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Abstract We present our implementation of the soft-sphere
discrete element method (SSDEM) in the parallel gravita-
tional N -body code pkdgrav, a well-tested simulation pack-
age that has been used to provide many successful results
in the field of planetary science. The implementation of
SSDEM allows for the modeling of the different contact
forces between particles in granular material, such as var-
ious kinds of friction, including rolling and twisting friction,
and the normal and tangential deformation of colliding par-
ticles. Such modeling is particularly important in regimes
for which collisions cannot be treated as instantaneous or as
occurring at a single point of contact on the particles’ sur-
faces, as is done in the hard-sphere discrete element method
already implemented in the code. We check the validity
of our soft-sphere model by reproducing successfully the
dynamics of flows in a cylindrical hopper. Other tests will be
performed in the future for different dynamical contexts,
including the presence of external and self-gravity, as our
code also includes interparticle gravitational force computa-
tions. This will then allow us to apply our tool with confi-
dence to planetary science studies, such as those aimed at
understanding the dynamics of regolith on solid celestial

Electronic supplementary material The online version of this
article (doi:10.1007/s10035-012-0346-z) contains supplementary
material, which is available to authorized users.

S. R. Schwartz (B) · D. C. Richardson
Department of Astronomy, University of Maryland,
College Park, MD 20742-2421, USA
e-mail: srs@astro.umd.edu

S. R. Schwartz · P. Michel
Lagrange Laboratory, University of Nice Sophia Antipolis, CNRS, Côte
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body surfaces, or at designing efficient sampling tools for
sample-return space missions.
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1 Introduction

The study of granular materials and their dynamics is of great
importance for a wide range of applications in industry, but
also in the field of planetary science. Most celestial solid
bodies’ surfaces are not bare rock, but are instead covered
by granular material. This material can take the form of fine
regolith as on the Moon, or gravels and pebbles as on the
320-m size near-Earth asteroid Itokawa, which was visited
by the Japan Aerospace Exploration Agency (JAXA) space
mission Hayabusa in 2005, returning to Earth in 2010 with
some samples [1]. Moreover, it has been found that this gran-
ular material can flow due to various circumstances, such as
landslides in crater walls, or global shaking due to the prop-
agation of seismic waves as a result of small impacts on
low-gravity bodies (e.g., Richardson et al. [2]). However,
the response of granular materials on these bodies to various
kinds of processes, as a function of their material proper-
ties and over the changes in surface gravity suffered due to
encounters with other bodies, is still not well understood.
Such an understanding is important for the interpretation of
images of surfaces of planets, satellites, and small bodies sent
to us by spacecraft. It is also relevant to the development of
efficient sampling designs and anchoring tools for space mis-
sions aimed at attaching to, or obtaining a sample from, the
surface of such bodies.
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In this paper, we present our implementation of the soft-
sphere discrete element method (SSDEM) in the parallel
gravitational N -body code pkdgrav. Richardson et al. [3]
presented the implementation of the hard-sphere discrete ele-
ment method (HSDEM) in this code, along with a discussion
of the primitives (walls) that can be used to represent vari-
ous kinds of boundary conditions (crater floors, geometry of
sampling tools, experimental conditions, etc.). We refer the
reader to the introduction of that paper for a brief overview
of the importance of the dynamics of granular materials in
planetary science.

Different approaches exist to perform modeling of granu-
lar materials [4]. The discrete element method (DEM), which
is a numerical method for computing the motion of large
numbers of particles of micron-scale size and above, is a
commonly used approach. DEM is however relatively com-
putationally intensive, which limits either the length of a sim-
ulation or the number of particles. Several DEM codes take
advantage of parallel processing capabilities to scale up the
number of particles or length of the simulation (e.g., [5,6]).
An alternative to treating all particles separately is to aver-
age the physics across many particles and thereby treat the
material as a continuum. In the case of solid-like granular
behavior, the continuum approach usually treats the material
as elastic or elasto-plastic and models it with the finite ele-
ment method or a mesh-free method (e.g., [7]; also see [8–10]
for use of analytical and continuum approaches in modeling
asteroid shapes). In the case of liquid-like or gas-like gran-
ular flow, the continuum approach may treat the material as
a fluid and use computational fluid dynamics. However, the
homogenization of granular-scale physics is not necessarily
appropriate for capturing the discrete nature of the particles
and the forces between them (and the forces between them
their wall-boundaries) [11]. Therefore, limits of such homog-
enization must be considered carefully before attempting to
use a continuum approach.

Discrete element method numerical codes are typically
carried out by way of Hard-sphere (HSDEM) or Soft-
Sphere (SSDEM) particle dynamics. They have been used
successfully in many granular physics applications. For
instance, Hong and McLennan [12] used hard-sphere molec-
ular dynamics to study particles flowing through a hole in a
two-dimensional box under the influence of gravity. Huilin et
al. [13] used a Eulerian-Lagrangian approach coupled with a
discrete hard-sphere model to obtain details of particle colli-
sion information in a fluidized bed of granular material. Also,
Kosinski and Hoffman [14] compared the standard hard-
sphere method including walls to a hard-sphere model with
walls that also accounts for particle adhesion. The van der
Waals type interaction is presented as a demonstration case.

The hard-sphere discrete element method predicts colli-
sions in advance and treats these collisions between grains
as instantaneously occurring at a single point of contact that

lies on the particles’ surfaces. Collision prediction can prove
to be difficult, especially between particles and walls with
complex geometries and/or motions. Furthermore, collisions
between grains in a granular medium are not in fact instanta-
neous, but rather involve surface deformation of the grains at
contact along with complex contact forces (friction) that are
not well accounted for in HSDEM. Therefore, while HSDEM
may still be appropriate in dilute/ballistic regimes given its
ability to handle larger timesteps, it is not well adapted to
dense regimes in which grain deformation and the complex-
ity of frictional forces during contact cannot be neglected.
SSDEM is called for in these regimes. However, although
SSDEM has the advantage of not requiring collisions to be
predicted in advance, it comes at the expense of much smaller
integration timesteps, which can limit the integration time-
scale. On the other hand, because it can be implemented into
a code such as ours that is fully and efficiently parallelized,
it is currently possible to follow the evolution of millions of
particles over a fairly large range of conditions.

The soft-sphere discrete element method is commonly
used in the study of granular materials, and has often been
applied to industrial problems [5,15]. However, it is only very
recently that it has started to be applied to the realm of plane-
tary science (see e.g., Sànchez et al. [16], Tancredi et al. [17],
although some groups, such as [17], make use of third-party
software not fully under their control). An important charac-
teristic of SSDEM in pkdgrav, in addition to its paralleliza-
tion, is that it can cover a very wide range of gravity regimes
and boundary conditions, as is required to study the large
variety of environments encountered in the Solar System.
This is an important asset given that the dynamical behavior
of granular material can depend strongly on the local grav-
ity, which can vary greatly from one Solar System object
(e.g., small bodies, such as asteroids and comets) to another
(e.g., planets). Moreover, the implementation of certain types
of frictions (e.g., tangential, static) differs from some of the
previous approaches. For instance, in an early implementa-
tion of a three-dimensional SSDEM code, Gallas et al. [18]
did not use tangential restoring forces and thus did not have
a static friction limit (μs = 0). The only tangential force
included was a viscous damping force. Therefore, the parti-
cles did not have memory of previous contacts and the Cou-
lomb frictional coefficient used was instead one of kinetic
friction, which puts a limit on the tangential damping force.
Our treatment of tangential forces is similar to that of Silbert
et al. [19] in that both elastic and plastic tangential defor-
mation terms are supported. In addition, we consider other
frictional terms, including rolling and twisting. In all, we out-
line four parameters that govern the exchange of tangential
and rotational momentum between particles in contact, and
allow for realistic dissipation of rotational and translational
energy under a wide variety of conditions. This ensures the
code is general in scope, has the ability to simulate many
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different types of material, and that it can be used to explore
a large parameter space.

However, before applying the code to realistic situ-
ations and over the wide range of size scales impor-
tant in applications to planetary science, comparison with
well-known results and laboratory experiments is required
for validation. We first present, in Sect. 2, SSDEM as imple-
mented in pkdgrav, including all the parameters used and
the contact forces that are taken into account. Then we com-
pare, in Sect. 3, cylindrical hopper simulations and experi-
ments in order to check the validity of our numerical model.
Conclusions and perspectives are presented in Sect. 4.

2 Method

We have implemented SSDEM in the N -body code
pkdgrav, a parallel gravity code originally designed for
collisionless cosmology simulations [20] and adapted for col-
lisional Solar System applications [21,22]. SSDEM permits
realistic modeling of the contact forces between particles in
a granular material. The soft-sphere collisional model is car-
ried out by allowing particle surfaces to penetrate each other
[23]. When an overlap occurs, the particles are subject to
forces that depend on the degree of overlap and the relative
velocities and spins of the particles, as well as their material
properties. Overlaps are detected each timestep by taking
advantage of pkdgrav’s hierarchical tree data structure [21]
to generate particle neighbor lists in O(N log N ) time, where
N is the number of particles in the simulation.

We use a second-order leapfrog integrator, in which par-
ticle positions and velocities are alternately “drifted” and
“kicked” according to

ṙi,n+ 1
2

= ṙi,n + (h/2)r̈i,n “kick”

ri,n+1 = ri,n + hṙi,n+ 1
2

“drift”

ṙi,n+1 = ṙi,n+ 1
2

+ (h/2)r̈i,n+1 “kick”,
(1)

where ri,n is the position of particle i at step n, h is the (con-
stant) timestep that takes the system from step n to step n+1,
and the derivatives are with respect to time. This integrator
has the desirable property that it is symplectic, meaning it
exactly solves an approximate Hamiltonian of the system,
thereby conserving phase-space volume so that, for example,
the energy error remains bounded (for sufficiently small h;
see [24] for details). Symplectic methods are ideal for equa-
tions of motion of the form ẍ = F(x), of which the simple
harmonic oscillation of a spring is a prime example. For this
reason, this approach is well-suited in general to SSDEM.

However, most SSDEM simulations include dissipation,
in the form of a damped spring (cf. Sect. 2.3), and/or other

types of friction (Sects. 2.4 and 2.5). Although this would
seem to negate the usefulness of the leapfrog, the relative
simplicity of the integrator, coupled with the ease with which
it can be parallelized, still make it a good choice for SSDEM
applications. One complication is that the damping term is
usually an explicit function of velocity, which is out of sync
with position during the leapfrog integration step. We get
around this in a naïve way by using “predicted” velocities
ṙi,n+1 ≈ ṙi,n + hr̈i,n and spins ω̇i,n+1 ≈ ω̇i,n + hω̈i,n to
solve for F(x). The proper way is to derive the correct Ham-
iltonian for the modified equations of motion and construct
an appropriate leapfrog integration scheme from that (see
Quinn et al. [25] for discussion in the context of the shear-
ing-sheet scenario). However, this level of sophistication is
not needed here because we take very conservative timesteps
(small h) and integration errors are generally subsumed in the
imposed damping and/or friction anyway.

Since SSDEM forces are computed only once per time-
step, and simultaneously for all particles, the approach ben-
efits tremendously from pkdgrav’s parallelization, with
wallclock time dropping nearly linearly with the number of
cores (the precise scaling prefactor depends on the details
of the networking between cores). As a result, simulations
of systems comprised of millions of particles, such as those
presented in Sect. 3, can be completed in a matter of a few
days on single 12-core 3-GHz nodes.

Our methodology in carrying out particle-particle colli-
sions with SSDEM is based on the work of Cundall and
Strack [23], although we have added several more features,
such as rolling and twisting friction. In this section, we
describe our modeling of normal and tangential deforma-
tions, along with different types of friction, in particular
the rolling and twisting friction that are often neglected in
SSDEM codes. We then explain how we treat the coefficient
of restitution in the case of particle collisions and how the
timestep necessary to perform the computations is chosen.

When computing forces in pkdgrav as part of the regular
integration step, neighbor searches are performed using the
tree code. We then compute the amount of overlap between
neighboring particles, given by

x = sp + sn − |ρ|, (2)

where sp is the particle radius (particles are spheres), sn is
the neighbor particle radius, and ρ = rn − rp is the rel-
ative position between the particle and neighbor centers of
mass (COMs), so |ρ| is the scalar distance between the parti-
cle COMs. Quantitatively, x represents the extent of particle
overlap, but can be interpreted physically as the sum of the
particles’ deformations along the line that connects their cen-
ters due to their mutual contact (see Fig. 1a).
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Fig. 1 A (spherical) particle in overlap with one of its neighbors.
a Labels show quantities needed to compute the reaction force due
to overlap, regardless of duration. Here sp , l p , sn , and ln are the radii
and moment arms for the particle and its neighbor, respectively. The
particle’s moment arm is given by the scalar distance from the parti-
cle’s center to the contact point (likewise for the neighbor’s moment
arm). The quantity x is the scalar distance between the surfaces of the
two particles along the line that connects their centers and n̂ is a unit
vector that gives the direction from the contact point to the neighbor’s

center. b Illustration of the quantity needed for the tangential compo-
nent of the restoring force, which arises from a persistent contact: S is
the tangential component of a vector that points from the equilibrium
contact point to the current contact point and is generated by integrating
all tangential motion that has occurred over the history of the contact.
Note that both x and S are exaggerated to illustrate the method; x typ-
ically does not exceed 0.005(sn + sp), and |S| � sp, sn , so that S is
close to perpendicular to both the initial and current lines that connect
the two particles’ centers

2.1 Normal deformation

Consider a pair of particles for which x is positive, a repul-
sive restoring spring force is generated along the normal
according to Hooke’s law,1

FN ,restoring = −kn x n̂, (3)

where n̂ ≡ ρ/|ρ| is a unit vector that gives the direction from
the particle’s center to the neighbor’s center and kn is the con-
stant for the normal spring, which can be adjusted in order to
control the amount of interparticle penetration that is allowed
in a given simulation. In choosing a value for kn , it has been
the practice to limit x to∼1 % of the smallest particle radius in
the simulation [26]. In order to choose kn so that we ensure the
maximum values of x are close to this limit, we consider two
regimes: one where particle kinetic energy dominates and
determines the interparticle penetration, and another where
the confining pressure on low-energy particles in a dense
medium is responsible for the maximum interparticle pen-
etration. In the first regime, if the maximum particle speed
during the simulation can be predicted, putting that kinetic
energy entirely into a single spring with x equal to the desired
maximum value xmax gives a recommended value for kn of

kn ∼ m

(
vmax

xmax

)2

, (4)

where the mass, m, corresponds to the typical mass of these
most energetic particles. For example, if typical particles are

1 Other functional dependencies on x are easily implemented, such as
x3/2 (Hertzian), etc. We chose a linear dependence because it is a simple
choice that is often used.

10 g in mass with diameters of 1 cm, and maximum speeds
do not tend to exceed about 10 m s−1, a kn value of ∼ few
×108 kg s−2 is suggested. Note we do not need to compute
an “exact” kn , just a conservative value; we do monitor each
collision and generate a warning if xmax is greatly exceeded.

In the second regime of low-energy particles under confin-
ing pressure due to a global potential (e.g., gravity or spin),
we simply have to estimate what this pressure might be and
then choose a value of kn such that the maximum opposing
SSDEM normal force (Eq. (3)) will correspond to the desired
maximum penetration, xmax. For example, consider a box
with an open top of height H filled with low-energy, identical
particles of radius s (s � H ) and density ρ under the influ-
ence of gravity (hereρ refers to the density of a single particle,
as distinguished from the bulk density of the collection). In
this case, particles near the bottom would be expected to each
exhibit typical repulsive forces of ∼ φρag Hs2, where ag is
the uniform gravitational acceleration and φ is the packing
efficiency (so the bulk density is φρ). Taking xmax ∼ 0.01s
and φ = 65 %, and balancing with Eq. (3) gives

kn ∼ φρag Hs2

xmax
∼ 65ρag Hs. (5)

As an example, if we take ρ = 4 g cm−3, s = 1 cm, H = 1 m,
and ag equal to Earth gravity, g, we find an optimum value
for kn of a few ×104 kg s−2.

Fundamentally, a higher kn results in smaller overlaps,
but a larger repulsive force, so the principal disadvantage of
raising kn is that smaller timesteps are needed to resolve the
forces (see Sect. 2.7).

In cases where it is important to match the sound speed of
real materials, kn can also be chosen to control the speed
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of energy propagation through a medium represented by
soft-sphere particles. In densely packed material, this speed
should be close to 2sτ−1

overlap for monodisperse particles (for
polydisperse particles, replace s with an appropriate mean or
typical value for particle radius), where τoverlap is the typical
duration of collisional overlap (see Sects. 2.6 and 2.7 along
with Eq. (36) for the derivation of τoverlap). In practice, some
experimentation will be needed to tune the sound propaga-
tion speed. For instance, it might be beneficial to adjust kn

to match the sound speeds of real material for impact events
in energy regimes where we do not expect significant frac-
turing, but where nonetheless sound propagation might still
be important. However, for many slow-speed granular pro-
cesses, the computational cost of using a “realistic” value for
kn could be very high (Eq. (39) relates the value of kn to a
recommended timestep), especially for certain materials, and
may not result in any worthwhile insight. Indeed, once above
a certain kn value, the outcomes can be largely independent
of the specific value. In these cases, “softening” the material
while increasing the resolution of the simulation might be
more cost-effective than ensuring that a specific value of kn

is being used.

2.2 Tangential deformation

The restoring force in the tangential direction is given by

FT,restoring = kt S, (6)

where kt is the constant for the tangential spring and S is the
tangential displacement from the equilibrium contact point,
defined as

S ≡
∫

overlap

ut (t) dt + S0, (7)

where the integral is over the duration of the static overlap
(i.e., the interval over which static friction is acting), ut is the
relative tangential motion at the contact point (see Eq. (12)),
and S0 is the tangential extension at the start of a static over-
lap. S0 is zero when particles first penetrate, but can be non-
zero in the event of slipping (see Sect. 2.4).

Essentially, S is a vector that gives the tangential com-
ponent of the deformation, and so its negative points from
the current contact point to the point of tangential equilib-
rium (see Fig. 1b). As particles move, not only will the con-
tact point move, but the equilibrium contact point will also
change in the reference frame of the system. We account
for this motion at every step by transforming S according to
the change in n̂ over the previous step. This is done in two
stages: a rotation around the n̂ vector, and a rotation around
the vector orthogonal to n̂, around which n̂ has rotated over
the previous step. This calculation, which is done for every

contact in the system at every step, can be computationally
expensive, but is important for lasting contacts.

2.3 Kinetic friction (damping)

Kinetic friction is implemented by damping the springs in
the normal and tangential directions according to the widely
used “dashpot” model. We start with the total relative veloc-
ity, which is given by

u = vn − vp + ln(n̂×ωn) − l p(n̂×ωp), (8)

where vp is the COM velocity of the particle, vn is the COM
velocity of the neighbor particle, ωp is the spin of the parti-
cle, ωn is the spin of the neighbor particle, and l p and ln are
lever arms from the particle centers to the effective point of
contact, which is taken to be at the center of the circle that
corresponds to the intersection of the particles’ spherical sur-
faces. This point lies on the line segment that connects the
particles’ centers, at a distance

l p = s2
p − s2

n + |ρ|2
2|ρ| (9)

from the particle in question. The lever arm for the neighbor
particle is simply

ln = |ρ| − l p. (10)

The normal and tangential components of u are given by

un = (u·n̂)n̂, (11)

ut = u − un . (12)

The tangential unit vector t̂ is then given by t̂ ≡ ut/|ut | (if
ut = 0, we set t̂ to zero). The normal and tangential compo-
nents of the damping forces are then given by

FN ,damping = Cnun, (13)

FT,damping = Ct ut , (14)

where Cn and Ct are the damping coefficients along n̂ and
t̂, respectively. For the Hooke’s restitution law, Cn can be
related to the familiar normal coefficient of restitution, εn ,
according to

Cn = −2 ln εn

√
kn μ

π2 + (ln εn)2 (15)

(see Sect. 2.6 for the derivation), where μ is the reduced mass
of the colliding pair (μ ≡ m pmn/(m p + mn), where m p and
mn are the masses of the particle in question and its neigh-
bor, respectively). There is no equivalent simple correspon-
dence between Ct and the tangential coefficient of restitution
sometimes used in HSDEM implementations (see Sect. 2.6
for further discussion).
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Combining Eqs. (3)–(6), (13), and (14), the normal and
tangential components of the total SSDEM force are

FN = −kn x n̂ + Cnun, (16)

FT = kt S + Ct ut . (17)

By Newton’s 3rd law, the neighbor particle feels the same
total force in the opposite direction.

2.4 Static friction

Depending on the coefficient of static friction (μs) at the con-
tact point, slippage may occur as a result of tangential stress.
For real material, this is governed by the molecular arrange-
ments around the point of contact. The coefficient of static
friction in common use is a macroscopic approximation that
estimates the total amount of tangential force that can be sup-
ported by the contact, with the assumption that this threshold
of force scales linearly with the normal force at the contact. In
our implementation, if this force is exceeded, depending on
the value of a parameter, b, that ranges from zero to unity, S
is reset to bFT,max, where FT,max is this threshold tangential
force, given by

|FT,max| = μs |FN |. (18)

In the event of slipping, this allows us the option to set the tan-
gential strain at the contact point to zero (the default is b = 0)
or to some fraction (b > 0) of its maximum allowed value,
bFT,max. Additionally, if this damping force alone exceeds
FT,max, then S is reset to zero for any value of b. So using
b = 0 (default), Eq. (17) now becomes

FT = min
{
μs |FN |Ŝ; kt S + Ct |ut |t̂

}
, (19)

where Ŝ ≡ S/|S|. When this tangential force is applied as
torques to the particle and its neighbor (opposite sign), with
lever arms of l p and ln , respectively, a change in rotation is
induced in both particles. The changes in the rotations of both
particles are along the same spin vector (n̂ × t̂) and of the
same sign. To compensate for this gain in angular momen-
tum, the COMs of both particles feel a tangential force equal
and opposite to the forces at their respective surfaces. This
correction, which serves to conserve angular momentum, is
often neglected in SSDEM implementations.

2.5 Rolling and twisting friction

Rolling friction is often ignored in the modeling of granu-
lar materials. Particles are rolling if |u| is zero despite rel-
ative rotational motion of the particles. To account for the
transformation of rotational energy of rolling particles into
frictional energy (i.e., microscopic vibrations/heat), a coeffi-
cient of rolling friction (μr ) is introduced in the code. When
this quantity is non-zero, it decreases the relative velocity at

the contact point that is due to rotation (vrot, defined below)
by adding a spin vector that points in the opposite direction
of this motion. The induced torque on the particle due to
rotational friction is given by

Mroll = μr
l p(FN ×vrot)

|vrot| , (20)

where vrot ≡ l p(ωp×n̂) − ln(ωn×n̂).
There has been considerable debate in the materials sci-

ence community regarding the optimal way to account for
rolling friction, including whether or not it should depend
on the speed of rotation [27–29]. Here we choose a simple
implementation that depends only on the rolling friction coef-
ficient, the normal force, and the sign of the “rolling axis”
(which is given by the cross product of n̂ with vrot).

Twisting friction (dissipation of relative rotation of the
particles around n̂, i.e., the normal axis that passes through
the contact point and the particles’ centers) is another kind
of friction that is often neglected in granular material model-
ing. Similarly to the case of rolling, these relative rotational
motions of the particles are coupled to each other and should
damp out (the reason being that the contact “point” is in real-
ity more like a contact area, where the components of the
particles grind against each other and dissipate energy). To
account for this effect, we include a twisting frictional term
given by

Mtwist = −μt rc
(ωn − ωp)·FN

(ωn − ωp)·n̂ . (21)

where rc is the scalar distance from the contact point out to
the circumference of the circle that describes the intersection
of the two particles’ surfaces.

There are some issues that arise with our treatment of
rolling friction and twisting friction as we have defined them
thus far. For example, consider two colliding particles with
relative rotation at the contact point. For somewhat high-
speed collisions, the normal force between particles will be
large, making the damping forces given by Eqs. (20) and
(21) accordingly large. In order to have these types of rota-
tional damping take effect only when appropriate, we can set
Mroll and Mtwist to zero initially (by setting μr and μt to
zero). This is done when the duration of the current overlap,
toverlap, is less than the characteristic duration of collision,
τoverlap (see Sects. 2.6 and 2.7); this means that particles that
are actively bouncing do not experience rolling or twisting
friction, whereas particles that are in persistent contact expe-
rience these frictional forces. It is worthwhile to note that
the change in angular momentum of the particle in both the
cases of rotational friction and of twisting friction is equal and
opposite to the change in angular momentum of the neighbor,
so total angular momentum is conserved.

Combining Eqns. (16), (19), (20), (21), and the conserva-
tion of angular momentum constraint, the total force on the
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particle COM is given in Eq. (22) and the total torque on the
particle is given in Eq. (23),

Fp = −kn x n̂ + Cnun + min
{
μs |FN |Ŝ; kt S + Ct |ut |t̂

}
.

(22)

Mp = −l p

[
min

{
μs |FN |Ŝ; kt S + Ct |ut |t̂

}

+μr
FN ×vrot

|vrot|
]

× n̂ − μt rc
(ωn − ωp)·FN

(ωn − ωp)·n̂ . (23)

with corresponding expressions for the neighbor particle.

2.6 The coefficient of restitution

It is often useful to parameterize particle collisions with a
(normal) coefficient of restitution, εn . The coefficient of res-
titution of a material depends not only on the restitution law
used (e.g., Hooke’s or Hertzian law), but also on the colli-
sional speeds that we wish to consider. In order to derive a
value for the normal damping coefficient Cn that corresponds
directly to a given εn (assuming appropriate timesteps are
used—cf. Sect. 2.7), we start with the definition of εn ,

εn = |un(t)final|
|un(t)initial| , (24)

and the solution to the second-order differential equation
of motion for a spring attached to two non-fixed masses of
reduced mass μ that obeys Hooke’s law with simple damp-
ing,

x(t)n̂ = xmax
[
e−αn t cos(ω1,nt + φ)

]
n̂, (25)

where: xmax is the maximum amplitude, or distention, of the
spring, and represents the maximum overlap between the two
particles, which, physically, could in turn be taken to repre-
sent the maximum deviation (deformation) of the particles
from perfect spheres; φ is the phase angle; αn ≡ Cn

2μ
; and

ω1,n is the damped harmonic frequency of the oscillating
system (along n̂), which is given in terms of the undamped
harmonic frequency, ω0,n , and αn by

ω2
1,n ≡ ω2

0,n − α2
n, (26)

where ω2
0,n ≡ kn

μ
. In order to solve for εn in these terms, we

need to solve for the relative normal velocity, or at least the
ratio of relative normal velocities before and after a given
collision. To solve for un(t) in Eq. (27), we take the first
derivative of x as given in Eq. (25), recalling that x and xmax

lie along the normal.

un(t) = −xmaxe−αn t [
ω1,n sin(ω1,nt + φ)

+αn cos(ω1,nt + φ)
]

n̂. (27)

We will take t just prior to the impact to be zero, which cor-
responds to a point in the phase where |un(t)| is maximum
and x(t) is zero, giving φ the value of π/2. The value of

t just after the collision is equal to the time that it takes to
complete one collision, which is π

ω1,n
. In solving for εn , the

cosine terms are zero at both t = 0 and t = π
ω1,n

, the remaining
constants cancel, and the sine terms, offset by a half-phase,
are equal and opposite, leaving simply

εn =
∣∣∣∣e

−αnπ
ω1,n

∣∣∣∣ . (28)

Replacing the terms αn and ω1,n with Cn , kn , and μ, then
solving for Cn gives Eq. (15). Our result agrees with the
formulation of Cn used in Cleary [26].

The formulation of Ct is somewhat more complex because
it involves two different frequencies, ω1,n and ω1,t , which can
be independent of each other. Therefore, the sine and cosine
arguments at t = 0 and at t = π

ω1,n
will not be separated

unconditionally by a half-phase, but instead by π
ω1,t
ω1,n

. There
is also an additional factor to account for the relative tan-
gential acceleration due to both frictionally induced COM
motion and the corresponding rotation of the particle. This
acceleration is given as

at (S, ut , x) =
(

kt

μ
S + Ct

μ
ut

) {
1 + 5

[
l p(x)

]2

2s2
p

}
. (29)

To simplify things greatly, we will assume that x �
sp (which is appropriate in the hard-sphere limit as l p

approaches sp), and thus at (S, ut , x) becomes

at (S, ut ) = 7

2

(
kt

μ
S + Ct

μ
ut

)
(30)

= ω2
0,t S + 2αt ut , (31)

where ω2
0,t ≡ 7kt

2μ
and αt ≡ 7Ct

4μ
. Note that this treatment of

ω0,t and αt deviates from how we have defined ω0,n and αn :
although the damped tangential frequency is still likewise
defined as ω2

1,t ≡ ω2
0,t − α2

t , we have absorbed the factor of
7
2 into the definitions of ω0,t and αt . The relative tangential
velocity as a function of time, t , can now be expressed as
Eq. (32),

ut (t) = −Smaxe−αt t
[
ω1,t sin(ω1,t t + φ)

+αt cos(ω1,t t + φ)
]

t̂i . (32)

ut,initial ≡ ut (0) = −Smaxω1,t t̂i . (33)

ut,final ≡ ut

(
π

ω1,n

)

= −Smaxe
−αt π
ω1,n

[
ω1,t cos

(
π

ω1,t

ω1,n

)
−αt sin

(
π

ω1,t

ω1,n

)]
t̂i .

(34)

εt ≡ ut,final·t̂i

ut,initial·t̂i

= e
−αt π
ω1,n

[
cos

(
π

ω1,t

ω1,n

)
− αt

ω1,t
sin

(
π

ω1,t

ω1,n

)]
. (35)
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where Smax ≡ max(|S|), which represents the amplitude of
the oscillation, and t̂i is the direction of tangential motion
of the neighbor particle at the point of contact at the start
of the overlap. We still have t just prior to the impact equal
to zero, and t just after the collision equal to π

ω1,n
. After

some simplification of terms we arrive at Eqs. (33) and (34)
as expressions for the initial and final tangential velocities,
respectively, which, by Eq. (24), gives the coefficient of tan-
gential restitution in Eq. (35).

Buried within the expressions for αt and ω1,t we find
the dependence of Cn on εt . We can discern some of the
behavior of εt by examining different cases. When ω1,t =
ω1,n , the tangential spring will have completed one half-cycle
at the same time that the normal spring will have completed
its half-cycle at the end of the collision, thus εt will be neg-
ative and have a magnitude equal to the exponential term,
which represents the decay of the oscillation due to damp-
ing. In the case of ω1,t � ω1,n , the collision will have ended
before the phase of the tangential oscillation has had time to
evolve, and so εt will still be positive, and will have a mag-
nitude equal to the exponential term, which will depend on
how the value of αt compares to ω1,n . So we can say that for
qω1,t = ω1,n , where q is a whole number, the value of εt will
depend only on the exponential term, and when q is even, εt

will be positive, and when q is odd, εt will be negative. At
quarter phases ( q

2 ), there is an additional term of ± αt
ω1,t

when
the magnitude of the cosine term is zero and the sine term is
at a maximum.

From these examples, we can begin to understand how the
quantities Ct , Cn , kt , kn , and μ affect εt , although a general
analytical solution that gives Ct as a function of εn and these
other quantities is not as simple as finding the appropriate Cn

given the desired value of εn (see Eq. (15)). The appropriate
way to a solution that gives Ct as a function of εt would be
to use an iterative method, keeping in mind that the solution
found would still be based on a hard-sphere approximation
(cf. Eqs. (29) and (30)).

2.7 Timestep considerations

Correctly resolving the oscillation half-period of an isolated
two-particle collision requires, at a very minimum, 10–20
timesteps over the course of the collision, and preferably
close to around 50 [25]. From Sect. 2.6, and introducing the
damping coefficient, ξ ≡ αn

ω0,n
, we have:

τoverlap = π

ω1,n
, (36)

= π

ω0,n

√
1 − ξ2

, (37)

= π

√
μ

kn(1 − ξ2)
. (38)

This suggests a good timestep would be

h ≈ π

50

√
μ

kn(1 − ξ2)
. (39)

Provided that the value of kn has been chosen appropri-
ately with consideration given to the velocities of particles in
the simulation (cf. Sect. 2.1), and that an appropriate timestep
is chosen with respect to this value of kn (Eq. (39)), fast-mov-
ing particles will not be missed, and particle overlaps will be
fully resolved.

3 Application: Comparison to cylindrical hopper
experiments

Experiments of flow from cylindrical hoppers are ideal
benchmark tests for numerical simulations, since such flows
have been a matter of practical interest for some time (see
Nedderman et al. [30] for background summary). Moreover,
empirical relations between mutual parameters involved in
these systems have been formulated and rigorously tested,
and these provide stringent constraints for the validation of
granular physics codes. Hence Bertrand et al. [31] suggest
the use of the well-explored, fairly simple regime of a par-
ticle hopper as a test for collisional codes for which there is
much experimental data in the literature. We thus follow this
suggestion for our choice of validation experiments. Other
tests could be considered, but given our particular interest to
explore them in more detail in the context of planetary sci-
ence applications, we elect to leave them for future dedicated
studies (see Sect. 4 for some examples).

In this section, we briefly describe the empirical relations
that we aim to reproduce, taken primarily from Nedderman et
al. [30], explain our simulation setup, present our results, and
then finally compare these results to the empirically derived,
analytical relations.

3.1 Empirical findings

Beverloo et al. [32] found a correlation between the aperture
size of a cylindrical hopper and the (mass) flow rate to the
2/5 power:

W 2/5 ∝ D + Z , (40)

where W represents the discharge rate of the hopper in mass
per unit time, D is the aperture diameter, and Z is the offset
found in the correlation. The 5/2 dependence on the aperture
diameter makes intuitive sense as the flux, W , should depend
on the product of the aperture area, A, and the velocity nor-
mal, v. The area is proportional to D2, and if we make the
assumption that there exists a height from which the particles
begin to free-fall above the outlet, and that this height is line-
arly proportional to D, then we get an additional dependence
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Fig. 2 Using numerical boundary conditions, hoppers are filled by first
suspending randomly oriented rectangular arrays of particles in cubic-
close-pack configurations over a funnel that deposits the particles (1 cm
radius) into the initially empty hopper (left). After allowing particles
to settle, the funnel, along with any excess particles above the hop-

per rim, are removed, leaving a hopper full of particles (right, zoomed
image). This particular example used about 1.5 million particles and a
hopper 2.4 m across. See Online Resource 1 for an animation of the
hopper-filling process

of
√

D from the downward speed of the particles as they exit
through the outlet. Through dimensional analysis [30], the
discharge rate also depends linearly on density and should
go as the square-root of the acceleration due to gravity.

We will compare our results to the empirical relation

W = Cρ
√

ag(D − kd)5/2, (41)

where ρ is the particle density, ag is the acceleration due
to gravity, D is the aperture diameter, and d is the particle
diameter (for a monodisperse particle system), while C and
k are unitless constants.

3.2 Our setup

To construct a hopper of radius Rhopper, we defined a cylin-
drical boundary of that radius and height H sufficiently
large relative to the radius (i.e., large enough such that a
constant discharge rate should be achieved in most cases),
along with a confining bottom disk also of radius Rhopper

(see the Appendix for an explanation of the types of bound-
ary primitives that we use and how they are integrated into
the code). In order to fill the hopper with particles, we placed
a large funnel atop its rim such that the narrow end of the
funnel had radius Rhopper. We then suspended randomly
oriented rectangular arrays of monodisperse particles in
cubic-close-pack configuration within the funnel portion of
the cylinder (Fig. 2a). Next, we turned on gravity to fill the
hopper, then removed the funnel and shaved off the parti-
cles that were left heaping up over the rim of the cylinder
(Fig. 2b). We then used these initial conditions and placed
circular holes of varying sizes into the centers of the bot-
tom disk to measure properties such as the discharge rate,

the velocity distribution, and the distribution of stresses on
the particles within the hopper; discharge profiles for vari-
ous hopper configurations are shown in Fig. 3 and are dis-
cussed further below. In addition to discharging the hopper
with varying aperture sizes, we also discharged it using an
array of densities and material properties (represented by
parameters kn , kt , εn , Ct , μs , μr , ρ). We also performed
some runs varying ag and Rhopper. We allowed every dis-
charge simulation to run until the hopper was nearly empty,
so we were also able to test how discharge rate depends on
the height of the particles remaining in the cylinder (there
should be no dependence until the hopper is close to empty).
In each case, we used 0.8 for the coefficient of restitution
of all boundaries (walls), and a static friction coefficient
identical to the particle-particle coefficient used in the given
simulation.

In simulations we have the benefit of being able to cap-
ture directly the instantaneous state of the system throughout,
including all of the positions and motions of each particle,
and the forces acting on them, and seeing how the state of the
system evolves. For example, we have the ability to trace the
contact forces and construct a map of the force network, and
then see how this evolves in time (cf. Fig. 4). We simulated
a total of 61 hopper discharges using a range of physical
and material parameters and gained insight on how these
parameters affect the rate and quality of the discharge (see
Table 1). Some of the more important dependencies are dis-
cussed below.

3.3 Results

For our primary task, we set out to explore the 5/2 depen-
dence of the flow rate on (D − kd) to ensure that the code
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Sim. 51: Rhopper = 120, Rhole = 30

Fig. 3 Discharge rate in kg s−1 (red/small crosses) and height of par-
ticles above the center of the hole (magenta/larger crosses) vs. time
for six different hopper discharge simulations (see Table 1 for a list of
parameters for each simulation). Sims. 7 (upper-left), 27 (middle-right),
42 (lower-left), and 51 (lower-right) have the same material parameters
and differ only by the widths of the hoppers and the widths of their aper-
tures. The radii of these hoppers are 50, 80, 20, and 120 cm, respectively;
their aperture radii are 10, 15, 30, and 15 cm, respectively. Sims. 18 and
21 are identical in both hopper size and aperture size to Sim. 7, but each

has a single material parameter that differs: Sim. 18 has μs = 0 and
Sim. 21 has Ct = 0. In both of these two cases, the height of the particles
in the hopper was not enough to produce a steady flow rate (although
Sim. 21 showed a flow rate that was flatter and more sustained than that
of Sim. 18). Sims. 27 and 42 differ only in hopper radius—their aperture
radii are identical, which shows that the Beverloo et al. correlation [32]
fails as the radius of the aperture approaches the radius of the hopper, as
they predict. Note that it takes only a few seconds for essentially all of
the particles in Sim. 42 to drain from the hopper. (Color figure online)

Fig. 4 Snapshot of Sim. 24 (see Table 1 for simulation parameters)
showing the network of normal force distribution on particles at the
hopper wall after 12.2 s of discharge. Particles under maximum stress
are shown in white; darker particles feel less stress; red particles (mostly
flowing out the bottom) feel no stress. See Online Resource 2 for an
animation of the discharge of Sim. 24 (the duration of the animation
reflects the simulated duration of the discharge). (Color figure online)

is able to reproduce this satisfactorily. We also explored the
dependence on ρ, ag , H , the height of the particles in the
hopper, Rhopper, and the material parameters of the particles.
Here we describe just a few of these relations—see Table 1
for estimates of the steady-state flow rate for all 61 simula-
tions. We are able to estimate steady-state flow rates because
the flow is independent of the height of the particles remain-
ing inside the hopper. It was demonstrated (e.g., by Janssen
[33], Shaxby and Evans [34]) that the walls of the hopper
itself bear the majority of the weight of the particles and
that the stress near the aperture is largely unaffected by the
height of the material in the hopper until it gets below a
certain level (e.g., see Fig. 3). Rose and Tanaka [35] argue
that the flow rate stays constant even below this level, until
the height of the material in the hopper becomes compara-
ble to the size of the aperture, but we find that this occurs
earlier.

Figure 5 shows the flow rate as a function of D for differ-
ent sizes of the hopper drainage aperture. Using least-squares
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Table 1 Complete list of simulation parameters and corresponding steady-state discharge rates that were achieved

Sim. no. Discharge
rate
(104 g s−1)

Hopper
radius
(cm)

Hole
radius
(cm)

Particle
density
(g cm−3)

Time-step
(10−6 s)

kn
(kg s−2)

kt
(kg s−2)

εn Ct/
√

kn
(kg s−1)

μs μr , μt ag (g)

1 1.421 20 10 1 3 8 × 104 2.29 × 104 0.8 0.0176 0.2 0.0 1

2 1.357 25 10 1 3 8 × 104 2.29 × 104 0.8 0.0176 0.2 0.0 1

3 1.335 30 10 1 3 8 × 104 2.29 × 104 0.8 0.0176 0.2 0.0 1

4 1.333 35 10 1 3 8 × 104 2.29 × 104 0.8 0.0176 0.2 0.0 1

5 1.313 40 10 1 3 8 × 104 2.29 × 104 0.8 0.0176 0.2 0.0 1

6 1.306 45 10 1 3 8 × 104 2.29 × 104 0.8 0.0176 0.2 0.0 1

7 1.310 50 10 1 3 8 × 104 2.29 × 104 0.8 0.0176 0.2 0.0 1

8 1.312 55 10 1 3 8 × 104 2.29 × 104 0.8 0.0176 0.2 0.0 1

9 1.315 60 10 1 3 8 × 104 2.29 × 104 0.8 0.0176 0.2 0.0 1

10 1.316 65 10 1 3 8 × 104 2.29 × 104 0.8 0.0176 0.2 0.0 1

11 1.314 70 10 1 3 8 × 104 2.29 × 104 0.8 0.0176 0.2 0.0 1

12 1.318 75 10 1 3 8 × 104 2.29 × 104 0.8 0.0176 0.2 0.0 1

13 1.319 80 10 1 3 8 × 104 2.29 × 104 0.8 0.0176 0.2 0.0 1

14 −a 50 10 1 12 8 × 104 2.29 × 104 0.8 0.0176 0.2 0.0 1

15 1.304a 50 10 1 6 8 × 104 2.29 × 104 0.8 0.0176 0.2 0.0 1

16 1.314 50 10 1 1.5 8 × 104 2.29 × 104 0.8 0.0176 0.2 0.0 1

17 1.313 50 10 1 0.75 8 × 104 2.29 × 104 0.8 0.0176 0.2 0.0 1

18 2.064a 50 10 1 3 8 × 104 2.29 × 104 0.8 0.0176 0.0 0.0 1

19 1.281a 50 10 1 3 8 × 104 8 × 104 0.8 0.0176 0.2 0.0 1

20 1.303 50 10 1 1.5 3.2 × 105 9.14 × 104 0.8 0.0176 0.2 0.0 1

21 1.785a 50 10 1 3 8 × 104 2.29 × 104 0.8 0.0 0.2 0.0 1

22 1.330a 50 10 1 3 8 × 104 2.29 × 104 0.2 0.0176 0.2 0.0 1

23 1.326 50 10 1 3 8 × 104 2.29 × 104 0.5 0.0176 0.2 0.0 1

24 1.274 50 10 1 3 8 × 104 2.29 × 104 0.8 0.0765 0.2 0.0 1

25 1.356 50 10 1 3 8 × 104 2.29 × 104 0.2 0.0765 0.2 0.0 1

26 1.146 50 10 1 3 8 × 104 2.29 × 104 0.8 0.0176 0.2 0.5 1

27 4.400 80 15 1 3 8 × 104 2.29 × 104 0.8 0.0176 0.2 0.0 1

28 10.06 80 20 1 3 8 × 104 2.29 × 104 0.8 0.0176 0.2 0.0 1

29 18.86 80 25 1 3 8 × 104 2.29 × 104 0.8 0.0176 0.2 0.0 1

30 3.047 80 30 1 3 8 × 104 2.29 × 104 0.8 0.0176 0.2 0.0 1

31 4.396 75 15 1 3 8 × 104 2.29 × 104 0.8 0.0176 0.2 0.0 1

32 4.400 70 15 1 3 8 × 104 2.29 × 104 0.8 0.0176 0.2 0.0 1

33 4.398 65 15 1 3 8 × 104 2.29 × 104 0.8 0.0176 0.2 0.0 1

34 4.387 60 15 1 3 8 × 104 2.29 × 104 0.8 0.0176 0.2 0.0 1

35 4.385 55 15 1 3 8 × 104 2.29 × 104 0.8 0.0176 0.2 0.0 1

36 4.382 50 15 1 3 8 × 104 2.29 × 104 0.8 0.0176 0.2 0.0 1

37 4.370a 45 15 1 3 8 × 104 2.29 × 104 0.8 0.0176 0.2 0.0 1

38 4.352a 40 15 1 3 8 × 104 2.29 × 104 0.8 0.0176 0.2 0.0 1

39 4.540a 35 15 1 3 8 × 104 2.29 × 104 0.8 0.0176 0.2 0.0 1

40 4.582a 30 15 1 3 8 × 104 2.29 × 104 0.8 0.0176 0.2 0.0 1

41 4.828a 25 15 1 3 8 × 104 2.29 × 104 0.8 0.0176 0.2 0.0 1

42 5.176a 20 15 1 3 8 × 104 2.29 × 104 0.8 0.0176 0.2 0.0 1

43 1.164 50 10 1 3 8 × 104 2.29 × 104 0.8 0.0176 0.5 0.0 1

44 1.124 50 10 1 3 8 × 104 2.29 × 104 0.8 0.0176 0.8 0.0 1

45 1.342 50 10 4 1.5 8 × 104 2.29 × 104 0.8 0.0176 0.2 0.0 1
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Table 1 continued

Sim. no. Discharge
rate
(104 g s−1)

Hopper
radius
(cm)

Hole
radius
(cm)

Particle
density
(g cm−3)

Time-step
(10−6 s)

kn
(kg s−2)

kt
(kg s−2)

εn Ct/
√

kn
(kg s−1)

μs μr , μt ag (g)

46 1.338 50 10 4 0.75 8 × 104 2.29 × 104 0.8 0.0176 0.2 0.0 1

47 1.367 50 10 10 0.75 8 × 104 2.29 × 104 0.8 0.0176 0.2 0.0 1

48 1.326 50 10 2 1.5 8 × 104 2.29 × 104 0.8 0.0176 0.2 0.0 1

49 1.359 50 10 7 0.75 8 × 104 2.29 × 104 0.8 0.0176 0.2 0.0 1

50 1.395 50 10 15 0.75 8 × 104 2.29 × 104 0.8 0.0176 0.2 0.0 1

51 30.29 120 30 1 3 8 × 104 2.29 × 104 0.8 0.0176 0.2 0.0 1

52 1.862 50 10 1 3 8 × 104 2.29 × 104 0.8 0.0176 0.2 0.0 1

53 46.10 120 35 1 3 8 × 104 2.29 × 104 0.8 0.0176 0.2 0.0 2

54 18.25 120 25 1 3 8 × 104 2.29 × 104 0.8 0.0176 0.2 0.0 1

55 1.331 50 10 1 1.5 3.2 × 105 2.29 × 104 0.8 0.0176 0.2 0.0 1

56 1.374 50 10 1 3 8 × 104 2.29 × 103 0.8 0.0176 0.2 0.0 1

57 2.325 50 10 1 3 8 × 104 2.29 × 104 0.8 0.0176 0.2 0.0 3

58 2.767 50 10 1 1.5 3.2 × 105 2.29 × 104 0.8 0.0176 0.2 0.0 4

59 66.13 120 40 1 3 8 × 104 2.29 × 104 0.8 0.0176 0.2 0.0 1

60 90.27 120 45 1 3 8 × 104 2.29 × 104 0.8 0.0176 0.2 0.0 1

61 119.2 120 50 1 3 8 × 104 2.29 × 104 0.8 0.0176 0.2 0.0 1

The last column gives the uniform downward acceleration due to gravity that was used in each simulation, in units of Earth’s gravity. (See text for
a definition of the other parameters indicated in the table)
a A steady-state discharge rate was never achieved although an estimate may be shown
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Fig. 5 Discharge rate as a function of hole size (log-log scale). The
filled (red) squares represent simulations from hoppers of radius 80 cm
(Sims. 13, 27–30), the open (grey) circles represent simulations from
hoppers of radius 120 cm (Sims. 51, 53, 54, 59–61), and the filled (blue)
circles represent simulations from hoppers of radius 20 cm (Sims. 1,
42). The dashed line is a least-squares fit for the material constants C
and k in the function represented by Eq. (41). The rate of flow conforms
well to the Beverloo et al. correlation ([32], Eq. (40)). Note the aper-
tures for the 20-cm hoppers (filled/blue circles) are very large relative
to the hoppers, resulting in the observed deviation from the empirical
model. (Color figure online)

minimization, we fit a function in the form of Eq. (41) using
the flow rates derived from simulations (Sims.) 7, 27–30,
53, and 59–61, solving for the constants C and k (we find

0.697 ± 0.003 and 2.32 ± 0.07, respectively), with ρ, g, d,
and all other material constants held fixed (see Table 1 for
the values of these parameters). The nine simulations chosen
for this fit use hopper radii of 80 cm with aperture radii of 10,
15, 20, 25, and 30 cm and hopper radii of 120 cm with aper-
ture radii of 35, 40, 45, and 50 cm, taking care to ensure that
all hoppers were wide enough such that increasing the width
further had no effect on flow rate (e.g., in Fig. 6 we compare
discharge rates through apertures of 10 cm and 15 cm, vary-
ing the sizes of the hoppers to find a range of hopper sizes
where the flow rates are independent of the hopper size). The
slope derived from the simulated flow rates matches well that
of the empirical relation so long as the width of the hopper
is large enough relative to the size of the hole (the flow rates
are too high from narrow hoppers of 20 cm radius, especially
for Sim. 42 where the hole size is 15 cm, as can be inferred
from Figs. 3, 5, 6).

The flow rate should be linear with respect to the bulk
density of particles (φρ, as we define it in Sect. 2.1)—that is,
varying the value of φρ should have no effect on the number
of particles that are discharged over a period of time, as is
shown in Fig. 7, which relates the particle flow rate to indi-
vidual particle density (ρ) and to initial bulk density (φρ) for
equal-sized particles. We would also expect the number of
particles discharged per unit time to be independent of indi-
vidual particle density ρ, however, since we use the same
value for the stiffness parameter kn in all those simulations,
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Fig. 6 Discharge rate as a function of hopper radius. The open (red)
circles represent simulations that have aperture radii of 10 cm (Sims.
1–13), and the filled (black) circles represent simulations that have aper-
ture radii of 15 cm (Sims. 27, 31–42). It can be seen that the rate of flow
is largely independent of the radius of the hopper provided that it is
large enough with respect to the radius of the opening at the bottom
of the hopper. Note, however, that estimates of steady-state discharge
rates can be less reliable for simulations with hole sizes approaching
the sizes of the hopper (see Sim. 42 in Fig. 3 for the most extreme case
that we simulated). (Color figure online)
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Fig. 7 Discharge rate (in number) vs. particle density. (Red) asterisks
show the discharge rate at different mass densities. (Blue) squares show
this discharge rate divided by the initial porosity of the material inside
the hopper at that density. Notice that the slope is close to constant if
we consider bulk density (blue/squares), in agreement with Beverloo et
al. [32], whereas the rate increases if we consider the density of indi-
vidual particles (red/asterisks) due to increased compaction at higher
densities. (Color figure online)

the hoppers that are filled with more dense particles have
material that is more compacted than those that are filled
with less dense particles. This means that the hoppers that
are filled with more dense particles will have an increased
(mass) flow rate roughly in proportion to the increase in bulk
density of the material inside the hopper, which explains what
we see in Fig. 7.

Several simulations were carried out with different kn and
kt . A greater value of kn should result in a slightly slower

discharge rate for a similar reason that greater particle mass
density shows a slightly faster discharge rate: the bulk den-
sity φρ, increases with either a decrease in kn or an increase
in particle density. However, since the material that we use
is already quite stiff, using a larger value of kn does not sig-
nificantly decrease the degree of overlap and thus has little
effect on φρ. In fact, comparing the differences in flow rate
between Sims. 7 and 55 in Table 1, we may be seeing slightly
faster flow at higher kn , although the difference is very small
and potentially not significant. However, in light of the dis-
cussion at the end of Sect. 2.1 about using a “softened” kn

to speed up certain simulations, it will be useful to know the
full effects, even subtle ones, that come with using different
values of kn . We might speculate that the higher kn could be
leading to an effective decrease in tangential friction since
the time that some particle pairs are in contact is shortened,
and that this effect is greater than the opposing effect of hav-
ing slightly greater packing. In fact, Sims. 7 and 20 have the
same 7/2 ratio of kn/kt , and may imply a decrease in flow rate
at higher stiffness (this ratio is a natural choice: it comes out
of Eq. (30) as the stiffness ratio needed to keep normal and
tangential oscillation frequencies equal in the hard-sphere
limit ignoring the effect of damping on frequency). Increas-
ing kt alone (Sim. 7 vs. Sim. 19) appears to impede the flow
rate. Although these simulations allow us to see some trends,
a much more complete study of these parameters would be
necessary to draw any firm conclusions.

The flow rate correlates fairly well with the square root
of the gravitational acceleration ag , which agrees with the
result given by dimensional analysis [30]. We fit to the equa-
tion W = β1a0.5

g (the dotted/magenta line in Fig. 8), solv-
ing for β1, and to W = β2a γ

g (the dashed/blue line), solv-
ing for β2 and γ . The reduced χ2 is lower by a factor of
three when using γ = 0.55 compared with γ = 0.5. A
higher value of γ was reported (0.6) experimentally by Hof-
meister et al. [36] using a quasi-2D hourglass setup. We
could speculate that net tangential frictional effects may
depend on the strength of the gravitational field in real-world
experiments, and then reflected in our simulations. This will
certainly be an important area to explore in light of the
anticipated applications of our code into different gravita-
tional environments.

We also investigated the influence of static friction μs

on the flow rate. Sims. 7, 18, 43, and 44 were made using
a range of values of μs from 0 to 0.8 (see Table 1). We
find that the flow rate decreases with increasing static fric-
tion (see Fig. 3). This finding, along with the dependence
on kt , seems to contradict the experimental findings made
by Beverloo et al. [32], which indicate that the flow rate is
independent of all material properties other than shape. How-
ever, this may only be true within the narrow range of static
friction values that can be explored easily experimentally.
Over the wider range of values that our computer simu-
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rate; however, at these values of kn , the effect on flow rate is small (see
discussion in Sect. 3.3). Data points come from Sims. 7, 53, 57, and 58.
(Color figure online)

lations can investigate, we find that the experimental con-
clusion cannot be generalized, and that some values of the
static friction can influence the flow rate. This is an inher-
ent advantage of computer simulations over real-world
experiments: the ability to explore a wide, and sometimes
experimentally unreachable, parameter space. We also find
that it takes longer (if even possible) to achieve a con-
stant flow rate with μs set to zero (see Fig. 3). Simi-
larly, setting the tangential damping parameter Ct to zero
(Sim. 21 in Fig. 3) increases the flow rate and the time
needed to achieve a steady flow. Moreover, Sims. 21,
7 and 24 were performed with (Ct/

√
kn) equal to 0,

0.0176, and 0.0765 kg s−1, respectively (see Table 1).
They show that an increase in Ct may weakly inhibit
flow, but the parameter significantly affects the pack-
ing and distribution of stresses, especially near the silo
walls.

The influence of the parameter εn was also investigated.
Sims. 22, 23, and 7 were performed using εn equal to 0.2,
0.5, and 0.8, respectively, with (Ct/

√
kn) = 0.0176 kg s−1 for

each. They show that the flow rate has essentially no depen-
dence on εn . However, a comparison of Sims. 25 and 24,
which were performed with εn equal to 0.2 and 0.8, respec-
tively, but with a higher value (0.0765 kg s−1) of (Ct/

√
kn),

shows that there could be a greater influence of εn on the flow
rate at high values of Ct , but this inference would need to be
investigated further.

A simulation (Sim. 26) was also performed using non-
zero values of μr and μt , both set equal to 0.5. It shows a
decrease in flow rate, as expected for such a high value of
these friction parameters.

Finally, we checked the sensitivity of the results on the
timestep. As is shown by comparing the steady-state dis-
charge rates of Sims. 7 and 14–17, no significant change in
discharge rate was found when using smaller timesteps, but
otherwise identical parameters, indicating that our choice of
timestep (3 μs) is a reasonable one.

4 Conclusions and perspectives

We have implemented the soft-sphere discrete element
method (SSDEM) in the N -body code pkdgrav. SSDEM
allows for the realistic modeling of contact forces between
particles in granular material. To account for surface defor-
mation of particles at contact, colliding particles are allowed
to overlap, during which time they are subject to forces
that work to oppose deformation, and which depend on the
relative spins and velocities of the particles, their material
properties, and the history of the contact. We take different
frictional forces into account, including rolling and twisting
friction, which are often neglected in SSDEM implementa-
tions. Moreover, the computation time is optimized thanks
to the sophisticated parallelization and tree-code algorithms
that are part of the pkdgrav functionality, which allows
all instances of particle overlap to be found in an efficient
manner.

We performed a validation test for our numerical code
and SSDEM implementation by reproducing successfully
the dynamics of granular material flows in cylindrical hopper
experiments. A series of empirical relations between mutual
parameters involved in these systems have been formulated
and rigorously tested by experimental studies, which allows
us to test whether our granular physics code gives results
that are consistent with those relations. The ability of our
numerical code to consider wall boundaries with a wide
range of geometries allows us to simulate with great pre-
cision the setup of the experiments, in particular the design
of the cylindrical hopper. Using the same types of setups that
were used in the experiments, we find that the empirical rela-
tions that describe the experimental outcomes can also be
used to describe the outcomes of the simulations. Moreover,
in simulations, we have the benefit of being able to track the
instantaneous state of the system throughout, and seeing how
the state evolves, something that cannot, in general, be done
experimentally. In particular, we can trace the contact forces
and construct a map of the force network, and see how this
network evolves in time. In other words, we can investigate
the dynamics of the system in great detail as it evolves, and
better understand this dynamical evolution. Furthermore, we
can determine the sensitivity to those parameters salient to
the dynamics of the system. We performed 61 simulations of
hopper discharges, covering a wide range in parameter space.
In addition to matching experimental outcomes in most cases,
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we find for instance that over a range of values of the sta-
tic friction going from 0 to 0.8, the flow rate increases with
decreasing static friction, while such an influence on a much
narrower range of values was not identified experimentally,
which led to the apparently incorrect conclusion that the flow
rate is independent of all material properties other than shape.
The influence of other parameters (such as the normal and
tangential coefficients of the spring constant used to model
the particle’s deformation at contact, along with their respec-
tive viscous damping terms, and the acceleration due to grav-
ity) on the flow rate was also explored.

Further comparisons to experiments will be performed,
such as flows in a tumbler, avalanches, and other phenomena
that will test the ability of our code to reproduce the behavior
of granular materials in a wide range of contexts. Our ultimate
goal is to be able to legitimately apply our method to plan-
etary science studies (e.g., low-speed impacts on regolith,
regolith evolution on solid celestial bodies’ surfaces, etc.).
We will then be able to provide important interpretation of
images obtained by spacecraft of planetary and small bodies’
surfaces, and to aid in the design of devices that will inter-
act with extraterrestrial surfaces (anchors, sample collectors,
and so on). Such devices are to be aboard sample-return mis-
sions to asteroids (e.g., the mission OSIRIS-Rex that will be
launched by NASA in 2016, and MarcoPolo-R in selection
phase at ESA). Also, since the shapes of the grains, as well
as the cohesion between them, can have a great influence on
their dynamics, one of the next steps will be to account for
shape effects and to include cohesive forces in our numerical
tool.
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Appendix: Walls

Walls are used in pkdgrav to provide hard-surface boundary
conditions for granular dynamics simulations. Richardson et
al. [3] describe the geometries and collision conditions used
in their HSDEM simulations, for which collisions are pre-

dicted prior to contact, requiring often complex equations to
be solved repeatedly. Here we provide the solutions for the
same geometries but using SSDEM, with the principal advan-
tage that overlaps are detected after the fact, and only once
per timestep, greatly simplifying the detection algorithms and
reducing the computational cost. Other geometries, such as
the triangle, are currently being implemented into the code,
but further testing is still required.

Briefly, during the force calculation of the integration step,
every particle in an SSDEM simulation is checked to see
whether it overlaps with another particle and/or wall. Cor-
responding SSDEM forces are applied that depend on the
degree of overlap and that are directed along a line between
the objects, which in turn depends on the overlap geometry.
Particle-particle overlaps are simple to detect as they are just
sphere intersect tests (cf. Eq. (2)). For walls, each supported
geometry is handled separately, as detailed in the following.

To reduce the cost of wall-intersect tests, we first isolate
regions of space that the wall does not occupy, progressively
confining the wall until the point of closest contact is found.
For example, when checking for an intersection with a finite
planar wall, like a rectangle or a disk, it is usually of benefit
to first consider the intersection with the wall as though it
were simply the infinite plane that contains the finite wall.
In this way, particles that are far above or below the plane
can be ruled out without performing more computationally
expensive wall-intersect checks. The regions were chosen
with both simplicity and efficiency in mind (if regions of
space where particles are likely to be found can be carved
out with relatively few operations, this will save computa-
tional time).

Each particle is checked against each wall to see if an
overlap exists. If it does, the point of closest contact is found
and used to compute the forces on the particle. Restoring and
frictional forces are applied to particles in contact with walls
just as they are applied to particles in contact with neighbors
as outlined in Sect. 2, but using a contact point on the wall
surface (the walls have infinite linear and angular inertia and
are not deformable). The contact point has a total relative
velocity (Eq. (8)) given as the difference between the veloc-
ity of the wall at the contact point (taking into account its
COM motion as well as any spin or oscillatory motion) and
the velocity of the particle at the contact point (taking into
account both its COM motion and its spin).

The following describes the primary set of boundary prim-
itives, which can be combined in order to confine particles
within certain geometries or to replicate specific mechanical
devices.

Infinite plane

Starting from Richardson et al. [3], the parameters for the
infinite plane are the origin O and normal N̂, plus optional
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velocity V, oscillation amplitude A, oscillation angular fre-
quency �, oscillation normal vector �̂ (so the relative vector
displacement after time t due to oscillation, measured from
the start of the simulation and evaluated at the start of the
step, is A sin(�t)�̂), and spin � around the orientation vec-
tor N̂. Note that for an infinite plane with � = 0, the origin
can be any point in the plane (the choice is arbitrary).

To simplify the equations in this and subsequent deriva-
tions, we define the relative position vector ρ ≡ rp − O and
separate it into perpendicular and parallel components, ρN
and ρT , respectively, where ρN ≡ ρN N̂, ρN ≡ ρ ·N̂, and
ρT ≡ ρ − ρN (so T̂ ≡ ρT /|ρT |, which is only defined if
|ρT | > 0, and ρT ≡ ρ ·T̂). Note, in Sect. 2, ρ was defined as
the relative position between particle centers. Also note that
ρN and ρT as defined here are signed quantities, i.e., vector
components.

We similarly define the relative velocity as ν = vp − V −
A� cos(�t)�̂, with corresponding perpendicular and paral-
lel components. If there is an overlap with a particle, then
the total relative velocity between the particle and the wall is
given as

u = −ν + �N̂×ρT − l p(n̂×ωp). (A.1)

Also, rolling and twisting frictional terms arising from parti-
cle-wall contacts are calculated by following the methodol-
ogy laid out in Sect. 2.5 and substituting the spin vector of
the neighbor particle ωn with �N̂, and ln with Q ·T̂, where Q
signifies the contact point between the particle and the wall.

In the specific case of the infinite plane, the overlap con-
dition is simply |ρN | < s, where s is the radius of the par-
ticle. If this condition is met, the contact point is given by
Q ≡ O + ρT . As we do in the case of particle-particle con-
tacts, we resolve the contact as though it were occurring at a
single point (in the case of particle-particle contact, the con-
tact point is taken to lie along the line that connects the centers
of the two spheres; in the case of particle-wall contact, the
contact point is taken to be the point on the boundary prim-
itive closest to the particle center). In reality, contacts occur
over areas, or within small volumes on the molecular scale,
and give rise to a complex distribution of forces, to which
we provide a rough approximation by including an array of
frictional forces (cf. Sect. 2).

Disk

For a disk, we first isolate the test region to the corresponding
infinite plane (all parameters in an infinite plane are included
in the set of parameters of a disk), but now O defines the geo-
metric center of the disk, and Rout and Rin define its outer
and inner radii, respectively, where Rout > Rin (i.e., the disk
can have a central hole). For any particles that survive the
first cut (i.e., those particles that would be in contact with the

disk if it were infinite), |ρT | is compared against Rout and
Rin. Three cases are considered: (A) Rin ≤ |ρT | ≤ Rout; (B)
Rin < Rout < |ρT |; and (C) |ρT | < Rin < Rout. If case (A)
is true, the particle is touching/overlapping the flat portion
of the disk. If (B), the particle may be touching/overlapping
the outer periphery of the disk; the potential overlap point is
O + RoutT̂, and the overlap condition is |ρ − RoutT̂| ≤ s.
If (C), the inner edge is the potential overlap point, given by
O + RinT̂, with overlap condition |ρ − RinT̂| ≤ s.

A special case arises if Rin > 0 and ρT = 0. This is a
subcase of (C) where the particle center lies on the disk ori-
entation axis, above, below, or on O. Here the overlap con-
dition is ρ2 − R2

in ≤ s2. If the condition is satisfied, then the
contact point Q is set to a “phantom” point at O − Rinρ/|ρ|.
If |ρ| = 0, meaning that the particle center is exactly at the
origin, no net force is felt from the disk.

Rectangle

For a rectangle, like the disk, we first consider the region
that corresponds to the infinite plane containing the rectan-
gle. The four vertices of the rectangle are defined by three
vectors, the origin O, the vector ϒ1 that points from O to an
adjacent corner, and the vector ϒ2 that points from O to the
other adjacent corner. For simplicity, we require that ϒ1 and
ϒ2 be orthogonal. Thus the four corners of the rectangle are
O, O + ϒ1, O + ϒ2, and O + ϒ1 + ϒ2. Note the normal
of the rectangle (used to define the infinite plane in which it
lies) is just N̂ = (ϒ1×ϒ2)/|ϒ1×ϒ2|. A necessary condition
for the particle to be in contact with the rectangle is that the
particle be in contact with the infinite plane containing it, i.e.,
|ρN | < s (see above).

If the particle passes the plane-intersect test, we next need
to find the point on the plane closest to the particle. If that
point is closest to a point on the rectangle’s face, then the par-
ticle is in overlap with the wall. If not, we must check to see
if the particle is in contact with an edge or corner of the wall.
To do this, we construct a coordinate system defined by unit
vectors â ≡ ϒ1/|ϒ1| and b̂ ≡ ϒ2/|ϒ2|, with points (0,0),
(1,0), (0,1), and (1,1) corresponding to the four corners of the
rectangle. Note that all points on the infinite plane in which
the rectangle lies can be described by real values (a, b).

In order to check for an overlap of the particle with the
rectangle, the coordinate space defined above is divided into
nine test regions. This is done by drawing four (infinite) lines:
(0, 0)+ mâ; (0, 1)+ mâ; (0, 0)+ mb̂; and (1, 0)+ mb̂. The
resulting nine regions are outlined in Table 2.

ρT can be transformed into this frame, and will be sub-
ject to a different overlap test depending on its coordinates
(a, b). Case (A) describes a particle that is necessarily in
overlap with the face of the rectangle, and Q = O + ρT , or
(a, b) in this frame. For the remaining cases, the potential
overlap point, i.e., the point (x, y) on the rectangle closest to
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Table 2 Overlap cases for a particle with a rectangle

Face (A) 0 ≤ a ≤ 1, 0 ≤ b ≤ 1

Edge (B) a < 0, 0 ≤ b ≤ 1 (C) a > 1, 0 ≤ b ≤ 1 (D) 0 ≤ a ≤ 1, b < 0 (E) 0 ≤ a ≤ 1, b > 1

Corner (F) a < 0, b < 0 (G) a < 0, b > 1 (H) a > 1, b < 0 (I) a > 1, b > 1

Top row—the case where the particle is flush against a face of the rectangle; middle row—cases where the particle is closest to an edge of the
rectangle; bottom row—cases where the particle is closest to a corner

the particle, is given for each case as: (B) (0, b); (C) (1, b);
(D) (a, 0); (E) (a, 1); (F) (0, 0); (G) (0, 1); (H) (1, 0); (I)
(1, 1). The overlap condition is |ρ − xϒ1 − yϒ2| ≤ s. If the
condition is met, Q = O + xϒ1 + yϒ2.

Infinite cylinder

The infinite cylinder is an infinitesimally thin and infinitely
long, hollow circular shaft defined by taking O to be any
point along the cylinder axis, N̂ as the orientation of the
axis, and R as the radius of the cylinder. The overlap test
is max{R − s; 0} ≤ ρT ≤ R + s. If the condition is met,
the contact point Q = O + ρN + RT̂. If ρT = 0, which
corresponds to the case where the particle is centered exactly
on the cylinder axis, no force is felt by the particle, even if
s > R.

Finite cylinder

The finite cylinder is defined by the same parameters as the
infinite cylinder plus the total length along the cylinder axis,
L , and the “taper,” τ , which gives the ratio of the narrow end
of the cylinder to the wide end of the cylinder. Allowed values
of τ range from 0 to 1 inclusive, with 0 indicating constant
cylinder radius and 1 indicating a closed funnel or cone. In
addition, R, N̂, and O now have more specific meanings: R
defines the radius of the wide end, N̂ gives the orientation of
the cylinder—pointing along the cylinder axis from the wide
end to the narrow end—and O defines the midpoint along the
cylinder axis between the two ends.

For the overlap test, we first consider a cylindrical region
of space aligned along the orientation axis with length L +2s
centered on the origin, with an inner radius of max{Rτ −s; 0},
where Rτ ≡ τ R, and an outer radius of R + s. The entire
finite cylinder, as defined by the parameters O, N̂, R, L , and
τ , as well as any particle of radius s that could be in contact
with it, is contained within this region of space. If the parti-
cle in question has its center outside this region, it cannot be
in overlap with the finite cylinder. Otherwise the particle is
subject to the following overlap test.

We define PRτ to be the point on the narrow rim of the
cylinder that is closest to the particle’s center; this is given as
PRτ = Rτ T̂ + L

2 N̂. We define PR to be the point on the wide
rim of the cylinder that is closest to the particle’s center; this

is given as PR = RT̂ − L
2 N̂. We next find the point on the

line segment connecting points PRτ and PR that is closest to
point ρT :

c′′ =
(
PRτ − PR

) · (ρ − PR)∣∣PRτ − PR
∣∣2 , (A.2)

c′ = max{0; c′′}, (A.3)

c = min{c′; 1}, (A.4)

Pc = cPRτ , (A.5)

where Pc is the potential contact point (relative to the ori-
gin). The overlap condition is |Pc − ρ| < s, where s again is
the radius of the particle. If this condition is met, the contact
point Q is taken to be O + Pc.

As in the case of the disk, there is the special case of
ρT = 0, where the particle is centered on the axis of the
cylinder. If there is an overlap in this case, the overlap occurs
over a ring that is symmetric around the cylinder axis, and
therefore the overlap is radially symmetric. The net force
could only point along the axis, so the strategy used here
is to create a “phantom” overlap point on the axis that pen-
etrates the particle by the same amount as it is penetrated
by the ring. In cylindrical coordinates, the angle is degener-
ate, and thus the computations can be done in two dimen-
sions, saving time. After first ruling out the overlap ahead
of time if s < Rτ , we consider whether force should be
applied in the positive N̂ direction or the negative N̂ direction.
When ρT = 0 and ρ·N̂ > L/2, this corresponds to the first
case, where the particle is on the cylinder axis with its cen-
ter outside of the cylinder on the side of the narrow rim (the
centers of both rims, narrow and wide, lie in the same direc-
tion from the particle center, but the center of the narrow rim
is closer). Here, the overlap condition is R2

τ + (L/2)2 < s2,

with Q = O+ρ−[
R2

τ + (L/2)2
]1/2 N̂. Conversely, the force

must be applied in the negative N̂ direction when the particle
is centered on the cylinder axis and if either τ is nonzero or
ρ·N̂ < −L/2. Only tapered cylinders (τ > 0) will push out
a particle whose center is inside the cylinder and exactly on
the axis, so we ignore particles inside a non-tapered cylin-
der. Strictly speaking, both tapered and non-tapered cylinders
should provide frictional stability to particles with radii larger
than the cylinders of which they are inside. The code has a
way to handle this, but not in the case where the particle is
centered exactly on the cylinder axis. This will be a future
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feature if needed. In the meantime, for the overlap condition
in this case, we use Eqs. (A.2)–(A.5) to determine Pc, using
corresponding two-dimensional values for ρ, PRτ , and PR .
If the overlap condition is met, Q = O + Pc.

Using wall primitives to construct the hoppers

We used combinations of two of the primitives described
above, the disk and the finite cylinder, to construct the hop-
pers. For each hopper of radius Rhopper, we used finite cyl-
inders with radius R = Rτ = Rhopper (no taper) and height
H , with a confining bottom disk of radius Rout = Rhopper

(Rin = 0 at this stage) to simulate the hoppers. In order to
fill the hoppers, we attached a large finite cylinder of outer
radius Rfunnel and taper τ such that Rτ = τ R = Rhopper to
act as a funnel. To commence particle flow, we replaced the
disk at the bottom of the hopper with one of identical prop-
erties, except that instead of having Rin = 0, we set Rin to
be the desired radius of the aperture.
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