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Abstract The behavior of debris ejected from asteroids af-
ter collisional disruptions has significant implications for
asteroid evolution. Analytical approximations of the ellip-
tic restricted three-body system show that the behavior of
ejecta varies significantly with the orbital eccentricity and
true anomaly of an asteroid. To study these orbital pertur-
bative effects on collision outcomes, we conduct a series of
low-speed collision simulations using a combination of an
N -body gravity algorithm and the soft-sphere discrete el-
ement method. The asteroid is modeled as a gravitational
aggregate, which is one of the plausible structures for as-
teroids whose sizes are larger than several hundreds of me-
ters. To reduce the effect of complicating factors raised by
the mutual interaction between post-collision fragments on
the outcomes, a low-resolution model and a set of friction-
less material parameters are used in the first step of ex-
ploration. The results indicate that orbital perturbations on
ejecta arising from the eccentricity and true anomaly of the
target asteroid at the time of impact cause larger mass loss
and lower the catastrophic disruption threshold (the specific
energy required to disperse half the total system mass) in
collision events. The “universal law” of catastrophic disrup-
tion derived by Stewart and Leinhardt (Astrophys. J. Lett.
691:L133–L137, 2009) can be applied to describe the col-
lision outcomes of asteroids on elliptical heliocentric or-
bits. Through analyses of ejecta velocity distributions, we
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develop a semi-analytic description of escape speed from
the asteroid’s surface in an elliptic restricted three-body sys-
tem and show that resulting perturbations have long-term or-
bital effects on ejecta and can also have an indirect influence
on the velocity field of post-fragments through interparticle
collisions. Further exploration with a high-resolution model
shows that the long-term perturbative effects systematically
increase mass loss, regardless of the target’s material pa-
rameters and internal configuration, while indirect effect on
mass loss is much more complicated and is enhanced when
a coarse material or high-porosity model is used.
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1 Introduction

Collisions are crucial and common in the Solar System.
The behavior of debris ejected from asteroids because of
collisions has significant implications for the evolution of
asteroids and the formation of satellites in the early Solar
System. In addition, because some Earth-crossing asteroids
pose threats to the Earth, and the kinetic impact method is
considered to be a relatively feasible and efficient technique
(Sanchez et al. 2009), characterizing the outcomes in aster-
oid impacts is important for designing a successful asteroid
defense mission.

Because of the lack of observations and laboratory stud-
ies, numerical simulations are widely used to infer the de-
tails of collisions of asteroids (e.g., Leinhardt et al. 2000).
Previous simulation studies indicate that the outcome of a
collision is dependent on the impact conditions (e.g., im-
pact velocity, impact angle, and projectile-to-target mass ra-
tio; see Leinhardt and Stewart 2012), the pre-impact rotation
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rate of the target (Ballouz et al. 2014), the internal structure
(Asphaug et al. 1998; Jutzi and Michel 2014) and the mate-
rial properties (Ballouz et al. 2015), which significantly im-
proved our understanding of the diversity of collision out-
comes. However, these studies treated the target as an iso-
lated body without considering the effect of the asteroid’s
orbit on the collisional evolution.

Observations and numerical results indicate that most
main-belt asteroids follow non-circular orbits (Jedicke and
Metcalfe 1998), and in general, the orbits of near-Earth as-
teroids have relatively high eccentricity (Bottke et al. 2002).
Thus, the asteroid ejecta from an impact event can be treated
as the third small body in an elliptic restricted three-body
problem (ERTBP). In this system, the Hill’s region, where
the asteroid’s gravity dominates over solar tides, depends on
the orbital position of the asteroid (Makó and Szenkovits
2004; Voyatzis et al. 2012). Previous research has shown
that nonzero heliocentric eccentricity will dramatically nar-
row the orbital stability zones around small Solar System
bodies (e.g., Hamilton and Burns 1992; Richter and Keller
1995). Therefore, noncircular orbits can be supposed to have
significant influence on the outcomes of rubble-pile colli-
sions.

In this study, the dependence of collision outcomes and
the motion of ejecta on the orbital position of impact and
the orbital eccentricity of target asteroids is investigated. An
elliptic restricted three-body system is studied, and the per-
turbative effects on the evolution of asteroid ejecta during
impact events are analyzed. To confirm the analyses, numer-
ical experiments are conducted to model the impact process.

In order to accurately simulate the collisional dynamics
in the presence of the Sun’s gravity, a combination of an
N -body gravity algorithm and the soft-sphere discrete ele-
ment method (SSDEM) is applied (Schwartz et al. 2012).
In this method, the asteroid is modeled as a gravitational
aggregate, which is one of the plausible structures for as-
teroids whose sizes are larger than several hundreds of me-
ters (Richardson et al. 2002). Because our implementation
of SSDEM treats the collision process as a series of linear-
spring dashpot contact actions (Cundall and Strack 1979),
the method is only suited to study subsonic-speed impacts,
where no irreversible damage occurs. Therefore, the im-
pact speed used in our simulations is no more than tens of
m/s. Although, in reality, the collisions often occur at su-
personic speeds (Michel et al. 2004), the application of sub-
sonic speeds does not prevent us from analyzing the effect of
an elliptical orbit on the motion of post-collision fragments.
Furthermore, subsonic-speed impacts are expected to have
occurred during the planetesimal growth phase during the
formation of the solar system (e.g., Lissauer 1993).

We use km-size asteroids in this study since the transi-
tion from the strength to the gravity regime is thought to
be around 100 m in radius (Stewart and Leinhardt 2009).

The km-size asteroids are more likely to be dominated by
self-gravity rather than material strength, so that the model
of gravitational aggregates can be regarded as a reasonable
proxy for this specific asteroid size. Furthermore, the im-
pact energy required to disperse half the total mass increases
with increasing target size in the gravity regime (Benz and
Asphaug 1999). Using km-size targets allows us to simulate
the catastrophic disruption collisions with SSDEM, where
the corresponding impact speeds do not exceed the sound
speed of the material.

The outcomes of collisions are described by the mass of
the largest post-collision remnant, mlr, and the catastrophic
disruption threshold, Q∗

D , which is the specific impact en-
ergy required to disperse half the total system mass. We
compare our simulation results to the mass-loss equation de-
rived by Stewart and Leinhardt (2009). Furthermore, we de-
rive an analytical approximation of the escape speed from
the surface of an asteroid in the ERTBP, which defines the
range of the escape ejecta, and use it to infer the mass loss
of collisions for the rubble piles in heliocentric orbits.

This paper is organized as follows. Section 2 derives the
force analyses of the ejecta in the elliptic restricted three-
body system. Section 3 details the numerical method and
the model used in this study. Section 4 presents the simula-
tion results. Section 5 analyzes the catastrophic disruption
threshold and ejecta velocity distribution of the results, and
formulates a description of the escape speed in the ERTBP.
Section 6 discusses the implications for collisional evolution
in heliocentric orbits. Section 7 presents conclusions.

2 Force analyses of a third body in the ERTBP

Considering an elliptic restricted three-body system, an as-
teroid moves around the Sun at a non-uniform angular rate
that can be described by the first-order time derivative of the
true anomaly f :

ḟ =
√

GmSun(1 + e cosf )/R3, (1)

where G is the gravitational constant, mSun is the mass of
the Sun, R is the instantaneous distance from the Sun to the
asteroid, which is given by R = a(1−e2)/(1+e cosf ), and
a and e are the semi-major axis and eccentricity of the orbit
of the asteroid, respectively.

To study the motion of a third body in the ERTBP, appli-
cation of a non-uniformly rotating and pulsating coordinate
system that is centered on the asteroid and rotates with the
variable angular velocity is convenient (e.g., Gong and Li
2015). In such a frame, the x axis points to the asteroid, the
z axis is along the direction of the angular momentum of
the orbit of the asteroid, and the y axis forms a right-handed
triad with the x and z axes; the axes have associated unit
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Fig. 1 Normalized accelerations acting on an ejected particle as func-
tions of the true anomaly for e = 0.5 at different distances from the
asteroid. C denotes the Coriolis acceleration and T denotes the tidal
acceleration

vectors x̂, ẑ, and ŷ, respectively. By linearization, the accel-
eration r̈ of a particle moving in the vicinity of the asteroid
in the non-uniformly rotating frame can be approximated by

r̈ = −Gmar/r3 + GmSun/R
3[(3xx̂ − zẑ)

+ e cosf (xx̂ + yŷ) + 0.5e sinf (xŷ − yx̂)
]

− 2ḟ ẑ × v̄, (2)

where r = r r̂ = xx̂ + yŷ + zẑ is the position vector of the
particle, r̂ is the corresponding unit vector, and v̄ is the ve-
locity of the particle, which are all measured in the rotating
frame. The variable ma is the mass of the asteroid. Accord-
ing to Eq. (2), the motion of the particle in the vicinity of the
asteroid will be acted on by three main external forces: the
gravitational attraction of the asteroid, the solar tidal force,
and the Coriolis force. The last two forces will generally
weaken the gravitational influence of the asteroid.

2.1 The effect of the true anomaly

In one orbital period, the perturbing forces will change with
the orbital position of the asteroid. In this study, an asteroid
with a mass of 1012 kg and a radius, ra , of 0.6 km is con-
sidered as an example case, although the results apply more
generally. The semi-major axis a of the asteroid is taken to
be 1.75 AU, which is a reasonable value for near-Earth as-
teroids (Bottke et al. 2002). Figure 1 illustrates the various
accelerations acting on an ejected particle as it moves along
a radial line away from the asteroid surface at the escape
speed. In this case, the asteroid is assumed to be a homo-
geneous sphere. All accelerations are normalized to the lo-
cal gravity of the asteroid acting on the ejecta. As shown in
Fig. 1, the forces will be enhanced near perihelion mainly
because the asteroid–Sun distance R is changing with the
true anomaly f and reaches a minimum when f = 0.

In addition, the accelerations all act in different direc-
tions. In Eq. (2), for the solar tidal force, the first term is

Fig. 2 Magnitudes of three terms in tidal acceleration as functions of
the true anomaly for e = 0.5 at a distance of 100ra

approximately along the direction of the Sun. The term pro-
portional to e cosf (second term) always aligns parallel or
antiparallel to the position vector in the xy coordinate plane,
which points toward the asteroid for f ∈ (90◦,270◦) but
points toward the opposite direction for f ∈ (−90◦,90◦).
The term with e sinf (third term) is always tangent to the
position vector in the xy coordinate plane, and can increase
or decrease the speed of an orbiting particle around the aster-
oid. Figure 2 shows how the magnitudes of the three terms
change in one orbital period. The Coriolis term is perpen-
dicular to the orientation of the ejecta velocity at all times.
In general, taking into account the magnitudes and direc-
tions, the first term and the second term (henceforth, the di-
rect term) in the tidal acceleration will have a major effect
on the escaping ejecta, which has a velocity nearly parallel
to the position-vector direction.

2.2 The effect of orbital eccentricity

The orbital eccentricity e also has a significant influence on
the accelerations, especially when the impact occurs near
perihelion. Figure 3 presents the magnitude of these accel-
erations. The motion path of the ejected particle is the same
as that used in Fig. 1. The horizontal axis is measured in
units of asteroid radius ra from the asteroid surface to the
boundary of its Hill sphere, the gravitational sphere of influ-
ence, the radius of which can be approximately computed to
be rH = a(ma/3mSun)

1/3. Both forces will be enhanced by
a larger orbital eccentricity. The tidal forces can even be in-
creased by two orders of magnitude or more for moderately
high but still plausible eccentricities. Although the exact val-
ues of the accelerations vary, depending on the actual motion
path of ejecta and the orbital position of the asteroid, the ef-
fect of eccentricity on the accelerations is similar to what is
shown in Fig. 3.

After an impact, three different fates are possible for the
ejecta: re-impact on the asteroid, become all or part of one
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Fig. 3 Various accelerations acting on an ejected particle as func-
tions of distance from the asteroid for different orbital eccentricities
at f = 0◦. All accelerations are normalized to the local gravity of the
asteroid acting on the ejecta. C denotes the Coriolis acceleration and
T denotes the tidal acceleration

or more satellites (Durda et al. 2004), or escape, possibly
as reaccumulated remnants (Michel et al. 2004). The veloc-
ity distribution of the ejected fragments can be described by
a continuous probability density function. When the orbital
effect is not considered, the boundary of the re-impact out-
come and the escape outcome on the ejecta velocity distri-
bution (EVD) curve is the local escape speed of the asteroid.
Since the EVD is continuous (see Fig. 9 for an example of
displaying the EVD curve), there are some particles whose
ejection speed is close to the local escape speed of the as-
teroid. Thus, a transition zone exists between the re-impact
outcome and the escape outcome, where the fates of ejecta
are extremely sensitive to the external perturbations (hence-
forth, the critical ejecta). When the external force slightly
changes, the fates of these critical ejecta change. As men-
tioned above, because of the direct term, the velocity of the
ejecta away from the asteroid will be enhanced when the as-
teroid is near perihelion or weakened near aphelion. There-
fore, near perihelion, the energy of the critical ejecta is in-
creased, and it may eventually escape during this time. In
this manner, the mass loss will be enhanced. In the subse-
quent sections, we will conduct a series of numerical exper-
iments to explore the effect of orbital perturbations on the
collision process.

3 Numerical method

For the treatment of rubble-pile asteroids, a combination
of an N -body gravity algorithm and, more recently, the
soft-sphere discrete element method (SSDEM) for comput-
ing particle contact forces, is typically used (e.g., Sánchez
and Scheeres 2011; Schwartz et al. 2012). In this approach,
the asteroid is modeled as a self-gravitational aggregate of

smaller, indestructible spheres. The force acting on each par-
ticle is described by

�Fi =
N∑

j=1,j �=i

�F (g)
ij +

NC∑
j=1

�F (c)
ij , (3)

where N is the total number of particles, �F (g)
ij and �F (c)

ij are
the gravitational pull and contact force (if it exists) of parti-
cle j on the particle i, and Nc is the coordination number of
particle i. When the contact surfaces are not frictionless, the
particles in contact can also exhibit resistance to the relative
tangential motion of their surfaces, which will also impose
a torque on these particles. The motion of particles can be
obtained by integrating the force and torque.

We use pkdgrav, a parallel N -body gravity tree code orig-
inally developed for cosmology (Stadel 2001) and subse-
quently adapted for handling particle collisions (Richard-
son et al. 2000, 2011). A soft-sphere model was also im-
plemented in the code (Schwartz et al. 2012). In pkdgrav’s
soft-sphere implementation, a linear-spring dashpot model
is used to describe the normal contact force �Fn and the tan-
gential sliding resistance �Ft (Cundall and Strack 1979). In
brief, the contact force between two particles is given by

Fn = −knξ + Cnun,

Ft = min
(
ktD + Ctut ,μs |Fn|

)
,

(4)

which depend on the spring constants, kn and kt , and the
plastic damping parameters, Cn and Ct (which are related
to the normal and tangential coefficients of restitution, εn

and εt ). The variable ξ is the mutual compression of these
two particles, and D is the total tangential elongation dur-
ing this collision. The dashpot force is linearly proportional
to the normal relative speed and tangential relative speed un

and ut . The variable μs is the coefficient of static friction.
In addition, rolling and twisting resistances were also imple-
mented in pkdgrav (Schwartz et al. 2012); with this option,
we are able to model a more realistic granular system and in-
vestigate the effect of material properties. The effect of these
additional friction resistances can be represented by the fric-
tion coefficients, μr and μt , respectively. A second-order
leapfrog method is applied to solve the equations of motion.
The numerical approach has been validated through compar-
ison with laboratory experiments (e.g., Schwartz et al. 2014)
and has been successfully used to study the collision out-
comes between rubble-pile asteroids at low speed (Ballouz
et al. 2014, 2015).

3.1 Parameter setup

For the simulations presented here, the target is modeled as a
gravitational aggregate with total mass mtarg = 1012 kg and
bulk diameter of ∼1.2 km (consistent with the model used in
Sect. 2). The initial configuration of the aggregate is created
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Fig. 4 Mass ratio mlr/mtot for the rubble-pile model and scaling result

by placing spheres randomly in a spherical cloud and allow-
ing the cloud to gravitationally collapse with highly inelastic
collisions, which can reduce artificial shear strength arising
from the crystalline structure of hexagonal close packing of
spheres (Ballouz et al. 2014). Another way to avoid the arti-
ficial effect is to use a model consisting of polydisperse par-
ticles. In this study, we do not consider the effect of a size
distribution of particles, which is outside the scope of this
work. To simplify characterization of the ejection velocity
of post-collisional ejecta, the projectile is modeled as a sin-
gle sphere with mass mproj = 2 × 1010 kg and a diameter of
250 m. To ensure that the impact speed and the initial con-
figuration are not influenced by the non-circular orbit, the
target and projectile start out nearly in contact for all cases.

Based on hypervelocity impact simulations, Benz and
Asphaug (1999) found the transition from the strength to
the gravity regime occurs between 100 m and 1000 m in ra-
dius; observations (Pravec et al. 2002) also show asteroids
smaller than 200 m in diameter can attain fast rotations, im-
plying tensile strength. The recent observations of breakup
of the main-belt asteroid P/2013 R3 (Jewitt et al. 2014) show
that the asteroid consists of tens of distinct components with
various radii (the effective radius of the largest one up to
200 m in radius). Therefore, the main building blocks for
rubble piles in the inner Solar System could be as big as
a few hundred meters in diameter (Walsh and Richardson
2006). With particles of this size, our target could be con-
structed from ∼200 spherical particles (we actually used
particles of radius 80 m in our idealized model). As shown
in Fig. 4, this model has enough resolution to model colli-
sion outcomes. Another important reason for using the low-
resolution model is to minimize the effect of mutual interac-
tion between post-collision fragments that would otherwise
complicate interpretation. Because self-gravity can lead to
gravitational reaccumulation (Michel et al. 2004), ejected
fragments cannot be considered massless, particularly in a

Table 1 List of material SSDEM parameters

Parameters μs μr μt εn εt

Smooth 0.0 0.0 0.0 0.8 1.0

Gravel 1.31 3.0 3.0 0.55 0.55

catastrophic event, and this may weaken the signature of or-
bital perturbations. Compared with a high-resolution model,
the post-collision fragments in the low-resolution model are
widely spaced, where the occurrence of reaccumulation is
infrequent. Nevertheless, we also conduct a series of simu-
lations with a higher number of particles (Ntarg = 2896) to
verify that the conclusions we draw from the low-resolution
experiments are also applicable for a high-resolution model
(see Sect. 6). To ensure there is ample time for the post-
collision fragments to reach equilibrium and allow for clear
differentiation of ejecta outcomes, the total simulation time
is set to one orbital period.

As suggested by Schwartz et al. (2012), the parameters
used in the normal contact model can be determined by

kn ∼ m

(
vmax

ξmax

)2

,

Cn ∼ −2 ln εn

√
knμ

π2 + (ln εn)2
,

(5)

where m and vmax are the mass and maximum expected
speed of the most energetic particles in the simulation, ξmax

is the maximum of interparticle penetration, which is typi-
cally set to 1 % of the smallest particle radius in the simula-
tion; and μ is the reduced mass of the colliding pair. Thus,
in our simulation, for which the highest collisional speed
∼10 m/s, kn is set to ∼2 × 1012 kg/s2. The tangential spring
constant kt ∼ (2/7)kn. Based on the choice of ξmax and kn,
for adequately resolving the contact process, the timestep �t

is set to ∼4 ms. In order to improve the efficiency, once the
distribution of the post-collision fragments and aggregates
is well established (the time scale of this process is several
tens of dynamical times for the system; the dynamical time
is approximately 1/

√
Gρ, where ρ is the bulk density of the

rubble pile), a larger timestep (∼40 ms) is applied with the
same friction coefficients and coefficient of restitution by
adjusting the value of kn.

Ballouz et al. (2015) found that the mass loss due to colli-
sions is sensitive to the material properties. In fact, the con-
tact mechanics of surfaces associated with non-zero friction
coefficients can substantially influence the velocity distri-
bution of particles, and accordingly cause noticeable differ-
ences in the collision outcomes. This influence may offset
the effect of orbital perturbations. To minimize the effect of
particle-particle collisions on the velocity distribution, the
particles are modeled as idealized frictionless spheres; i.e.,
the friction coefficients are set to 0. For this case, the normal
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coefficient of restitution εn is set to 0.8 for rock collisions
(Durda et al. 2011). The material parameters are summa-
rized in Table 1 (“smooth”). We also investigate a more re-
alistic set of material parameters in the high-resolution case
(see Sect. 6).

3.2 Collision test

To assess the effect of elliptical orbital perturbations on col-
lision outcomes, we compare four different orbital eccentric-
ities for our rubble piles: 0, 0.25, 0.5, and 0.75. For each e, a
range of impact speeds is applied to investigate the collision
response of the gravitational aggregate to different mass-
loss scenarios. This paper focuses on head-on impacts, in
which the trajectory of the projectile is directed at the cen-
ter of the target. Because the level of collisional dissipation
will be slightly influenced by the internal configuration of
the rubble-pile model (according to Ballouz et al. 2015, the
mass-loss deviations is approximately 1 % from the mean)
and the initial orientation, a constant rubble-pile configura-
tion (whose porosity is about 0.477) and a fixed relative-
impact orientation are used for all simulations. The orienta-
tion of the projectile velocity vector is in the reverse direc-
tion of the target orbital velocity vector. Before starting the
simulations, an understanding of the relation between col-
lision outcomes and impact conditions without considering
the orbital effect is necessary. Therefore, we conduct a series
of collision tests that serve as nominal collision outcomes.

Figure 4 presents the relation between the mass ratio of
the largest post-collision remnant to the total mass of the tar-
get plus the projectile mlr/mtot and the normalized impact
speed vimp/vesc, where vesc ∼ 0.5 m/s is the escape speed
from the surface of a spherical object with the same total
mass and density of 1000 kg/m3. The mass of the largest
remnant is represented as the sum of its own mass and the
mass of materials gravitationally bound to it. To validate the
low-resolution model, we compare our results with the scal-
ing laws for head-on impacts in the gravity regime derived
by Leinhardt and Stewart (2012):

mlr

mtot
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, if vimp ≤ vesc

1 − 5μ′v2
imp

16πc∗ρ1GmtotR
2
C1

( 1
4

(γ+1)2

γ
)1−2/3μ̄,

if vesc < vimp < vsupercat,

0.1
1.8−1.5 [ 5μ′v2

imp

8πc∗ρ1GmtotR
2
C1

( 1
4

(γ+1)2

γ
)1−2/3μ̄]−1.5,

if vimp ≥ vsupercat

(6)

where μ′ is the reduced mass of the target and projectile, γ is
the projectile-to-target mass ratio, ρ1 is the nominal density
of 1000 kg/m 3, and RC1 is the radius of a sphere of den-
sity ρ1 and mass equal to the total mass of the system. The
impact speed for the onset of super-catastrophic disruption

vsupercat is the critical impact speed at mlr = 0.1mtot, which
can be calculated by the second formula in Eq. (6). The best-
fit values of the dimensionless material parameters c∗ and μ̄

in our case are 3.0 and 0.385, respectively, which are consis-
tent with the suggested values for small bodies in the grav-
ity regime of Leinhardt and Stewart (2012): c∗ = 5 ± 2 and
μ̄ = 0.37 ± 0.1. The good agreements imply that the low
resolution used in the simulations would not affect the mass-
loss behavior of a self-gravitating rubble pile in the collision.
The two curves have an inflection at mass ratio ∼0.1, where
the collision regime is converted from disruption to super-
catastrophic disruption. Because the collisional remnants of
super-catastrophic impacts are highly dispersed and have the
highest error in N -body simulations, we limit our study to
the disruption regime. On the basis of the collision tests,
simulations are done with impact speeds of 0.5–30vesc for
each e.

4 Results

This section presents the collision outcomes for the rubble
piles in heliocentric orbits. The dependence on the orbital
phase of impact in an elliptical orbit is investigated. Fur-
thermore, the effect of orbital eccentricity on the relation
between the largest remnant mass and the impact speed is
shown.

4.1 Influences of orbital phase

For a highly elliptical orbit, the amplitude of disturbing
forces can vary by an order of magnitude within one or-
bital period (see Fig. 1). The small body has lower effective
gravity to capture the escaping ejecta near perihelion (i.e.,
f = 0◦). As a result, mass loss will be enhanced when the
impact takes place near perihelion. We conducted 200 sim-
ulations at impact speeds of 8 m/s and 12 m/s at e = 0.5, to
survey the effect of the orbital phase (i.e., the true anomaly)
at the moment of impact. The impact tests are distributed
uniformly in time (not true anomaly) throughout one orbit
period, so more impacts are simulated near aphelion than
perihelion.

Figure 5 shows the relation between the ratio of the mass
of the largest remnant to the total mass and the true anomaly
f at the corresponding orbital impact position in the case
of e = 0.5. As shown in Fig. 5, depending on the orbital
phase, the normalized mass loss can vary by several percent
of the total system mass (i.e., a few to tens of particles in this
case). The orbital perturbations can also affect the configu-
rations of the post-collisional fragments. The results of the
impact at 8 m/s are especially consistent with the dynamical
analysis, in which the largest remnant is always larger when
the impact occurs near aphelion. For the impact at 12 m/s,
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Fig. 5 Mass ratio mlr/mtot for e = 0.5 at different impact speeds:
(a) 8 m/s, (b) 12 m/s. Each marker represents a simulated result for a
given f, and its shape signifies the number of satellites that were trapped
around the largest remnant for at least one year. An open circle denotes
no satellite, a star denotes one satellite, a left-pointing triangle denotes
two satellites, a square denotes three satellites, and a right-pointing
triangle denotes more than three satellites

the effect of the impact position is less clear. As shown in
Fig. 5b, the range of mass ratio mlr/mtot around aphelion,
f ∈ (100◦,225◦), is quite wide. Note, in this case, the mass
loss exceeded half of the mass of the original target, where
interactions between ejected fragments become complicated
and have a significant impact on the final outcome.

4.2 Influences of orbital eccentricity

Because the effect of an elliptical orbit on collision outcome
is greatest at perihelion, the collision simulations for differ-
ent orbital eccentricities were conducted at f = 0◦. The re-
lation between the normalized mass of the largest remnant
and the normalized impact speed is shown in Fig. 6. The
mass of the largest remnant is represented as the sum of its
own mass and the mass of materials gravitationally bound
to it. In general, we find that the mass loss is enhanced for
a larger orbital eccentricity at a given impact speed, as ex-

Fig. 6 Mass ratio mlr/mtot for different orbital eccentricities for a set
of collisions. The initial orbital impact positions are set at f = 0◦ (i.e.,
perihelion) for all simulations. The nominal outcomes are the results
of the rubble-pile model in the collision test (see Fig. 4)

pected from Eq. (2). When vimp < 10vesc, because the quan-
tity of escaping ejecta is small, no opportunity exists for
critical-ejecta generation, resulting in the invariable mass-
loss outcomes for all simulations. When vimp > 10vesc, the
perturbing forces influence the dynamical evolution of im-
pact ejecta. As shown in Fig. 6, for a circular orbit, a small
variation occurs in the mass of the largest remnant compared
with the nominal outcomes (i.e., the simulation results with-
out the orbital motion in Sect. 3.2). For an elliptical orbit,
the perturbing forces enhance the mass loss by a few to tens
of percent of the total system mass, which is similar in ef-
fect to the case of pre-impact rotation (Ballouz et al. 2014).
Hence, the influence of orbital effect should be considered
in investigations of collision processes.

Overall, the collision outcomes are very sensitive to the
orbital phase and eccentricity of the target asteroid. As indi-
cated in Eq. (2), the orbital phase and eccentricity affect the
outcome in a similar manner, which depends on the speed of
the asteroid at impact and its distance from the Sun. In the
following section, we only analyze the situations of perihe-
lion collisions with different eccentricities.

5 Discussion

From the above analyses, our simulation results indicate that
orbital perturbations arising from an asteroid’s elliptical or-
bit can have a significant impact on the mass loss following
a collisional event. In this section, we apply the catastrophic
disruption threshold and the ejecta velocity distribution to
estimate the degree of influence of the orbital eccentricities.
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Table 2 List of catastrophic disruption thresholds

Orbit parameter Q∗
RD (J/kg)

Nominal 1.22 ± 0.02

e = 0 1.18 ± 0.03

e = 0.25 1.12 ± 0.01

e = 0.5 1.10 ± 0.01

e = 0.75 1.06 ± 0.03

5.1 Catastrophic disruption threshold

In the literature on planetary and asteroid collisions (e.g.,
Benz and Asphaug 1999), the outcomes of impact are pa-
rameterized using a catastrophic disruption threshold, Q∗

D ,
which is the specific impact energy required to disperse half
the total system mass. To evaluate the collision outcomes
between different-size impactors, Stewart and Leinhardt
(2009) considered the reduced mass μ′ in a modification
of the specific energy definition by introducing the reduced-
mass specific impact energy QR ≡ 0.5μ′v2

imp/mtot. The cor-
responding reduced-mass catastrophic disruption threshold
is Q∗

RD ≡ 0.5μ′v∗2
imp/mtot, where v∗

imp is the critical impact
speed required to disperse half the total system mass. Using
the new variables, they found that the relation between the
mass of the largest remnant and the impact energy can be
described by a single linear formula:

mlr/mtot = −0.5
(
QR/Q∗

RD

) + 1, (7)

which they termed the “universal law” for the mass of the
largest remnant.

Using a linear least-squares fit of the collision out-
comes, we calculate the reduced-mass catastrophic disrup-
tion threshold for each set of orbital eccentricities in our
simulations. Table 2 presents the results of the fitting. Each
fitting value of Q∗

RD is presented with the standard deviation
of each fit. The results show that the orbital eccentricity of
the asteroid has an important effect on the value of Q∗

RD in
the collisional disruption of a rubble-pile asteroid. With the
increase of the orbital eccentricity, Q∗

RD systematically de-
creases by approximately 5–10 % relative to the e = 0 case.
In addition, the value of Q∗

RD in the e = 0 case is notably
smaller than that in the nominal case because of the solar
tidal effect and the Coriolis effect in a circular heliocentric
orbit (see Eq. (2) at e = 0).

Using the fitting value of Q∗
RD in Table 2, we plot the

normalized mass of the largest remnant as a function of the
normalized impact energy in Fig. 7. Our results are in good
agreement with the universal law, except for several high-
energy impact cases. The feature is consistent with the phe-
nomenon observed in the results of Ballouz et al. (2015).
They suggested that the target was catastrophically disrupted
in such high-energy impact events, and the largest remnant

Fig. 7 Mass ratio mlr/mtot versus the normalized impact energy
QR/Q∗

RD for all simulations. The black dashed line is the universal
law for the mass of the largest remnant (Eq. (7))

became less representative of the collisional dynamics. Nev-
ertheless, the maximum deviation in mlr/mtot of our results
from Eq. (7) is less than 10 %. Therefore, the universal law
can also be applied to describe the collision outcomes of
gravitational aggregates on an elliptical heliocentric orbit.

5.2 Ejecta velocity distribution

The mass and velocity distribution of the ejecta are the main
factors that determine whether collisions are erosive or ac-
cretive, and the degree of mass loss (Housen and Holsapple
2011). To characterize the source of variations in mass loss
between different orbits, the ejecta velocity distributions are
analyzed in this section.

In order to calculate the ejection velocity, v, a refer-
ence point and a reference surface are needed. Because the
rubble-pile particles are highly dispersed by the impact be-
fore forming the largest remnant, the center of mass is no
longer located at the center of the largest remnant particle
distribution, and no reference surface is available to calcu-
late the ejection velocity. Therefore, we introduce a local
sphere to serve as the reference system. Figure 8 shows the
configurations of the local sphere and the rubble-pile parti-
cles in different stages of the simulation for an impact speed
of 8 m/s. The local sphere is a hypothetical surface with a
fixed radius, rl , and it contains a non-dispersed aggregate. To
obtain the ejection velocity for all the ejecta, the value of rl
should be no less than the bulk radius of the rubble pile. The
non-dispersed aggregate is the largest clump of particles in
the current simulated scene and eventually develops into the
largest remnant (see the particles inside the local sphere in
Fig. 8). The center of the local sphere is located at the center
of mass of the non-dispersed aggregate and moves with it.
The ejection velocity of a particle can be determined when



Effects of orbital ellipticity on collisional disruptions of rubble-pile asteroids Page 9 of 16 30

Fig. 8 Snapshots of the collision process at an impact speed of 8 m/s.
The large translucent sphere is the “local sphere” and the smaller ones
are the rubble-pile particles. The gray particles are those that have
crossed or are crossing the surface of the local sphere, and the black
particles are those that have not had a chance to leave the local sphere
at the corresponding time point. These frames are presented in chrono-

logical order: (a) the initial configuration of the local sphere and the
rubble-pile particles, (b) the ejection of those particles several seconds
later, (c) the gravitational reaccumulation that occurs because of the
slow ejection speed of some particles, and (d) the final largest frag-
ment shown inside the local sphere, in which the gray particles denote
the ones that were reaccumulated

it crosses through the local surface. By this means, we can
acquire all the ejecta velocity information. The ejecta veloc-
ity distribution is quantified by the ratio of the total mass of
material ejected with speed greater that v and the total mass,
M(v)/mtot. Figure 9 shows the M(v)/mtot histograms of
all orbit scenarios at impact speeds of 8 m/s and 12 m/s.
The radius of the local sphere, rl , is set to the bulk radius
of the target, i.e., 0.6 km. The maxima of these curves (i.e.,
M(0)/mtot) are less than 1 because several particles tend to
stay in the local sphere at all times (see the black particles in
Fig. 8d). These particles do not cross the surface of the local
sphere, and their contributions to M(v)/mtot are neglected.

To characterize the mass loss from the ejecta velocity dis-
tribution, the effective escape speed needs to be determined
for each case. For a single spherical body, the local escape
speed for a massless particle is derived simply from con-
servation of energy, such that the particle has zero speed at
infinity. However, the situation is more complicated in the
three-body problem, since the motion of the third particle
around an asteroid is believed to be chaotic when the grav-
itational perturbation of the Sun is considered (Astakhov
et al. 2003). To characterize the escape speed in this case,
the infinite space is replaced with the non-escape zone. Once
a particle arrives at the boundary of the zone with a non-
zero speed, it can escape from the gravity of the asteroid.

Previous research shows that the zone of orbital stability
around the asteroid is reduced because of the perturbations
of the Sun’s gravity. By analyzing the Jacobi constant where
the topology of the zero-velocity curves changes, Szebehely
(1978) predicted that particles in circular orbits around as-
teroids will escape when the orbital radius becomes larger
than rH /3 (rH is the Hill radius defined in Sect. 2.2). The
numerical results of Hamilton and Burns (1991) for initially
circular orbits also indicated that the radius of the stability
zone is ∼0.49rH for prograde orbits and ∼rH for retrograde
orbits. Although the above research is based on the circular
restricted three-body problem, the relation between the ra-
dius of the stability zones and the Hill radius can be used to
infer the size of the non-escape region in the ERTBP. In this
study, we assume that the radius of the non-escape zone is
λrH . The dimensionless parameter λ is a measure of how the
motion of the ejecta is influenced by the perturbing forces.
From this, the escape speed can be written as

ṽesc =
√

2Gm0

(
1

rl
− 1

λrH

)
, (8)

where m0 is the effective mass that exerts gravitational
pull on the ejected particles. Because the mass of the non-
dispersed aggregate decreases immediately after the impact
(see Fig. 8b), the actual mass of materials that can provide
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Fig. 9 Cumulative mass versus speed of fragments that exit the local
sphere (solid thick lines). (a) vimp = 8 m/s; (b) vimp = 12 m/s. The
dashed thin line defines the separatrix, the speed that separates retained
from escaping ejecta. The symbol marks the corresponding mass ratio
at the escape critical point for each eccentricity

effective gravity to capture the ejecta is less than the origi-
nal target mass. The value of m0 is thus generally less than
the total system mass. The Hill radius is taken to the dis-
tance where the normalized solar tidal acceleration is equal
to 1, which decreases with the increase of the orbital eccen-
tricity (see Fig. 3). The influence of orbital eccentricity is
mainly embodied in the Hill radius. Under given impact con-
ditions (i.e., the impact speed in this study) and the rubble-
pile model, the escape speed parameters, (m0, λ), are con-
stant for all orbital eccentricities, and for the corresponding
nominal case (where rH is infinity). Therefore, the escape
speed decreases with the increase of the orbital eccentricity
at given conditions (see the dashed thin lines in Fig. 9 for
an example). In practice, m0 and λ are determined by fitting
the mass loss in the nominal case and in the e = 0 case with
the ejecta velocity distribution curve, respectively.

Figure 9 shows the value of escape speed for all orbit
scenarios at impact speeds of 8 m/s and 12 m/s (i.e., the
dashed thin lines). The value of m0 is found to be 0.725mtot,
and 0.436mtot for the impact speeds of 8 m/s and 12 m/s,
respectively, which is approximately equal to the mass of
the largest remnant for each case (see Fig. 6). The value of
λ is found to be 0.2 and 0.17 for the impact speeds of 8
m/s and 12 m/s, respectively. When the ejection speed of a
particle exceeds ṽesc, it will escape forever; otherwise, it will
re-impact or orbit the largest remnant. Thus, the total mass
of escaped ejecta in each case (i.e., the ordinate value of each

symbol) is actually the mass loss caused by an impact, which
is consistent with the collision outcomes shown in Fig. 6.

Comparing the ejecta velocity distribution curves and the
values of escape speed, two major factors are found to con-
tribute to the variations in mass loss. First, with the increase
of eccentricity, the separatrix of escape speed moves to the
left in Fig. 9 because of the influence of long-term pertur-
bations in the three-body system. This is the main cause of
the increments of mass loss. The so-called critical ejecta are
located between the lines of the smallest and largest effec-
tive escape speeds. Second, the ejecta velocity distribution
varies with the orbital conditions. The granular system is a
highly nonlinear system with a lot of factors correlated, i.e.,
inhomogeneous force propagation, the nonlinear contact re-
sponse, and the breaking and forming of interparticle con-
tacts. Even in the linear spring contact model, fluctuations
caused by a single contact responding to an external force
can spread to all vibrational modes (Schreck et al. 2011).
Therefore, in our simulations, the state of motion of the par-
ticles can be affected by the orbital perturbations during col-
lision; as a consequence, the energy and momentum cou-
pling between colliding particles changes. In turn, the colli-
sional interaction can also affect the motion of ejecta. These
factors influence each other and eventually lead to signifi-
cant variations in the ejecta velocity distribution. However,
in the above simulations, we intentionally reduce some of
the factors that may obscure the effect of orbital perturba-
tions, such as the amount of dissipation. In the next section,
a more realistic model is applied to estimate the effect of
these complicating factors.

6 Implications for collisional disruption

Although very little is known about the actual mechan-
ical properties of asteroid material, the contact interac-
tion between the constituent particles cannot be friction-
less. By comparing numerical simulations with avalanche
experiments using roughly equal-size rocks collected from
a streambed, Yu et al. (2014) found a set of soft-sphere pa-
rameters (the “gravel” parameters) that can appropriately re-
flect the typical behavior of the rocks (“gravel” in Table 1).
The high coefficients of friction reflect the irregular non-
spherical shapes of actual granular matter. While the actual
relation of the granular interactions on Earth to those on
the small bodies is unclear, the gravel model can serve as
a reasonable surrogate until more data are available. To gain
more insight into the orbital effect on collision outcomes, we
carry out a series of numerical simulations using the smooth
and gravel parameters with higher resolution, Ntarg = 2896.
Two internal configurations of rubble pile model with dif-
ferent macroporosities are considered. Using the method in-
troduced in Sect. 3.1, the normal spring constant kn is set to
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Fig. 10 Mass ratio mlr/mtot versus the normalized impact energy
QR/Q∗

RD for the high-resolution model. The black dashed line is the
universal law for the mass of the largest remnant (Eq. (7))

∼1.53 × 1012 kg/s2 and the timestep �t is set to ∼4 ms, en-
suring that particle overlaps do not exceed much more than
1 % of the particle radii. The amount of mass loss is de-
termined by measuring the total mass of all material that
is gravitationally bound to the instantaneous largest rem-
nant. The simulation runs until the measured amount of
mass loss achieves a steady value (this requires about 20
system dynamical times). The mass loss outcomes of each
simulation are summarized in Table 3. Following the anal-
yses in the low-resolution model, we calculate the reduced-
mass catastrophic disruption threshold and characterize the
escape speed parameters, (m0, λ), from the ejecta velocity
distribution (to reduce the influence of particle-particle col-
lisions on the calculation of ejection velocity, the radius of
the local sphere is set to 0.8 km) for each set of simula-
tions (Table 3), and compare the results to the universal law
(Fig. 10).

As shown in Table 3 and Fig. 10, the orbital perturba-
tions still have significant effects on the collision outcomes
and the value of Q∗

RD. The universal law can also be applied
to describe the collision outcomes in these cases. However,
comparing with the results of the low-resolution model (i.e.,
Fig. 6), the trend that the mass loss will increase with the
larger orbital eccentricity is not obvious, especially for the
high-porosity “gravel” material set of simulations. Accord-
ing to the analyses in Sect. 2, mass-loss enhancement due
to the orbital perturbations is expected to happen since the
solar tidal force and the Coriolis force will weaken the grav-
itational pull of the asteroid. However, the perturbation the-
ory and the “critical ejecta” theory are both based on the as-
sumption that the position and velocity distribution of post-
collision fragments are nearly constant. Figure 11 shows
the M(v)/mtot histograms at different impact speeds with

similar mass losses for the three high-resolution models. It
is clear to see that the ejecta velocity distribution changes
significantly with the orbit eccentricity, which becomes the
main cause of the variations in mass loss compared to the
effect of the change in the escape speed.

Through tracking the contact networks during collisions,
we find that the phase of most intensive interparticle colli-
sions occurs at the beginning of impact and lasts for a few
minutes. After that, the total contact number decreases un-
til fragments start to reaccumulate. In order to isolate the
complexity due to the interparticle collisions, a set of simu-
lations at an impact speed of 10 m/s with the low-porosity
“gravel” model is conducted by using the output after the
phase of intensive collisions (i.e., the output at the simula-
tion time of 400 s) in the nominal cases as the initial con-
ditions for all orbit cases (henceforth, the “post-collision”
experiment). Figure 11(d) shows the ejecta velocity distri-
bution for the “post-collision” experiment, where the escape
velocity parameters are the same as those of the low-porosity
“gravel” material set of collisions at vimp = 10 m/s. In this
case, the ejecta velocity distribution curve is almost con-
stant for all orbital conditions. It is also worth noting that
the variation of mass loss in the “post-collision” experiment
(∼0.014) is much smaller than in the corresponding normal
case (i.e., Fig. 11(b), where the variation is ∼0.027). This
implies that the orbital perturbations can exert an indirect
significant influence on the velocity field of post-ejection
fragments through interparticle collisions.

Although the orbit dependence of mass loss in collisions
is ambiguous for the high-resolution model, comparing the
value of the catastrophic disruption threshold shows that
Q∗

RD, which represents the capacity of the asteroid struc-
ture to resist disruption, systematically decreases with the
increase of the orbital eccentricity, except for the high-
porosity “gravel” material set of collisions. Furthermore,
the variation in mass loss for different orbital conditions is
larger when a coarse material model or high-porosity model
is used. This indicates that the orbital perturbations have a
stronger effect on the velocity field of post-collision frag-
ments in these cases.

These differences can be explained by analyzing the
propagation of the shock wave. During a collision, a shock
wave travels through the target, transfers the momentum
into the constituent particles, and results in disruption of the
gravitational aggregates. The macroscopic porosity, which
is an inherent property of the rubble-pile model, causes re-
flections when the shock wave encounters a void (Jutzi and
Michel 2014). In other words, it will take longer for the
shock wave to propagate throughout the rubble piles with
higher macroporosity. Therefore, the orbital perturbations
have more time to affect the force distribution network in
the rubble pile and cause significant changes in the ejec-
tion velocity of each particle. Furthermore, the propagation
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Table 3 Summary of collision conditions and mass loss outcomes (Ntarg = 2896)

Orbit parameter Material Macroporosity vimp (m/s) mlr/mtot Q∗
RD (J/kg) m0/mtot λ mlr/mtot predicted

Nominal Smooth 48.7 % 4 0.911 0.568 0.948 1.00a 0.911b

Nominal Smooth 48.7 % 5 0.856 0.910 1.00 0.856

Nominal Smooth 48.7 % 6 0.785 0.868 1.00 0.785

Nominal Smooth 48.7 % 7 0.666 0.759 0.35 0.666

Nominal Smooth 48.7 % 8 0.411 0.621 1.00 0.411

e = 0 Smooth 48.7 % 4 0.910 0.560 0.948 1.00 0.910

e = 0 Smooth 48.7 % 5 0.851 0.910 1.00 0.851

e = 0 Smooth 48.7 % 6 0.786 0.868 1.00 0.785c

e = 0 Smooth 48.7 % 7 0.651 0.759 0.35 0.651

e = 0 Smooth 48.7 % 8 0.403 0.621 1.00 0.367

e = 0.25 Smooth 48.7 % 4 0.911 0.553 0.948 1.00 0.911

e = 0.25 Smooth 48.7 % 5 0.860 0.910 1.00 0.860

e = 0.25 Smooth 48.7 % 6 0.790 0.868 1.00 0.794

e = 0.25 Smooth 48.7 % 7 0.652 0.759 0.35 0.656

e = 0.25 Smooth 48.7 % 8 0.389 0.621 1.00 0.398

e = 0.5 Smooth 48.7 % 4 0.911 0.552 0.948 1.00 0.911

e = 0.5 Smooth 48.7 % 5 0.853 0.910 1.00 0.852

e = 0.5 Smooth 48.7 % 6 0.788 0.868 1.00 0.786

e = 0.5 Smooth 48.7 % 7 0.639 0.759 0.35 0.645

e = 0.5 Smooth 48.7 % 8 0.393 0.621 1.00 0.403

e = 0.75 Smooth 48.7 % 4 0.911 0.544 0.948 1.00 0.911

e = 0.75 Smooth 48.7 % 5 0.863 0.910 1.00 0.861

e = 0.75 Smooth 48.7 % 6 0.768 0.868 1.00 0.771

e = 0.75 Smooth 48.7 % 7 0.631 0.759 0.35 0.634

e = 0.75 Smooth 48.7 % 8 0.382 0.621 1.00 0.407

Nominal Gravel 48.7 % 8 0.879 1.952 0.904 1.00 0.879

Nominal Gravel 48.7 % 10 0.791 0.891 0.25 0.791

Nominal Gravel 48.7 % 12 0.695 0.743 0.40 0.695

Nominal Gravel 48.7 % 14 0.521 0.554 1.00 0.521

Nominal Gravel 48.7 % 16 0.340 0.382 0.10 0.340

e = 0 Gravel 48.7 % 8 0.881 1.973 0.904 1.00 0.880

e = 0 Gravel 48.7 % 10 0.789 0.891 0.25 0.789

e = 0 Gravel 48.7 % 12 0.690 0.743 0.40 0.690

e = 0 Gravel 48.7 % 14 0.516 0.554 1.00 0.515

e = 0 Gravel 48.7 % 16 0.359 0.382 0.10 0.359

e = 0.25 Gravel 48.7 % 8 0.885 1.923 0.904 1.00 0.883

e = 0.25 Gravel 48.7 % 10 0.767 0.891 0.25 0.770

e = 0.25 Gravel 48.7 % 12 0.665 0.743 0.40 0.668

e = 0.25 Gravel 48.7 % 14 0.537 0.554 1.00 0.548

e = 0.25 Gravel 48.7 % 16 0.327 0.382 0.10 0.313

e = 0.5 Gravel 48.7 % 8 0.879 1.920 0.904 1.00 0.879

e = 0.5 Gravel 48.7 % 10 0.802 0.891 0.25 0.798

e = 0.5 Gravel 48.7 % 12 0.689 0.743 0.40 0.691

e = 0.5 Gravel 48.7 % 14 0.534 0.554 1.00 0.538

e = 0.5 Gravel 48.7 % 16 0.310 0.382 0.10 0.335



Effects of orbital ellipticity on collisional disruptions of rubble-pile asteroids Page 13 of 16 30

Table 3 (Continued)

Orbit parameter Material Macroporosity vimp (m/s) mlr/mtot Q∗
RD (J/kg) m0/mtot λ mlr/mtot predicted

e = 0.75 Gravel 48.7 % 8 0.884 1.901 0.904 1.00 0.880

e = 0.75 Gravel 48.7 % 10 0.777 0.891 0.25 0.772

e = 0.75 Gravel 48.7 % 12 0.697 0.743 0.40 0.690

e = 0.75 Gravel 48.7 % 14 0.538 0.554 1.00 0.531

e = 0.75 Gravel 48.7 % 16 0.297 0.382 0.10 0.205

Nominal Gravel 60.9 % 8 0.925 3.185 0.990 1.00 0.925

Nominal Gravel 60.9 % 12 0.798 0.869 0.20 0.798

Nominal Gravel 60.9 % 16 0.585 0.611 1.00 0.585

Nominal Gravel 60.9 % 20 0.308 0.444 1.00 0.308

Nominal Gravel 60.9 % 24 0.215 0.418 1.00 0.215

e = 0 Gravel 60.9 % 8 0.919 3.442 0.990 1.00 0.919

e = 0 Gravel 60.9 % 12 0.770 0.869 0.20 0.770

e = 0 Gravel 60.9 % 16 0.602 0.611 1.00 0.600

e = 0 Gravel 60.9 % 20 0.409 0.444 1.00 0.383

e = 0 Gravel 60.9 % 24 0.260 0.418 1.00 0.252

e = 0.25 Gravel 60.9 % 8 0.912 3.365 0.990 1.00 0.914

e = 0.25 Gravel 60.9 % 12 0.809 0.869 0.20 0.802

e = 0.25 Gravel 60.9 % 16 0.638 0.611 1.00 0.619

e = 0.25 Gravel 60.9 % 20 0.357 0.444 1.00 0.358

e = 0.25 Gravel 60.9 % 24 0.230 0.418 1.00 0.195

e = 0.5 Gravel 60.9 % 8 0.918 3.401 0.990 1.00 0.918

e = 0.5 Gravel 60.9 % 12 0.798 0.869 0.20 0.791

e = 0.5 Gravel 60.9 % 16 0.637 0.611 1.00 0.618

e = 0.5 Gravel 60.9 % 20 0.376 0.444 1.00 0.379

e = 0.5 Gravel 60.9 % 24 0.234 0.418 1.00 0.216

e = 0.75 Gravel 60.9 % 8 0.927 3.224 0.990 1.00 0.925

e = 0.75 Gravel 60.9 % 12 0.804 0.869 0.20 0.787

e = 0.75 Gravel 60.9 % 16 0.625 0.611 1.00 0.609

e = 0.75 Gravel 60.9 % 20 0.379 0.444 1.00 0.368

e = 0.75 Gravel 60.9 % 24 0.136 0.418 1.00 0.104

m0/mtot—artificial mass parameter normalized by total mass, which is determined by fitting the mass loss with the escape speed (Eq. (8)) and the
ejecta velocity distribution curve in the corresponding nominal case; λ—radius of the stability zone in rH ranging from 0 to 1, which is determined
by fitting the mass loss in the case of e = 0 based on the corresponding value of m0; mlr/mtot predicted—the mass of the largest remnant deduced
from the escape speeds and the ejecta velocity distribution curves
aThe escape speed parameters, (m0, λ), are constant for all the orbit scenarios under the given impact speed and rubble-pile model
bPredicted mlr/mtot in all nominal cases is the same as the simulation result
cPredicted mlr/mtot in the e = 0 cases may be slightly less than the simulation result, because the value of λ has an upper bound of 1

of the shock wave also depends on several physical proper-
ties, such as the strain loading and unloading rate and the
material parameters (Ballouz et al. 2015). In the SSDEM
model (Schwartz et al. 2012), the friction forces are sensi-
tive to the surface velocity of the colliding particles. When
a set of high friction coefficients (i.e., the “gravel” param-
eters) is used in simulations, a slight change in the veloc-

ity field due to the orbital perturbations will lead to signif-
icant changes in the force chains of the aggregate, which
will in turn affect the velocity of the ejected particles. As
a consequence, the influence of the orbital perturbations
on the position and velocity distribution of post-collision
fragments is enhanced in the “gravel” material set of col-
lisions.
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Fig. 11 Cumulative mass
versus speed of fragments that
exit the local sphere for the
high-resolution model.
(a) vimp = 6 m/s with the
“smooth” material set of
collisions; (b) vimp = 10 m/s
with the low-porosity “gravel”
material set of collisions;
(c) vimp = 12 m/s with the
high-porosity “gravel” material
set of collisions; (d) the
“post-collision” experiment.
The shape and style of the
symbols and lines are the same
as in Fig. 9

It is also worth noting that the combination of ejecta
velocity distributions and escape speeds can predict the
value of mass loss and its dependence on orbital eccentric-
ity quite well, except for several high-impact-speed cases
where gravitational interactions between ejected fragments
become complicated and have a significant impact on the
final outcome (Table 3). The definition of escape speed
(Eq. (8)) is a good approximation of the actual escape speed
in a three-body system. Using this approach, the collision
outcomes can be applied to infer the properties of the non-
escape zone around asteroids in the general elliptic three-
body system.

7 Conclusions and future work

Collisions between small bodies play a crucial role in the
origin and evolution of the Solar System. Studying the ef-
fects that contribute to variations in the mass of small bodies
is of benefit to understanding the collisional evolution mod-
els of the early Solar System. In this study, we investigated
the effect of perturbing forces in elliptical orbits on the col-
lision outcomes of a rubble-pile asteroid.

Using the linearized equation of motion in the non-
uniformly rotating coordinate system of the ERTBP, we
characterized the perturbing force acting on the third mass-
less body around the asteroid. According to the analyses, the
gravitational influence of the asteroid will be weakened by
the solar tidal force and the Coriolis effect. Moreover, the
magnitude of these perturbative effects will increase with
the orbital eccentricity of the asteroid, especially near peri-
helion. As a result, the energy of the ejecta is increased, and
it will eventually escape from the gravity of the asteroid.

Our N -body collision simulations confirm that the or-
bital perturbations have significant effects on the mass-loss

outcomes in collision events. For the low-resolution model,
with increasing orbital eccentricity, the mass ratio mlr/mtot

systematically decreases by approximately a few to tens of
percent relative to the e = 0 case. In addition, the value of
mlr/mtot in the e = 0 case is slightly smaller than that in the
nominal case because of the solar tidal effect and the Cori-
olis effect in a circular heliocentric orbit. The reduced-mass
catastrophic disruption threshold Q∗

RD also decreases with
the growth of perturbations. However, the effect of mass-
loss enhancement due to the orbital perturbations is less ap-
parent in the high-resolution simulations, especially when
a set of high-friction material parameters and high-porosity
structure are used.

We explained our results from the perspective of ejecta
velocity distributions. By introducing a dimensionless con-
stant λ and a mass constant m0, we developed an analytical
description of escape velocity from the surface of the aster-
oid in the ERTBP. By analyzing the ejecta velocity distri-
bution curves and the values of escape velocity, we found
that the variation in mass loss is attributed to the long-
term perturbations in the elliptic three-body system, and the
changes in ejection velocity of post-collision fragments. The
former always result in the mass loss increasing with the
growth of orbital perturbations, while the effect of the lat-
ter is more complicated. In the low-resolution case, particle-
particle collisions are infrequent, so the long-term pertur-
bative effect becomes the main factor that determines the
number of escaped ejected particles. Therefore, mass loss
increases with increase of orbital eccentricity. However, in
the high-resolution case, the influence of the orbital pertur-
bations is mainly reflected in the particle-particle collisions,
which largely offsets the effect of long-term perturbations.

Furthermore, our analyses indicate that the collision out-
comes can be used to infer the properties of the non-escape
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zone around asteroids in the general elliptic three-body sys-
tem. Our work provides a new perspective to investigate the
ejecta motion in the presence of the Sun’s gravity and its ef-
fects on collision outcome. Our results also confirm that the
“universal law” of catastrophic disruption derived by Stew-
art and Leinhardt (2009) can be applied to describe the col-
lision outcomes of asteroids on elliptical heliocentric orbits.

Overall, we find the influence of the orbital eccentricity
and phase should be considered in investigations of colli-
sion processes. This work will help inform future asteroid
impact deflection missions by giving a qualitative prescrip-
tion for collision outcomes in elliptical orbits. For present-
day asteroid collisions, where the impact speed typically ex-
ceeds 1 km/s, the structure of the asteroid undergoes irre-
versible shock damage (Jutzi and Michel 2014). There are
two important phases in high-speed collisions, i.e., the shock
fragmentation phase and the gravitational reaccumulation
phase, which have very different dynamical times (Michel
et al. 2004). The time scale for the fragmentation phase can
be determined by dividing the target size by the speed of
sound, e.g., tenths of a second for a km-sized rocky target
(Asphaug et al. 1998). After that, the fragments produced
by the impact collide with each other before departing from
the instantaneous largest remnant. This collision-intensive
process will last several to tens of minutes (Leinhardt and
Stewart 2009). During this period, the orbital perturbations
can exert an influence on the velocity field of the fragments.
That is, the post-ejection fragments will have a change in
orbit energy and angular momentum due to the orbital per-
turbative effects. Therefore, although our model is restricted
to low-speed impacts (<100 m/s), we argue that the results
are applicable to high-speed impacts. To check this, a com-
bination of a shock physics model and the N -body model
must be applied. Also, when considering the effect of the he-
liocentric orbit of an asteroid, solar radiation pressure may
rival the Sun’s gravity in some situations, for small particles
(Hussmann et al. 2012). These are areas for possible future
study.
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