k]) � dt +

ptr!vel0[k]) � dt + ptr!pos0[k];

ptr!vel[k] = (((ptr!d3[k] � dt34 + f2dotk) � dt19 +

ptr!f dot[k]) � dt32 + ptr!f[k]) � dt20 + ptr!vel0[k];

f0[k] = 2 � ptr!f[k];

g

ptr!pos status = ptr!vel status = HI PRED;

/� Obtain current force and closest particle �/

if (RunPar.use tree)

CalcTreeForce(particle);

else

CalcDirectForce(particle);

/� Output data for current particle if desired �/

if (ptr!monitor && TRACK) f

(void) printf("TRACK %i (%i): t %.5e r %.1e %.1e %.1e", particle,

ptr!orig index, TIME, ptr!pos[0], ptr!pos[1], ptr!pos[2]);

(void) printf(" pf %.1e %.1e %.1enn", ptr!f[0], ptr!f[1],

ptr!f[2]); /� ("p" stands for "perturbing force"...) �/

if (ptr!cp.index == CP UNDEF)

(void) printf("no closest particle.nn");

else

(void) printf("cp %i (%i) box %i r2 %e step %enn",

ptr!cp.index, Data[ptr!cp.index]!orig index,

ptr!cp.box, ptr!cp.rel pos sq, ptr!time step);

g

/� Add force due to external potential as applicable �/

if (ROTATING FRAME) f /� Coriolis force and tidal term �/

ptr!f[0] += 2 � ptr!vel[1] + 3 � ptr!pos[0];

ptr!f[1] -= 2 � ptr!vel[0];

ptr!f[2] -= RunPar.g factor sq � ptr!pos[2];

g

else if (GALAXY FRAME) f /� Acceleration due to large galaxy �/

DATA T �ptri, �ptr0;

double mi, m0, ri2, r02, inv ri2, inv r02, f magi, f mag0;

ptri = ptr;

ptr0 = Data[0];

mi = BULGE MASS;

m0 = ptr0!mass;

PredictPosAndVelHi(ptr0);

ri2 = DOT(ptri!pos, ptri!pos);

r02 = DOT(ptr0!pos, ptr0!pos);

if (RunPar.use softening) f

ri2 += SQ(BULGE SCALE);

r02 += SQ(BULGE SCALE);

g

inv ri2 = 1 = ri2;

inv r02 = 1 = r02;

240

f magi = - mi � inv ri2 � sqrt(inv ri2);

f mag0 = - m0 � inv r02 � sqrt(inv r02);

ptr!f[0] += f magi � ptri!pos[0] + f mag0 � ptr0!pos[0];

ptr!f[1] += f magi � ptri!pos[1] + f mag0 � ptr0!pos[1];

ptr!f[2] += f magi � ptri!pos[2] + f mag0 � ptr0!pos[2];

g

/� Include gas drag if desired �/

if (RunPar.include drag) f

DRAG COEF T �ptrd = &RunPar.drag coef;

ptr!f[0] -= ptr!drag fac � ptrd!x � ptr!vel[0];

ptr!f[1] -= ptr!drag fac � ptrd!y � ptr!vel[1];

ptr!f[2] -= ptr!drag fac � ptrd!z � ptr!vel[2];

if (ROTATING FRAME)

ptr!f[1] -= ptr!drag fac � (1.5 � ptr!pos[0] � ptrd!y +

ptrd!hdot);

g

/� Set time intervals for new divided di�s and update times �/

dt1 = Clock.time - ptr!t1;

dt2 = Clock.time - ptr!t2;

dt3 = Clock.time - ptr!t3;

t3pr = ptr!t0 - ptr!t3;

s2 = t1pr � t2pr;

s3 = s2 � t3pr;

s4 = s2 + t3pr � t12pr;

s5 = t12pr + t3pr;

s6 = (((TwoThirds � dt + s5) � dt06 + s4) � dt12 + OneSixth � s3) � dt;

s7 = ((0.2 � dt + 0.25 � s5) � dt + OneThird � s4) � dt + 0.5 � s3;

ptr!t3 = ptr!t2;

ptr!t2 = ptr!t1;

ptr!t1 = ptr!t0;

ptr!t0 = Clock.time;

a1 = 1 = dt;

a2 = 1 = dt1;

a3 = 1 = dt2;

a4 = SQ(dt) = dt3;

/� Form new di�erences and include 4th-order semi-iteration �/

for (k = 0; k < NUM PHYS DIM; k++) f

ak4 = (ptr!f[k] - f0[k]) � a1;

ak7 = (ak4 - ptr!d1[k]) � a2;

ak10 = (ak7 - ptr!d2[k]) � a3;

f4dotk = (ak10 - ptr!d3[k]) � a4;

ptr!d1[k] = ak4;

ptr!d2[k] = ak7;

ptr!d3[k] = ak10;

ptr!pos[k] += f4dotk � s6;

ptr!vel[k] += f4dotk � s7;

ptr!f[k] � = 0.5;

ptr!f dot[k] = OneSixth � ((ak10 � dt1 + ak7) � dt + ak4);

g

241

/�

� Check for collision or boundary crossing. If there is a

� collision with closest neighbour, particle updates are

� handled in collision() (or merge() if appropriate).

�

�/

if (RunPar.use softening jj !collision(&particle)) f

/� No collision, so check for boundary crossing �/

int i, bc event;

BOOLEAN update root = FALSE;

/�

� Apply b.c.'s if particle now outside central box

� (or outside tree in case of unbounded system).

� Otherwise save start-of-step positions and set new

� time-step for particle.

�

�/

bc event = ApplyBndryCond(particle);

switch (bc event) f

case BC NONE:

COPY(ptr!pos, ptr!pos0);

COPY(ptr!vel, ptr!vel0);

set time step(particle, STS AFTER);

break;

case BC TREE:

break; /� (init'ns performed in ApplyBndryCond()) �/

case BC BOX:

for (i = 0; i < NumParticles; i++)

if (i 6= particle)

PredictPosAndVelHi(Data[i]);

InitLoOrderPoly(particle);

InitHiOrderPoly(particle);

update root = TRUE; /� (c.f. MoveInTree()) �/

break;

default:

(void) sprintf(ErrorStr, "event = %i", bc event);

Error(FATAL, "Integrate(): Unknown BC event.", ErrorStr);

g

if (bc event 6= BC TREE) f

/� Move particle in tree if applicable �/

if (ptr!in tree) f

if (TreePar.use move) /� Faster... �/

MoveInTree(particle, update root);

else f /� More accurate... �/

RemoveFromTree(particle);

PlaceInTree(particle, UPDATE, Root);

g

g

/�

� Put current body back on time-step list if necessary.

242

� Otherwise increment list index.

�

�/

if (Clock.time + ptr!time step < Clock.tsl time)

change pos on tsl(particle);

else

++Tsl.index;

g

g /� if �/

/� Increment step counter �/

++Counter[TIME STEPS];

/� Check for stop condition �/

if (RunPar.stop check && Counter[TIME STEPS] % RunPar.stop check == 0 &&

fopen("STOP", "r") 6= NULL) f

(void) unlink("STOP"); /� Remove STOP from directory �/

stop run("User STOP request detected.");

g

/� Also check for CPU time limit expiration �/

if (RunPar.cpu check && Counter[TIME STEPS] % RunPar.cpu check == 0 &&

TotalCpu() � RunPar.run time)

stop run("CPU time limit exceeded.");

/� Perform safety dump if required �/

if (RunPar.safety dump && Counter[TIME STEPS] % RunPar.safety dump == 0)

SaveRestartData();

/� Finally, stamp log �le if required �/

if (Log�le && RunPar.time stamp &&

Counter[TIME STEPS] % RunPar.time stamp == 0)

TimeStamp();

g /� while �/

g

#define MAX INC FAC 1.2 /� Maximum allowed fractional time-step increase �/

static void set time step(particle, sts func)

int particle;

double (�sts func)();

f

/�

� Calculates new time-step for "particle" using formula speci�ed

� in RunPar.tsf opt. The function "sts func" should point to one

� of sts before() and sts after(), depending on whether particle

� force data contains Taylor series derivatives or divided

� di�erences, respectively. The function is used for the RV AND F

� and F ONLY time-step formula options, and is ignored for the

� RV ONLY option. Closest particle data is used with RV ONLY and

� RV AND F, and is ignored for the F ONLY option.

�

243

�/

int k, opt = RunPar.tsf opt;

DATA T �ptr = Data[particle];

CP T �cp = &(ptr!cp);

double new step, tiny step;

if (RunPar.use softening) /� (no collisions, opt must be F ONLY) �/

new step = sts func(ptr);

else f

double rel vel[NUM PHYS DIM], rel vel sq, rdotv, sum radii sq;

rel vel sq = rdotv = sum radii sq = 0;

/� Message if no close neighbour found �/

if (opt == RV ONLY && cp!index == CP UNDEF) f

if (ERROR CHECK) f

(void) sprintf(ErrorStr, "particle %i (%i) time %g", particle,

ptr!orig index, TIME);

Error(WARNING2, "set time step(): No close neighbour.",

ErrorStr);

g

set max step(ptr);

return;

g

/� Calculate relative velocity of neighbouring particle �/

if (cp!index 6= CP UNDEF)

for (k = 0; k < NUM PHYS DIM; k++)

rel vel sq += SQ(rel vel[k] = ptr!vel[k] - cp!vel[k]);

/� Message if relative velocity is zero �/

if (opt == RV ONLY && rel vel sq == 0) f

if (ERROR CHECK) f

(void) sprintf(ErrorStr, "%i (%i) & %i (%i) time %g", particle,

ptr!orig index, cp!index, Data[cp!index]!orig index,

TIME);

Error(WARNING2, "set time step(): CP has zero rel. vel.",

ErrorStr);

g

set max step(ptr);

return;

g

/� Calculate r dot v �/

if (cp!index 6= CP UNDEF)

for (k = 0; k < NUM PHYS DIM; k++)

rdotv += (ptr!pos[k] - cp!pos[k]) � rel vel[k];

sum radii sq = SQ(ptr!radius + cp!radius);

/� Set new time-step, �rst checking for missed collision �/

if (rdotv < 0 && cp!rel pos sq < sum radii sq) f

if (ERROR CHECK) f

(void) sprintf(ErrorStr, "%i (%i) & %i (%i) time %e r2 %e",

244

particle, ptr!orig index, cp!index,

Data[cp!index]!orig index, TIME, cp!rel pos sq);

Error(WARNING2, "set time step(): Missed collision?", ErrorStr);

g

new step = 0.01 � (Data[cp!index]!t0 + Data[cp!index]!time step

- Clock.time); /� Magic formula... �/

g

else f

if (opt == RV ONLY jj (opt == RV AND F && rdotv < 0)) f

double dum dbl;

dum dbl = cp!rel pos sq - RunPar.cp fac sq � sum radii sq;

if (ERROR CHECK && dum dbl � 0) f

(void) sprintf(ErrorStr, "%i (%i) & %i (%i) t %e r2 %e",

particle, ptr!orig index, cp!index,

Data[cp!index]!orig index, TIME, cp!rel pos sq);

Error(WARNING2, "set time step(): Overlapping particles.",

ErrorStr);

dum dbl = sum radii sq;

g

new step = RunPar.time step coef � sqrt(dum dbl = rel vel sq);

g

else

new step = sts func(ptr);

g

g /� if no colliders �/

/� Limit time-step increase to factor of MAX INC FAC �/

new step = MIN(new step, MAX INC FAC � ptr!time step);

/� New step must be no smaller than minimum step (if de�ned) �/

if (new step < RunPar.min time step) f

new step = RunPar.min time step;

++Counter[MIN TIME STEPS];

g

/� Determine smallest possible step consistent with round-o� error �/

tiny step = 1.0e-15 � MAX(1, Clock.time);

/� Message if step smaller than smallest allowable step �/

if (new step < tiny step) f

if (ERROR CHECK) f

(void) sprintf(ErrorStr, "%i (%i) & %i (%i), dt = %e < %e",

particle, ptr!orig index, cp!index,

Data[cp!index]!orig index, new step, tiny step);

Error(WARNING2, "set time step(): Very short step.", ErrorStr);

g

new step = tiny step;

g

/� Check whether maximum time-step exceeded �/

if (RunPar.max time step && new step > RunPar.max time step) f

new step = RunPar.max time step;

++Counter[MAX TIME STEPS];

245

g

/� Finally, assign new step �/

ptr!time step = new step;

g

static void set max step(ptr)

DATA T �ptr;

f

/� Assigns maximum time-step to "ptr" (or else a large increase) �/

if (RunPar.self grav) f

ptr!time step � = MAX INC FAC;

if (RunPar.max time step && ptr!time step > RunPar.max time step) f

ptr!time step = RunPar.max time step;

++Counter[MAX TIME STEPS];

g

g

else if (RunPar.max time step) f

ptr!time step = RunPar.max time step;

++Counter[MAX TIME STEPS];

g

else

ptr!time step � = 2; /� Large increase if no maximum step �/

g

#undef MAX INC FAC

static double sts before(ptr)

DATA T �ptr;

f

/� Returns time-step based on Taylor series force derivatives of "ptr" �/

double f, fd, f2d, f3d, fd2, f2d2, dt2;

f = ABS(ptr!f[0]) + ABS(ptr!f[1]) + ABS(ptr!f[2]);

fd = ABS(ptr!f dot[0]) + ABS(ptr!f dot[1]) + ABS(ptr!f dot[2]);

f2d = ABS(ptr!d2[0]) + ABS(ptr!d2[1]) + ABS(ptr!d2[2]);

f3d = ABS(ptr!d3[0]) + ABS(ptr!d3[1]) + ABS(ptr!d3[2]);

fd2 = SQ(ptr!f dot[0]) + SQ(ptr!f dot[1]) + SQ(ptr!f dot[2]);

f2d2 = SQ(ptr!d2[0]) + SQ(ptr!d2[1]) + SQ(ptr!d2[2]);

if (f2d2 == 0 && (fd == 0 jj f3d == 0)) f

(void) sprintf(ErrorStr, "fd = %e, f3d = %e, f2d2 = %e", fd, f3d, f2d2);

Error(FATAL, "sts before(): Zero divisor.", ErrorStr);

g

dt2 = RunPar.time step coef � (f � f2d + fd2) = (fd � f3d + f2d2);

return sqrt(dt2);

g

static double sts after(ptr)

DATA T �ptr;

f

/� Returns time-step based on divided di�erences of "ptr" �/

int k;

double dt, dt1, s, f dot[NUM PHYS DIM], f 2dot[NUM PHYS DIM], f, fd,

246

f2d, f3d, fd2, f2d2, dt2;

dt = ptr!t0 - ptr!t1;

dt1 = ptr!t0 - ptr!t2;

s = dt + dt1;

for (k = 0; k < NUM PHYS DIM; k++) f

f dot[k] = ptr!d2[k] � dt + ptr!d1[k];

f 2dot[k] = ptr!d3[k] � s + ptr!d2[k];

g

f = 2 � (ABS(ptr!f[0]) + ABS(ptr!f[1]) + ABS(ptr!f[2]));

fd = ABS(f dot[0]) + ABS(f dot[1]) + ABS(f dot[2]);

f2d = 2 � (ABS(f 2dot[0]) + ABS(f 2dot[1]) + ABS(f 2dot[2]));

f3d = 6 � (ABS(ptr!d3[0]) + ABS(ptr!d3[1]) + ABS(ptr!d3[2]));

fd2 = SQ(f dot[0]) + SQ(f dot[1]) + SQ(f dot[2]);

f2d2 = 4 � (SQ(f 2dot[0]) + SQ(f 2dot[1]) + SQ(f 2dot[2]));

if (f2d2 == 0 && (fd == 0 jj f3d == 0)) f

(void) sprintf(ErrorStr, "fd = %e, f3d = %e, f2d2 = %e", fd, f3d, f2d2);

Error(FATAL, "sts after(): Zero divisor.", ErrorStr);

g

dt2 = RunPar.time step coef � (f � f2d + fd2) = (fd � f3d + f2d2);

return sqrt(dt2);

g

#define MAX NUM TSL LOOPS 100 /� Warning if make tsl() loops more than this �/

static void make tsl()

f

/� Constructs time-step list �/

int i, list index, counter;

double time;

Tsl.num on list = counter = 0;

/� Loop until at least one particle is on list �/

while (Tsl.num on list == 0) f

if (counter++ == MAX NUM TSL LOOPS)

Error(WARNING1, "make tsl(): Possible infinite loop.", "");

list index = 0;

Clock.tsl time += Tsl.update interval;

/� Add particles whose update times are less than Clock.tsl time �/

for (i = 0; i < NumParticles; i++)

if ((time = Data[i]!t0 + Data[i]!time step) < Clock.tsl time) f

if (list index == MAX NUM ON TSL) f

list index = -1;

break;

g

Tsl.list[list index] = i;

Tsl.times[list index++] = time;

247

g

/� Try again if list �lled up, using smaller interval �/

if (list index == -1) f /� (list �lled up) �/

Clock.tsl time -= Tsl.update interval;

Tsl.update interval � = 0.65;

continue;

g

/� Otherwise save number selected (terminates loop) �/

Tsl.num on list = list index;

/� Stabilize list membership �/

if (Tsl.short step) f

Tsl.stab1 = MAX(0.9 � Tsl.stab1, 0.25);

Tsl.stab2 = MAX(0.9 � Tsl.stab2, 0.5);

g

else f

Tsl.stab1 = MIN(1.1 � Tsl.stab1, 2.0);

Tsl.stab2 = MIN(1.1 � Tsl.stab2, 4.0);

g

if (list index > Tsl.stab2 � Tsl.stab)

Tsl.update interval � = 0.75;

else if (list index < Tsl.stab1 � Tsl.stab)

Tsl.update interval � = 1.25;

g /� while �/

/� Sort list �/

sort tsl();

g

#undef MAX NUM TSL LOOPS

static void sort tsl()

f

/� Sorts time-step list in chronological order �/

Sort2(Tsl.num on list, Tsl.times, Tsl.list);

/� Initialize (point to �rst particle on list) �/

Tsl.index = 0;

Tsl.short step = FALSE;

g

static void change pos on tsl(particle)

int particle;

f

/�

� Moves tsl data for given particle to appropriate position in

� sorted list. Only current Integrate() particle (pointed to by

� Tsl.index) and later particles may be so moved.

�/

int i, new index;

248

double time = Data[particle]!t0 + Data[particle]!time step;

BOOLEAN particle found = FALSE;

/� Remove particle data from lists �/

for (i = Tsl.index; i < Tsl.num on list; i++)

if (Tsl.list[i] == particle) f

particle found = TRUE;

remove from tsl(i);

break;

g

if (ERROR CHECK && !particle found) f

(void) sprintf(ErrorStr, "particle %i (%i)", particle,

Data[i]!orig index);

Error(FATAL, "change pos on tsl(): Not on active list.", ErrorStr);

g

/� Find new location for particle in time-ordered sequential list �/

Locate(Tsl.times, Tsl.num on list, time, &new index);

if (ERROR CHECK && new index < Tsl.index)

Error(FATAL, "change pos on tsl(): Corrupted time-step list.", "");

/� Place particle in new position �/

add to tsl(new index, particle, time);

/� Set ag so that list update interval will be reduced on next pass �/

Tsl.short step = TRUE;

g

static void remove from tsl(list index)

int list index;

f

/� Removes particle at "list index" from tsl �/

int i;

if (ERROR CHECK) f

if (list index < Tsl.index)

Error(FATAL, "remove from tsl(): Entry out of date.", "");

if (Tsl.num on list == 0)

Error(FATAL, "remove from tsl(): No particles on list!", "");

g

--Tsl.num on list;

for (i = list index; i < Tsl.num on list; i++) f

Tsl.list[i] = Tsl.list[i + 1];

Tsl.times[i] = Tsl.times[i + 1];

g

g

static void add to tsl(list index, particle, time)

int list index, particle;

double time;

f

249

/� Adds "particle" (update time "time") to tsl at "list index" �/

int i;

if (ERROR CHECK && (time < Clock.time jj list index < Tsl.index))

Error(FATAL, "add to tsl(): Attempt to add outdated entry.", "");

if (Tsl.num on list == MAX NUM ON TSL)

Error(FATAL, "add to tsl(): List overflow.", "");

for (i = Tsl.num on list++; i > list index; i--) f

Tsl.list[i] = Tsl.list[i - 1];

Tsl.times[i] = Tsl.times[i - 1];

g

Tsl.list[i] = particle; /� (i == list index) �/

Tsl.times[i] = time;

g

static void process any other events()

f

/�

� Calls output, movie, and/or check routines if their clocks show times

� before "Clock.time" (or if "last loop" is TRUE and the clock times

� equal "Clock.time"). Note that approximate comparison macros are used

� to minimize rounding anomalies. Only Integrate() should call this

� function.

�

�/

int i;

double clock time;

/� Save current time �/

clock time = Clock.time;

/� Loop while any clock is still behind �/

while (do event())

for (i = 0; i < NUM TIMERS; i++)

while (do event loop(i)) f

Clock.time = Clock.timer[i];

switch (i) f

case OUTPUT:

LongOutput();

break;

case STATS:

OutputStats();

break;

case DAT:

OutputDat();

break;

case EVOL:

CalcEvolPar();

break;

case MOVIE:

MakeMovieFrame();

break;

case CHECK:

250

if (DebugPar.check tree) f

if (VERBOSE)

(void) printf("Tree check, time %g...nn", TIME);

CheckTree(Root);

if (VERBOSE)

(void) printf("No errors detected.nn");

g

if (DebugPar.check multipoles)

CheckMultipolePrediction();

if (DebugPar.check force)

CheckForce();

break;

default:

(void) sprintf(ErrorStr, "event = %i", i);

Error(FATAL,

"process any other events(): Unknown event.",

ErrorStr);

g

Clock.timer[i] += RunPar.interval[i];

Clock.time = clock time;

g

g

static BOOLEAN event(timer)

int timer;

f

/� Returns TRUE if event associated with "timer" should happen soon �/

return (RunPar.interval[timer] &&

(APPROX LT(Clock.timer[timer], Clock.time) jj

(last loop && APPROX EQ(Clock.timer[timer], Clock.time))));

g

static BOOLEAN do event()

f

/� Returns TRUE if there is an unprocessed event �/

int i;

for (i = 0; i < NUM TIMERS; i++)

if (event(i))

return TRUE;

return FALSE;

g

static BOOLEAN do event loop(timer)

int timer;

f

/� Returns TRUE if it is time to do event associated with "timer" �/

int i;

/� Should it happen soon? �/

if (!event(timer))

return FALSE;

/� Do any other events take precedence? �/

251

for (i = 0; i < NUM TIMERS; i++)

if (i 6= timer && event(i) && (i < timer ?

Clock.timer[i] � Clock.timer[timer] :

Clock.timer[i] < Clock.timer[timer]))

return FALSE;

/� Then do it �/

return TRUE;

g

static BOOLEAN collision(particle1)

int �particle1;

f

/�

� Returns TRUE and performs necessary calculations (mergers, time-step

� updates, etc.) if real particle "�particle1" is due to collide with

� "cp->index" (box "cp->box"). Note that "�particle1" is assumed to

� be the current particle in Integrate(), so that prediction is only

� required for the second particle. The second particle may be a

� ghost.

�

� Note: The ADDRESS of the �rst particle is passed in case there is a

� merger and the actual index must be changed.

�

�/

int i, k, particle2, box2;

DATA T �ptr1 = Data[�particle1], �ptr2;

CP T �cp = &(ptr1!cp);

/� Working variables... �/

double sum radii sq, �pos1, �pos2, init vel1[NUM PHYS DIM],

init vel2[NUM PHYS DIM], init spin1[NUM PHYS DIM],

init spin2[NUM PHYS DIM], old gpe = 0, old pos1[NUM PHYS DIM],

old pos2[NUM PHYS DIM], old vel1[NUM PHYS DIM], old vel2[NUM PHYS DIM],

old dist, new dist, adj dist, fraction, rel pos[NUM PHYS DIM],

rel vel[NUM PHYS DIM], r2, v2, rdotv, new gpe = 0, r, v, net mass, semi,

time2;

/� No collision if no close particle found �/

if (cp!index == CP UNDEF)

return FALSE;

/� Get closest particle info and store as particle2 �/

particle2 = cp!index;

box2 = cp!box;

ptr2 = Data[particle2];

sum radii sq = SQ(ptr1!radius + ptr2!radius);

/� Calculate new separation following update of �rst particle �/

for (cp!rel pos sq = 0.0, k = 0; k < NUM PHYS DIM; k++)

cp!rel pos sq += SQ(rel pos[k] = cp!pos[k] - ptr1!pos[k]);

252

/� No collision if particles do not overlap �/

if (cp!rel pos sq � sum radii sq)

return FALSE;

/� Make sure particles are still approaching each other �/

for (rdotv = 0.0, k = 0; k < NUM PHYS DIM; k++)

rdotv += rel pos[k] � (cp!vel[k] - ptr1!vel[k]);

if (rdotv � 0)

return FALSE;

/� Predict particle2 to high order and repeat checks �/

PredictPosAndVelHi(ptr2);

COPY(ptr2!pos, cp!pos);

if (box2 6= CENTRE) f

ADD BOX OFFSET(cp!pos, box2);

WRAP(cp!pos);

g

COPY(ptr2!vel, cp!vel);

ADD BOX SHEAR(cp!vel, box2);

for (cp!rel pos sq = 0.0, k = 0; k < NUM PHYS DIM; k++)

cp!rel pos sq += SQ(rel pos[k] = cp!pos[k] - ptr1!pos[k]);

if (cp!rel pos sq � sum radii sq) f

(void) sprintf(ErrorStr, "%i (%i) & %i (%i), r2 = %e", �particle1,

ptr1!orig index, particle2, ptr2!orig index, cp!rel pos sq);

Error(WARNING2, "collision(): Near miss?", ErrorStr);

return FALSE;

g

for (rdotv = 0.0, k = 0; k < NUM PHYS DIM; k++)

rdotv += rel pos[k] � (cp!vel[k] - ptr1!vel[k]);

if (rdotv � 0) f

(void) sprintf(ErrorStr, "%i (%i) & %i (%i), rdotv = %e", �particle1,

ptr1!orig index, particle2, ptr2!orig index, rdotv);

Error(WARNING2, "collision(): Near miss?", ErrorStr);

return FALSE;

g

/�

� Predict pos & vel of all other particles to high order NOW for 2 reasons:

� 1) Need accurate positions for energy check/velocity adjustment.

� 2) Need to reinitialize colliding particles at the end anyway.

�

�/

for (i = 0; i < NumParticles; i++)

if (i 6= �particle1 && i 6= particle2)

PredictPosAndVelHi(Data[i]);

/�

� Adjust positions of colliders (outward along their relative position

253

� vector) so that the particles just touch, saving current GPE and

� collider positions & velocities �rst so that tzam/total energy

� corrections may be made.

�

�/

COPY(ptr1!pos, old pos1);

COPY(ptr2!pos, old pos2);

COPY(ptr1!vel, old vel1);

COPY(ptr2!vel, old vel2);

old dist = sqrt(cp!rel pos sq);

new dist = ptr1!radius + ptr2!radius;

if (ERROR CHECK jj RunPar.conserve total energy) f

if (ROTATING FRAME)

old gpe = - ptr1!mass � ptr2!mass = old dist;

else

old gpe = Gpe();

g

/� One half overlap distance �/

adj dist = 0.5 � (new dist = old dist - 1);

fraction = old dist = new dist;

if (ERROR CHECK && fraction < 0.9) f

(void) sprintf(ErrorStr, "r / (R1 + R2) = %e", fraction);

Error(WARNING2, "collision(): Large overlap.", ErrorStr);

g

/� New relative position vector = (1 + 2 adj dist) times original �/

for (cp!rel pos sq = rdotv = 0.0, k = 0; k < NUM PHYS DIM; k++) f

ptr1!pos[k] -= adj dist � rel pos[k];

cp!pos[k] += adj dist � rel pos[k];

rel pos[k] = cp!pos[k] - ptr1!pos[k];

cp!rel pos sq += SQ(rel pos[k]);

rdotv += rel pos[k] � (cp!vel[k] - ptr1!vel[k]);

g

COPY(cp!pos, ptr2!pos);

SUB BOX OFFSET(ptr2!pos, box2);

/�

� Since positions have been adjusted, velocities must be corrected

� for shear if applicable.

�

�/

if (ROTATING FRAME) f

ptr1!vel[1] += 1.5 � (old pos1[0] - ptr1!pos[0]);

ptr2!vel[1] += 1.5 � (old pos2[0] - ptr2!pos[0]);

COPY(ptr2!vel, cp!vel);

ADD BOX SHEAR(cp!vel, box2);

for (rdotv = 0.0, k = 0; k < NUM PHYS DIM; k++)

rdotv += rel pos[k] � (cp!vel[k] - ptr1!vel[k]);

g

254

/� Check rdotv once again �/

if (rdotv � 0) f

(void) sprintf(ErrorStr, "%i (%i) & %i (%i), rdotv = %e", �particle1,

ptr1!orig index, particle2, ptr2!orig index, rdotv);

Error(FATAL, "collide(): No longer colliding after adj.", ErrorStr);

g

/�

� Get new GPE if applicable and adjust velocities so that total

� energy remains constant (rdotv will not change sign). This

� procedure is only approximate for the rotating frame as central

� potential and other particles are not taken into account.

�

�/

if (ERROR CHECK jj RunPar.conserve total energy) f

if (ROTATING FRAME)

new gpe = - ptr1!mass � ptr2!mass = new dist;

else

new gpe = Gpe();

g

if (RunPar.conserve total energy) f

double inv r2, vdotr, v1r[NUM PHYS DIM], v2r[NUM PHYS DIM], alpha, vfac;

inv r2 = 1 = cp!rel pos sq;

vdotr = DOT(ptr1!vel, rel pos) � inv r2;

for (k = 0; k < NUM PHYS DIM; k++)

v1r[k] = vdotr � rel pos[k];

vdotr = DOT(cp!vel, rel pos) � inv r2;

for (k = 0; k < NUM PHYS DIM; k++)

v2r[k] = vdotr � rel pos[k];

alpha = (ptr1!mass � DOT(v1r, v1r) + ptr2!mass � DOT(v2r, v2r));

vfac = 1 - 2 � (new gpe - old gpe) = alpha;

if (vfac > 1 jj vfac < 0.9) f

if (ERROR CHECK) f

(void) sprintf(ErrorStr, "vfac = %f", vfac);

Error(WARNING2, "collide(): Unable to adjust velocities.", "");

g

DebugPar.total energy adj -= new gpe - old gpe;

g

else f

vfac = sqrt(vfac);

for (rdotv = 0.0, k = 0; k < NUM PHYS DIM; k++) f

ptr1!vel[k] += (vfac - 1) � v1r[k];

cp!vel[k] += (vfac - 1) � v2r[k];

g

COPY(cp!vel, ptr2!vel);

SUB BOX SHEAR(ptr2!vel, box2);

255

for (rdotv = 0.0, k = 0; k < NUM PHYS DIM; k++)

rdotv += rel pos[k] � (cp!vel[k] - ptr1!vel[k]);

g

g

else if (ERROR CHECK)

DebugPar.total energy adj -= new gpe - old gpe;

/� Correct tzam if desired �/

if (ERROR CHECK) f

if (ROTATING FRAME)

DebugPar.tzam adj -= ptr1!mass � (old vel1[1] - ptr1!vel[1] +

2 � (old pos1[0] - ptr1!pos[1])) + ptr2!mass � (old vel2[1] -

ptr2!vel[1] + 2 � (old pos2[0] - ptr2!pos[1]));

else if (INERTIAL FRAME)

DebugPar.tzam adj -= ptr1!mass � (CROSS Z(ptr1!pos, ptr1!vel) -

CROSS Z(old pos1, old vel1)) + ptr2!mass � (CROSS Z(ptr2!pos,

ptr2!vel) - CROSS Z(old pos2, old vel2));

if (box2 6= CENTRE)

DebugPar.tzam adj -= ptr2!mass � BOX SIZE � ptr2!vel[1];

g

/� Collision con�rmed...increment counters �/

++Counter[COLLISIONS];

if (box2 6= CENTRE)

++Counter[GHOST COLLISIONS];

/�

� Copy particle positions and velocities to working arrays for

� easier manipulation. This was not done earlier because collision

� was not yet con�rmed but cp info was being updated.

�

�/

pos1 = ptr1!pos;

pos2 = cp!pos;

for (v2 = 0.0, k = 0; k < NUM PHYS DIM; k++) f

init vel1[k] = ptr1!vel[k];

init vel2[k] = cp!vel[k]; /� Ghost corrected �/

v2 += SQ(init vel2[k] - init vel1[k]);

init spin1[k] = ptr1!spin[k];

init spin2[k] = ptr2!spin[k];

g

r2 = cp!rel pos sq;

r = sqrt(r2); /� Distance between particles �/

v = sqrt(v2); /� Magnitude of relative velocity �/

net mass = ptr1!mass + ptr2!mass;

semi = 1 = (2 = r - v2 = net mass); /� In�nite for parabola!... �/

/� Output info �/

(void) printf(" %sCOLLISION: %i (%i) & %i (%i), t = %e v = %enn",

(box2 6= CENTRE ? "GHOST " : ""), �particle1, ptr1!orig index,

particle2, ptr2!orig index, TIME, v);

256

/� Update ags for 1st body (2nd body updated later if applicable) �/

if (ptr1!last collider == ptr2!orig index)

++ptr1!num collisions;

else f

ptr1!last collider = ptr2!orig index;

ptr1!num collisions = 1;

++Counter[FIRST TIME COLLISIONS];

g

/� Merge if small radial velocity (less than 1% escape velocity) �/

if (RunPar.allow mergers && v2 < 0.0002 � net mass = r) f

merge("RV < 1% esc vel", particle1, particle2, pos2, init vel2);

return TRUE;

g

/� Calculate and display more quantities if desired �/

if (VERY VERBOSE) f

double x, ecc, peri, apog;

x = 1 - r = semi;

ecc = sqrt(SQ(x) + SQ(rdotv) = (net mass � semi));

peri = (1 - ecc) � semi;

apog = (1 + ecc) � semi;

(void) printf(" a = %g e = %g r p = %g r a = %gnn", semi, ecc,

peri, apog);

g

/�

� Calculate post-collision velocities. Note that if particle2 is a

� ghost, the velocity of the REAL particle is adjusted, since it

� would collide with the ghost of particle1 anyway, presumably at

� the next time-step. The shear correction to the y-velocity of the

� second particle is removed later (unless there is a forced merger).

�

�/

Bounce(ptr1, ptr2, pos1, pos2, init vel1, init vel2, init spin1, init spin2,

ptr1!vel, ptr2!vel, ptr1!spin, ptr2!spin);

/� Save non-local viscosity data if desired �/

if (!EMPTY STR(RunPar.nlv �lename)) f

if (pos1[0] > pos2[0])

OutputNlvData(ptr1!mass, (pos1[0] - pos2[0]) �

(ptr1!vel[1] - init vel1[1]));

else

OutputNlvData(ptr2!mass, (pos2[0] - pos1[0]) �

(ptr2!vel[1] - init vel2[1]));

g

/� Determine new semi-major axis for pair �/

for (v2 = rdotv = 0.0, k = 0; k < NUM PHYS DIM; k++) f

v2 += SQ(rel vel[k] = ptr2!vel[k] - ptr1!vel[k]);

rdotv += rel pos[k] � rel vel[k];

g

257

semi = 1 = (2 = r - v2 = net mass);

/� Display more info �/

if (VERY VERBOSE)

(void) printf(" Post-col'n rel vel %g, semi-major axis %gnn",

sqrt(v2), semi);

/�

� If particles are still bound (a > 0), force merger if semi-major axis

� is inside sum of radii or if new pericentre distance is OUTSIDE sum

� of radii and semi-major axis is less than 5 times sum of particle

� radii. Skip this section if mergers aren't allowed.

�

�/

if (RunPar.allow mergers && semi > 0) f

double sum of radii = ptr1!radius + ptr2!radius;

if (sum of radii > semi) f

merge("a < r1 + r2", particle1, particle2, pos2, ptr2!vel);

++Counter[FORCED MERGERS];

return TRUE;

g

if (semi < 5 � sum of radii) f /� Would perturbation check be better? �/

double x, new peri;

x = 1 - r = semi;

new peri = (1 - sqrt(SQ(x) + SQ(rdotv) = (net mass � semi))) � semi;

if (APPROX GT(new peri, sum of radii)) f

merge("r1 + r2 < rp", particle1, particle2, pos2, ptr2!vel);

++Counter[FORCED MERGERS];

return TRUE;

g

g

g

/� Since second particle survived, update its counters �/

if (ptr2!last collider == ptr1!orig index)

++ptr2!num collisions;

else f

ptr2!last collider = ptr1!orig index;

ptr2!num collisions = 1;

g

/� If 2nd particle is a ghost, must now remove o�set and shear �/

if (box2 6= CENTRE) f

if (ERROR CHECK) f /� Correct tzam �/

double glz, lz;

glz = ptr2!mass � CROSS Z(pos2, ptr2!vel);

SUB BOX SHEAR(ptr2!vel, box2);

lz = ptr2!mass � CROSS Z(ptr2!pos, ptr2!vel);

DebugPar.tzam adj -= lz - glz;

g

258

else

SUB BOX SHEAR(ptr2!vel, box2);

g

/� Check for boundary crossings (both particles!) �/

if (ApplyBndryCond(�particle1) == BC TREE)

return TRUE;

if (ApplyBndryCond(particle2) == BC TREE)

return TRUE;

/� Initialize force polynomials �/

InitLoOrderPoly(�particle1);

InitLoOrderPoly(particle2);

InitHiOrderPoly(�particle1);

InitHiOrderPoly(particle2);

/�

� Both particles must now be removed from tree (if applicable) and

� replaced in order to �x c-o-m and quadrupole moments of cells.

�

�/

if (ptr1!in tree)

RemoveFromTree(�particle1);

if (ptr2!in tree)

RemoveFromTree(particle2);

if (ptr1!in tree)

PlaceInTree(�particle1, UPDATE, Root);

if (ptr2!in tree)

PlaceInTree(particle2, UPDATE, Root);

/� Must now update tsl data for SECOND particle if necessary �/

time2 = ptr2!t0 + ptr2!time step;

for (i = Tsl.index + 1; i < Tsl.num on list; i++)

if (Tsl.list[i] == particle2) f

if (time2 < Clock.tsl time)

change pos on tsl(particle2);

else

remove from tsl(i);

break;

g

if (i == Tsl.num on list && time2 < Clock.tsl time) f

for (i = Tsl.index + 1; i < Tsl.num on list; i++)

if (time2 < Tsl.times[i])

break;

add to tsl(i, particle2, time2);

g

/� Finally, put �rst particle back on time-step list if necessary �/

if (Clock.time + ptr1!time step < Clock.tsl time)

change pos on tsl(�particle1);

else

++Tsl.index;

259

return TRUE;

g

static void merge(msg, particle1, particle2, pos2, vel2)

char �msg;

int �particle1, particle2;

double �pos2, �vel2;

f

/�

� Merges "particle1" and "particle2" and removes "particle2" from all

� global lists. "pos2" and "vel2" should be the ghost-corrected

� position and velocity, respecitvely, of the second particle. "msg"

� should contain a message describing the reason why a merger occured.

�

�/

int i, k;

DATA T �ptr1 = Data[�particle1], �ptr2 = Data[particle2], �ptr;

double mass1, mass2, mass, radius, inertia, com pos[NUM PHYS DIM],

com vel[NUM PHYS DIM], lin mom[NUM PHYS DIM], ang mom[NUM PHYS DIM],

old ke = 0, old gpe = 0;

BOOLEAN particle2 in tree;

/� Properties of new particle �/

mass = (mass1 = ptr1!mass) + (mass2 = ptr2!mass);

radius = Radius(mass);

inertia = MomentOfInertia(mass, radius);

/� Output info �/

(void) printf(" MERGER (%s): %i (%i) & %i (%i), mass %i / M = %gnn",

msg, �particle1, ptr1!orig index, particle2, ptr2!orig index,

�particle1, mass1 = mass);

/� Increment counter �/

++Counter[MERGERS];

/� Remove both particles from tree now if applicable �/

if (ptr1!in tree)

RemoveFromTree(�particle1);

if (ptr2!in tree)

RemoveFromTree(particle2);

/� Get various quantities before merger �/

for (k = 0; k < NUM PHYS DIM; k++) f

com pos[k] = (mass1 � ptr1!pos[k] + mass2 � pos2[k]) = mass;

lin mom[k] = (mass1 � ptr1!vel[k] + mass2 � vel2[k]);

com vel[k] = lin mom[k] = mass;

g

GetAngMom(mass1, ptr1!pos, ptr1!vel, ptr1!inertia, ptr1!spin, mass2,

pos2, vel2, ptr2!inertia, ptr2!spin, ang mom);

if (ERROR CHECK jj RunPar.conserve total energy) f

old ke = 0.5 � (mass1 � DOT(ptr1!vel, ptr1!vel) +

mass2 � DOT(vel2, vel2) +

260

ptr1!inertia � DOT(ptr1!spin, ptr1!spin) +

ptr2!inertia � DOT(ptr2!spin, ptr2!spin));

old gpe = Gpe();

g

/� Set position and velocity of �rst particle to be c-o-m values �/

COPY(com pos, ptr1!pos);

COPY(com vel, ptr1!vel);

/�

� Set mass, radius, moment of inertia, drag factor, and spin, assuming

� new particle becomes spheroid and angular momentum is conserved.

�

�/

ptr1!mass = mass;

ptr1!radius = radius;

ptr1!radius sq = SQ(radius);

ptr1!inertia = inertia;

ptr1!drag fac = DragFactor(mass);

for (k = 0; k < NUM PHYS DIM; k++)

ptr1!spin[k] = ang mom[k] = inertia;

/� Output some quantities if desired �/

if (VERBOSE) f

(void) printf(" New mass %8.2e radius %8.2e ", mass, radius);

(void) printf("spin x %+8.1e y %+8.1e z %+8.1enn", ptr1!spin[0],

ptr1!spin[1], ptr1!spin[2]);

g

particle2 in tree = ptr2!in tree; /� Flag if particle 2 was in tree �/

/� Deallocate memory held by particle2 �/

free((char �) ptr2);

/� Decrement number of particles �/

--NumParticles;

/�

� Shift down Data array to �ll in space just vacated and decrement

� tree node indices (if applicable) that have index > particle2.

�

�/

if (�particle1 > particle2)

--�particle1;

for (i = particle2; i < NumParticles; i++) f

ptr = Data[i] = Data[i + 1];

if (particle2 in tree && i 6= �particle1)

(ptr!node)!child[ptr!node index].leaf = i;

g

/� Also remove particle2 from tsl if necessary and update �/

261

for (i = Tsl.index + 1; i < Tsl.num on list; i++)

if (Tsl.list[i] == particle2) f

remove from tsl(i);

break;

g

for (i = Tsl.index; i < Tsl.num on list; i++)

if (Tsl.list[i] > particle2)

--Tsl.list[i];

/� Energy adjustment �/

if (ERROR CHECK jj RunPar.conserve total energy) f

double new ke;

new ke = 0.5 � (DOT(lin mom, lin mom) = mass +

DOT(ang mom, ang mom) = inertia);

DebugPar.collision dke += new ke - old ke;

DebugPar.total energy adj -= (Gpe() - old gpe) + (new ke - old ke);

g

/� Check boundary conditions for merged body �/

if (ApplyBndryCond(�particle1) == BC TREE) f

--Tsl.index;

return;

g

/� Now set new force polynomial and time-step for merged body �/

InitLoOrderPoly(�particle1);

InitHiOrderPoly(�particle1);

/� Put merged particle in place of �rst particle in tree �/

if (ptr1!in tree && particle2 in tree) /� Both must have been in tree �/

PlaceInTree(�particle1, UPDATE, Root);

/� Finally, put particle back on TSL if necessary �/

if (Clock.time + ptr1!time step < Clock.tsl time)

change pos on tsl(�particle1);

else

++Tsl.index;

g

static void stop run(msg)

char �msg;

f

/� Temporarily halts integration �/

LongOutput();

SaveRestartData();

(void) printf("Restart data saved in n"%sn".nn", SaveFilename);

Error(HALT, msg, "");

g

262

/� integrate.c �/

B.1.13 make tree.c

The main routines for creating the tree and inserting new particles are in this �le. There

are three global functions: MakeTree(), which constructs a tree starting at Root given the

size and geometric centre; PlaceInTree(), which inserts a given particle into a given node;

and GetIndex(), which returns the index of the subnode containing a given particle in a

given node. There are also three local functions: make new node(), used in conjunction

with MakeTree() and PlaceInTree() for creating a new tree node; pack(), to initiate

node packing (cf. x3.4.4); and copy info(), to copy node information when turning a leaf

into a branch. The comments in the code are fairly extensive, so the reader is referred to

the source for further information.

/�

� make tree.c { DCR 91-04-25

� ===========================

� Routines for constructing tree.

�

� Global functions: MakeTree(), PlaceInTree(), GetIndex().

�

�/

/� Include �les �/

#include "box tree.h"

/� Local functions �/

static NODE T �make new node();

static void pack(), copy info();

/� End of preamble �/

void MakeTree(root size, root centre)

double root size, �root centre;

f

/�

� A call to this routine will build a particle tree, size "root size",

� centre "root centre". Top tree node is returned as Root.

�

�/

int i;

if (ERROR CHECK && NumParticles == 0)

Error(FATAL, "MakeTree(): No particles to place in tree!", "");

/� Allocate memory for root node (also reset children data) �/

Root = make new node();

/� Initialize root node �/

Root!parent = NULL;

Root!tree index = 0;

Root!size = root size;

263

Root!half size = 0.5 � root size;

COPY(root centre, Root!centre);

/� Place all requested particles in tree �/

for (i = 0; i < NumParticles; i++)

if (Data[i]!in tree)

PlaceInTree(i, NO UPDATE, Root);

/� Fast moment calculation �/

CalcTreeMoments(Root);

/� Check tree size and cumulative total of leaves �/

if (ERROR CHECK) f

if (Root!size 6= TREE SIZE) f

(void) sprintf(ErrorStr, "Root->size = %g", Root!size);

Error(FATAL, "MakeTree(): Inconsistent tree size.", ErrorStr);

g

if (Root!num leaves 6= NumParticles - TreePar.num excluded) f

(void) sprintf(ErrorStr, "Root->num leaves = %i", Root!num leaves);

Error(FATAL, "MakeTree(): Missing leaves!", ErrorStr);

g

g

g

#define FORCE UPDATE(ag) ((ag) == NO UPDATE ? NO UPDATE : UPDATE)

void PlaceInTree(particle, update, node)

int particle, update;

NODE T �node;

f

/�

� Places "particle" in tree at position "Data[particle]->pos", starting

� at branch "node". Branch moment updating is controlled through

� "update": if NO UPDATE, no updating is performed whatsoever (useful

� for quick tree construction { see MakeTree()); if set to

� UPDATE CHILDREN, only children of "node" (on �rst call) are updated

� (used when particle is moving completely within node { see

� MoveInTree()); if UPDATE, the original node and all its a�ected

� children are updated (see, for example, merge() in integrate.c).

�

�/

int child index;

CHILD T �child;

NODE T �new node;

/� Determine subnode (child) to which particle belongs at this node �/

child index = GetIndex(particle, Data[particle]!pos, node);

if (ERROR CHECK && child index == -1) f

(void) sprintf(ErrorStr, "particle %i (%i) %s", particle,

Data[particle]!orig index, NodeInfo(node));

Error(FATAL, "PlaceInTree(): Particle outside its node.", ErrorStr);

g

264

/� Assign pointer to child cell �/

child = &node!child[child index];

/� Decide what needs to be done to add particle to tree �/

switch (node!child type[child index]) f

case EMPTY:

/� Child node is empty, so make it a leaf �/

node!child type[child index] = LEAF;

child!leaf = particle;

Data[particle]!node = node;

Data[particle]!node index = child index;

break;

case BRANCH:

/�

� Child is a branch node, so move down hierarchy. Note that

� moment updating is forced unless no updating at all has

� been requested.

�

�/

PlaceInTree(particle, FORCE UPDATE(update), child!branch);

break;

case LEAF:

/�

� Child is a leaf node already, so make a branch. First check,

� however, if maximum node level will be exceeded (or if node

� already packed), in which case particle should be packed in

� CURRENT node. Updating is forced if packed particle is new

� to this node, but should be o� otherwise.

�

�/

if (node!packed jj TreeLevel(node) == MAX TREE LEVEL) f

if (!node!packed && MONITOR && VERY VERBOSE) f

(void) sprintf(ErrorStr, "%i (%i) time %g (%s)",

particle, Data[particle]!orig index, TIME,

NodeInfo(node));

Error(WARNING2, "PlaceInTree(): Node packing invoked.",

ErrorStr);

g

pack(node, particle);

break;

g

new node = make new node();

/�

� Copy branch information and place other particle in new

265

� branch, using start-of-step position in case particle

� has actually left node at current time.

�

�/

copy info(node, new node, child index, update, child!leaf);

/� Update child data for this node �/

node!child type[child index] = BRANCH;

child!branch = new node;

/� Place original particle in new node �/

PlaceInTree(particle, FORCE UPDATE(update), new node);

break;

default:

(void) sprintf(ErrorStr, "type = %inn",

node!child type[child index]);

Error(FATAL, "PlaceInTree(): Unknown node type.", ErrorStr);

g /� switch �/

/� Finally, update branch moments if desired for this node �/

if (update == UPDATE)

UpdateBranchMoments(ADDM, particle, node);

g

#undef FORCE UPDATE

int GetIndex(particle, pos, node)

int particle;

double �pos;

NODE T �node;

f

/�

� Returns index of particle "particle" (pos'n "pos") in node "node".

� Halts with error message if particle outside tree, but returns index

� -1 if particle only outside node (used in MoveInTree()). Note

� particle index actually used only in error message.

�

� In 2D, the node indexing is as follows (looking down on the xy-plane):

�

� +|+|+

� j 2 j 3 j

� +|+|+

� j 0 j 1 j

� +|+|+

�

� In 3D, the bottom layer is as for 2D, with the top layer labeled

� from 4 to 7 in an analogous manner.

�

� Note: problems can arise if PRECISION is not a sensible value...

�

�/

266

int k, index = 0;

double rel pos k;

for (k = 0; k < NUM TREE DIM; k++) f

rel pos k = pos[k] - node!centre[k];

if (APPROX GT(ABS(rel pos k), node!half size)) f

if (ABS(pos[k] - Root!centre[k]) > Root!half size) f

(void) sprintf(ErrorStr, "%i (%i) x %g y %g z %g t %g",

particle, Data[particle]!orig index, pos[0], pos[1],

(NUM TREE DIM == 3 ? pos[2] : 0), TIME);

Error(FATAL, "GetIndex(): Particle outside tree.", ErrorStr);

g

else

return -1;

g

if (rel pos k > 0)

index += ChildIndexO�set[k];

g

return index;

g

static NODE T �make new node()

f

/� Allocates memory for one node, returning pointer to it �/

int i, k;

NODE T �new node;

/� Allocate memory �/

if ((new node = (NODE T �) malloc(sizeof(NODE T))) == NULL)

Error(FATAL, "make new node(): Unable to create new node.", "");

/� Initialize EVERYTHING for safety �/

new node!tree index = new node!node index = -1;

new node!parent = NULL;

new node!size = new node!half size = new node!max ext =

new node!max size = new node!max size sq = new node!mass = 0;

for (k = 0; k < NUM TREE DIM; k++)

new node!centre[k] = 0;

for (i = 0; i < MAX NUM CHILDREN; i++) f

new node!child type[i] = EMPTY;

new node!child[i].leaf = -1;

g

new node!num leaves = 0;

for (k = 0; k < NUM PHYS DIM; k++)

new node!pos0[k] = new node!pos[k] = new node!vel[k] =

new node!f[k] = new node!f dot[k] = 0;

for (i = 0; i < NUM QUAD ELEM; i++)

new node!q mom0[i] = new node!q mom[i] = new node!q dot[i] =

new node!q 2dot[i] = new node!q 3dot[i] = 0;

267

new node!mt0 = new node!qt0 = 0;

new node!mts = new node!qts = HUGE VAL;

new node!extended = new node!packed = FALSE;

/� Return pointer to new node �/

return new node;

g

static void pack(node, particle)

NODE T �node;

int particle;

f

/�

� Places "particle" in �rst available cell in "node", regardless of

� particle position. Intended for use in (rare) situations when

� required node level exceeds MAX NODE LEVEL (for example, when x and

� y positions of 3D particle in 2D tree overlap to some extent.)

�

�/

int i;

/� Set ag (stays on until node is destroyed) �/

node!packed = TRUE;

/� Find �rst available cell �/

for (i = 0; i < MAX NUM CHILDREN; i++) f

if (node!child type[i] == EMPTY)

break;

if (ERROR CHECK && node!child type[i] == BRANCH) f

(void) sprintf(ErrorStr, "%s", NodeInfo(node));

Error(FATAL, "pack(): Found branch in node.", ErrorStr);

g

g

/� Crash if node is full (hopefully this will never happen!) �/

if (i == MAX NUM CHILDREN) f

(void) sprintf(ErrorStr, "%s", NodeInfo(node));

Error(FATAL, "pack(): Node is full!", ErrorStr);

g

/� Place particle in cell �/

node!child type[i] = LEAF;

node!child[i].leaf = particle;

/� Update particle data �/

Data[particle]!node = node;

Data[particle]!node index = i;

/� Increment counter �/

++Counter[PACKINGS];

g

268

static void copy info(old node, new node, index, update, particle)

NODE T �old node, �new node;

int index, update, particle;

f

/�

� Makes "new node" a child branch of "old node" at "index", and places

� particle "particle" (start-of-step position "Data[particle]->pos0")

� inside it. Updating is controlled through "update" (see PlaceInTree()).

�

�/

int k, particle index;

/� Copy/extrapolate information from parent node �/

new node!parent = old node;

new node!node index = index;

new node!tree index = old node!tree index � MAX NUM CHILDREN + index + 1;

new node!half size = 0.5 � (new node!size = old node!half size);

/� Calculate centre of new node �/

for (k = 0; k < NUM TREE DIM; k++)

new node!centre[k] = old node!centre[k] +

ChildCoordO�set[k][index] � new node!half size;

/� Set node and node index for particle in Data array �/

particle index = GetIndex(particle, Data[particle]!pos0, new node);

if (ERROR CHECK && particle index == -1) f

(void) sprintf(ErrorStr, "particle %i (%i) %s", particle,

Data[particle]!orig index, NodeInfo(new node));

Error(FATAL, "copy info(): Particle outside its node.", ErrorStr);

g

Data[particle]!node = new node;

Data[particle]!node index = particle index;

/� Place particle information in child leaf �/

new node!child type[particle index] = LEAF;

new node!child[particle index].leaf = particle;

/�

� Set leaf count and mass of new node if updating is requested. Note

� that SECOND particle should be added before last return from

� PlaceInTree().

�

�/

if (update 6= NO UPDATE) f

new node!num leaves = 1;

new node!mass = Data[particle]!mass;

g

g

/� make tree.c �/

269

B.1.14 misc.c

This �le contains 30 global routines ranging from simple functions (e.g. Radius()) to

more involved procedures (e.g. SaveRestartData()). There are a few system calling

routines, such as a function to return the current date, so a number of system header

�les are included at the beginning. There are two local functions, save tree data()

and read tree data() which are recursive procedures for use with SaveRestartData()

and ReadRestartData(). The reader is referred to the source for descriptions of all the

routines. Functions to note are InitMassFunc() for calculating equation (3.1), Gpe() for

determining the gravitational potential energy, InitCP() for initializing closest-particle

data, Error() for error handling, and Terminate() to cleanly exit box tree. There

are also various routines for �nding closest particles (depending on whether interparticle

gravity is included in the simulation) and for predicting particle and node positions and

velocities to high order (the low order procedures are coded as in-line macros in macros.h).

The routines for measuring the elapsed CPU are also found in this �le.

/�

� misc.c { DCR 91-05-03

� ======================

� Miscellaneous useful routines for box tree code.

�

� Global functions: GetDate(), GetHost(), InitMassFunc(), EstMeanMass(),

� Radius(), Mass(), Density(), RocheRadius(), MomentOfInertia(),

� DragFactor(), Median(), Gpe(), Boolean(), MakeFilename(), CurrentIndex(),

� InitCp(), CheckForCp1(), CheckForCp2(), CheckForCp3(),

� PredictPosAndVelHi(), PredictPosAndVelHiAll(), PredictPosAndQMomAll(),

� ElapsedCpu(), TotalCpu(), TimeStamp(), BackupFile(), SaveRestartData(),

� ReadRestartData(), Error(), Terminate().

�

�/

/� Include �les �/

#include "box tree.h"

#ifndef SYSV

include <sys/errno.h> /� For perror() �/

include <sys/param.h> /� For GetHost() �/

include <sys/time.h> /� For GetDate() & ElapsedCpu() �/

include <sys/resource.h> /� Must be AFTER <sys/time.h> �/

#endif

/� Local functions �/

static void save tree data(), read tree data();

char �GetDate()

f

#ifndef SYSV

/� Returns current date and time �/

static char date[MAX STR LEN];

struct timeval tp;

struct timezone tzp;

/� Get seconds elapsed since 00:00 GMT, January 1, 1970 (zero hour) �/

if (gettimeofday(&tp, &tzp))

270

return "unknown date";

/� Convert to more conventional format, and strip o� nn at end �/

(void) strcpy(date, asctime(localtime(&tp.tv sec)));

date[strlen(date) - 1] = 'n0';

return date;

#else

return "unknown date";

#endif

g

char �GetHost()

f

#ifndef SYSV

/� Returns host machine name if available �/

static char hostname[MAXHOSTNAMELEN]; /� De�ned in <sys/param.h> �/

if (gethostname(hostname, MAXHOSTNAMELEN))

return "unknown host";

return hostname;

#else

return "unknown host";

#endif

g

#define M0 RunPar.init min mass /� Useful abbreviations �/

#define M1 RunPar.init max mass

#define GAMMA RunPar.mass exponent

double InitMassFunc(frac)

double frac;

f

/� Returns mass corresponding to fraction "frac" in mass function �/

double g1 = 1 + GAMMA;

return M0 � pow(1 + frac � (pow(M1 = M0, g1) - 1), 1 = g1);

g

double EstMeanMass()

f

/� Returns estimate of mean mass given mass function �/

double mm;

if (M0 == M1)

mm = M0;

else if (GAMMA == -2)

mm = (M0 � M1 = (M1 - M0)) � log(M1 = M0);

else f

double g1 = 1 + GAMMA, g2 = 2 + GAMMA;

mm = (g1 = g2) � M0 � (pow(M1 = M0, g2) - 1) = (pow(M1 = M0, g1) - 1);

g

if (RunPar.seed mass)

271

mm = (RunPar.seed mass + (NumParticles - 1) � mm) = NumParticles;

return mm;

g

#undef M0

#undef M1

#undef GAMMA

double Radius(mass)

double mass;

f

/� Returns radius corresponding to given spherical mass �/

return pow(mass = (FourThirds � PI � RunPar.density), OneThird);

g

double Mass(radius)

double radius;

f

/� Returns inverse of Radius() �/

return FourThirds � PI � CUBE(radius) � RunPar.density;

g

double Density(mass, radius)

double mass, radius;

f

/� Returns density of sphere �/

return mass = (FourThirds � PI � CUBE(radius));

g

double RocheRadius(mass)

double mass;

f

/� Returns Roche radius for spherical mass �/

return pow(OneThird � mass, OneThird);

g

double MomentOfInertia(mass, radius)

double mass, radius;

f

/� Returns moment of inertia of uniform solid sphere about any diameter �/

return 0.4 � mass � SQ(radius);

g

double DragFactor(mass)

double mass;

f

/� Returns drag factor for uniform solid spherical mass �/

return pow(mass, - OneThird);

g

double Median(n, x)

int n;

double �x;

272

f

/� Returns median of �rst n elements of double precision array x �/

int nm = n = 2;

Sort(n, x);

return (n % 2 ? x[nm] : 0.5 � (x[nm - 1] + x[nm]));

g

double Gpe()

f

/�

� Returns gravitational potential energy of system (central particles

� only). Particle positions are assumed to be predicted to correct

� order. Currently only INERTIAL FRAME is supported.

�

�/

int i, j;

DATA T �ptri, �ptrj;

double gpe, gpei, dx, dy, dz, r2;

if (!RunPar.self grav jj !INERTIAL FRAME)

return 0.0;

gpe = 0;

for (i = 0; i < NumParticles - 1; i++) f

ptri = Data[i];

gpei = 0;

for (j = i + 1; j < NumParticles; j++) f

ptrj = Data[j];

dx = ptrj!pos[0] - ptri!pos[0];

dy = ptrj!pos[1] - ptri!pos[1];

dz = ptrj!pos[2] - ptri!pos[2];

r2 = SQ(dx) + SQ(dy) + SQ(dz);

if (RunPar.use softening)

r2 += MAX(ptri!radius sq, ptrj!radius sq);

gpei -= ptrj!mass = sqrt(r2);

g

gpe += ptri!mass � gpei;

g

return gpe;

g

char �Boolean(value)

BOOLEAN value;

f

/� Returns address of string label corresponding to Boolean "value" �/

if (value == FALSE)

return "FALSE";

if (value == TRUE)

return "TRUE";

return "INVALID";

g

273

char �MakeFilename(basename, �lenumber, extension)

char �basename, �extension;

int �lenumber;

f

/�

� Returns address of character string formed by concatenation of

� "basename", "�lenumber", and "extension". Note �lename is held in

� static memory, so this routine can only be used to form one string

� at a time. Also, "extension" should include pre�x "." if desired.

� If "�lenumber" exceeds maximum number of allowed digits, NULL is

� returned in place of string.

�

�/

static char �lename[MAX FILENAME LEN]; /� Storage �/

int i, j, num digits;

char �lenumber str[MAX NUM FILENUM DIGITS + 1];

if (�lenumber < 0) f

(void) sprintf(ErrorStr, "filenumber = %i", �lenumber);

Error(FATAL, "MakeFilename(): Negative filenumber passed.", ErrorStr);

g

if (�lenumber � EXP10(MAX NUM FILENUM DIGITS)) f

Error(WARNING2, "MakeFilename(): Filenumber exceeds maximum.", "");

return NULL;

g

num digits = (�lenumber == 0 ? 1 : log10((double) �lenumber) + 1);

(void) sprintf(�lenumber str, "%i", �lenumber);

for (i = 0; i < MAX NUM FILENUM DIGITS - num digits; i++) f

for (j = MAX NUM FILENUM DIGITS; j > i; j--)

�lenumber str[j] = �lenumber str[j - 1];

�lenumber str[i] = '0';

g

(void) sprintf(�lename, "%s%s%s", basename, �lenumber str, extension);

return �lename;

g

int CurrentIndex(orig index)

int orig index;

f

/�

� Returns current index of particle with original index "orig index".

� Returns -1 if particle not found (e.g. if particle has merged with

� another). Note that if particles can only be removed, then search

� could begin at orig index and proceed DOWNWARDS until found...

�

�/

int i;

for (i = 0; i < NumParticles; i++)

if (Data[i]!orig index == orig index)

274

return i;

return -1;

g

void InitCp(particle)

int particle;

f

/� Initializes closest-particle structure for "particle" �/

CP T �cp = &(Data[particle]!cp);

cp!index = cp!box = CP UNDEF;

cp!radius = 0;

cp!rel pos sq = HUGE VAL;

ZERO(cp!pos);

ZERO(cp!vel);

g

void CheckForCp1(particle0, particle, box, pos, r2)

int particle0, particle, box;

double �pos, r2;

f

/�

� Checks if "particle" ("box", "pos", square distance "r2") is closest

� particle to "particle0", and updates cp info if so. This routine

� should be used if interparticle gravity is switched on.

�

�/

CP T �cp = &(Data[particle0]!cp);

if (r2 < cp!rel pos sq) f

DATA T �ptr = Data[particle];

cp!index = particle;

cp!box = box;

cp!radius = ptr!radius;

cp!rel pos sq = r2;

PREDICT VEL LO(ptr);

COPY(pos, cp!pos);

COPY(ptr!vel, cp!vel);

ADD BOX SHEAR(cp!vel, box);

g

g

void CheckForCp2(particle0, particle, pos, r2)

int particle0, particle;

double �pos, r2;

f

/�

� Same as CheckForCp1() but for case of no interparticle gravity

� and approaching (central) particles (rdotv < 0). Intended for use

� with InitLoOrderPoly() as a faster version of CheckForCp3().

�

�/

CP T �cp = &(Data[particle0]!cp);

275

if (r2 < cp!rel pos sq) f

DATA T �ptr = Data[particle];

cp!index = particle;

cp!box = CENTRE;

cp!radius = ptr!radius;

cp!rel pos sq = r2;

COPY(pos, cp!pos);

COPY(ptr!vel, cp!vel);

g

g

void CheckForCp3(particle0, particle, box, pos, r2, rel pos)

int particle0, particle, box;

double �pos, r2, �rel pos;

f

/�

� Same as CheckForCp1() but for no interparticle gravity. Note that

� the relative position ("rel pos") should be passed to this routine,

� for e�cient calculation of rdotv.

�

�/

DATA T �ptr0 = Data[particle0], �ptr = Data[particle];

CP T �cp = &(ptr0!cp);

double vel[NUM PHYS DIM], rdotv;

PREDICT VEL LO(ptr);

COPY(ptr!vel, vel);

ADD BOX SHEAR(vel, box);

rdotv = rel pos[0] � (ptr0!vel[0] - vel[0]) +

rel pos[1] � (ptr0!vel[1] - vel[1]) +

rel pos[2] � (ptr0!vel[2] - vel[2]);

if (rdotv < 0 && r2 < cp!rel pos sq) f

cp!index = particle;

cp!box = box;

cp!radius = ptr!radius;

cp!rel pos sq = r2;

COPY(pos, cp!pos);

COPY(vel, cp!vel);

g

g

void PredictPosAndVelHi(ptr)

DATA T �ptr;

f

/� Predicts pos. & vel. of particle pointed to by "ptr" to high order �/

int k;

double f2dotk, dt1, dt;

if ((ptr!pos status == NO PRED && ptr!vel status == NO PRED) jj

(ptr!pos status == HI PRED && ptr!vel status == HI PRED))

return;

dt1 = (ptr!t0 - ptr!t1) + (ptr!t0 - ptr!t2);

dt = Clock.time - ptr!t0;

276

for (k = 0; k < NUM PHYS DIM; k++) f

f2dotk = ptr!d3[k] � dt1 + ptr!d2[k];

ptr!pos[k] = ((((0.05 � ptr!d3[k] � dt + OneTwelfth � f2dotk) � dt +

ptr!f dot[k]) � dt + ptr!f[k]) � dt + ptr!vel0[k]) � dt +

ptr!pos0[k];

ptr!vel[k] = (((0.25 � ptr!d3[k] � dt + OneThird � f2dotk) � dt +

3 � ptr!f dot[k]) � dt + 2 � ptr!f[k]) � dt + ptr!vel0[k];

g

ptr!pos status = ptr!vel status = HI PRED;

g

void PredictPosAndVelHiAll()

f

/� Predicts position and velocity of all particles to high order �/

static double last time = 0;

int i;

if (last time == Clock.time)

return;

for (i = 0; i < NumParticles; i++) f

Data[i]!pos status = Data[i]!vel status = UN PRED;

PredictPosAndVelHi(Data[i]);

g

last time = Clock.time;

g

void PredictPosAndQMomAll(node)

NODE T �node;

f

/� Predicts pos. and quad. mom's of tree nodes, starting at "node" �/

int i;

if (TreePar.pred mono)

PREDICT COM POS(node);

if (TreePar.use quad && TreePar.pred quad)

PREDICT Q MOM(node);

for (i = 0; i < MAX NUM CHILDREN; i++)

if (node!child type[i] == BRANCH)

PredictPosAndQMomAll(node!child[i].branch);

g

#define ONE SIXTIETH 0.01666666666666666667 /� Useful fraction �/

double ElapsedCpu()

f

#ifndef SYSV

/� Returns total CPU usage (in minutes) since program start �/

struct rusage tb;

(void) getrusage(RUSAGE SELF, &tb);

277

return ONE SIXTIETH � (tb.ru utime.tv sec + tb.ru stime.tv sec);

#else

return 0.0;

#endif

g

#undef ONE SIXTIETH

double TotalCpu()

f

/�

� Returns total CPU usage (in minutes) since start of �rst run.

� (EvolPar.total cpu is needed to keep track of CPU over restarts).

�

�/

static double last time = 0;

double time, elapsed time;

elapsed time = (time = ElapsedCpu()) - last time;

last time = time;

return (EvolPar.total cpu += elapsed time);

g

void TimeStamp()

f

/� Puts time stamp in log �/

(void) fprintf(Log�le, "%s TIME = %.3e CPU min = %.3e Nsteps = %linn",

GetDate(), TIME, ElapsedCpu(), Counter[TIME STEPS]);

g

int BackupFile(�lename, marker)

char ��lename, marker; /�ARGSUSED�/

f

#ifndef SYSV

/�

� Moves "�lename" to "�lename" + 'marker'. Returns 0 on success,

� otherwise returns -1 and gives warning (plus system error message)

� if I/O error occurs.

�

�/

char backup �lename[MAX FILENAME LEN];

if (EMPTY STR(�lename))

return 0;

/� Reset external error ag �/

errno = 0;

/� Append marker �/

(void) sprintf(backup �lename, "%s%c", �lename, marker);

/� Perform move if possible �/

278

if (rename(�lename, backup �lename) 6= 0 && errno 6= ENOENT) f

Error(IO, "BackupFile()", backup �lename);

return -1;

g

if (errno 6= ENOENT && VERBOSE)

(void) printf("[Old n"%sn" moved to n"%sn".]nn", �lename,

backup �lename);

return 0;

#else

return -1;

#endif

g

#define WRITE(ptr, size, num) n

if (fwrite((char �) ptr, size, num, save �le) 6= num) fn

Error(IO, msg, SaveFilename);n

(void) fclose(save �le);n

return;n

g

void SaveRestartData()

f

/�

� Performs binary dump of all data needed for exact restart. Note

� that all saved memory addresses are meaningless and must be

� reassigned when reading (c.f. ReadRestartData()).

�

�/

char �msg = "SaveRestartData() (aborting save)";

int i, dum;

FILE �save �le;

/� Get new CPU total (stored in EvolPar.total cpu) �/

(void) TotalCpu();

/�

� If desired, �rst move existing save �le (if any) to backup �le

� (SaveFilename with RunPar.save �le index appended) and increment

� index if no error occurs. The old �le will be overwritten if it

� cannot be moved.

�

�/

if (RunPar.num save �les > 0 &&

BackupFile(SaveFilename, '0' + RunPar.save �le index) == 0 &&

++RunPar.save �le index == RunPar.num save �les)

RunPar.save �le index = 0;

/� Open save �le �/

(void) printf("Saving restart data to n"%sn" (program time %f).nn",

SaveFilename, TIME);

if ((save �le = fopen(SaveFilename, "w")) == NULL) f

Error(IO, "SaveRestartData()", SaveFilename);

279

return;

g

/� Save unalterable params.h parameters for error check on restart �/

dum = NUM PHYS DIM;

WRITE(&dum, sizeof(int), 1);

dum = NUM TREE DIM;

WRITE(&dum, sizeof(int), 1);

dum = MAX NUM PARTICLES;

WRITE(&dum, sizeof(int), 1);

dum = MAX NUM ON TSL;

WRITE(&dum, sizeof(int), 1);

dum = MAX NUM TO TRACK;

WRITE(&dum, sizeof(int), 1);

dum = MAX NUM TO EXCLUDE;

WRITE(&dum, sizeof(int), 1);

dum = MAX NUM FILENUM DIGITS;

WRITE(&dum, sizeof(int), 1);

dum = MAX FILENAME LEN;

WRITE(&dum, sizeof(int), 1);

dum = MAX STR LEN;

WRITE(&dum, sizeof(int), 1);

dum = WORKSPACE SIZE;

WRITE(&dum, sizeof(int), 1);

/� Save all run-time parameters and counters �/

WRITE(&NumParticles, sizeof(int), 1);

WRITE(&NumBoxes, sizeof(int), 1);

WRITE(&RunPar, sizeof(RUN PAR T), 1);

WRITE(&EvolPar, sizeof(EVOL PAR T), 1);

WRITE(&TreePar, sizeof(TREE PAR T), 1);

WRITE(&MoviePar, sizeof(MOVIE PAR T), 1);

WRITE(&DebugPar, sizeof(DEBUG PAR T), 1);

WRITE(&Clock, sizeof(CLOCK T), 1);

WRITE(Counter, sizeof(int), NUM COUNTERS);

WRITE(&Tsl, sizeof(TSL T), 1);

/� Save particle data �/

for (i = 0; i < NumParticles; i++)

WRITE(Data[i], sizeof(DATA T), 1);

/� Save tree data using recursive procedure �/

if (RunPar.use tree)

save tree data(Root, save �le);

/� Close save �le �/

if (fclose(save �le) 6= 0)

Error(IO, "SaveRestartData()", SaveFilename);

g

static void save tree data(node, save �le)

NODE T �node;

FILE �save �le;

f

/� Recursively saves "node" data to "save �le" �/

280

char �msg = "save tree data() (aborting save)";

int i;

WRITE(node, sizeof(NODE T), 1);

for (i = 0; i < MAX NUM CHILDREN; i++)

if (node!child type[i] == BRANCH)

save tree data(node!child[i].branch, save �le);

g

#undef WRITE

void ReadRestartData()

f

/� Restores data from binary dump, allocating new memory as required �/

int i, dum;

FILE �save �le;

char �msg = "ReadRestartData(): params.h changed since last save.";

/� Open save �le �/

if ((save �le = fopen(SaveFilename, "r")) == NULL)

Error(FATAL IO, "ReadRestartData()", SaveFilename);

/� Check whether program parameters have changed (see params.h) �/

(void) fread((char �) &dum, sizeof(int), 1, save �le);

if (dum 6= NUM PHYS DIM) f

(void) sprintf(ErrorStr, "NUM PHYS DIM was %i now %i", dum,

NUM PHYS DIM);

Error(FATAL, msg, ErrorStr);

g

(void) fread((char �) &dum, sizeof(int), 1, save �le);

if (dum 6= NUM TREE DIM) f

(void) sprintf(ErrorStr, "NUM TREE DIM was %i now %i", dum,

NUM TREE DIM);

Error(FATAL, msg, ErrorStr);

g

(void) fread((char �) &dum, sizeof(int), 1, save �le);

if (dum 6= MAX NUM PARTICLES) f

(void) sprintf(ErrorStr, "MAX NUM PARTICLES was %i now %i", dum,

MAX NUM PARTICLES);

Error(FATAL, msg, ErrorStr);

g

(void) fread((char �) &dum, sizeof(int), 1, save �le);

if (dum 6= MAX NUM ON TSL) f

(void) sprintf(ErrorStr, "MAX NUM ON TSL was %i now %i", dum,

MAX NUM ON TSL);

Error(FATAL, msg, ErrorStr);

g

(void) fread((char �) &dum, sizeof(int), 1, save �le);

if (dum 6= MAX NUM TO TRACK) f

(void) sprintf(ErrorStr, "MAX NUM TO TRACK was %i now %i", dum,

MAX NUM TO TRACK);

Error(FATAL, msg, ErrorStr);

g

(void) fread((char �) &dum, sizeof(int), 1, save �le);

281

if (dum 6= MAX NUM TO EXCLUDE) f

(void) sprintf(ErrorStr, "MAX NUM TO EXCLUDE was %i now %i", dum,

MAX NUM TO EXCLUDE);

Error(FATAL, msg, ErrorStr);

g

(void) fread((char �) &dum, sizeof(int), 1, save �le);

if (dum 6= MAX NUM FILENUM DIGITS) f

(void) sprintf(ErrorStr, "MAX NUM FILENUM DIGITS was %i now %i", dum,

MAX NUM FILENUM DIGITS);

Error(FATAL, msg, ErrorStr);

g

(void) fread((char �) &dum, sizeof(int), 1, save �le);

if (dum 6= MAX FILENAME LEN) f

(void) sprintf(ErrorStr, "MAX FILENAME LEN was %i now %i", dum,

MAX FILENAME LEN);

Error(FATAL, msg, ErrorStr);

g

(void) fread((char �) &dum, sizeof(int), 1, save �le);

if (dum 6= MAX STR LEN) f

(void) sprintf(ErrorStr, "MAX STR LEN was %i now %i", dum,

MAX STR LEN);

Error(FATAL, msg, ErrorStr);

g

(void) fread((char �) &dum, sizeof(int), 1, save �le);

if (dum 6= WORKSPACE SIZE) f

(void) sprintf(ErrorStr, "WORKSPACE SIZE was %i now %i", dum,

WORKSPACE SIZE);

Error(FATAL, msg, ErrorStr);

g

/� Read all parameters and counters �/

(void) fread((char �) &NumParticles, sizeof(int), 1, save �le);

(void) fread((char �) &NumBoxes, sizeof(int), 1, save �le);

(void) fread((char �) &RunPar, sizeof(RUN PAR T), 1, save �le);

(void) fread((char �) &EvolPar, sizeof(EVOL PAR T), 1, save �le);

(void) fread((char �) &TreePar, sizeof(TREE PAR T), 1, save �le);

(void) fread((char �) &MoviePar, sizeof(MOVIE PAR T), 1, save �le);

(void) fread((char �) &DebugPar, sizeof(DEBUG PAR T), 1, save �le);

(void) fread((char �) &Clock, sizeof(CLOCK T), 1, save �le);

(void) fread((char �) Counter, sizeof(int), NUM COUNTERS, save �le);

(void) fread((char �) &Tsl, sizeof(TSL T), 1, save �le);

/� Read particle data �/

for (i = 0; i < NumParticles; i++) f

Data[i] = (DATA T �) malloc(sizeof(DATA T));

(void) fread((char �) Data[i], sizeof(DATA T), 1, save �le);

g

/� Read tree data �/

if (RunPar.use tree) f

Root = (NODE T �) malloc(sizeof(NODE T));

read tree data(Root, save �le);

g

/� Close save �le �/

(void) fclose(save �le);

282

g

static void read tree data(node, save �le)

NODE T �node;

FILE �save �le;

f

/� Recursively reads "node" data from "save �le" �/

int i;

CHILD T �child;

(void) fread((char �) node, sizeof(NODE T), 1, save �le);

for (i = 0; i < MAX NUM CHILDREN; i++) f

child = &node!child[i];

if (node!child type[i] == BRANCH) f

child!branch = (NODE T �) malloc(sizeof(NODE T));

read tree data(child!branch, save �le);

(child!branch)!parent = node;

g

else if (node!child type[i] == LEAF) f

Data[child!leaf]!node = node;

Data[child!leaf]!node index = i;

g

g

g

void Error(ag, msg1, msg2)

int ag;

char �msg1, �msg2;

f

/�

� Displays error message "msg1" on stdout (and optionally stderr and

� the log) and, depending on the severity ("ag"), may terminate

� execution (c.f. Terminate()). Extra information ("msg2") is printed

� if desired.

�

�/

char error[MAX STR LEN], �msg = "";

BOOLEAN fatal = (ag 6= WARNING1 && ag 6= WARNING2 && ag 6= IO);

if (EMPTY STR(msg1))

msg = "unknown error";

else

switch (ag) f

case WARNING1:

msg = "major warning in ";

++Counter[WARNINGS];

break;

case WARNING2:

msg = "minor warning in ";

++Counter[WARNINGS];

break;

case IO:

msg = "I/O error warning in ";

++Counter[IO ERRORS];

break;

case FATAL IO:

(void) printf("nn");

283

msg = "fatal I/O error in ";

break;

case FATAL:

(void) printf("nnn07"); /� (n07 = <CTRL><G> audio beep) �/

msg = "fatal error in ";

break;

case HALT:

case SYS ERR:

(void) printf("nnn07");

msg = "";

break;

default:

Terminate(ERROR);

g

/� Use "error" here because "Workspace" may be in use in calling routine �/

(void) sprintf(error, "box tree -- %s%snn", msg, msg1);

(void) printf("@%s", error);

if (fatal jj ag == WARNING1) f

(void) fprintf(stderr, " %s", error);

if (Log�le)

(void) fprintf(Log�le, "@%s", error);

g

if (!EMPTY STR(msg2)) f

if (ag == IO jj ag == FATAL IO) f

(void) sprintf(error, " system message -- %s", msg2);

perror(error);

g

else f

(void) printf(" (%s).nn", msg2);

if (fatal jj ag == WARNING1) f

(void) fprintf(stderr, " (%s).nn", msg2);

if (Log�le)

(void) fprintf(Log�le, " (%s).nn", msg2);

g

g

g

if (fatal)

Terminate(ag == HALT ? USER HALT : ERROR);

g

void Terminate(status)

int status;

f

/�

� Terminates execution, returning 1 if program terminated abnormally

� (i.e. with fatal error) or 0 if program terminated normally.

�

�/

if (status == ERROR) f

char �msg = "��� FATAL ERROR in box treenn";

(void) fprintf(stderr, "nnn07%s", msg);

if (Log�le)

284

(void) fprintf(Log�le, "%s", msg);

g

/� OK to use "Workspace" here since program is terminating �/

if (status == ALL DONE)

(void) sprintf(Workspace, "Run completed %s.nn", GetDate());

else

(void) sprintf(Workspace,

"Program halted at t = %.5e (CPU %.3e min this run, %i steps).nn",

TIME, ElapsedCpu(), Counter[TIME STEPS]);

(void) printf("%s", Workspace);

if (Log�le)

(void) fprintf(Log�le, "%s", Workspace);

if (status == ERROR) /� Try to dump core �/

abort();

if (Log�le)

(void) fclose(Log�le);

exit(status == ERROR ? 1 : 0);

g

/� misc.c �/

B.1.15 output.c

With the exception of DisplayParams() and various short messages and warnings found

throughout the code, all of the box tree output is generated by the routines in this �le.

The various forms of periodic output described in xA.5 are all represented: LongOutput()

generates the main periodic output; CalcEvolPar() calculates and displays the evolving

parameters; OutputStats() appends to the stats �le; OutputDat() creates particle data

�les; MakeMovieFrame() outputs movie frames; and OutputNlvData() appends to the

NLV �le. The function OpenStatsFile() is used to open the stats �le initially for writing.

The only local function, calc data(), is called by LongOutput(), CalcEvolPar() and

OutputStats(). The procedure calculates all of the statistical data used in the output

routines and stores it in a large static structure (called store) which is local to the �le

and therefore accessible by the output routines. A check of the simulation clock is made

each time calc data() is called to make sure the statistical data is not recalculated

unnecessarily.

/�

� output.c { DCR 91-05-03

� ========================

� Various output routines for box tree code.

�

� Global functions: LongOutput(), CalcEvolPar(), OpenStatsFile(),

� OutputStats(), OutputDat(), MakeMovieFrame(), OutputNlvData().

�/

/� Include �les �/

#include "box tree.h"

285

/� Local variables �/

static struct f /� For storage of useful statistics �/

double com pos[NUM PHYS DIM];

double com vel[NUM PHYS DIM];

double com pv[NUM PHYS DIM];

double vel disp[NUM PHYS DIM];

double total mass;

double max mass;

int max mass index;

double mean dist;

double mean min dist;

double ke;

double re;

double max z;

int max z index;

double scale height;

double h osc;

double tzam;

double mean ecc;

double �0;

double lv;

double mean mass;

double median mass;

double mean radius;

double mean roche radius;

double vel disp mag;

double gpe;

double total energy;

double tzam di�;

double total energy di�;

double cpo;

double mfp;

g store;

/� Local functions �/

static void calc data();

/� End of preamble �/

#define MAX Z(ptr) sqrt(SQ((ptr)!pos[2]) + SQ((ptr)!vel[2]))

void LongOutput()

f

/� Performs verbose output to stdout �/

DATA T �ptr;

/� Fill "store" structure �/

calc data();

/� Start printing... �/

(void) printf("nn");

if (GHOSTS)

(void) printf("Centre b");

else

286

(void) printf("B");

(void) printf("ox stats at t = %g (total CPU = %.2e min) ", TIME,

TotalCpu());

(void) printf("after %i steps:nn", Counter[TIME STEPS]);

(void) printf(

" Com pos: x = %+12.5e y = %+12.5e z = %+12.5e (mag %.3e)nn",

store.com pos[0], store.com pos[1], store.com pos[2],

MAG(store.com pos));

(void) printf(

" >initial: x = %+12.5e y = %+12.5e z = %+12.5e (mag %.3e)nn",

DebugPar.com pos[0], DebugPar.com pos[1], DebugPar.com pos[2],

MAG(DebugPar.com pos));

(void) printf(

" Com vel: x = %+12.5e y = %+12.5e z = %+12.5e (mag %.3e)nn",

store.com vel[0], store.com vel[1], store.com vel[2],

MAG(store.com vel));

(void) printf(

" >initial: x = %+12.5e y = %+12.5e z = %+12.5e (mag %.3e)nn",

DebugPar.com vel[0], DebugPar.com vel[1], DebugPar.com vel[2],

MAG(DebugPar.com vel));

(void) printf(

" P.v. err: x = %12.5e y = %12.5e z = %12.5e (mag %.3e)nn",

ABS(store.com pv[0]), ABS(store.com pv[1]), ABS(store.com pv[2]),

MAG(store.com pv));

(void) printf(

" Vel disp: x = %12.5e y = %12.5e z = %12.5e (mag %.3e)nn",

store.vel disp[0], store.vel disp[1], store.vel disp[2],

store.vel disp mag);

ptr = Data[store.max mass index];

(void) printf(

" Max mass: %i (%i) mass %.2e (frac. of tot. %.1e) max z %.5enn",

store.max mass index, ptr!orig index, store.max mass,

store.max mass = store.total mass, MAX Z(ptr));

(void) printf(" Mean mass: %.2e (radius: %.2e Roche radius: %.2e)nn",

store.mean mass, store.mean radius, store.mean roche radius);

(void) printf(" Mean dist: %.2e (%.1f RR", store.mean dist,

store.mean dist = store.mean roche radius);

if (RunPar.bc opt 6= UNBOUNDED)

(void) printf(", %.2f box size)", store.mean dist = BOX SIZE);

else

(void) printf(")");

(void) printf(" Mean min dist %.2e (%.1f RR)nn", store.mean min dist,

store.mean min dist = store.mean roche radius);

ptr = Data[store.max z index];

(void) printf(" Max z: %i (%i) mass %.2e z %+12.5e max z %.5enn",

store.max z index, ptr!orig index, ptr!mass, ptr!pos[2],

MAX Z(ptr));

(void) printf(" tzam/M: init %.4e adj cur %.4e diff %.2e rms %.2enn",

287

DebugPar.tzam = store.total mass, store.tzam = store.total mass,

store.tzam di� = store.total mass,

sqrt(DebugPar.tzam rms err = DebugPar.num calls) = store.total mass);

(void) printf(" energy: init %.4e adj cur %.4e diff %.2e rms %.2enn",

DebugPar.total energy, store.total energy, store.total energy di�,

sqrt(DebugPar.total energy rms err = DebugPar.num calls));

(void) printf(" (KE %.5e (coll %.5e) RE %.5e GPE %.5e)nn",

store.ke, - DebugPar.collision dke, store.re, store.gpe);

(void) printf(" Other: <ecc> %.5e hgt %.5e <osc> %.4enn",

store.mean ecc, store.scale height, store.h osc);

(void) printf(" FF(0) %.2e <c/p/o> %.3e mfp %.3e lv %.3enn",

store.�0, store.cpo, store.mfp, store.lv);

/� Display counters �/

(void) printf(" Counters:nn");

(void) printf(" Time-steps: %inn", Counter[TIME STEPS]);

(void) printf(" Min time-steps: %inn", Counter[MIN TIME STEPS]);

(void) printf(" Max time-steps: %inn", Counter[MAX TIME STEPS]);

(void) printf(" Collisions: %inn", Counter[COLLISIONS]);

(void) printf(" First-time col'ns: %inn",

Counter[FIRST TIME COLLISIONS]);

(void) printf(" Ghost collisions: %inn", Counter[GHOST COLLISIONS]);

(void) printf(" Mergers: %inn", Counter[MERGERS]);

(void) printf(" Forced mergers: %inn", Counter[FORCED MERGERS]);

(void) printf(" Box boundary xings: %inn", Counter[BNDRY XINGS]);

(void) printf(" L-R boundary xings: %inn",

Counter[LATERAL BNDRY XINGS]);

(void) printf(" Ghost box xings: %inn",

Counter[GHOST BOX BNDRY XINGS]);

(void) printf(" Total mono updates: %inn",

Counter[TOTAL MONO UPDATES]);

(void) printf(" Recur mono updates: %inn",

Counter[RECUR MONO UPDATES]);

(void) printf(" Total quad updates: %inn",

Counter[TOTAL QUAD UPDATES]);

(void) printf(" Recur quad updates: %inn",

Counter[RECUR QUAD UPDATES]);

(void) printf(" Node packings: %inn", Counter[PACKINGS]);

(void) printf(" Force errors: %inn", Counter[FORCE ERRORS]);

(void) printf(" Warnings: %inn", Counter[WARNINGS]);

(void) printf(" I/O errors: %inn", Counter[IO ERRORS]);

/� Display any collision statistics �/

if (Counter[COLLISIONS]) f

int i;

(void) printf("nn Collision statistics:nnnn");

(void) printf(

" Particle Last collider Nc M/min z max/<hgt>nn");

(void) printf(

" ----------- ------------- ---- ----- -----------nn");

for (i = 0; i < NumParticles; i++) f

ptr = Data[i];

if (ptr!last collider 6= -1) f

if (ERROR CHECK && ptr!num collisions � 0)

288

Error(FATAL, "LongOutput(): Bad collision stats.", "");

(void) printf(" %4i (%4i) %4i (%4i) %4i %.3f", i,

ptr!orig index, CurrentIndex(ptr!last collider),

ptr!last collider, ptr!num collisions, ptr!mass =

RunPar.init min mass);

if (store.scale height)

(void) printf(" %.3f", MAX Z(ptr) = store.scale height);

else

(void) printf(" (undef)");

(void) printf("nn");

g

g

g

(void) printf("nn[END OUTPUT]nn");

g

void CalcEvolPar()

f

/� Calculates and outputs evolving parameters �/

static BOOLEAN �rst call = TRUE;

EVOL PAR T �ptr = &EvolPar;

calc data();

ptr!mean mass = store.mean mass;

ptr!vel disp = store.vel disp mag;

ptr!median mass = store.median mass;

ptr!mean radius = store.mean radius;

ptr!mean roche radius = store.mean roche radius;

/� Calculate radial coe�cient of restitution velocity cuto� �/

ptr!min rad vel = (RunPar.no slide ? 0.01 � ptr!vel disp : 0);

/� Calculate closest-particle detection zone �/

ptr!cp zone sq = SQ(100 � ptr!mean roche radius);

/� Calculate self-gravity check zone if tree is active �/

if (RunPar.use tree)

ptr!self grav r2 = SQ(0.01 � TREE SIZE);

/� Display new parameters if desired �/

if (VERBOSE && (!�rst call jj Clock.time > RunPar.init clock time jj

!Clock.timer[EVOL])) f

(void) printf("nn");

(void) printf("Status of evolving parameters, t = %g:nn", TIME);

(void) printf(" Mag of vel disp = %enn", ptr!vel disp);

(void) printf(" Mean mass = %enn", ptr!mean mass);

(void) printf(" Median mass = %enn", ptr!median mass);

(void) printf(" Mean radius = %enn", ptr!mean radius);

(void) printf(" Mean Roche radius = %enn", ptr!mean roche radius);

(void) printf(" CP min radial vel = %enn", ptr!min rad vel);

(void) printf(" CP check zone = %enn", sqrt(ptr!cp zone sq));

if (RunPar.use tree) f

289

(void) printf(" Current tree size = %enn", TreePar.tree size);

(void) printf(" Self-grav check zone = %enn",

sqrt(ptr!self grav r2));

g

(void) printf(" Total CPU (min) = %enn", TotalCpu());

(void) printf("nn");

g

�rst call = FALSE;

g

#define WRITE(addr, size, num) n

if (fwrite((char �) addr, size, num, stats �le) 6= num) fn

Error(IO, msg, RunPar.stats �lename);n

(void) fclose(stats �le);n

return;n

g

void OpenStatsFile()

f

/� Opens new statistics �le and writes out comment line �/

static char �msg = "OpenStatsFile() (aborting)";

FILE �stats �le;

if ((stats �le = fopen(RunPar.stats �lename, "w")) == NULL) f

Error(IO, msg, RunPar.stats �lename);

return;

g

WRITE(RunPar.comment line, sizeof(char), MAX STR LEN);

if (fclose(stats �le))

Error(IO, msg, RunPar.stats �lename);

g

void OutputStats()

f

/� Appends summary to statistics �le �/

static char �msg = "OutputStats() (aborting save)";

FILE �stats �le;

DATA T �ptr;

double dum dbl;

calc data();

if ((stats �le = fopen(RunPar.stats �lename, "a")) == NULL) f

Error(IO, msg, RunPar.stats �lename);

return;

g

dum dbl = TIME;

WRITE(&dum dbl, sizeof(double), 1);

(void) TotalCpu(); /� (store in EvolPar.total cpu) �/

WRITE(&EvolPar.total cpu, sizeof(double), 1);

WRITE(&Counter[TIME STEPS], sizeof(int), 1);

WRITE(&NumParticles, sizeof(int), 1);

290

WRITE(&Counter[COLLISIONS], sizeof(int), 1);

WRITE(&Counter[FIRST TIME COLLISIONS], sizeof(int), 1);

WRITE(store.com pos, sizeof(double), NUM PHYS DIM);

WRITE(store.com vel, sizeof(double), NUM PHYS DIM);

WRITE(store.vel disp, sizeof(double), NUM PHYS DIM);

WRITE(&store.total mass, sizeof(double), 1);

WRITE(&store.max mass, sizeof(double), 1);

ptr = Data[store.max mass index];

WRITE(ptr!pos, sizeof(double), NUM PHYS DIM);

SUB SHEAR(ptr);

WRITE(ptr!vel, sizeof(double), NUM PHYS DIM);

WRITE(ptr!spin, sizeof(double), NUM PHYS DIM);

WRITE(&store.tzam, sizeof(double), 1);

WRITE(&store.tzam di�, sizeof(double), 1);

dum dbl = sqrt(DebugPar.tzam rms err = DebugPar.num calls);

WRITE(&dum dbl, sizeof(double), 1);

WRITE(&store.total energy, sizeof(double), 1);

WRITE(&DebugPar.collision dke, sizeof(double), 1);

WRITE(&store.total energy di�, sizeof(double), 1);

dum dbl = sqrt(DebugPar.total energy rms err = DebugPar.num calls);

WRITE(&dum dbl, sizeof(double), 1);

WRITE(&store.mean ecc, sizeof(double), 1);

WRITE(&store.scale height, sizeof(double), 1);

WRITE(&store.�0, sizeof(double), 1);

WRITE(&store.cpo, sizeof(double), 1);

WRITE(&store.mfp, sizeof(double), 1);

WRITE(&store.lv, sizeof(double), 1);

/� Close �le �/

if (fclose(stats �le))

Error(IO, msg, RunPar.stats �lename);

g

#undef WRITE

#define WRITE(addr, size, num) n

if (fwrite((char �) addr, size, num, dat �le) 6= num) fn

Error(IO, msg, dat �lename);n

(void) fclose(dat �le);n

return;n

g

void OutputDat()

f

/� Saves particle data to current output �le �/

static char �msg = "OutputDat() (aborting save)";

int i, dum int;

char �dat �lename;

FILE �dat �le;

DATA T �ptr;

double dum dbl;

/� Construct �lename and prepare �le �/

if ((dat �lename = MakeFilename(RunPar.dat basename,

RunPar.dat number++, ".dat")) == NULL) f

Error(WARNING2, "OutputDat(): Output skipped.", "");

291

return;

g

(void) printf("nnWriting particle data to n"%sn", time %f...nn",

dat �lename, TIME);

if (BackupFiles)

(void) BackupFile(dat �lename, BACKUP MARKER);

if ((dat �le = fopen(dat �lename, "w")) == NULL) f

Error(IO, msg, dat �lename);

return;

g

/� Output data �/

WRITE(RunPar.comment line, sizeof(char), MAX STR LEN);

dum dbl = TIME;

WRITE(&dum dbl, sizeof(double), 1);

for (i = 0; i < NumParticles; i++) f

ptr = Data[i];

WRITE(&ptr!orig index, sizeof(int), 1);

WRITE(&ptr!mass, sizeof(double), 1);

WRITE(&ptr!radius, sizeof(double), 1);

WRITE(ptr!pos, sizeof(double), NUM PHYS DIM);

WRITE(ptr!vel, sizeof(double), NUM PHYS DIM);

SUB SHEAR(ptr);

WRITE(&ptr!vel[1], sizeof(double), 1);

ADD SHEAR(ptr);

WRITE(ptr!spin, sizeof(double), NUM PHYS DIM);

dum int = ptr!color;

WRITE(&dum int, sizeof(int), 1);

g

(void) fclose(dat �le);

g

#undef WRITE

void MakeMovieFrame()

f

#ifndef SYSV

ifndef ALPHA

/� Makes a movie frame �/

int options;

PredictPosAndVelHiAll();

if (ROTATING FRAME && GHOSTS)

UpdateBoxPos();

options = PLOT POS; /� Always plot particle positions �/

if (RunPar.use tree && MoviePar.draw tree)

options j= DRAW TREE j PLOT COM j COM LINES;

if (GHOSTS && RunPar.bc opt 6= UNBOUNDED)

options j= DRAW BOXES;

292

if (MoviePar.plot vel)

options j= PLOT VEL;

Draw(options);

endif

#endif

g

#define WRITE(addr, size, num) n

if (fwrite((char �) addr, size, num, nlv �le) 6= num) fn

Error(IO, msg, RunPar.nlv �lename);n

(void) fclose(nlv �le);n

return;n

g

void OutputNlvData(m, x)

double m, x;

f

/� Saves non-local viscosity data �/

static BOOLEAN �rst call = TRUE;

static FILE �nlv �le = (FILE �) NULL;

char �msg = "OutputNlvData() (aborting save)";

oat tf, mf, xf; /� Use oats to reduce �le size �/

if (�rst call) f

nlv �le = fopen(RunPar.nlv �lename, "a");

if (nlv �le == NULL) f

Error(IO, "OutputNlvData()", RunPar.nlv �lename);

return;

g

g

if (!nlv �le)

return;

tf = (oat) Clock.time;

mf = (oat) m;

xf = (oat) x;

/� Output data �/

WRITE(&tf, sizeof(oat), 1);

WRITE(&mf, sizeof(oat), 1);

WRITE(&xf, sizeof(oat), 1);

/� Flush after every write because �le is never closed properly �/

(void) �ush(nlv �le);

g

#undef WRITE

static void calc data()

f

/� Calculates various useful statistics �/

static BOOLEAN �rst call = TRUE;

293

static double last time = 0;

int i, j, k;

DATA T �ptr;

double �mass array, mass, rel pos[NUM PHYS DIM], dist, min dist, ecc sq,

err;

if (!�rst call && Clock.time == last time)

return;

/� Predict all positions and velocities to high order �/

PredictPosAndVelHiAll();

/� Initialize arrays �/

ZERO(store.com pos);

ZERO(store.com vel);

ZERO(store.com pv);

ZERO(store.vel disp);

/� Initialize other quantities �/

store.total mass = store.max mass = store.mean dist = store.mean min dist =

store.ke = store.re = store.scale height = store.h osc = store.tzam =

store.mean ecc = store.�0 = store.lv = 0;

mass array = (double �) malloc((unsigned) NumParticles � sizeof(double));

/�

� Calculate various statistical/diagnostic quantities. Note that

� energies and dispersions are calculated using PECULIAR velocities

� w.r.t. Keplerian rotation, so shearing motion in y direction is

� removed.

�

�/

for (i = 0; i < NumParticles; i++) f

ptr = Data[i];

mass = ptr!mass;

mass array[i] = mass;

store.total mass += mass;

if (mass > store.max mass jj (mass == store.max mass &&

MAX Z(ptr) > MAX Z(Data[store.max mass index]))) f

store.max mass = mass;

store.max mass index = i;

g

for (k = 0; k < NUM PHYS DIM; k++) f

store.com pos[k] += mass � ptr!pos[k];

store.com vel[k] += mass � ptr!vel[k];

g

for (min dist = HUGE VAL, j = i + 1; j < NumParticles; j++) f

SUB(ptr!pos, Data[j]!pos, rel pos);

dist = MAG(rel pos);

min dist = MIN(min dist, dist);

store.mean dist += dist;

g

294

if (min dist < HUGE VAL)

store.mean min dist += min dist;

SUB SHEAR(ptr);

for (k = 0; k < NUM PHYS DIM; k++) f

if (RunPar.bc opt 6= UNBOUNDED)

store.com pv[k] += mass � ptr!vel[k];

store.vel disp[k] += mass � SQ(ptr!vel[k]);

g

if (INERTIAL FRAME) f

store.ke += mass � DOT(ptr!vel, ptr!vel);

store.re += ptr!inertia � DOT(ptr!spin, ptr!spin);

g

if (ABS(ptr!pos[2]) > store.max z) f

store.max z = ABS(ptr!pos[2]);

store.max z index = i;

g

store.scale height += mass � SQ(ptr!pos[2]);

store.h osc += mass � (SQ(ptr!pos[2]) + SQ(ptr!vel[2]));

/� Calculate total z angular momentum and mean eccentricity �/

ecc sq = 0;

if (ROTATING FRAME) f

double lz;

/� (r x v) - 1 to �rst order �/

lz = ptr!vel[1] + 2 � ptr!pos[0];

/� Total z ang mom, correct to 1st order, within add. const. �/

store.tzam += mass � lz + ptr!inertia � ptr!spin[2];

/� Eccentricity w.r.t. central mass, to �rst order �/

ecc sq = 1 - SQ(1 + lz) � (1 - 4 � ptr!pos[0] - 2 � ptr!vel[1]);

g

else if (INERTIAL FRAME)

store.tzam += mass � CROSS Z(ptr!pos, ptr!vel) +

ptr!inertia � ptr!spin[2];

store.mean ecc += (ecc sq < 0 ? 0 : ecc sq);

/� Add contribution to mid-plane �lling factor �/

if (RunPar.bc opt 6= UNBOUNDED && ABS(ptr!pos[2]) < ptr!radius)

store.�0 += PI � (ptr!radius sq - SQ(ptr!pos[2]));

/� Local viscosity �/

store.lv += mass � ptr!vel[0] � ptr!vel[1];

ADD SHEAR(ptr);

295

g

store.mean mass = store.total mass = NumParticles;

store.median mass = Median(NumParticles, mass array);

free((char �) mass array);

/� Calculate radius and Roche radius of mean mass �/

store.mean radius = Radius(store.mean mass);

store.mean roche radius = RocheRadius(store.mean mass);

NORM(store.com pos, store.total mass);

NORM(store.com vel, store.total mass);

if (NumParticles > 1)

store.mean dist /= (0.5 � NumParticles � (NumParticles - 1));

store.mean min dist /= NumParticles;

if (RunPar.bc opt 6= UNBOUNDED)

NORM(store.com pv, store.total mass � BOX SIZE);

for (k = 0; k < NUM PHYS DIM; k++)

store.vel disp[k] = sqrt(store.vel disp[k] = store.total mass);

store.vel disp mag = MAG(store.vel disp);

store.ke � = 0.5;

store.re � = 0.5;

store.gpe = Gpe();

store.total energy = store.ke + store.re + store.gpe;

store.scale height = sqrt(store.scale height = store.total mass);

store.h osc = sqrt(0.5 � store.h osc = store.total mass);

if (�rst call) f /� (note error stats reset on restart currently) �/

/� Initialize com, tzam, and total energy error data �/

COPY(store.com pos, DebugPar.com pos);

COPY(store.com vel, DebugPar.com vel);

DebugPar.tzam = store.tzam;

if (ERROR CHECK && ABS(DebugPar.tzam) � PRECISION && !GALAXY FRAME)

Error(WARNING1, "calc data(): tzam � 0; error unnormalized.", "");

DebugPar.tzam adj = DebugPar.tzam rms err = 0;

DebugPar.total energy = store.total energy;

if (ERROR CHECK && ABS(DebugPar.total energy) � PRECISION &&

INERTIAL FRAME)

Error(WARNING1, "calc data(): TE � 0; error unnormalized.", "");

DebugPar.collision dke = DebugPar.total energy adj =

DebugPar.total energy rms err = 0;

DebugPar.num calls = 0;

g

else if (!APPROX EQ(store.total mass, RunPar.total mass))

Error(WARNING2, "calc data(): Poor mass conservation.", "");

/� Get tzam/TE errors �/

296

store.tzam += DebugPar.tzam adj;

store.tzam di� = (ERROR CHECK ? store.tzam - DebugPar.tzam : 0);

err = store.tzam di�;

if (ABS(DebugPar.tzam) > PRECISION)

err /= DebugPar.tzam;

DebugPar.tzam rms err += SQ(err);

store.total energy += DebugPar.total energy adj;

store.total energy di� = (ERROR CHECK jj RunPar.conserve total energy ?

store.total energy - DebugPar.total energy : 0);

err = store.total energy di�;

if (ABS(DebugPar.total energy) > PRECISION)

err /= DebugPar.total energy;

DebugPar.total energy rms err += SQ(err);

++DebugPar.num calls;

/� Remaining items... �/

store.mean ecc = sqrt(store.mean ecc = NumParticles);

if (RunPar.bc opt 6= UNBOUNDED)

store.�0 /= SQ(BOX SIZE);

/� Calculate mean collisions/particle/orbit and mean free path �/

store.cpo = (Clock.time == 0 ? 0 :

Counter[COLLISIONS] = (NumParticles � TIME));

store.mfp = (Counter[COLLISIONS] == 0 ? 0 : (store.vel disp mag �

Clock.time = Counter[COLLISIONS]) = store.mean radius);

store.lv � = (TwoThirds = store.total mass);

last time = Clock.time;

�rst call = FALSE;

g

/� output.c �/

B.1.16 params.c

This �le consists of only two routines, both global and both called only from main():

GetParams() and DisplayParams(). The former routine reads the box tree parameter

�le using the rdpar parsing functions and performs extensive checks on the input. The

latter routine displays the parameters on the screen (stdout) once they have been loaded.

Both routines are self-explanatory. Note that the box, view, and size parameters are set

at the end of GetParams() if they were not set explicitly in the parameter �le.

/�

� params.c { DCR 93-06-18

� ========================

� Routines for reading and displaying user-supplied box tree parameters.

�

� Global functions: GetParams(), DisplayParams().

�

�/

/� Include �les �/

#include "box tree.h"

#include <rdpar.h>

297

/� Additional de�nitions �/

#define TWO PI SCALE (ROTATING FRAME ? TWO PI : 1.0)

/� End of preamble �/

void GetParams(par �lename, restart)

char �par �lename;

BOOLEAN restart;

f

/�

� Reads all or just changeable parameters from "par �lename",

� depending on "restart". This routine makes heavy use of rdpar.

�

�/

char �msg = "GetParams(): Invalid choice/bad syntax.";

int i, ic opt, bc opt, dum int, dum int array[2];

SHAPE T dum shape;

FILE �dum �le;

RUN PAR T �ptr = &RunPar;

REST COEF T �ptrc = &ptr!rest coef;

DRAG COEF T �ptrd = &ptr!drag coef;

TREE PAR T �ptrt = &TreePar;

MOVIE PAR T �ptrm = &MoviePar;

DEBUG PAR T �ptre = &DebugPar;

double dum dbl;

BOOLEAN dum boolean;

/�

� Check whether parameter �le exists. If it doesn't and this is a

� restart, return now and use old parameters, otherwise abort.

�

�/

if ((dum �le = fopen(par �lename, "r")) == NULL) f

if (restart) f

Error(IO, "GetParams()", par �lename);

(void) printf("[using old parameters for restart]nn");

return;

g

else

Error(FATAL IO, "GetParams()", par �lename);

g

(void) fclose(dum �le);

(void) printf("nnReading parameter file n"%sn"...nn", par �lename);

OpenPar(par �lename);

/� Read header line (changeable) �/

ReadStr("Comment line", ptr!comment line, MAX STR LEN);

/� Get �xed/initial parameters if required �/

if (!restart) f

298

/� Reference frame �/

ReadInt("Reference frame", &ptr!ref frame);

if (ptr!ref frame 6= ROTATING && ptr!ref frame 6= INERTIAL &&

ptr!ref frame 6= GALAXY)

Error(FATAL, msg, "unknown reference frame");

/� Unit conversions to mks �/

ReadDbl("Length scale", &ptr!length scale);

if (ptr!length scale � 0)

Error(FATAL, msg, "length scale must be positive");

ReadDbl("Mass scale", &ptr!mass scale);

if (ptr!mass scale � 0)

Error(FATAL, msg, "mass scale must be positive");

ReadDbl("Time scale", &ptr!time scale);

if (ptr!time scale � 0)

Error(FATAL, msg, "time scale must be positive");

/� Calculate velocity scale and density conversion factor �/

ptr!velocity scale = TWO PI SCALE � ptr!length scale =

ptr!time scale;

ptr!density conv = CUBE(ptr!length scale) = ptr!mass scale;

/� Random number generator seed �/

ReadInt("Random number seed", &ptr!ran.seed);

if (ptr!ran.seed < 0)

Error(FATAL, msg, "random number seed must be non-negative");

/� Initial conditions option �/

ReadInt("Init cond option", &ic opt);

if (ic opt 6= ALIGNED COM && ic opt 6= UNIFORM RAN && ic opt 6= WT &&

ic opt 6= CLOSE PACKED && ic opt 6= SUPPLIED)

Error(FATAL, msg, "unknown initial condition option");

if ((INERTIAL FRAME jj GALAXY FRAME) && ic opt 6= SUPPLIED)

Error(FATAL, msg, "must use supplied IC's with chosen ref frame");

ptr!ic opt = ic opt;

ReadInt("Bdry cond option", &bc opt);

if (bc opt 6= PERIODIC && bc opt 6= UNBOUNDED && bc opt 6= DISABLED)

Error(FATAL, msg, "unknown boundary condition option");

if (ROTATING FRAME && bc opt 6= PERIODIC)

Error(FATAL, msg, "need periodic BC's for rotating frame");

ptr!bc opt = bc opt;

/� Following parameters apply to all options... �/

ReadInt("Use ghost particles?", &dum boolean);

if (dum boolean)

NumBoxes = MAX NUM BOXES;

else

NumBoxes = 1;

if (NumBoxes > 1 && bc opt == UNBOUNDED)

Error(FATAL, msg, "cannot use unbounded BC's with ghosts");

299

ReadDbl("Box size", &ptr!box size);

if (ptr!box size == 0 && ic opt 6= WT && bc opt 6= UNBOUNDED)

Error(FATAL, msg, "box size cannot be zero");

if (ptr!box size < 0)

ptr!box size � = - ptr!length scale;

ReadDbl("Initial clock time", &ptr!init clock time);

if (ptr!init clock time < 0)

ptr!init clock time � = - ptr!time scale;

ptr!init clock time � = TWO PI SCALE;

ReadDbl("Initial x vel disp", &ptr!init x vel disp);

if (ptr!init x vel disp < 0)

ptr!init x vel disp � = - ptr!velocity scale;

ReadDbl("Initial y vel disp", &ptr!init y vel disp);

if (ptr!init y vel disp < 0)

ptr!init y vel disp � = - ptr!velocity scale;

ReadDbl("Initial z vel disp", &ptr!init z vel disp);

if (ptr!init z vel disp < 0)

ptr!init z vel disp � = - ptr!velocity scale;

ReadInt("Use small dispersions?", &ptr!small disp);

/� Get option-dependent parameters �/

if (ic opt == ALIGNED COM jj ic opt == UNIFORM RAN jj

ic opt == WT jj ic opt == CLOSE PACKED) f

ReadInt("Number of particles", &NumParticles);

if (NumParticles < 1)

Error(FATAL, msg, "number of particles must be positive");

if (NumParticles > MAX NUM PARTICLES)

Error(FATAL, msg, "too many particles");

ReadDbl("Smallest initial mass", &ptr!init min mass);

if (ptr!init min mass < 0)

ptr!init min mass � = - ptr!mass scale;

ReadDbl("Largest initial mass", &ptr!init max mass);

if (ptr!init max mass < 0)

ptr!init max mass � = - ptr!mass scale;

if (ptr!init max mass < ptr!init min mass)

Error(FATAL, msg, "max mass must be >= min mass");

ReadDbl("Particle density", &ptr!density);

if (ptr!density == 0)

Error(FATAL, msg, "particle density cannot be zero");

if (ptr!density < 0)

ptr!density = - ptr!density;

else

ptr!density � = DENSITY CGS TO MKS;

ptr!density � = ptr!density conv;

ReadDbl("Smallest initial radius", &dum dbl);

if (dum dbl < 0)

dum dbl � = - ptr!length scale;

if (dum dbl 6= 0)

300

ptr!init min mass = Mass(dum dbl);

else if (ptr!init min mass == 0)

Error(FATAL, msg, "minimum radius cannot be zero");

ReadDbl("Largest initial radius", &dum dbl);

if (dum dbl < 0)

dum dbl � = - ptr!length scale;

if (dum dbl 6= 0) f

if (APPROX LT(dum dbl, Radius(ptr!init min mass)))

Error(FATAL, msg, "max radius must be >= min rad");

else

ptr!init max mass = Mass(dum dbl);

g

if (ic opt == CLOSE PACKED &&

ptr!init min mass 6= ptr!init max mass)

Error(FATAL, msg, "need m min == m max for close packing");

g

if (ic opt == ALIGNED COM jj ic opt == UNIFORM RAN jj ic opt == WT) f

ReadDbl("Mass function exponent", &ptr!mass exponent);

if (ptr!mass exponent == -1)

Error(FATAL, msg, "mass function exponent cannot be -1");

ReadDbl("Seed mass", &ptr!seed mass);

if (ptr!seed mass < 0)

ptr!seed mass � = - ptr!mass scale;

g

if (ic opt == ALIGNED COM jj ic opt == UNIFORM RAN jj

ic opt == SUPPLIED) f

ReadInt("Use softening?", &ptr!use softening);

if (GALAXY FRAME && !ptr!use softening)

Error(FATAL, msg, "must use softening in galaxy simulation");

g

if (ic opt == ALIGNED COM jj ic opt == UNIFORM RAN) f

ReadInt("Reject init. binaries?", &ptr!rej init bin);

ReadDbl("Vertical scale height", &ptr!init scale height);

if (ptr!init scale height < 0)

Error(FATAL, msg, "vertical scale height must be non-negative");

g

if (ic opt == UNIFORM RAN) f

ReadInt("Number of x divisions", &ptr!num x div);

if (ptr!num x div < 1)

Error(FATAL, msg, "number of x divisions must be positive");

ReadInt("Number of y divisions", &ptr!num y div);

if (ptr!num y div < 1)

Error(FATAL, msg, "number of y divisions must be positive");

if (ptr!num x div � ptr!num y div > NumParticles)

Error(FATAL, msg, "number of divisions > number of particles");

301

g

if (ic opt == WT) f

ReadDbl("Optical depth", &ptr!optical depth);

if (ptr!optical depth � 0 && ptr!box size == 0)

Error(FATAL, msg, "optical depth must be positive");

ReadDbl("Disk thickness", &ptr!init disk thickness);

if (ptr!init disk thickness < 0)

Error(FATAL, msg, "initial disk thickness must be non-neg.");

g

if (ic opt == CLOSE PACKED) f

ReadInt("Number of layers", &ptr!num layers);

if (ptr!num layers < 1)

Error(FATAL, msg, "must have one or more layers");

dum int = sqrt((double) NumParticles = ptr!num layers);

if (NumParticles 6= SQ(dum int) � ptr!num layers)

Error(FATAL, msg, "N / N l must be perfect square for packing");

ReadInt("Expand radii?", &ptr!expand radii);

ReadInt("Stagger in z?", &ptr!stagger in z);

g

if (ic opt == SUPPLIED) f

ReadStr("Init cond filename", ptr!init cond �lename,

MAX FILENAME LEN);

ReadInt("No. header lines", &ptr!num header lines);

if (ptr!num header lines < 0)

Error(FATAL, msg, "number of header lines must be non-neg.");

ReadInt("Add shear?", &ptr!add shear);

if (ptr!add shear && !ROTATING FRAME)

Error(FATAL, msg, "must be in rotating frame to add shear");

g

g /� if not restart �/

/� Get changeable parameters �/

ReadInt("Verbosity level", &ptr!verbosity level);

if (ptr!verbosity level < 0)

Error(FATAL, msg, "verbosity level must be non-negative");

ReadInt("Debug level", &ptr!debug level);

if (ptr!debug level < 0)

Error(FATAL, msg, "debug level must be non-negative");

ReadLng("Stop check", &ptr!stop check);

if (ptr!stop check < 0)

Error(FATAL, msg, "stop check interval must be non-negative");

ReadLng("CPU check", &ptr!cpu check);

if (ptr!cpu check < 0)

Error(FATAL, msg, "CPU check interval must be non-negative");

302

ReadLng("Safety dump", &ptr!safety dump);

if (ptr!safety dump < 0)

Error(FATAL, msg, "safety dump interval must be non-negative");

ReadLng("Log time stamp", &ptr!time stamp);

if (ptr!time stamp < 0)

Error(FATAL, msg, "time stamp interval must be non-negative");

ReadDbl("Output interval", &dum dbl);

if (dum dbl < 0)

dum dbl � = - ptr!time scale;

dum dbl � = TWO PI SCALE;

if (restart && dum dbl 6= 0) f

Clock.timer[OUTPUT] = (int) (Clock.time = dum dbl) � dum dbl;

if (Clock.timer[OUTPUT] � Clock.time)

Clock.timer[OUTPUT] += dum dbl;

g

ptr!interval[OUTPUT] = dum dbl;

ReadDbl("Stats interval", &dum dbl);

if (dum dbl < 0)

dum dbl � = - ptr!time scale;

dum dbl � = TWO PI SCALE;

if (restart && dum dbl 6= 0) f

Clock.timer[STATS] = (int) (Clock.time = dum dbl) � dum dbl;

if (Clock.timer[STATS] � Clock.time)

Clock.timer[STATS] += dum dbl;

g

ptr!interval[STATS] = dum dbl;

ReadDbl("Dat interval", &dum dbl);

if (dum dbl < 0)

dum dbl � = - ptr!time scale;

dum dbl � = TWO PI SCALE;

if (restart && dum dbl 6= 0) f

Clock.timer[DAT] = (int) (Clock.time = dum dbl) � dum dbl;

if (Clock.timer[DAT] � Clock.time)

Clock.timer[DAT] += dum dbl;

g

ptr!interval[DAT] = dum dbl;

ReadDbl("Evol par interval", &dum dbl);

if (dum dbl < 0)

dum dbl � = - ptr!time scale;

dum dbl � = TWO PI SCALE;

if (restart && dum dbl 6= 0) f

Clock.timer[EVOL] = (int) (Clock.time = dum dbl) � dum dbl;

if (Clock.timer[EVOL] � Clock.time)

Clock.timer[EVOL] += dum dbl;

g

ptr!interval[EVOL] = dum dbl;

ReadDbl("Movie interval", &dum dbl);

if (dum dbl < 0)

dum dbl � = - ptr!time scale;

dum dbl � = TWO PI SCALE;

if (restart && dum dbl 6= 0) f

Clock.timer[MOVIE] = (int) (Clock.time = dum dbl) � dum dbl;

if (Clock.timer[MOVIE] � Clock.time)

303

Clock.timer[MOVIE] += dum dbl;

g

ptr!interval[MOVIE] = dum dbl;

if (ERROR CHECK) f

ReadDbl("Debug/check interval", &dum dbl);

if (dum dbl < 0)

dum dbl � = - ptr!time scale;

dum dbl � = TWO PI SCALE;

if (restart && dum dbl 6= 0) f

Clock.timer[CHECK] = (int) (Clock.time = dum dbl) � dum dbl;

if (Clock.timer[CHECK] � Clock.time)

Clock.timer[CHECK] += dum dbl;

g

ptr!interval[CHECK] = dum dbl;

g

else

ptr!interval[CHECK] = 0;

ReadDbl("Termination time", &ptr!termination time);

if (ptr!termination time < 0)

ptr!termination time � = - ptr!time scale;

ptr!termination time � = TWO PI SCALE;

if (ptr!cpu check) f

ReadDbl("Run time", &ptr!run time);

if (ptr!run time < 0)

Error(FATAL, msg, "run time must be non-negative");

g

else

ptr!run time = 0.0;

if (ptr!safety dump) f

ReadInt("No. backup save files", &ptr!num save �les);

if (ptr!num save �les < 0 jj ptr!num save �les > MAX NUM SAVE FILES)

Error(FATAL, msg, "invalid number of backup save files");

g

else

ptr!num save �les = 0;

ptr!save �le index = 0; /� (regardless of restart) �/

ReadInt("TSF option", &ptr!tsf opt);

if (ptr!tsf opt 6= RV ONLY && ptr!tsf opt 6= RV AND F &&

ptr!tsf opt 6= F ONLY)

Error(FATAL, msg, "invalid TSF option");

if (ptr!use softening && ptr!tsf opt 6= F ONLY)

Error(FATAL, msg, "must use F ONLY TSF option for softening");

ReadDbl("Time-step coefficient", &ptr!time step coef);

if (ptr!time step coef � 0)

Error(FATAL, msg, "time-step coefficient must be positive");

ReadDbl("Minimum time-step", &ptr!min time step);

if (ptr!min time step < 0)

ptr!min time step � = - ptr!time scale;

ptr!min time step � = TWO PI SCALE;

ReadDbl("Maximum time-step", &ptr!max time step);

if (ptr!max time step < 0)

ptr!max time step � = - ptr!time scale;

304

ptr!max time step � = TWO PI SCALE;

if (ptr!max time step && ptr!max time step < ptr!min time step)

Error(FATAL, msg, "max time-step must be >= min step (or 0)");

ReadInt("Include self-gravity?", &dum boolean);

if (restart && dum boolean && !ptr!self grav) f

(void) printf("[Self-gravity turned on...(re)initializing...");

PredictPosAndVelHiAll();

if (ROTATING FRAME && GHOSTS)

UpdateBoxPos();

for (i = 0; i < NumParticles; i++) f

(void) ApplyBndryCond(i);

InitLoOrderPoly(i);

g

for (i = 0; i < NumParticles; i++)

InitHiOrderPoly(i);

InitTsl();

if (ptr!use tree) f

DeallocTree(Root);

MakeTree(TREE SIZE, TREE CENTRE);

g

(void) printf("done]nn");

g

ptr!self grav = dum boolean;

if (ptr!tsf opt 6= RV ONLY && !ptr!self grav && INERTIAL FRAME)

Error(FATAL, msg, "TSF option selected requires particle gravity");

if (ROTATING FRAME) f

ReadDbl("Z grav enhance factor", &dum dbl);

if (dum dbl < 1)

Error(FATAL, msg, "gravity enhance factor must be 1 or greater");

if (restart && SQ(dum dbl) 6= ptr!g factor sq)

Error(FATAL, msg, "cannot change Z grav enhance factor on restart");

ptr!g factor sq = SQ(dum dbl);

g

else

ptr!g factor sq = 0;

ReadDbl("CP sum of radii factor", &dum dbl);

if (dum dbl < 0 jj dum dbl > 1)

Error(FATAL, msg, "CP sum of radii factor must be in [0,1]");

if (ptr!tsf opt == RV ONLY && dum dbl == 1)

Error(FATAL, msg, "CP factor must be < 1 for RV ONLY TSF option");

ptr!cp fac sq = SQ(dum dbl);

ReadDbl("Radial restitut'n coef.", &ptrc!radial);

if ((ptrc!radial < 0 jj ptrc!radial > 1) && ptrc!radial 6= BHL FLAG)

Error(FATAL, msg, "radial rest. coef. must lie in [0,1]");

ReadDbl("Trans. restitut'n coef.", &ptrc!transverse);

if ((ptrc!transverse < - 1 jj ptrc!transverse > 1) &&

ptrc!transverse 6= BHL FLAG)

Error(FATAL, msg, "transverse rest. coef. must lie in [-1,1]");

ReadInt("Inhibit sliding phase?", &ptr!no slide);

if (!ptr!use softening)

ReadInt("Apply coll'n velo adj?", &ptr!conserve total energy);

else

ptr!conserve total energy = FALSE;

305

ReadInt("Include gas drag?", &dum boolean);

if (restart && dum boolean && !ptr!include drag)

Error(FATAL, msg, "cannot activate gas drag on restart");

ptr!include drag = dum boolean;

if (ptr!include drag) f

ReadDbl("Drag coef in x", &ptrd!x);

ReadDbl("Drag coef in y", &ptrd!y);

ReadDbl("Drag coef in z", &ptrd!z);

if (ptrd!x < 0 jj ptrd!y < 0 jj ptrd!z < 0)

Error(FATAL, msg, "drag coefficients cannot be negative");

ReadDbl("Constant drag in y", &ptrd!hdot);

if (ptrd!hdot < 0)

Error(FATAL, msg, "constant drag in y cannot be negative");

g

else

ptrd!x = ptrd!y = ptrd!z = ptrd!hdot = 0;

ReadInt("Allow mergers?", &ptr!allow mergers);

if (ptr!allow mergers && !ptr!self grav)

Error(FATAL, msg, "must have interparticle gravity for mergers");

ReadInt("Use tree?", &dum boolean);

if (restart && dum boolean && !ptr!use tree)

Error(FATAL, msg, "cannot invoke tree on restart");

ptr!use tree = dum boolean;

if (ptr!use tree && !ptr!self grav)

Error(WARNING1, "GetParams(): Tree invoked without gravity.", "");

/� Particle tracking parameters �/

ptr!num to track = 0;

while (ReadNInt("Track particle", dum int array, 2) 6= NEND) f

if (dum int array[0] < 0)

Error(FATAL, msg, "invalid track particle");

dum int = ptr!num to track;

if (dum int == MAX NUM TO TRACK)

Error(FATAL, msg, "too many particles to track");

ptr!track list[dum int] = dum int array[0];

ptr!track colors[dum int] = dum int array[1];

++ptr!num to track;

g

for (i = ptr!num to track; i < MAX NUM TO TRACK; i++)

ptr!track list[i] = -1;

/� Miscellaneous output parameters �/

if (ptr!interval[STATS]) f

ReadStr("Stats filename", ptr!stats �lename, MAX FILENAME LEN);

if (EMPTY STR(ptr!stats �lename))

Error(FATAL, msg, "must specify stats filename");

g

else

ptr!stats �lename[0] = 'n0';

if (ptr!interval[DAT]) f

ReadStr("Dat file basename", ptr!dat basename,

306

MAX FILENAME LEN - MAX NUM FILENUM DIGITS - 4);

if (EMPTY STR(ptr!dat basename))

Error(FATAL, msg, "must specify dat basename");

ReadInt("Starting dat file no.", &dum int);

if (dum int < -1)

Error(FATAL, msg, "invalid starting dat output number");

if (dum int == -1 && !restart)

ptr!dat number = 0;

else if (dum int > -1)

ptr!dat number = dum int;

if (ptr!dat number � EXP10(MAX NUM FILENUM DIGITS))

Error(FATAL, msg, "starting dat output number too large");

g

else

ptr!dat basename[0] = 'n0';

ReadStr("NLV output filename", ptr!nlv �lename, MAX FILENAME LEN);

if (!EMPTY STR(ptr!nlv �lename) && ptr!allow mergers)

Error(FATAL, msg, "NLV algorithm cannot handle mergers");

/� Tree parameters �/

if (ptr!use tree) f

if (!restart) f

ReadDbl("Tree size", &ptrt!tree size);

if (ptrt!tree size < 0)

ptrt!tree size � = - ptr!length scale;

g

ReadDbl("Expansion factor", &ptrt!expansion);

if (ptrt!expansion < 1)

Error(FATAL, msg, "tree expansion factor must be >= 1");

ReadDbl("Maximum opening angle", &dum dbl);

if (dum dbl < 0)

Error(FATAL, msg, "max opening angle must be non-negative");

if ((ptrt!theta sq = SQ(dum dbl)) > 1.0 = NUM TREE DIM)

Error(WARNING1, "GetParams(): Large angle.", "");

ReadInt("Use quadrupole?", &dum boolean);

if (restart && dum boolean && !ptrt!use quad)

Error(FATAL, msg, "cannot invoke quadrupole on restart");

ptrt!use quad = dum boolean;

ReadInt("Use minimum repair?", &ptrt!use move);

ReadInt("Use hi-ord. prediction?", &ptrt!use high order);

ReadInt("Predict monopole?", &ptrt!pred mono);

if (ptrt!use quad && ptrt!pred mono)

ReadInt("Predict quadrupole?", &ptrt!pred quad);

else

ptrt!pred quad = FALSE;

if (ptrt!pred mono)

ReadInt("Check update times?", &ptrt!check update times);

else

ptrt!check update times = FALSE;

307

if (ptrt!check update times) f

ReadDbl("Mono time-step coef", &ptrt!mtsc);

if (ptrt!mtsc � 0)

Error(FATAL, msg, "mono tsc must be positive");

if (ptrt!use quad && ptrt!pred quad) f

ReadDbl("Quad time-step coef", &ptrt!qtsc);

if (ptrt!qtsc < 0)

Error(FATAL, msg, "quad tsc must be positive");

g

else

ptrt!qtsc = 0;

g

else

ptrt!mtsc = ptrt!qtsc = 0;

/� Particle exclude list (initial conditions only) �/

if (!restart) f

ptrt!num excluded = 0;

while (ReadNInt("Exclude particle", dum int array, 1) 6= NEND) f

dum int = ptrt!num excluded;

if (dum int == MAX NUM TO EXCLUDE)

Error(FATAL, msg, "too many particle exclusions");

ptrt!exclude list[dum int] = dum int array[0];

++ptrt!num excluded;

g

g

g

else f /� Initialize for completeness �/

ptrt!tree size = ptrt!half tree size = ptrt!expansion =

ptrt!theta sq = ptrt!mtsc = ptrt!qtsc = 0;

ptrt!use quad = ptrt!use move = ptrt!use high order =

ptrt!pred mono = ptrt!pred quad =

ptrt!check update times = FALSE;

ptrt!num excluded = 0;

g

/� Movie parameters �/

if (ptr!interval[MOVIE]) f

ReadStr("File basenames", ptrm!basename,

MAX FILENAME LEN - MAX NUM FILENUM DIGITS - 4);

ReadInt("Starting frame number", &dum int);

if (dum int < -1)

Error(FATAL, msg, "invalid starting frame number");

if (dum int == -1 && !restart)

ptrm!frame number = 0;

else if (dum int > -1)

ptrm!frame number = dum int;

if (ptrm!frame number � EXP10(MAX NUM FILENUM DIGITS))

Error(FATAL, msg, "starting frame number too large");

ReadInt("Frame size", &ptrm!frame size);

if (ptrm!frame size � 0)

308

Error(FATAL, msg, "frame size must be non-negative");

ReadDbl("View size", &ptrm!view size); /� (0/neg val handled later) �/

(void) ReadNDbl("View centre", ptrm!view centre, 2);

if (ptr!use tree)

ReadInt("Draw tree?", &ptrm!draw tree);

else

ptrm!draw tree = FALSE;

ReadInt("Particle shape", &dum int);

dum shape = (SHAPE T) dum int;

if (dum shape 6= POINT && dum shape 6= CIRCLE &&

dum shape 6= SQUARE && dum shape 6= DIAMOND &&

dum shape 6= DISK && dum shape 6= SPHERE)

Error(FATAL, msg, "unknown particle shape");

ptrm!particle shape = dum shape;

ReadDbl("Radius magnification", &ptrm!radius mag);

if (ptrm!radius mag � 0)

Error(FATAL, msg, "radius magnification must be non-negative");

ReadDbl("Viewing distance", &ptrm!distance);

if (ptrm!distance == 0)

Error(FATAL, msg, "viewing distance cannot be zero");

if (ptrm!distance < 0)

ptrm!distance � = - ptr!length scale;

ReadDbl("Z magnification", &ptrm!z mag);

if (ptrm!z mag � 0)

Error(FATAL, msg, "z magnification must be non-negative");

ReadInt("Hide blocked objects?", &ptrm!hide blocked objects);

ReadInt("Draw velocity vectors?", &ptrm!plot vel);

ReadInt("Default color", &dum int);

ptrm!dt color = dum int;

g

else f

ptrm!basename[0] = 'n0';

ptrm!frame number = ptrm!frame size = 0;

ptrm!view size = ptrm!half view size = ptrm!view centre[0] =

ptrm!view centre[1] = ptrm!radius mag =

ptrm!distance = ptrm!z mag = 0;

ptrm!draw tree = ptrm!hide blocked objects = ptrm!plot vel = FALSE;

ptrm!particle shape = POINT;

ptrm!dt color = WHITE;

g

/� Debug parameters �/

if (ptr!interval[CHECK]) f

if (ptr!use tree) f /� (all tests currently only apply to tree) �/

ReadInt("Check tree?", &ptre!check tree);

ReadInt("Check multipoles?", &ptre!check multipoles);

309

ReadInt("Check force?", &ptre!check force);

if (ptre!check force && ptr!use softening)

Error(FATAL, msg, "cannot check softened forces");

g

else

ptre!check tree = ptre!check multipoles =

ptre!check force = FALSE;

if (!ptre!check tree && !ptre!check multipoles &&

!ptre!check force) f

Error(WARNING2, "GetParams(): No debug flags.", "");

ptr!interval[CHECK] = 0;

g

g

else

ptre!check tree = ptre!check multipoles = ptre!check force = FALSE;

/� DebugPar initializations (remainder performed in calc data()) �/

if (!restart) f

ptre!num force checks = 0;

ptre!avg force = ptre!max force = ptre!total err = ptre!max err = 0;

g

/� Close parameter �le �/

ClosePar();

/� Set various quantities derived from input parameters... �/

/�

� If optical depth speci�ed, compute new box size assuming smooth

� particle size distribution.

�

�/

if (ptr!optical depth) f

int nn;

double r, sum r2 = 0;

nn = (ptr!seed mass > 0);

for (i = 0; i < NumParticles; i++)

if (nn && i == 0) f

r = Radius(ptr!seed mass);

sum r2 += SQ(r);

g

else f

r = Radius(InitMassFunc((double) (i - nn) =

(NumParticles - nn - 1)));

sum r2 += SQ(r);

g

ptr!box size = sqrt(PI � sum r2 = ptr!optical depth);

(void) printf("[box size set to %e]nn", ptr!box size);

g

/� Box size info �/

310

ptr!half box size = 0.5 � ptr!box size;

ptr!sys size = (GHOSTS ? 3 : 1) � ptr!box size;

ptr!half sys size = 0.5 � ptr!sys size;

/� Tree size info �/

if (ptr!use tree) f

if (ptrt!tree size == 0) f

if (ptr!box size == 0)

Error(FATAL, msg, "invalid box and/or tree size");

ptrt!tree size = ptr!box size;

if (bc opt == PERIODIC && ptrt!tree size < ptr!box size)

Error(FATAL, msg, "tree must be >= box size for periodic BC's");

g

ptrt!half tree size = 0.5 � ptrt!tree size;

g

/� Movie view size info �/

if (ptr!interval[MOVIE]) f

if (ptrm!view size == 0)

ptrm!view size = (ptr!use tree ? ptrt!tree size : ptr!box size);

else if (ptrm!view size < 0)

ptrm!view size � = - ptr!box size;

if (ptrm!view size � 0)

Error(FATAL, msg, "invalid box and/or view size");

ptrm!half view size = 0.5 � ptrm!view size;

g

(void) printf("Done.nn");

g

void DisplayParams()

f

/� Displays current run parameters �/

int i;

RUN PAR T �ptr = &RunPar;

(void) printf("nnComment line: n"%sn"nn", RunPar.comment line);

(void) printf("nnSave file name = n"%sn"nn", SaveFilename);

(void) printf("nnFixed/initial (read once) parameters:nnnn");

(void) printf(" Reference frame = %i ", ptr!ref frame);

switch (ptr!ref frame) f

case ROTATING:

(void) printf("(ROTATING)");

break;

case INERTIAL:

(void) printf("(INERTIAL)");

break;

case GALAXY:

(void) printf("(GALAXY)");

break;

default:

(void) printf("(UNKNOWN)");

g

(void) printf("nn");

311

(void) printf("nn");

(void) printf(" Length scale = %g mnn", ptr!length scale);

(void) printf(" Mass scale = %g kgnn", ptr!mass scale);

(void) printf(" Time scale = %g snn", ptr!time scale);

(void) printf(" Velocity scale = %g m/snn", ptr!velocity scale);

(void) printf("nn");

(void) printf(" [all subsequent output will be in these units ");

(void) printf("unless otherwise indicated]nn");

(void) printf("nn");

(void) printf(" Random number seed = %inn", ptr!ran.seed);

(void) printf(" Initial conditions opt = %i ", ptr!ic opt);

switch (ptr!ic opt) f

case ALIGNED COM:

(void) printf("(ALIGN COM)");

break;

case UNIFORM RAN:

(void) printf("(UNIF RAN)");

break;

case WT:

(void) printf("(WT)");

break;

case CLOSE PACKED:

(void) printf("(CLOSE PACKED)");

break;

case SUPPLIED:

(void) printf("(SUPPLIED)");

break;

default:

(void) printf("(UNKNOWN)");

g

(void) printf("nn");

(void) printf(" Boundary cond option = %i ", ptr!bc opt);

switch (ptr!bc opt) f

case PERIODIC:

(void) printf("(PERIODIC)");

break;

case UNBOUNDED:

(void) printf("(UNBOUNDED)");

break;

case DISABLED:

(void) printf("(DISABLED)");

break;

default:

(void) printf("(UNKNOWN)");

g

(void) printf("nn");

(void) printf("nn");

(void) printf(" Number of boxes = %inn", NumBoxes);

(void) printf(" Box size = %gnn", ptr!box size);

(void) printf(" Initial clock time = %gnn",

ptr!init clock time = TWO PI SCALE);

(void) printf(" Initial x-vel disp = %gnn", ptr!init x vel disp);

(void) printf(" Initial y-vel disp = %gnn", ptr!init y vel disp);

(void) printf(" Initial z-vel disp = %gnn", ptr!init z vel disp);

(void) printf(" Small dispersions flag = %snn", Boolean(ptr!small disp));

312

(void) printf("nnOther fixed/initial physical parameters:nn");

if (ptr!ic opt == ALIGNED COM jj ptr!ic opt == UNIFORM RAN jj

ptr!ic opt == WT jj ptr!ic opt == CLOSE PACKED) f

(void) printf("nn");

(void) printf(" Number of particles = %inn", NumParticles);

(void) printf(" Initial min mass = %gnn", ptr!init min mass);

(void) printf(" Initial max mass = %gnn", ptr!init max mass);

(void) printf(" Particle density = %g g/ccnn",

ptr!density = ptr!density conv = DENSITY CGS TO MKS);

g

if (ptr!ic opt == ALIGNED COM jj ptr!ic opt == UNIFORM RAN jj

ptr!ic opt == WT) f

(void) printf("nn");

(void) printf(" Mass function exp = %gnn", ptr!mass exponent);

(void) printf(" Seed mass = %g", ptr!seed mass);

if (ptr!seed mass == 0)

(void) printf(" (none)");

(void) printf("nn");

g

if (ptr!ic opt == ALIGNED COM jj ptr!ic opt == UNIFORM RAN jj

ptr!ic opt == SUPPLIED) f

(void) printf("nn");

(void) printf(" Softening flag = %snn", Boolean(ptr!use softening));

g

if (ptr!ic opt == ALIGNED COM jj ptr!ic opt == UNIFORM RAN) f

(void) printf("nn");

(void) printf(" Initial binary rejection = %snn",

Boolean(ptr!rej init bin));

(void) printf(" Vertical scale height = %g ",

ptr!init scale height);

if (ptr!init scale height == 0)

(void) printf("(ignored)");

else

(void) printf("(Roche radii)");

(void) printf("nn");

g

if (ptr!ic opt == UNIFORM RAN) f

(void) printf("nn");

(void) printf(" No. of x divisions = %inn", ptr!num x div);

(void) printf(" No. of y divisions = %inn", ptr!num y div);

g

if (ptr!ic opt == WT) f

(void) printf("nn");

(void) printf(" Optical depth = %gnn", ptr!optical depth);

(void) printf(" Disk thickness = %g radiinn",

ptr!init disk thickness);

g

if (ptr!ic opt == CLOSE PACKED) f

(void) printf("nn");

(void) printf(" Number of layers = %inn", ptr!num layers);

(void) printf(" Expand radii = %snn",

Boolean(ptr!expand radii));

(void) printf(" Small dispersions = %snn",

313

Boolean(ptr!small disp));

(void) printf(" Stagger in z = %snn",

Boolean(ptr!stagger in z));

g

if (ptr!ic opt == SUPPLIED) f

(void) printf("nn");

(void) printf(" Init cond filename = n"%sn"nn",

ptr!init cond �lename);

(void) printf(" No. header lines = %inn", ptr!num header lines);

if (ROTATING FRAME)

(void) printf(" Add shear = %snn",

Boolean(ptr!add shear));

g

/� Variable parameters �/

(void) printf("nnVariable (restart) parameters:nn");

(void) printf("nn");

(void) printf(" Verbosity level = %inn", ptr!verbosity level);

(void) printf(" Debug level = %inn", ptr!debug level);

(void) printf(" Stop check = %linn", ptr!stop check);

(void) printf(" CPU check = %linn", ptr!cpu check);

(void) printf(" Safety dump = %linn", ptr!safety dump);

(void) printf(" Time stamp = %linn", ptr!time stamp);

(void) printf(" Output interval = %g",

ptr!interval[OUTPUT] = TWO PI SCALE);

if (ptr!interval[OUTPUT] == 0)

(void) printf(" (no output)");

(void) printf("nn");

(void) printf(" Stats interval = %g",

ptr!interval[STATS] = TWO PI SCALE);

if (ptr!interval[STATS] == 0)

(void) printf(" (no stats)");

(void) printf("nn");

(void) printf(" Dat interval = %g",

ptr!interval[DAT] = TWO PI SCALE);

if (ptr!interval[DAT] == 0)

(void) printf(" (no dat output)");

(void) printf("nn");

(void) printf(" Evol par interval = %g",

ptr!interval[EVOL] = TWO PI SCALE);

if (ptr!interval[EVOL] == 0)

(void) printf(" (no par recalc)");

(void) printf("nn");

(void) printf(" Movie interval = %g",

ptr!interval[MOVIE] = TWO PI SCALE);

if (ptr!interval[MOVIE] == 0)

(void) printf(" (no movie)");

(void) printf("nn");

if (ERROR CHECK) f

(void) printf(" Debug/check interval = %g",

ptr!interval[CHECK] = TWO PI SCALE);

314

if (ptr!interval[CHECK] == 0)

(void) printf(" (no checking)");

(void) printf("nn");

g

(void) printf(" Termination time = %gnn",

ptr!termination time = TWO PI SCALE);

if (ptr!cpu check)

(void) printf(" Run time = %gnn", ptr!run time);

if (ptr!safety dump)

(void) printf(" Number of save files = %inn", ptr!num save �les);

(void) printf(" TSF option = %i ", ptr!tsf opt);

switch(ptr!tsf opt) f

case RV ONLY:

(void) printf("(R/V only)");

break;

case RV AND F:

(void) printf("(R/V and F)");

break;

case F ONLY:

(void) printf("(F only)");

break;

default:

(void) printf("(UNKNOWN)");

g

(void) printf("nn");

(void) printf(" Time-step coefficient = %gnn", ptr!time step coef);

(void) printf(" Minimum time-step = %g",

ptr!min time step = TWO PI SCALE);

if (!ptr!min time step)

(void) printf(" (NONE)");

(void) printf("nn");

(void) printf(" Maximum time-step = %g",

ptr!max time step = TWO PI SCALE);

if (!ptr!max time step)

(void) printf(" (NONE)");

(void) printf("nn");

(void) printf(" Self-gravity flag = %snn", Boolean(ptr!self grav));

if (ROTATING FRAME)

(void) printf(" Z grav enhance factor = %gnn",

sqrt(ptr!g factor sq));

(void) printf(" CP sum of radii factor = %gnn", sqrt(ptr!cp fac sq));

(void) printf(" Radial restit'n coef = %g", ptr!rest coef.radial);

if (ptr!rest coef.radial == BHL FLAG)

(void) printf(" (BHL)");

(void) printf("nn");

(void) printf(" Trans. restit'n coef = %g",

ptr!rest coef.transverse);

if (ptr!rest coef.transverse == BHL FLAG)

(void) printf(" (BHL)");

(void) printf("nn");

(void) printf(" No sliding phase flag = %snn",

Boolean(ptr!no slide));

(void) printf(" Apply velo adj flag = %snn",

Boolean(ptr!conserve total energy));

(void) printf(" Include gas drag flag = %snn",

Boolean(ptr!include drag));

315

if (ptr!include drag) f

(void) printf(" Drag coef. in x = %gnn", ptr!drag coef.x);

(void) printf(" Drag coef. in y = %gnn", ptr!drag coef.y);

(void) printf(" Drag coef. in z = %gnn", ptr!drag coef.z);

(void) printf(" Constant drag in y = %gnn", ptr!drag coef.hdot);

g

(void) printf(" Allow mergers flag = %snn",

Boolean(ptr!allow mergers));

(void) printf(" Use tree flag = %snn", Boolean(ptr!use tree));

(void) printf("nn");

(void) printf(" Particle tracking:");

if (ptr!num to track == 0)

(void) printf(" NONE");

else f

COLOR T color;

for (i = 0; i < ptr!num to track; i++) f

(void) printf(" %i", ptr!track list[i]);

if ((color = ptr!track colors[i]) == BLACK)

(void) printf(" (M)");

else

(void) printf(" [%i]", color);

g

g

(void) printf("nn");

(void) printf("nnMiscellaneous output parameters:nnnn");

if (ptr!interval[STATS])

(void) printf(" Stats filename: n"%sn"nn", ptr!stats �lename);

if (ptr!interval[DAT]) f

(void) printf(" Dat file basename: n"%sn"nn", ptr!dat basename);

(void) printf(" Starting dat no. = %inn", ptr!dat number);

g

if (!EMPTY STR(ptr!nlv �lename))

(void) printf(" NLV output filename: n"%sn"nn", ptr!nlv �lename);

if (ptr!use tree) f

TREE PAR T �ptrt = &TreePar;

(void) printf("nnTree parameters:nnnn");

(void) printf(" Tree size = %gnn", ptrt!tree size);

(void) printf(" Expansion factor = %g", ptrt!expansion);

if (ptrt!expansion == 1)

(void) printf(" (NO EXPANSIONS)");

(void) printf("nn");

(void) printf(" Max opening angle (theta) = %g",

sqrt(ptrt!theta sq));

if (ptrt!theta sq > 1.0 = NUM TREE DIM)

(void) printf(" (LARGE ANGLE)");

(void) printf("nn");

(void) printf(" Use quadrupole flag = %snn",

Boolean(ptrt!use quad));

(void) printf(" Use mimimum repair flag = %snn",

Boolean(ptrt!use move));

(void) printf(" Use high-order pred flag = %snn",

316

Boolean(ptrt!use high order));

(void) printf(" Check update times flag = %snn",

Boolean(ptrt!check update times));

(void) printf(" Predict monopole flag = %snn",

Boolean(ptrt!pred mono));

if (ptrt!use quad)

(void) printf(" Predict quadrupole flag = %snn",

Boolean(ptrt!pred quad));

if (ptrt!check update times) f

(void) printf(" Mono time-step coef = %gnn", ptrt!mtsc);

if (ptrt!use quad)

(void) printf(" Quad time-step coef = %gnn",

ptrt!qtsc);

g

(void) printf("nn Exclusion list:");

if (ptrt!num excluded == 0)

(void) printf(" (EMPTY)");

else

for (i = 0; i < ptrt!num excluded; i++)

(void) printf(" %i", ptrt!exclude list[i]);

(void) printf("nnnn Maximum allowed tree level = %inn",

MAX TREE LEVEL);

g

if (ptr!interval[MOVIE]) f

MOVIE PAR T �ptrm = &MoviePar;

(void) printf("nnMovie parameters:nnnn");

(void) printf(" File basenames: n"%sn"nnnn", ptrm!basename);

(void) printf(" Starting frame number = %inn", ptrm!frame number);

(void) printf(" Frame size = %inn", ptrm!frame size);

(void) printf(" View size = %gnn", ptrm!view size);

(void) printf(" View centre = (%g,%g)nn",

ptrm!view centre[0], ptrm!view centre[1]);

if (ptr!use tree)

(void) printf(" Draw tree = %snn",

Boolean(ptrm!draw tree));

(void) printf(" Particle shape = %i", ptrm!particle shape);

switch (ptrm!particle shape) f

case POINT:

(void) printf(" (POINT)");

break;

case CIRCLE:

(void) printf(" (CIRCLE)");

break;

case SQUARE:

(void) printf(" (SQUARE)");

break;

case DIAMOND:

(void) printf(" (DIAMOND)");

break;

case DISK:

(void) printf(" (DISK)");

break;

case SPHERE:

317

(void) printf(" (SPHERE)");

break;

default:

(void) printf(" (UNKNOWN)");

g

(void) printf("nn");

(void) printf(" Radius magnification = %gnn", ptrm!radius mag);

(void) printf(" Viewing distance = %gnn", ptrm!distance);

(void) printf(" Z magnification = %gnn", ptrm!z mag);

(void) printf(" Hide blocked objects = %snn",

Boolean(ptrm!hide blocked objects));

(void) printf(" Draw velocity vectors = %snn",

Boolean(ptrm!plot vel));

g

if (ptr!interval[CHECK]) f

DEBUG PAR T �ptre = &DebugPar;

(void) printf("nnDebug/checking parameters:nnnn");

(void) printf(" Check tree flag = %snn",

Boolean(ptre!check tree));

(void) printf(" Check multipoles flag = %snn",

Boolean(ptre!check multipoles));

(void) printf(" Check force flag = %snn",

Boolean(ptre!check force));

g

(void) printf("nn");

g

/� params.c �/

B.1.17 recipes.c

This �le contains a few routines borrowed from Numerical Recipes in C (Press et al. 1988)

and modi�ed slightly for use with box tree. The routines (all global) consist of a binary

search method (Locate()), a uniform random number generator (Ran()), a Gaussian

deviate generator (Gasdev()), and two versions of a sort method, one for doubles (Sort),

and one for doubles with a matching integer array (Sort2).

/�

� recipes.c { DCR 91-06-24

� =========================

�

� Various useful routines from "Numerical Recipes in C" (Press, et al 1988).

� Modi�cations by DCR (note in particular that input zero-o�set arrays are

� converted to unit-o�set arrays for compatability).

�

� Global functions: Locate(), Ran(), Gasdev(), Sort(), Sort2().

�

� The original Numerical Recipes routines are Copyright (C) 1987, 1988

� Numerical Recipes Software, reproduced by permission, from the book

� Numerical Recipes: The Art of Scienti�c Computing, published by

� Cambridge University Press.

�

�/

/� Include �les �/

318

#include "box tree.h"

/� End of preamble �/

void Locate(xx,n,x,j) /� Based on locate(), NRiC 3.4 �/

double xx[],x;

int n,�j;

f

/� (returns j+1 (zero o�set) using def'n of j in NRiC) �/

int ascnd,ju,jm,jl;

--xx; /� Make unit-o�set array �/

/�

� Treat special cases (short lists, technically non-monotonic) and

� allow for range of constant values (assumed to be "increasing").

�

�/

if (n == 0)

�j = 0; /� Zero o�set �/

else if (n == 1)

�j = (x < xx[1] ? 0 : 1); /� Zero o�set �/

else f

jl=0;

ju=n+1;

ascnd=xx[n] � xx[1]; /� Note "=" �/

while (ju-jl > 1) f

jm=(ju+jl) � 1;

if ((x � xx[jm]) == ascnd) /� Ditto �/

jl=jm;

else

ju=jm;

g

�j=jl;

g

g

#define M1 259200

#define IA1 7141

#define IC1 54773

#define RM1 (1.0=M1)

#define M2 134456

#define IA2 8121

#define IC2 28411

#define RM2 (1.0=M2)

#define M3 243000

#define IA3 4561

#define IC3 51349

double Ran() /� Based on ran1(), NRiC 7.1 �/

f

/� (ix1, ix2, ix3, r stored in RunPar.ran struct for restarts) �/

int j;

RAN T �ran = &RunPar.ran;

double temp;

if (ran!seed < 0) f

319

ran!ix1=(IC1-(ran!seed)) % M1;

ran!ix1=(IA1�ran!ix1+IC1) % M1;

ran!ix2=ran!ix1 % M2;

ran!ix1=(IA1�ran!ix1+IC1) % M1;

ran!ix3=ran!ix1 % M3;

for (j=1;j�97;j++) f

ran!ix1=(IA1�ran!ix1+IC1) % M1;

ran!ix2=(IA2�ran!ix2+IC2) % M2;

ran!r[j]=(ran!ix1+ran!ix2�RM2)�RM1;

g

ran!seed = - ran!seed;

g

ran!ix1=(IA1�ran!ix1+IC1) % M1;

ran!ix2=(IA2�ran!ix2+IC2) % M2;

ran!ix3=(IA3�ran!ix3+IC3) % M3;

j=1 + ((97�ran!ix3)=M3);

if (ERROR CHECK && (j > 97 jj j < 1))

Error(FATAL, "Ran(): Invalid array index.", "");

temp=ran!r[j];

ran!r[j]=(ran!ix1+ran!ix2�RM2)�RM1;

return temp;

g

#undef M1

#undef IA1

#undef IC1

#undef RM1

#undef M2

#undef IA2

#undef IC2

#undef RM2

#undef M3

#undef IA3

#undef IC3

double Gasdev() /� Based on gasdev(), NRiC 7.2 �/

f

RAN T �ptr = &RunPar.ran;

double fac,r,v1,v2;

if (ptr!iset == 0) f

do f

v1=2�Ran()-1;

v2=2�Ran()-1;

r=v1�v1+v2�v2;

g while (r � 1);

fac=sqrt(-2�log(r)=r);

ptr!gset=v1�fac;

ptr!iset=1;

return v2�fac;

g else f

ptr!iset=0;

return ptr!gset;

g

g

void Sort(n,ra) /� Based on sort(), NRiC 8.2 �/

int n;

double ra[];

f

320

int l,j,ir,i;

double rra;

if (n == 1)

return;

--ra; /� Make unit-o�set array �/

l=(n � 1)+1;

ir=n;

for (;;) f

if (l > 1)

rra=ra[--l];

else f

rra=ra[ir];

ra[ir]=ra[1];

if (--ir == 1) f

ra[1]=rra;

return;

g

g

i=l;

j=l � 1;

while (j � ir) f

if (j < ir && ra[j] < ra[j+1]) ++j;

if (rra < ra[j]) f

ra[i]=ra[j];

j += (i=j);

g

else j=ir+1;

g

ra[i]=rra;

g

g

void Sort2(n,ra,rb) /� Based on sort2(), NRiC 8.2 �/

int n;

double ra[];

int rb[];

f

int l,j,ir,i,rrb;

double rra;

if (n == 1)

return;

--ra; /� Make unit-o�set arrays �/

--rb;

l=(n � 1)+1;

ir=n;

for (;;) f

if (l > 1) f

rra=ra[--l];

rrb=rb[l];

g else f

rra=ra[ir];

rrb=rb[ir];

ra[ir]=ra[1];

rb[ir]=rb[1];

321

if (--ir == 1) f

ra[1]=rra;

rb[1]=rrb;

return;

g

g

i=l;

j=l � 1;

while (j � ir) f

if (j < ir && ra[j] < ra[j+1]) ++j;

if (rra < ra[j]) f

ra[i]=ra[j];

rb[i]=rb[j];

j += (i=j);

g

else j=ir+1;

g

ra[i]=rra;

rb[i]=rrb;

g

g

/� recipes.c �/

B.1.18 repair tree.c

This �le contains the routines for performing tree repair (cf. x3.4.1). There are two

global functions, MoveInTree() and RemoveFromTree(). The former implements the

algorithm shown pictorially in Fig. 3.2, performing the minimum repair required to move

a particle from one location in the tree to another. The latter function removes the

particle concerned entirely from the tree and does not replace it. This is needed in the

collision() and merge() routines (cf. integrate.c) to update all the ancestor nodes

of the a�ected particles. The MoveInTree() function makes use of the local routines

other particle() for locating orphans and repair tree() for performing the actual

repair.

/�

� repair tree.c { DCR 91-04-30

� =============================

� Routines to move particles in tree and perform any necessary repairs.

�

� Global functions: MoveInTree(), RemoveFromTree().

�

�/

/� Include �les �/

#include "box tree.h"

/� Local functions �/

static LEAF T other particle();

static void repair tree();

/� End of preamble �/

#define INSIDE SUBNODE(particle, pos, node, index)n

GetIndex(particle, pos, node) == (index)

322

void MoveInTree(particle, repair root)

int particle;

BOOLEAN repair root;

f

/�

� Moves particle "particle" in tree to position Data[particle]->pos.

� Any necessary tree repair will be performed automatically. If

� particle trajectory from previous to current time is discontinous

� (e.g. boundary condition), "repair root" should be set TRUE, so that

� multipole moments of entire tree are properly adjusted.

�

�/

DATA T �ptr = Data[particle];

NODE T �node = ptr!node;

int index = ptr!node index;

double �pos = ptr!pos;

/�

� No corrections are needed if movement is all within leaf cell

� (regardless of "repair root"). However, updating is forced in rare

� case of "packed" cell (c.f. PlaceInTree()), since node indices of

� particles are not meaningful in such a situation.

�

�/

if (!node!packed && INSIDE SUBNODE(particle, pos, node, index))

return;

/�

� If particle leaves node and there are only two particles in node,

� then identify particle left behind and repair tree. Otherwise, if

� movement is between cells in node or outside node, empty node cell.

� (Full tree repair is only necessary if there are exactly two leaves

� total in the node and one of them moves out, so that there will be

� only one leaf remaining. In this case the branch must become a leaf

� of the parent or higher ancestor.) No repair is performed if the

� branch is actually the root node.

�

�/

if (node!num leaves == 2 && OUTSIDE NODE(pos, node))

repair tree(pos, other particle(particle, node), &node);

else f

if (ERROR CHECK && node!child type[index] 6= LEAF) f

(void) sprintf(ErrorStr, "index %i %s", index, NodeInfo(node));

Error(FATAL, "MoveInTree(): Expected leaf.", ErrorStr);

g

node!child type[index] = EMPTY;

node!child[index].leaf = -1;

g

/�

� Now subtract contribution of particle to multipole moments for

� current node and each ancestor up the tree until movement is

� contained in one entire node. Note that "pos", the true �nal

� position, is used for determining whether the particle is contained

� in "node", so that the particle will ALWAYS be in Root.

�

323

�/

while (OUTSIDE NODE(pos, node)) f

if (ERROR CHECK && node == Root) f

(void) sprintf(ErrorStr, "particle %i (%i)", particle,

ptr!orig index);

Error(FATAL, "MoveInTree(): Particle has left tree!", ErrorStr);

g

UpdateBranchMoments(SUBM, particle, node);

node = node!parent;

g

/�

� Finally, put particle back in tree, �rst testing whether particle

� actually left tree and boundary conditions were applied, in which

� case the root node needs to be updated. Otherwise no update to the

� current node is required.

�

�/

if (repair root) f

if (ERROR CHECK && node 6= Root) f

(void) sprintf(ErrorStr, "particle %i (%i)", particle,

ptr!orig index);

Error(WARNING2, "MoveInTree(): Redundant root repair?", ErrorStr);

g

UpdateBranchMoments(SUBM, particle, Root);

PlaceInTree(particle, UPDATE, Root);

g

else

PlaceInTree(particle, UPDATE CHILDREN, node);

g

#undef INSIDE SUBNODE

void RemoveFromTree(particle)

int particle;

f

/�

� Removes particle "particle" entirely from tree, repairing as

� necessary and updating moments right up to root node. This routine

� is needed for collisions and boundary conditions, but can also be

� used in place of MoveInTree() if a call to this routine is

� immediately followed by a call to PlaceInTree() (with UPDATE).

� This will result in more accurate moments but increased CPU time.

�

�/

DATA T �ptr = Data[particle];

NODE T �node = ptr!node;

int index = ptr!node index;

/� Check whether tree repair is needed; otherwise, empty cell �/

if (node!num leaves == 2 && node 6= Root)

repair tree((double �) NULL, other particle(particle, node), &node);

else f

if (ERROR CHECK && node!child type[index] 6= LEAF) f

(void) sprintf(ErrorStr, "index %i %s", index, NodeInfo(node));

Error(FATAL, "RemoveFromTree(): Expected leaf.", ErrorStr);

324

g

node!child type[index] = EMPTY;

node!child[index].leaf = -1;

g

/� Update moments of all ancestors, including Root �/

do f

UpdateBranchMoments(SUBM, particle, node);

node = node!parent;

g while (node 6= NULL);

/� Reset particle tree indices �/

ptr!node = NULL;

ptr!node index = -1;

g

static LEAF T other particle(particle, node)

int particle;

NODE T �node;

f

/�

� Returns index of particle that ISN'T "particle" in the two-leaf

� branch "node". This particle becomes an "orphan" temporarily

� during tree repair. This function is intended for use with calls to

� repair tree().

�

�/

int i;

LEAF T other leaf = -1;

/� Examine children until OTHER particle is found �/

for (i = 0; i < MAX NUM CHILDREN; i++)

if (node!child type[i] == LEAF &&

(other leaf = node!child[i].leaf) 6= particle)

break;

/� Error check �/

if (ERROR CHECK && other leaf == -1) f

(void) sprintf(ErrorStr, "particle %i (%i) %s", particle,

Data[particle]!orig index, NodeInfo(node));

Error(FATAL, "other particle(): Unable to find other particle.",

ErrorStr);

g

/� Return other particle �/

return other leaf;

g

static void repair tree(pos, leaf, node)

double �pos;

LEAF T leaf;

NODE T ��node;

f

/�

325

� Removes branch nodes, beginning with "node" and continuing with its

� ancestors, until "pos" lies inside the ancestral node (if "pos" is

� not NULL) or until an ancestor with more than two leaves (before

� repair) is found (or the ancestor is root and "pos" is NULL). The

� address of this �nal node is returned in "node". Also, the former

� branch entry in this node is replaced by "leaf".

�

�/

NODE T �parent node;

int index;

/� Keep removing nodes until we �nd an appropriate ancestor �/

do f

if (�node == Root)

Error(FATAL, "repair tree(): Attempt to repair root.", "");

parent node = (�node)!parent;

index = (�node)!node index;

free((char �) �node);

�node = parent node;

g while ((pos 6= (double �) NULL ? OUTSIDE NODE(pos, (�node)) :

�node 6= Root) && (�node)!num leaves == 2);

/� Error check �/

if (ERROR CHECK && (�node)!child type[index] 6= BRANCH) f

(void) sprintf(ErrorStr, "index %i %s", index, NodeInfo(�node));

Error(FATAL, "repair tree(): Expected branch.", ErrorStr);

g

/� Replace branch with leaf and update Data array �/

(�node)!child type[index] = LEAF;

(�node)!child[index].leaf = leaf;

Data[leaf]!node = �node;

Data[leaf]!node index = index;

g

/� repair tree.c �/

B.1.19 tree util.c

This �le consists of miscellaneous functions that operate on the tree: DeallocTree() to

deallocate all memory associated with the tree; TreeLevel() to return the level (gen-

eration) of a given node; NodeInfo() to return a string containing information regard-

ing a given node (useful for error messages); GetOffspring() to return a list of all

the leaves contained in a given node and all its descendants; NotOffspring() to test

whether a particle is a leaf of a given node or one of its descendants' branches (used by

add tree force() to check for self-gravity problems); and Node() to return a pointer to

a node with the given tree index. The Node() function makes use of the recursive local

function search for node().

/�

� tree util.c { DCR 91-09-12

� ===========================

� Various miscellaneous tree handling routines.

326

�

� Global functions(): DeallocTree(), TreeLevel(), NodeInfo(), GetO�spring(),

� NotO�spring(), Node().

�

�/

/� Include �les �/

#include "box tree.h"

/� Local functions �/

static void search for node();

/� End of preamble �/

void DeallocTree(node)

NODE T �node;

f

/� Deallocates tree, starting from "node" (should be Root on �rst call) �/

int i;

for (i = 0; i < MAX NUM CHILDREN; i++)

if (node!child type[i] == BRANCH)

DeallocTree(node!child[i].branch);

free((char �) node);

g

int TreeLevel(node)

NODE T �node;

f

/� Returns depth of node in tree (number of "generations") �/

int level = 0;

/� Move up hierarchy until Root is reached �/

while (node 6= Root) f

node = node!parent;

++level;

g

return level;

g

char �NodeInfo(node)

NODE T �node;

f

/� Returns information concerning "node" in a character array �/

static char workspace[MAX STR LEN]; /� (private to avoid conicts) �/

(void) sprintf(workspace, "node lvl %i idx %i sz %.1e max %.1e lvs %i",

TreeLevel(node), node!tree index, node!size, node!max size,

node!num leaves);

return workspace;

g

327

void GetO�spring(node, num leaves, o�spring)

NODE T �node;

int �num leaves;

LEAF T �o�spring;

f

/�

� Returns pointer to list of leaves belonging to "node" and its

� descendants at current time. Before calling, num leaves should be

� set to zero. Also, o�spring should point to an array of

� MAX NUM PARTICLES elements of type LEAF T. It is the responsibility

� of the calling routine to ensure the returned values are correct.

�

�/

int i;

CHILD T �child;

/� Error check �/

if (ERROR CHECK && (node == NULL jj o�spring == NULL))

Error(FATAL, "GetOffspring(): Invalid argument(s).", "");

/� Examine children: record leaves and descend branches �/

for (i = 0; i < MAX NUM CHILDREN; i++) f

child = &node!child[i];

if (node!child type[i] == BRANCH)

GetO�spring(child!branch, num leaves, o�spring);

else if (node!child type[i] == LEAF)

o�spring[(�num leaves)++] = child!leaf;

g

g

BOOLEAN NotO�spring(particle, node)

int particle;

NODE T �node;

f

/�

� Returns TRUE if "particle" is NOT a leaf in "node" or its children.

� Otherwise returns FALSE.

�

�/

int i;

CHILD T �child;

BOOLEAN not o�spring = TRUE;

for (i = 0; i < MAX NUM CHILDREN; i++) f

child = &node!child[i];

if (node!child type[i] == BRANCH) f

if (!(not o�spring = NotO�spring(particle, child!branch)))

break;

g

else if (node!child type[i] == LEAF && child!leaf == particle) f

not o�spring = FALSE;

break;

g

g

328

return not o�spring;

g

NODE T �Node(tree index)

int tree index;

f

/� Returns node corresponding to "tree index" (NULL if not found) �/

NODE T �node = NULL;

if (ERROR CHECK && tree index < 0) f

(void) sprintf(ErrorStr, "tree index = %i", tree index);

Error(WARNING2, "Node(): negative index (overflow?).", ErrorStr);

g

search for node(tree index, Root, &node);

return node;

g

static void search for node(tree index, search node, node)

int tree index;

NODE T �search node, ��node;

f

/� Recursive search routine for Node() �/

int i;

if (search node!tree index == tree index)

�node = search node;

else

for (i = 0; i < MAX NUM CHILDREN; i++) f

if (search node!child type[i] == BRANCH)

search for node(tree index, search node!child[i].branch, node);

if (�node 6= NULL)

break;

g

g

/� tree util.c �/

B.1.20 update tree.c

The last source �le contains all the routines for calculating the multipole moments of tree

cells. There are two sets of routines, one for fast moment calculation immediately after tree

construction, and the other for updates at later times. A call to CalcTreeMoments() in-

vokes the fast calculation, while updates are performed through UpdateBranchMoments().

An update consists of adding or subtracting the contribution of a given particle to a

node's multipole moments, depending on whether the particle is being inserted into or

removed from the tree. The monopole and quadrupole of a branch can be updated

separately as well using UpdateMonopole() and UpdateQuadrupole(). These functions

are called by the tree force routines if the corresponding moment is found to be out of

date. The functions are recursive because the children of a node may need to be updated

before the node itself can be updated. Liberal use is made of long function names to

distinguish between the various operations that need to be performed when calculating

tree moments, such as adding the centre-of-mass contribution of a particle to a node

(add leaf to monopole()) or predicting the centre-of-mass position, velocity, force, and

329

�rst derivative (pred branch mono()). The routines that assign node time-steps and

determine the maximum extension of a node (cf. x3.4.5) are also found in this �le.

/�

� update tree.c { DCR 91-05-10

� =============================

� Routines for calculating tree multipole moments.

�

� Global functions: CalcTreeMoments(), UpdateBranchMoments(), UpdateMonopole(),

� UpdateQuadrupole().

�

�/

/� Include �les �/

#include "box tree.h"

/� Local functions �/

static void

add leaf to monopole(),

add branch to monopole(),

add branch quadrupole(),

pred leaf mono(),

pred branch mono(),

pred and add quad(),

add to quadrupole(),

set mono time step(),

set quad time step(),

get max size();

/� End of preamble �/

void CalcTreeMoments(branch)

BRANCH T �branch;

f

/�

� Calculates monopole (and quadrupole if desired) moments of "branch",

� calculating moments of its children as needed. Thus to recompute

� all tree moments, call this routine with Root as its argument. Note

� that it is assumed all moments are ZEROED before call. Also note

� that no prediction is performed { all data are assumed to be up to

� date. Computation time is reduced by these shortcuts.

�

�/

int i;

DATA T �ptr;

CHILD T �child;

BRANCH T �child branch;

double norm;

/� Calculate monopole contribution of children �/

for (i = 0; i < MAX NUM CHILDREN; i++) f

child = &branch!child[i];

if (branch!child type[i] == LEAF)

add leaf to monopole(branch, child!leaf);

else if (branch!child type[i] == BRANCH) f

CalcTreeMoments(child!branch);

330

add branch to monopole(branch, child!branch);

g

g

/� Error check �/

if (ERROR CHECK) f

if (branch!num leaves < 1) f

(void) sprintf(ErrorStr, "%s", NodeInfo(branch));

Error(FATAL, "CalcTreeMoments(): Branch has no leaves.", ErrorStr);

g

if (branch!num leaves == 1 && branch 6= Root) f

(void) sprintf(ErrorStr, "%s", NodeInfo(branch));

Error(FATAL, "CalcTreeMoments(): Branch has only one leaf.",

ErrorStr);

g

if (branch!mass == 0) f

(void) sprintf(ErrorStr, "%s", NodeInfo(branch));

Error(FATAL, "CalcTreeMoments(): Branch has zero mass.", ErrorStr);

g

g

/� Divide through by branch mass to obtain monopole moment �/

norm = 1 = branch!mass;

branch!pos[0] � = norm;

branch!pos[1] � = norm;

branch!pos[2] � = norm;

if (TreePar.pred mono) f

int k;

for (k = 0; k < NUM PHYS DIM; k++) f

branch!pos0[k] = branch!pos[k];

branch!vel[k] � = norm;

branch!f[k] � = norm;

branch!f dot[k] � = norm;

g

g

/� Set update time and time-step �/

branch!mt0 = Clock.time;

if (TreePar.check update times)

set mono time step(branch);

/� Check node size �/

get max size(branch);

/� Return now if not using quadrupole �/

if (!TreePar.use quad)

return;

/� Otherwise add contribution of children to quadrupole �/

for (i = 0; i < MAX NUM CHILDREN; i++) f

331

child = &branch!child[i];

if (branch!child type[i] == LEAF) f

ptr = Data[child!leaf];

add to quadrupole(branch, ptr!mass, ptr!pos, ptr!vel, ptr!f,

ptr!f dot);

g

else if (branch!child type[i] == BRANCH) f

child branch = child!branch;

add branch quadrupole(branch, child branch);

add to quadrupole(branch, child branch!mass, child branch!pos,

child branch!vel, child branch!f, child branch!f dot);

g

g

/� Save start-of-step quadrupole moment tensor �/

if (TreePar.pred quad)

for (i = 0; i < NUM QUAD ELEM; i++)

branch!q mom0[i] = branch!q mom[i];

/� Set update time and time-step �/

branch!qt0 = Clock.time;

if (TreePar.check update times)

set quad time step(branch);

g

static void add leaf to monopole(parent, leaf)

BRANCH T �parent;

LEAF T leaf;

f

/� Adds contribution of "leaf" to monopole of "parent" �/

DATA T �ptr = Data[leaf];

double particle mass = ptr!mass;

/� Increment number of leaves and add to mass �/

++parent!num leaves;

parent!mass += particle mass;

/� Add contribution �/

parent!pos[0] += particle mass � ptr!pos[0];

parent!pos[1] += particle mass � ptr!pos[1];

parent!pos[2] += particle mass � ptr!pos[2];

if (TreePar.pred mono) f

int k;

for (k = 0; k < NUM PHYS DIM; k++) f

parent!vel[k] += particle mass � ptr!vel[k];

parent!f[k] += particle mass � ptr!f[k];

parent!f dot[k] += particle mass � ptr!f dot[k];

g

g

g

static void add branch to monopole(parent, branch)

332

BRANCH T �parent, �branch;

f

/� Adds contribution of "branch" to "parent" monopole �/

double branch mass = branch!mass;

parent!num leaves += branch!num leaves;

parent!mass += branch mass;

parent!pos[0] += branch mass � branch!pos[0];

parent!pos[1] += branch mass � branch!pos[1];

parent!pos[2] += branch mass � branch!pos[2];

if (TreePar.pred mono) f

int k;

for (k = 0; k < NUM PHYS DIM; k++) f

parent!vel[k] += branch mass � branch!vel[k];

parent!f[k] += branch mass � branch!f[k];

parent!f dot[k] += branch mass � branch!f dot[k];

g

g

g

static void add branch quadrupole(parent, branch)

BRANCH T �parent, �branch;

f

/� Adds contribution of "branch" to "parent" quadrupole �/

int i;

for (i = 0; i < NUM QUAD ELEM; i++)

parent!q mom[i] += branch!q mom[i];

if (TreePar.pred quad)

for (i = 0; i < NUM QUAD ELEM; i++) f

parent!q dot[i] += branch!q dot[i];

parent!q 2dot[i] += branch!q 2dot[i];

parent!q 3dot[i] += branch!q 3dot[i];

g

g

void UpdateBranchMoments(op, particle, branch)

int op, particle;

BRANCH T �branch;

f

/�

� Adds or subtracts, depending on "op", contribution of "particle"

� to "branch" monopole (and quadrupole if desired). Note that, when

� adding, "particle" should already be in tree.

�

�/

/� Error check �/

if (ERROR CHECK && ((op 6= ADDM && op 6= SUBM) jj particle < 0 jj

particle � MAX NUM PARTICLES jj branch == (BRANCH T �) NULL))

Error(FATAL, "UpdateBranchMoments(): Invalid argument(s).", "");

/� Adjust number of leaves and branch mass �/

333

branch!num leaves += op;

branch!mass += op � Data[particle]!mass;

/� Update monopole data �/

UpdateMonopole(branch);

/� If desired, also update quadrupole �/

if (TreePar.use quad)

UpdateQuadrupole(branch);

g

void UpdateMonopole(branch)

BRANCH T �branch;

f

/� Recalculates "branch" monopole data from children �/

int i, k;

CELL T child type;

CHILD T �child;

double mass, pos[NUM PHYS DIM], vel[NUM PHYS DIM], f[NUM PHYS DIM],

f dot[NUM PHYS DIM], norm, �ppos;

/� Zero branch monopole data �/

ZERO(branch!pos);

ZERO(branch!vel);

ZERO(branch!f);

ZERO(branch!f dot);

/� Predict monopoles (c-o-m pos'ns) of children and add contributions �/

for (i = 0; i < MAX NUM CHILDREN; i++) f

child type = branch!child type[i];

if (child type 6= EMPTY) f

child = &branch!child[i];

if (TreePar.pred mono) f

if (child type == LEAF)

pred leaf mono(child!leaf, &mass, pos, vel, f, f dot);

else

pred branch mono(child!branch, &mass, pos, vel, f, f dot);

for (k = 0; k < NUM PHYS DIM; k++) f

branch!pos[k] += mass � pos[k];

branch!vel[k] += mass � vel[k];

branch!f[k] += mass � f[k];

branch!f dot[k] += mass � f dot[k];

g

g

else f

if (child type == LEAF) f

mass = Data[child!leaf]!mass;

ppos = Data[child!leaf]!pos;

g

else f

mass = child!branch!mass;

ppos = child!branch!pos;

g

branch!pos[0] += mass � ppos[0];

334

branch!pos[1] += mass � ppos[1];

branch!pos[2] += mass � ppos[2];

g

g

g

/� Divide through by branch mass �/

norm = (branch!mass == 0 ? 0 : 1 = branch!mass); /� For N=2 case �/

branch!pos[0] � = norm;

branch!pos[1] � = norm;

branch!pos[2] � = norm;

if (TreePar.pred mono)

for (k = 0; k < NUM PHYS DIM; k++) f

branch!pos0[k] = branch!pos[k];

branch!vel[k] � = norm;

branch!f[k] � = norm;

branch!f dot[k] � = norm;

g

/� Set update time and time-step �/

branch!mt0 = Clock.time;

if (TreePar.check update times)

set mono time step(branch);

/� Check node size �/

get max size(branch);

g

static void pred leaf mono(leaf, mass, pos, vel, f, f dot)

LEAF T leaf;

double �mass, �pos, �vel, �f, �f dot;

f

/�

� Predicts "leaf" monopole data to high or low order as desired.

� Note that for maximum e�ciency, the particle prediction routines

� PredictPosAndVelHi(), PREDICT POS LO(), and PREDICT VEL LO() are

� not called, but instead written out explicitly below.

�

�/

int k;

DATA T �ptr = Data[leaf];

double dt = Clock.time - ptr!t0;

/� Error check �/

if (ERROR CHECK && APPROX GT(dt, ptr!time step)) f

(void) sprintf(ErrorStr, "%i (%i), t %g, %.16f > %.16f", leaf,

ptr!orig index, TIME, dt, ptr!time step);

Error(WARNING2, "pred leaf mono(): Particle out of date.", ErrorStr);

g

/� Calculate monopole data due to leaf �/

335

�mass = ptr!mass;

if (TreePar.use high order) f

double dtp = (ptr!t0 - ptr!t1) + (ptr!t0 - ptr!t2), f2dotk;

if ((ptr!pos status == UN PRED && ptr!vel status == UN PRED) jj

(ptr!pos status == LO PRED && ptr!vel status == LO PRED)) f

for (k = 0; k < NUM PHYS DIM; k++) f

f2dotk = ptr!d3[k] � dtp + ptr!d2[k];

ptr!pos[k] = ((((0.05 � ptr!d3[k] � dt + OneTwelfth �

f2dotk) � dt + ptr!f dot[k]) � dt + ptr!f[k]) � dt +

ptr!vel0[k]) � dt + ptr!pos0[k];

ptr!vel[k] = (((0.25 � ptr!d3[k] � dt + OneThird �

f2dotk) � dt + 3 � ptr!f dot[k]) � dt +

2 � ptr!f[k]) � dt + ptr!vel0[k];

g

ptr!pos status = ptr!vel status = HI PRED;

g

for (k = 0; k < NUM PHYS DIM; k++) f

pos[k] = ptr!pos[k];

vel[k] = ptr!vel[k];

f2dotk = ptr!d3[k] � dtp + ptr!d2[k];

f[k] = (0.5 � (ptr!d3[k] � dt + f2dotk) � dt +

3 � ptr!f dot[k]) � dt + ptr!f[k];

f dot[k] = (0.5 � ptr!d3[k] � dt + OneThird � f2dotk) � dt +

ptr!f dot[k];

g

g

else f

if (ptr!pos status == UN PRED) f

for (k = 0; k < NUM PHYS DIM; k++)

ptr!pos[k] = ((ptr!f dot[k] � dt + ptr!f[k]) � dt +

ptr!vel0[k]) � dt + ptr!pos0[k];

ptr!pos status = LO PRED;

g

if (ptr!vel status == UN PRED) f

for (k = 0; k < NUM PHYS DIM; k++)

ptr!vel[k] = (3 � ptr!f dot[k] � dt + 2 � ptr!f[k]) �

dt + ptr!vel0[k];

ptr!vel status = LO PRED;

g

for (k = 0; k < NUM PHYS DIM; k++) f

pos[k] = ptr!pos[k];

vel[k] = ptr!vel[k];

f[k] = 3 � ptr!f dot[k] � dt + ptr!f[k];

f dot[k] = ptr!f dot[k];

g

g

g

static void pred branch mono(branch, mass, pos, vel, f, f dot)

BRANCH T �branch;

double �mass, �pos, �vel, �f, �f dot;

f

/� Predicts "branch" monopole data (low order) �/

int k;

double dt = Clock.time - branch!mt0;

/� Check if monopole needs updating �rst �/

336

if (TreePar.check update times && dt > branch!mts) f

UpdateMonopole(branch);

++Counter[TOTAL MONO UPDATES];

++Counter[RECUR MONO UPDATES];

dt = 0;

g

/� Calculate monopole data due to branch �/

�mass = branch!mass;

for (k = 0; k < NUM PHYS DIM; k++) f

pos[k] = ((branch!f dot[k] � dt + branch!f[k]) � dt +

branch!vel[k]) � dt + branch!pos0[k];

vel[k] = (3 � branch!f dot[k] � dt + 2 � branch!f[k]) � dt +

branch!vel[k];

f[k] = 3 � branch!f dot[k] � dt + branch!f[k];

f dot[k] = branch!f dot[k];

g

g

void UpdateQuadrupole(branch)

BRANCH T �branch;

f

/� Recalculates "branch" quadrupole data from children �/

int i;

CELL T child type;

CHILD T �child;

double mass, pos[NUM PHYS DIM], vel[NUM PHYS DIM], f[NUM PHYS DIM],

f dot[NUM PHYS DIM], �ppos;

/� Zero quadrupole moments of branch �/

for (i = 0; i < NUM QUAD ELEM; i++)

branch!q mom[i] = branch!q dot[i] = branch!q 2dot[i] =

branch!q 3dot[i] = 0.0;

/�

� Predict monopoles of children and quadrupoles of any branches and

� add contributions to quadrupole of this branch. Note that together

� add to quadrupole() and pred and add quad() constitute the parallel

� axis theorem for quadrupole moments (e.g. Hernquist 1987).

�

�/

for (i = 0; i < MAX NUM CHILDREN; i++) f

child type = branch!child type[i];

if (child type 6= EMPTY) f

child = &branch!child[i];

if (TreePar.pred quad) f

if (child type == LEAF)

pred leaf mono(child!leaf, &mass, pos, vel, f, f dot);

else f

pred branch mono(child!branch, &mass, pos, vel, f, f dot);

pred and add quad(branch, child!branch);

g

add to quadrupole(branch, mass, pos, vel, f, f dot);

g

337

else f

if (child type == LEAF) f

mass = Data[child!leaf]!mass;

ppos = Data[child!leaf]!pos;

g

else f

mass = child!branch!mass;

ppos = child!branch!pos;

g

/� (vel, f, f dot ignored) �/

add to quadrupole(branch, mass, ppos, vel, f, f dot);

g

g

g

/� Save start-of-step quadrupole �/

if (TreePar.pred quad)

for (i = 0; i < NUM QUAD ELEM; i++)

branch!q mom0[i] = branch!q mom[i];

/� Set update time and time-step �/

branch!qt0 = Clock.time;

if (TreePar.check update times)

set quad time step(branch);

g

static void pred and add quad(parent, branch)

BRANCH T �parent, �branch;

f

/� Predicts "branch" quadrupole data and adds it in to "parent" data �/

int i;

double dt = Clock.time - branch!qt0;

/� Check if quadrupole needs updating �rst �/

if (TreePar.check update times && dt > branch!qts) f

UpdateQuadrupole(branch);

++Counter[TOTAL QUAD UPDATES];

++Counter[RECUR QUAD UPDATES];

dt = 0;

g

/� Add in child branch contribution to quadrupole �/

for (i = 0; i < NUM QUAD ELEM; i++) f

parent!q mom[i] += ((branch!q 3dot[i] � dt + branch!q 2dot[i]) � dt +

branch!q dot[i]) � dt + branch!q mom0[i];

parent!q dot[i] += (3 � branch!q 3dot[i] � dt +

2 � branch!q 2dot[i]) � dt + branch!q dot[i];

parent!q 2dot[i] += 3 � branch!q 3dot[i] � dt + branch!q 2dot[i];

parent!q 3dot[i] += branch!q 3dot[i];

g

g

static void add to quadrupole(branch, mass, pos, vel, f, f dot)

BRANCH T �branch;

338

double mass, �pos, �vel, �f, �f dot;

f

/� Adds contribution of "mass" ("pos", "vel", etc.) to "branch" quad �/

int k, m, n;

double rel pos[NUM PHYS DIM], rel vel[NUM PHYS DIM], rel f[NUM PHYS DIM],

rel f dot[NUM PHYS DIM], w0, w1, w2, w3, m2 = 2 � mass, m3 = 3 � mass;

/� Fast calculation if there is no quadrupole prediction �/

if (!TreePar.pred quad) f

SUB(pos, branch!pos, rel pos);

w0 = DOT(rel pos, rel pos);

branch!q mom[0] += mass � (3 � SQ(rel pos[0]) - w0);

branch!q mom[1] += m3 � rel pos[0] � rel pos[1];

branch!q mom[2] += m3 � rel pos[0] � rel pos[2];

branch!q mom[3] += mass � (3 � SQ(rel pos[1]) - w0);

branch!q mom[4] += m3 � rel pos[1] � rel pos[2];

return;

g

/�

� Calculate quantities relative to branch (recall f and f dot contain

� hidden factors of 1/2 and 1/6, respectively).

�

�/

SUB(pos, branch!pos, rel pos);

SUB(vel, branch!vel, rel vel);

SUB(f, branch!f, rel f);

SUB(f dot, branch!f dot, rel f dot);

w0 = mass � DOT(rel pos, rel pos);

w1 = m2 � DOT(rel pos, rel vel);

w2 = mass � (DOT(rel vel, rel vel) + 2 � DOT(rel pos, rel f));

w3 = m2 � (DOT(rel pos, rel f dot) + DOT(rel vel, rel f));

/� Add in contribution to branch quadrupole (optimize?) �/

for (k = 0; k < MIN(2, NUM PHYS DIM); k++)

for (m = k; m < NUM PHYS DIM; m++) f

n = k � (NUM PHYS DIM - 1) + m;

branch!q mom[n] += m3 � rel pos[k] � rel pos[m];

branch!q dot[n] += m3 � (rel vel[k] � rel pos[m] +

rel pos[k] � rel vel[m]);

branch!q 2dot[n] += m3 � (rel f[k] � rel pos[m] +

rel vel[k] � rel vel[m] + rel pos[k] � rel f[m]);

branch!q 3dot[n] += m3 � (rel f dot[k] � rel pos[m] +

rel f[k] � rel vel[m] + rel vel[k] � rel f[m] +

rel pos[k] � rel f dot[m]);

if (k == m) f

branch!q mom[n] -= w0;

branch!q dot[n] -= w1;

branch!q 2dot[n] -= w2;

branch!q 3dot[n] -= w3;

g

g

g

#define MONO DT STAB 2 /� Maximum monopole time-step increase factor �/

339

static void set mono time step(branch)

BRANCH T �branch;

f

/� Sets update time and step for "branch" monopole �/

int k;

double w0, w1, w2, w3, v2, f2, ft, fb;

w0 = branch!size;

w1 = w2 = w3 = v2 = f2 = 0;

for (k = 0; k < NUM PHYS DIM; k++) f

w1 += ABS(branch!vel[k]);

w2 += ABS(branch!f[k]);

w3 += ABS(branch!f dot[k]);

v2 += SQ(branch!vel[k]);

f2 += SQ(branch!f[k]);

g

if ((ft = w0 � w2 + v2) == 0 jj (fb = w1 � w3 + f2) == 0) f

(void) sprintf(ErrorStr, "%s time %g", NodeInfo(branch), TIME);

Error(WARNING2, "set mono time step(): Using max mono step.", ErrorStr);

branch!mts = (RunPar.max time step ? RunPar.max time step : 1);

g

else

branch!mts =

MIN(MONO DT STAB � branch!mts, TreePar.mtsc � sqrt(ft = fb));

g

#undef MONO DT STAB

#define QUAD DT STAB 2 /� Maximum quadrupole time-step increase factor �/

static void set quad time step(branch)

BRANCH T �branch;

f

/� Sets update time and time-step for "branch" quadrupole �/

int i;

double w0, w1, w2, w3, q12, q22, ft, fb;

w0 = w1 = w2 = w3 = q12 = q22 = 0;

for (i = 0; i < NUM QUAD ELEM; i++) f

w0 += ABS(branch!q mom[i]);

w1 += ABS(branch!q dot[i]);

w2 += ABS(branch!q 2dot[i]);

w3 += ABS(branch!q 3dot[i]);

q12 += SQ(branch!q dot[i]);

q22 += SQ(branch!q 2dot[i]);

g

if ((ft = w0 � w2 + q12) == 0 jj (fb = w1 � w3 + q22) == 0) f

(void) sprintf(ErrorStr, "%s time %g", NodeInfo(branch), TIME);

Error(WARNING2, "set quad time step(): Using max quad step.", ErrorStr);

branch!qts = (RunPar.max time step ? RunPar.max time step : 1);

g

else

branch!qts =

340

MIN(QUAD DT STAB � branch!qts, TreePar.qtsc � sqrt(ft = fb));

g

#undef QUAD DT STAB

static void get max size(node)

NODE T �node;

f

/�

� Assigns max size to "node" based on actual position of its children.

� Note that branch extensions are de�ned around the centre of mass

� of each node, so if the centre of mass of Root is not at the origin

� (for example), the root node will be extended to encompass the whole

� system from its non-zero centre posision.

�

�/

int i;

DATA T �ptrd;

NODE T �ptrn;

CHILD T �child;

double ext, max ext = 0;

/�

� Maximum sizes are currently only used in the rotating frame

� (preferably attened). However, this presupposes that the

� particles are well-behaved and do not undergo extreme changes

� in position or velocity over short intervals.

�

�/

if (!ROTATING FRAME) f

node!max ext = node!half size;

node!max size = node!size;

node!max size sq = SQ(node!size);

return;

g

for (i = 0; i < MAX NUM CHILDREN; i++) f

child = &node!child[i];

switch (node!child type[i]) f

case EMPTY:

continue;

case LEAF:

ptrd = Data[child!leaf];

PREDICT POS LO(ptrd);

ext = ABS(ptrd!pos[1] - node!pos[1]);

max ext = MAX(max ext, ext);

ext = ABS(ptrd!pos[2] - node!pos[2]);

max ext = MAX(max ext, ext);

break;

case BRANCH:

ptrn = child!branch;

ext = ABS(ptrn!pos[1] - node!pos[1]) + ptrn!max ext;

max ext = MAX(max ext, ext);

ext = ABS(ptrn!pos[2] - node!pos[2]) + ptrn!max ext;

max ext = MAX(max ext, ext);

g

g

341

node!max ext = max ext;

node!max size = MAX(2 � max ext, node!size);

node!max size sq = SQ(node!max size);

if (MONITOR && VERY VERBOSE && node!max size > node!size)

(void) printf("MONITOR -- ext node %s (time %g max size %g)nn",

NodeInfo(node), TIME, node!max size);

g

/� update tree.c �/

B.2 rdpar

The rdpar parser was written to replace a more cumbersome version of the same name

available in the public domain (author unknown). The parser consists of a set of functions

that can be called by an application to read parameters from a �le with ease. The use

of rdpar is not restricted to box tree. Indeed, make movie, stats read, and dat read

all make use of it. The code itself contains a lengthy comment at the beginning that

explains the calling syntax. There is a small header �le as well which must be included

by applications that wish to use the parsing routines. Note that rdpar has its own error

handling routines.

B.2.1 rdpar.h

/� rdpar.h { De�nitions for rdpar routines DCR 93-03-23 �/

#define NEND -1 /� Flags for terminating multiple reads �/

#define NEND LABEL "NULL"

#define MAX RDPAR SIZE 1000 /� Maximum number of lines in parameter �le �/

#ifndef MAX STR LEN /� Maximum string length �/

define MAX STR LEN 256

#endif

extern void /� External voids �/

OpenPar(),

ReadInt(),

ReadLng(),

ReadFlo(),

ReadDbl(),

ReadStr(),

ClosePar();

extern int /� External ints �/

ReadNInt(),

ReadNLng(),

ReadNFlo(),

ReadNDbl(),

ReadNStr();

B.2.2 rdpar.c

/�

342

� rdpar ver 1.1 { DCR 93-03-23

� =============================

� A parameter �le parsing utility based on the original RDPAR.

�

� Modi�cations by David Earn:

� 7 May 1993: added STDIO H SEEN and STDLIB H SEEN lines for Convex cc

�

� SYNOPSIS:

�

� Call OpenPar(char ��lename) to prepare a parameter �le for reading, and

� ClosePar(void) when you're done. The parameter �le should be organized

� with parameter "labels" or key words at the start of each line, followed

� by the data, separated with whitespace (no commas). Comments may be

� added anywhere by prefacing with "!" or "#" (the remainder of the line

� is ignored). Currently, "!" and "#" cannot be used inside character

� strings. Single integers, long integers, oats, doubles, and strings can

� be read by calling:

� void ReadInt(char �label, int �myint);

� void ReadLng(char �label, long int �mylng);

� void ReadFlo(char �label, oat �myo);

� void ReadDbl(char �label, double �mydbl);

� void ReadStr(char �label, char �mystr, int maxstrlen);

� where "label" is the keyword(s) as used in the parameter �le. Note that

� strings must be given a maximum length. For ReadStr(), strings need not

� be bracketed by quotes (") (which are removed if present); apostrophes

� (') are left alone. To read more than one item of a given type, use:

� int ReadNInt(char �label, int �myintarray, int numelem);

� int ReadNLng(char �label, long int �mylngarray, int numelem);

� int ReadNFlo(char �label, oat �myoarray, int numelem);

� int ReadNDbl(char �label, double �mydblarray, int numelem);

� int ReadNStr(char �label, char ��mystrarray, int numelem, int maxstrlen);

� where "numelem" is the number of elements of each type to be read. These

� should be on the same line as the key words (up to 256 characters),

� separated by whitespace. Strings MUST be delimited by quotes in this case.

� The ReadN commands return the constant NEND (-1) if the keyword

� NEND LABEL (the string "NULL", without quotes) appears in place of a

� data item. This is useful for reading multiple data sets with the same

� keywords, e.g.,

� x, y, z positions 1 2 0

� x, y, z positions 3 4 0

� x, y, z positions NULL NULL NULL

� At the moment it is primarily the responsibility of the programmer to

� ensure that valid arguments are passed to the rdpar routines. Further

� functionality may be added in future versions. Comments welcome!

�

� USAGE:

�

� Build the object code by executing the Make�le (type "make").

� To use the rdpar routines, add the object ("rdpar.o") to the argument

� list of your program compile command. Be sure to #include "rdpar.h".

� To compile a test program, use "make test".

�

�/

/�LINTLIBRARY�/ /� Disable lint complaints of unused functions �/

/� Copyright notice �/

#include "COPYRIGHT"

343

/� Header �les �/

#include "rdpar.h"

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#ifndef STDLIB H SEEN /� Convex �/

include <malloc.h>

#endif

/� Some #de�ne's �/

#define VERBOSE 0 /� Non-zero to switch on �/

#define EOS 'n0' /� String termination marker �/

#define TAB 'n011' /� TAB character (whitespace) �/

#define SPACE ' ' /� Space (whitespace) �/

#define COM1 ' !' /� Comment marker �/

#define COM2 '#' /� Comment marker �/

#define QUOTE 'n"' /� String delimiter �/

#define CR 'nn' /� Carriage return �/

/� Useful macros �/

#define MIN(x,y) ((x) < (y) ? (x) : (y)) /� Minimum of x & y �/

#define MAX(x,y) ((x) > (y) ? (x) : (y)) /� Maximum of x & y �/

/� Local variables �/

FILE �fp; /� Pointer to par �le �/

char �data[MAX RDPAR SIZE]; /� Storage for �le in memory �/

int line; /� Counter/total no. of lines �/

/� Local routines �/

static void

strip(),

stripSpace(),

stripLeadingSpace(),

stripTrailingSpace(),

cutToSpace(),

error();

static int

stripQuotes(),

my cindex();

static char

��ndLabel(),

�my index(),

�my sindex();

/� Non-ANSI C may not declare these... �/

#ifndef STDIO H /� Sun �/

#ifndef STDIO H /� Silicon Graphics �/

#ifndef H STDIO /� IBM RISC 6000 �/

#ifndef STDIO H SEEN /� Convex �/

extern int fclose(), fprintf(), printf();

344

#endif

#endif

#endif

#endif

/� Include main() for testing if desired �/

#ifdef TEST

int main()

f

/� The following bit of code provides a test facility �/

int dumint, iarray[2];

long int dumlng, larray[1];

oat dumo, farray[5];

double dumdbl, darray[3];

char dumstr[MAX STR LEN], �sarray[2];

/� Open par �le �/

OpenPar("rptest.par"); /� rptest.par is supplied with the code �/

/� Test single reads �/

ReadStr("Comment line", dumstr, MAX STR LEN);

(void) printf("ReadStr() returned n"%sn".nn", dumstr);

ReadInt("Random number seed", &dumint);

(void) printf("ReadInt() returned %inn", dumint);

ReadLng("Long int", &dumlng);

(void) printf("ReadLng() returned %linn", dumlng);

ReadFlo("Box size", &dumo);

(void) printf("ReadFlo() returned %fnn", dumo);

/� Note that the second value can be obtained by a repeat read �/

ReadFlo("Box size", &dumo);

(void) printf("ReadFlo() returned %f (second read)nn", dumo);

ReadDbl("Pi", &dumdbl);

(void) printf("ReadDbl() returned %.9fnn", dumdbl);

/� Test multiple reads �/

while (ReadNInt("Track particle", iarray, 2) 6= NEND)

(void) printf("ReadNInt() returned %i %inn", iarray[0], iarray[1]);

while (ReadNLng("Just one long", larray, 1) 6= NEND)

(void) printf("ReadNLng() returned %linn", larray[0]);

while (ReadNFlo("Many floats", farray, 5) 6= NEND)

(void) printf("ReadNFlo() returned %.1f %.1f %.1f %.1f %.1fnn",

farray[0], farray[1], farray[2], farray[3], farray[4]);

while (ReadNDbl("Double test", darray, 3) 6= NEND)

(void) printf("ReadNDbl() returned %g %g %gnn", darray[0],

darray[1], darray[2]);

345

sarray[0] = (char �) malloc(MAX STR LEN);

sarray[1] = (char �) malloc(MAX STR LEN);

while (ReadNStr("String test", sarray, 2, 256) 6= NEND)

(void) printf("ReadNStr() returned n"%sn" n"%sn"nn", sarray[0],

sarray[1]);

/� Close par �le �/

ClosePar();

/� Normal termination �/

return 0;

g

#endif

void OpenPar(fpstr)

char �fpstr;

f

/� Opens par �le and reads lines into memory �/

static int �rst call = 1;

char buf[MAX STR LEN], �bp;

/� Make sure only one �le is open at a time �/

if (�rst call) f

fp = NULL;

�rst call = 0;

g

if (fp 6= NULL)

error("OpenPar(): File already open...close it first.");

/� Attempt to assign �le pointer �/

if ((fp = fopen(fpstr, "r")) == NULL)

error("OpenPar(): Unable to open parameter file.");

/� Read in data lines, stripping comments �/

line = 0;

while (fgets(buf, MAX STR LEN, fp) 6= NULL) f

bp = buf;

strip(&bp);

if (strlen(bp) > 0) f

if (line == MAX RDPAR SIZE)

error("OpenPar(): Max file size exceeded.");

data[line] = (char �) malloc((unsigned) strlen(bp) + 1);

(void) strcpy(data[line++], bp);

g

g

/� Close par �le �/

(void) fclose(fp);

346

#if (VERBOSE 6= 0)

(void) printf("OpenPar(): %i line(s) read from n"%sn"nn",

line, fpstr);

#endif

g

void ClosePar()

f

/� Resets �le pointer and deallocates storage �/

fp = NULL;

for (--line; line � 0; line--)

free(data[line]);

g

void ReadInt(label, x)

char �label;

int �x;

f

/� Reads integer x associated with keyword(s) label �/

�x = atoi(�ndLabel(label));

g

void ReadLng(label, x)

char �label;

long int �x;

f

/� Reads long integer x associated with keyword(s) label �/

�x = atol(�ndLabel(label));

g

void ReadFlo(label, x)

char �label;

oat �x;

f

/� Reads oat x associated with keyword(s) label �/

�x = (oat) atof(�ndLabel(label));

g

void ReadDbl(label, x)

char �label;

double �x;

f

/� Reads double x associated with keyword(s) label �/

�x = atof(�ndLabel(label));

g

void ReadStr(label, str, len)

char �label, �str;

int len;

f

/� Reads string str (max length len) associated with keyword(s) label �/

int l;

char �substr;

347

substr = �ndLabel(label);

l = stripQuotes(&substr); /� Remove quotation marks, if any �/

(void) strncpy(str, substr, MIN(len, l));

g

int ReadNInt(label, x, n)

char �label;

int �x, n;

f

/� Reads n integers associated with label into array x �/

int i;

char �substr;

substr = �ndLabel(label);

/� Loop over integers (assume they're all there!) �/

for (i = 0; i < n; i++) f

/� Check for end of list read �/

if (my cindex(NEND LABEL, substr) == 0)

return NEND;

/� Assign value �/

x[i] = atoi(substr);

/� Skip to next value in string �/

if (i < n - 1) f

cutToSpace(&substr);

stripLeadingSpace(&substr);

g

g

return 0;

g

int ReadNLng(label, x, n)

char �label;

long int �x;

int n;

f

/� Reads n long integers associated with label into array x �/

int i;

char �substr;

substr = �ndLabel(label);

for (i = 0; i < n; i++) f

if (my cindex(NEND LABEL, substr) == 0)

return NEND;

x[i] = atol(substr);

if (i < n - 1) f

cutToSpace(&substr);

stripLeadingSpace(&substr);

348

g

g

return 0;

g

int ReadNFlo(label, x, n)

char �label;

oat �x;

int n;

f

/� Reads n oats associated with label into array x �/

int i;

char �substr;

substr = �ndLabel(label);

for (i = 0; i < n; i++) f

if (my cindex(NEND LABEL, substr) == 0)

return NEND;

x[i] = (oat) atof(substr);

if (i < n - 1) f

cutToSpace(&substr);

stripLeadingSpace(&substr);

g

g

return 0;

g

int ReadNDbl(label, x, n)

char �label;

double �x;

int n;

f

/� Reads n doubles associated with label into array x �/

int i;

char �substr;

substr = �ndLabel(label);

for (i = 0; i < n; i++) f

if (my cindex(NEND LABEL, substr) == 0)

return NEND;

x[i] = atof(substr);

if (i < n - 1) f

cutToSpace(&substr);

stripLeadingSpace(&substr);

g

g

return 0;

g

int ReadNStr(label, str, n, len)

char �label, �str[];

int n, len;

f

349

/� Reads n strings (max length len) assoc'd with label into array str �/

int i, l;

char �substr;

substr = �ndLabel(label);

for (i = 0; i < n; i++) f

if (my cindex(NEND LABEL, substr) == 0)

return NEND;

/� Strip o� quotation marks around current string �/

l = stripQuotes(&substr);

/� Get length of string and copy to array �/

l = MIN(len, l);

(void) strncpy(str[i], substr, l);

/� Add EOS marker �/

str[i][l - (l == len ? 1 : 0)] = EOS;

/� Skip to next string �/

if (i < n - 1) f

substr += l; /�DEBUG what if l = MAX?�/

stripLeadingSpace(&substr);

g

g

return 0;

g

static char ��ndLabel(label)

char �label;

f

/�

� Returns pointer to �rst data item after label. Note that

� the label is then "deleted" from memory, so subsequent searches

� for the same label will �nd the next occurence in the par �le.

�

�/

int l;

char �substr;

/� Strip the label, just in case �/

strip(&label);

/� Scan through the stored �le a line at a time �/

for (l = 0; l < line; l++)

/� Look for a match �/

if ((substr = my sindex(label, data[l])) 6= NULL) f

350

/� Strip space up to the �rst data item �/

stripLeadingSpace(&substr);

/� Remove the label from mem with the help of an EOS �/

data[l][0] = EOS;

/� Return pointer to data �/

return substr;

g

/� Fatal error if the label is not found �/

f

char errstr[MAX STR LEN];

(void) sprintf(errstr, "findLabel(): Label n"%sn" not found.",

label);

error(errstr);

g

/� The following is to keep lint happy �/

return NULL;

g

static char �my index(tgt, c)

char c, �tgt;

f

/�

� Returns a pointer to the �rst occurence of character c in string

� tgt, or NULL if c does not occur in the string. Note that my index()

� is not an ANSI C function which is why it is given here explicitly.

�

�/

int len, cc;

/� Automatic failure if tgt has zero length �/

if ((len = strlen(tgt)) == 0)

return NULL;

/� Search for the �rst occurence �/

for (cc = 0; cc < len; cc++)

if (c == tgt[cc])

return (tgt + cc);

/� No match �/

return NULL;

g

static int my cindex(src, tgt)

char �src, �tgt;

f

/�

351

� Returns the numerical position in string tgt where the

� entire string src �rst occurs. The code -1 is returned

� if src does not occur anywhere in tgt.

�

�/

int slen, tlen, c, cc;

/� Automatic failure if src cannot �t inside tgt �/

if ((slen = strlen(src)) > (tlen = strlen(tgt)) jj slen == 0)

return -1;

/� Do a character-by-character comparison until a match is found �/

for (c = 0; c < tlen - slen + 1; c++) f

cc = 0;

while (src[cc] == tgt[c + cc])

if (++cc == slen)

return c;

g

/� No match �/

return -1;

g

static char �my sindex(src, tgt)

char �src, �tgt;

f

/�

� Returns a pointer to the position in tgt at which string src

� �rst di�ers from string tgt.

�

�/

int len, c;

/� Automatic failure if src is longer than tgt �/

if ((len = strlen(src)) > strlen(tgt))

return NULL;

/� Search for the �rst di�erence �/

for (c = 0; c < len; c++)

if (src[c] 6= tgt[c])

return NULL;

/� Return pointer to �rst di�ering character �/

return (tgt + c);

g

static void strip(str)

char ��str;

f

/�

� Removes comments and carriage returns as well as leading

� and trailing whitespace from string str.

352

�

�/

/�DEBUG can't handle ! or # or nn inside quotes...�/

char �ptr;

/� Return if string already empty �/

if (strlen(�str) == 0)

return;

/� Stick EOS's in place of comment markers or CR �/

if ((ptr = my index(�str, COM1)) 6= NULL)

�ptr = EOS;

if ((ptr = my index(�str, COM2)) 6= NULL)

�ptr = EOS;

if ((ptr = my index(�str, CR)) 6= NULL)

�ptr = EOS;

/� Remove whitespace �/

stripSpace(str);

g

static void stripSpace(str)

char ��str;

f

/� Removes leading and trailing whitespace �/

if (strlen(�str) == 0)

return;

stripLeadingSpace(str);

stripTrailingSpace(str);

g

static void stripLeadingSpace(str)

char ��str;

f

/� Removes leading whitespace, incrementing str pointer as required �/

if (strlen(�str) == 0)

return;

while ((�str)[0] == SPACE jj (�str)[0] == TAB)

++(�str);

g

static void stripTrailingSpace(str)

char ��str;

f

/� Removes trailing whitespace �/

int l;

353

if (strlen(�str) == 0)

return;

while ((�str)[l = strlen(�str) - 1] == SPACE jj (�str)[l] == TAB)

(�str)[l] = EOS;

g

static int stripQuotes(str)

char ��str;

f

/�

� Strips 2 quotes from str, incrementing pointer str if necessary.

� The length of the delimited string (or portion thereof) is returned.

�

�/

int l;

char �ptr;

/� Leading quote assumed to be in position 0 �/

if ((�str)[0] == QUOTE)

++(�str);

/� Find next occurence of a quote, and shift string down to cover it �/

l = strlen(�str);

if ((ptr = my index(�str, QUOTE)) 6= NULL) f

l -= strlen(ptr);

for (; strlen(ptr) > 0; ++ptr)

�ptr = �(ptr + 1);

g

/� Return the length of the string that was delimited by quotes �/

return l;

g

static void cutToSpace(str)

char ��str;

f

/� Increments pointer str until the �rst character is not whitespace �/

if (strlen(�str) == 0)

return;

while ((�str)[0] 6= SPACE && (�str)[0] 6= TAB)

++(�str);

g

static void error(str)

char �str;

f

/� Fatal error routine; will dump core if possible �/

(void) fprintf(stderr, "n007Rdpar error in %snn", str);

abort();

g

354

