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ABSTRACT

The broadband variability of many accreting systems displays characteristic structures; log-normal flux
distributions, root-mean square (rms)-flux relations, and long inter-band lags. These characteristics are usually
interpreted as inward propagating fluctuations of the mass accretion rate in an accretion disk driven by stochasticity
of the angular momentum transport mechanism. We present the first analysis of propagating fluctuations in a long-
duration, high-resolution, global three-dimensional magnetohydrodynamic (MHD) simulation of a geometrically
thin (2/r =~ 0.1) accretion disk around a black hole. While the dynamical-timescale turbulent fluctuations in the
Maxwell stresses are too rapid to drive radially coherent fluctuations in the accretion rate, we find that the low-
frequency quasi-periodic dynamo action introduces low-frequency fluctuations in the Maxwell stresses, which then
drive the propagating fluctuations. Examining both the mass accretion rate and emission proxies, we recover log-
normality, linear rms-flux relations, and radial coherence that would produce inter-band lags. Hence, we
successfully relate and connect the phenomenology of propagating fluctuations to modern MHD accretion disk
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theory.
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1. INTRODUCTION

While accretion of gas onto compact objects has been
studied for over 50 years, much uncertainty remains about how
angular momentum is transported. There is increasing evidence
that the interplay between the local angular momentum
transport from magnetohydrodynamic (MHD) turbulence and
the more global accretion flow shapes the behavior of the mass
accretion (e.g., Sorathia et al. 2010). The primary goal of this
paper is to connect MHD accretion disk theory with one of the
most widely discussed phenomenological models for disk
variability, the propagating fluctuations model. We explore
how a stochastically varying effective viscosity leads to the
growth of so-called “propagating fluctuations” in our long,
global accretion disk simulation, and relate the behavior of our
simulation to observable properties from accreting black holes.

The idealized a-disk from the seminal work of Shakura &
Sunyaev (1973) has long served as the canonical disk model.
Assuming turbulence was present in the disk, they argued that
an effective kinematic viscosity originating from turbulent
eddies spanning a radial range provided the internal viscous
stress required to transport angular momentum and allow for
accretion. In their model, the turbulent viscosity takes the form
v, = vl, where v, is the turbulent velocity and [ is a
characteristic length scale of the turbulent eddies. This
viscosity can be parameterized with an “efficiency” factor in
terms of the local sound speed, c,, and the local scale height of
the disk, &, v; = acgh. With this prescription, Shakura &
Sunyaev (1973) restrict the o parameter to a range of 0 < o <
1. If the turbulent velocity is greater than the sound speed, the
gas will shock, convert excess kinetic energy to thermal energy,
and return to the subsonic domain, ensuring v,/c; < 1.
Likewise, they postulated //h < 1 because the differential shear
in the disk will quickly break-up large turbulent eddies leading
to localized turbulence. An alternative but equivalent view,
motivated by dimensional analysis, is to say that the relevant
viscous stresses in the disk are proportional to the pressure,

Trs = o'P, where Ty, is the off-diagonal component of the
stress energy tensor and P is pressure. Analytic results and
numerical models show « and o are related to each other by a
factor of order unity (Lesur & Longaretti 2009) that weakly
depends upon the magnetic Prandtl number (Lesur &
Longaretti 2007).

Even in the early work of Shakura & Sunyaev (1973), the
influence of magnetic stress was intuitively assumed to be an
essential part of the turbulent injection mechanism, though a
viable driving mechanism was absent until the magneto-
rotational instability (MRI) was put forth as a candidate to drive
the disk turbulence. The instability of a differentially rotating,
magnetized plasma was originally discovered by Velikhov
(1959) and Chandrasekhar (1960), but its astrophysical
significance was not realized until Balbus & Hawley (1991)
studied it in the context of an ionized accretion disk. They
showed that radial perturbations of gas elements are linearly
unstable if kv4 < €2, where k is the wavenumber, v, is the
Alfvén speed, and (2 is the orbital angular frequency. As a fluid
element is perturbed, the displacement acts to enhance a weak
seed field until it goes nonlinear, which subsequent numerical
MHD simulations have verified drives and sustains turbulence
(Hawley & Balbus 1991). To date, a large and rich body of
simulation work has been dedicated to studying how MRI
driven turbulence behaves and transports angular momentum
including studies using unstratified shearing boxes (e.g.,
Hawley & Balbus 1991; Hawley et al. 1995), stratified
shearing boxes (e.g., Brandenburg et al. 1995; Stone
et al. 1996), unstratified global models (e.g., Armitage 1998;
Armitage et al. 2001; Hawley 2001; Armitage & Rey-
nolds 2003), stratified global disk models (e.g., Hawley 2000;
Hawley & Krolik 2001; Reynolds & Miller 2009; Sorathia
et al. 2010), relativistic global models (e.g., De Villiers
et al. 2003; Gammie et al. 2003; McKinney 2006), and global
models with radiative transfer (e.g., Jiang et al. 2014; McKin-
ney et al. 2014; Sadowski et al. 2015).
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The viscous behavior of the disk ultimately arises because of
net internal stress due to correlated fluctuations in the magnetic
field and correlated fluctuations in gas velocity (Balbus &
Papaloizou 1999). These correlated fluctuations lead to the
Maxwell stress (Mg, = —BgrBy/4m) and the Reynolds stress
(Rry = pvrdv,), respectively. Following the a-prescription, the
effective o from the net stress is thus the ratio of the volume
averaged stress to the volume averaged pressure,

o = Mrs + Ro) 0
(P)
This serves to parameterize the effectiveness of angular
momentum loss by the stresses acting on the gas in the disk.
In this paper we use angled brackets to denote a volume
average for a given quantity, U, where

JU @, r, 0, ¢)r’sinfdrdbde
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Turbulent fluctuations in the disk will naturally lead to
stochastic variability in the effective « and provide an intuitive
explanation for the existence of broadband photometric
variability observed in both galactic black hole binaries
(GBHBSs) and active galactic nuclei (AGNSs). The photometric
variability is observed across several decades in frequency,
typically in the form of aperiodic “flicker” type noise.
Employing a stochastic «, Lyubarskii (1997) developed a
model for this flicker noise by linearizing the standard
geometrically thin, optically thick accretion disk evolution
equations. The model was limited to small perturbations in «,
but it reproduced the power spectrum of the fluctuations and
laid the foundation for the subsequent development of the
propagating fluctuations model.

The propagating fluctuations model has since taken a more
generalized form and served as a phenomenological description
for the structure and organization of the broadband variability
for GBHBs and AGNs. The evolution of a geometrically thin,
optically thick accretion disk (in units where G=M =c = 1) is
governed by a nonlinear diffusion equation (Pringle 1981),

o _ ii[mi(ymé)} 3)
ot ROR| OR

where R is the distance from the central engine, v (3; R, 1) is
the local effective viscosity in the disk, and > (R, ¢) is the local
surface density. In this equation, the diffusive redistribution of
angular momentum depends on the product of the effective
viscosity and the local surface density. If the effective viscosity
fluctuates, the instantaneous mass accretion rate (M ) at each
point in the disk is thus the product of the many prior stochastic
events. A consequence of the multiplicative combination is that
fluctuations in M will tend to be preserved as they accrete, as
higher density regions will typically have higher M and lower
density regions will typically have lower M. Additionally,
since the viscous time increases with radii, higher frequency
fluctuations will be imposed on the accretion flow as material
moves inwards. This will lead to the development of a
hierarchical structure in the fluctuations with the smaller, high-
frequency fluctuations imposed upon the larger, low-frequency
fluctuations.
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The appeal of the propagating fluctuations model is that it
explains three properties of black hole variability that have
been difficult to reproduce with other variability models. First,
GBHB and AGN light curves are log-normally distributed
(Gaskell 2004; Uttley et al. 2005) which is accounted for
through the multiplicative combination of many independent
fluctuations. Second, and related to the log-normal distribution,
the root-mean square (rms) of the flux variability in the light
curves of both GBHBs and AGNs depends linearly on the flux
level (Negoro & Mineshige 2002; Gaskell 2004), the so-called
rms-flux relationship. This indicates the mass accretion rate
variation has a constant fractional amplitude and that the
mechanism driving variability is, therefore, independent of the
accretion rate (Uttley & McHardy 2001). Finally, coherent
fluctuations in the emission at different wavebands from
GBHBs have frequency dependent time lags with variability in
higher energy bands lagging variability in lower energy bands
(Nowak et al. 1999a, 1999b). This “hard lag” is believed to be a
signature of fluctuations in the accretion flow moving to
smaller radii in the disk where the emission temperature is
higher.

Despite the success the propagating fluctuations model has
had in explaining the phenomenology of GBHB and AGN
variability, the model has yet to be examined in the context of
modern MHD theory. To date, the model has been examined in
the context of geometrically thin (vertically integrated) a-disks
in which some stochasticity is imposed upon «. How well this
viscous behavior translates into an MHD disk is unknown.
Particularly challenging is the timescales on which « fluctuates
and drives variability within the accretion flow. Lyubarskii
(1997) prescribes « fluctuations to be slow, of order the viscous
time. However, if fluctuations in « are solely due to turbulent
fluctuations, we might expect them to be on the dynamical
timescale. Cowperthwaite & Reynolds (2014) show, using a
semi-analytic model, that propagating fluctuations only exist if
fluctuations in « occur at sufficiently low frequencies. If the
frequency of a fluctuations is too high, they found that M
fluctuations are damped out and the nonlinear features of the
variability do not develop. Therefore, fluctuations in the
effective-a on timescales longer than the dynamical timescale
are needed to reproduce the phenomenology seen in the
variability.

In this paper we perform the first detailed analysis of
propagating fluctuations in the context of a long-duration,
MHD accretion disk simulation. We show that the well-known
quasi-periodic dynamo induces slow fluctuations in the
effective « that then drive propagating fluctuations. In Section 2
we introduce the simulation and perform a convergence study.
Section 3 presents a brief discussion of the nature of the
turbulence. In Section 4 we investigate the relationship of the
quasi-periodic disk dynamo and angular momentum transport,
finding that it imposes an intermediate-timescale modulation of
the effective . We then examine the variability of both the
mass accretion rate (Section 5) and a proxy for bolometric
radiative luminosity (Section 6), finding that both quantities
display the nonlinear variability characteristics of real sources
and that the coherence of these quantities across the disk is
exactly as expected in the propagating fluctuations picture. In
Section 7, we place our results into a broader context, and then
conclude in Section 8.



THE ASTROPHYSICAL JOURNAL, 826:40 (20pp), 2016 July 20

(a) Gas Density

(b) B

Figure 1. Snapshots of p (a) and |[B?| (b) in the fiducial simulation used in our
analysis at t = 0, the point we take to be the beginning of scientific analysis
after the initial transient behavior has died off and the turbulence has saturated.

2. NUMERICAL MODEL AND CONVERGENCE

In this section we describe the construction and convergence
properties of our numerical model. In brief, we evolve a three-
dimensional ideal MHD simulation in order to study the local and
global dynamics of a geometrically thin (constant opening angle
h/r = 0.1) accretion disk. Given our focus on the time variability
of the accretion flow, the crux of our problem is the evolution of
the MHD turbulent dynamics and how it influences the long-
timescale behavior of the disk. Thus, we concentrate our
computational resources into the high-spatial resolution and the
long duration of the simulation. We demonstrate below that the
numerical grid is of high enough resolution that the macroscopic
behavior of the disk turbulence is converged and insensitive to
increases in resolution. As a penalty, we simplify the physics to
the bare minimum. We employ non-relativistic ideal MHD, and a
pseudo-Newtonian gravitational potential to emulate the dyna-
mical effects of a general relativistic potential, including the
presence of an inner-most circular orbit (ISCO). We use a simple
cooling function to keep the disk thin, but otherwise neglect all
radiation physics. Renderings of density and magnetic turbulent
structure of our fiducial disk simulation are shown in Figure 1.
Table 1 details the simulations used in this work.

2.1. Simulation Setup

Our simulation employs the finite-difference MHD code
Zeus-MP v2 (Stone & Norman 1992a, 1992b; Hayes
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et al. 2006). Zeus-MP solves the differential equations of ideal
compressible MHD,

Dp
—=—pV-.vy, 4
Dt P (€]
p&:—VP—i—L(VXB)XB—pVCD, 5)
Dt ik
pﬂ(f)z—PV.v—A, 6)
Dt\ p
6—B=V><(v><B), 7
ot
where
D 0
—=—+4+v- V. 8
Dt Ot ®

to second-order accuracy in space. The method of constrained
transport is used to maintain zero divergence in the magnetic
field to machine precision. The explicit integration time step is
set by the usual Courant conditions, and is first-order accurate
in time.

We begin by defining our fiducial simulation. The simulation
domain is covered by spherical coordinates (R, 6, ¢) and spans
R € [4r,, 1451,], 0 € [7/2 — 0.5, /2 + 0.5], ¢ € [0, w/3),
as shown in Figure 1. The zone aspect ratio is approximately
AR : RAO : RA¢ =2 :1:2 and each scale height is resolved
with 28 6-zones. Outflowing boundary conditions were used
for the +R and +6 boundaries, and periodic boundary
conditions were used in the ¢ direction. The most trivial
implementation of the outflowing boundary conditions in
ZEUS-MP does not enforce the divergence free condition
required of the magnetic field at the boundary interface.
Therefore, we modified the standard ZEUS-MP boundaries to
conserve V B = 0 across the R- and #-boundaries.

The simulation domain was broken into a well-resolved
inner region (r < 45 r,), used for our analysis, and an outer
region with poorer resolution to act as a gas reservoir. The gas
reservoir mitigates the effect of secular decay from the draining
of material from the disk over the course of the simulation. The
radial spacing in the inner region logarithmically increases in R
from 4-45r, In all, the simulation has Np X Ny X
Ny = 512 x 288 x 128 = 1.89 x 107 zones in this region.
The AR spacing in the outer region logarithmically increases
from 45-145r, and a total of Np X Ny x Ny =
128 x 288 x 128 = 4.72 x 10° zones in this region.

We approximate the gravitational field around a nonrotating
black hole with a pseudo-Newtonian gravitational potential
(Paczynisky & Wiita 1980) of the form:

g M - GM )
R — 2r, c?

With this potential, several important aspects of a general
relativistic gravity field are captured, including an ISCO (at 6
r,) and the qualitative change of radial shear in the disk.

A v = 5/3 adiabatic equation of state is used for the gas. An
initially axisymmetric thin disk was initialized with constant
midplane density and radially decreasing pressure corresponding
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Table 1
Simulation Parameters
Simulation Azimuthal Range ISCO Orbits Ng Ny Ny H /Az (0.) (Qo) () (B) Op
Fiducial /3 1610 640 288 128 28.8 8.1 20.5 0.12 234 10°5
HiResWedge /3 204 1280 576 256 57.6 272 43.0 0.15 6.5 1221
HiRes2m 2r 110 1280 576 256 57.6 18.4 11.8 0.09 79 11°6
ensure the density and pressure values do not become artificially
0.10! small and/or negative.
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Figure 2. Radial profile of the time averaged disk scale height, //r, during the
length of the simulation. The cooling function maintains an aspect ratio of h/r
~ 0.1 throughout the simulation. In the inner regions (r < 10 r,) the ISCO is
strongly felt by the gas and the disk is thinner, the so-called “turbulent edge”
(Krolik & Hawley 2002). Throughout this work we will calculate quantities
within one scale height of the disk. Since the cooling function maintains the

aspect ratio fairly well, these calculations are done within our target scale
height of i/r =~ 0.1.

to an isothermal vertical profile:

cos2d
R, 0) = pyexp| —————|, 10
PR 0= po p( 2(h/r)2sin29) (10
and
PR, 0) =c p(R, ) (11
where,
2 _ GMR(h /R)?sin” 0 (12)
’ (R — 21,)?
locally.

The disk is initialized to a scale height of 2/r = 0.1 and was
maintained by an ad hoc, optically thin cooling function similar
to Noble et al. (2009). The cooling function plays the role of the
real physical processes and removes energy at a rate equivalent
to the thermal time of the disk (Tcoo1 = 10Top ~ Ton/ ), as wWas
done in O’Neill et al. (2011). If the gas energy in a cell is above
the target energy, ey, X pvm2 (h/r)?, itis cooled over the cooling
time. The cooling function used is A = f (¢ — €garg)/Tcool, Where
f=05[(e — ewrg)/le — etarel + 1]. The switch function, f,
acts as a threshold function and is zero when e, > e. Figure 2
shows the radial profile of the time averaged aspect ratio of the
disk during the length of the simulation, and it can be seen that
the cooling function effectively keeps the disk near the target 4 /r
value. Throughout this paper we calculate quantities within one
disk scale height and, therefore, use our target value as h/r = 0.1
in these calculations. A protection routine is implemented to

The gas was initialized with a purely azimuthal velocity field
and a weak magnetic field. The local velocity is set so that the
effective centripetal force balances the gravitational force. A
series of weak, large-scale poloidal magnetic field loops are set
for the initial magnetic field configuration (e.g., Reynolds &
Miller 2009) to seed the MRI. The loops were set from the
vector potential A = (A4,, Ay, A,) to ensure the initial field was
divergence free and had the form:

Ay = Aop2f (r, ) sin(%), A=A, =0, (13)
where A, is a normalization constant, f(r, §) is an envelope
function that is one in the body of the disk and smoothly goes
to 0 at r = risco, Tow and three scale heights above the disk.
The alternating field polarity is set by the final multiplicative
term such that the loops have a radial wavelength of 5h. The A
constant was set to initialize the disk to an average ratio of gas-
to magnetic-pressure of 5 = 500.

The following analysis treats the simulation after the MRI
has saturated and transient behavior from initialization has died
away. B and e reach a quasi-steady state in the well-resolved
region of the disk and the MRI saturates, as measured by the
convergence metrics discussed in Section 2.2, after approxi-
mately 200 ISCO orbits (12,320 GM/ ¢®). We take this point to
be t = 0. The simulation was then run for 1410 ISCO orbits
(86,856 GM/ ¢%). In the interest of data management, the values
of B, v, e, and p were output every two ISCO orbits (123.2
GM/c?).

2.2. Convergence

The issue of convergence is forefront when considering the
reliability of results from any ab initio accretion disk simulation
because the MHD turbulence that mediates angular momentum
transport has structure on the smallest accessible scales. With
this type of simulation, the macroscopic behavior can have a
resolution dependence if the turbulent scales dominating the
shear stresses are not adequately resolved (Guan et al. 2009;
Sorathia et al. 2012; Hawley et al. 2013). As a preface to our
study of variability, here we assess the degree to which we are
adequately resolving the turbulent dynamics using two
measures. First, we examine the resolvability of the fastest
growing linear MRI mode through the commonly employed
quality factors introduced by Noble et al. (2010). Second, to
characterize the nonlinear saturation of the turbulence, we use
the magnetic tilt angle. Using these diagnostics, we compare
our fiducial (long) simulation with higher resolution compar-
ison simulations.

The first set of diagnostics used to measure resolvability
were the vertical and azimuthal quality factors (Noble
et al. 2010), Qp = Amri/RAG and Q4 = A\c/RA, respectively.
Qp and Q4 measure resolvability through the number of grid
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Figure 3. Plots of temporally and azimuthally averaged Q, (a) and temporally

and vertically averaged Q, (b). One scale height (1 /) above and below the disk

is shown as dashed black lines in (a).
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cells per fastest-growing MRI wavelength, \yry, and critical
toroidal field length, A\c where
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Using the quality factors, we characterized the global
resolvability of the disk. The local values of Qy and Q, were
calculated in every voxel of the well-resolved region (4—45r,)
for every data dump after the transient behavior in the disk had
died away (r = 0 onwards). The volume-weighted average was
calculated for each quality factor by averaging over in the
region within one scale height above and below the disk
midplane to get the instantaneous value and then over the entire
duration of the simulation to get a temporal average. The
averaging was restricted to the body of the disk because we
want the most conservative estimate of the resolvability of the
simulation. In the highly magnetized, low-density coronal

(14)

MRI —
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Figure 4. Evolution of magnetic tilt angle, ©p, for long, fiducial disk
simulation (black line), high resolution wedge simulation (red line), and high
resolution 27 simulation (blue line). The r = 0 time we use in our analysis is
marked by the black dashed line. The evolution of the long disk simulation
used for the science run in our paper has been truncated to only show the initial
saturation of the turbulence and a short time period shortly after, but continues
for 86,856 GM/ ¢*. ©p grows similarly in all three simulations and saturates at
the same value, ©5 ~ 11°-12°. The black dashed line indicates ¢t = 0 used in
our analysis.

regions the quality factors are very high and, if included, the
quality factors would appear artificially high, overestimating
how well we resolve the MRL. We find (Qp) = 7.0 and
(Qy) = 15.2, a bit below the nominal resolvability criteria of
(Qp) = 10 (Hawley et al. 2011).

In addition to the global averages, we are interested in how
the resolvability depends on the position within the grid.
Shown in Figure 3 is the time and azimuthally averaged profile
of Oy, as well as the time and polar average profile of Q4. The
average of Qy was calculated as a function of r and 6 by
averaging over entire ¢ domain. As we did in our global
average, the vertical averaging over the polar angle in our
calculation of Q, is only done in the region within one
scale height above and below the disk to exclude the coronal
region. The spatial variation can be seen in both quantities,
but no apparent “dead zones” of gross under-resolution are
present.

These quality factors probe the ability of the simulation to
resolve linear MRI modes but do not address the structure of
the (nonlinear) saturated turbulence. Thus, we also measure the
average in-plane magnetic tilt angle,

Op = —arctan[<%;>], (15)

the value of which is closely connected to the processes by
which the MHD turbulence saturates (Pessah 2010; Hawley
et al. 2011; Sorathia et al. 2012; Hawley et al. 2013). We note
that, given the dominance of B, over the other field
components, the tilt angle is approximately given by

Op = arcsin(ay 3)/2, (16)
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where oy, is the Maxwell stress normalized by the magnetic
pressure,

ay = M, (17)

(P)
and [ is the ratio of gas pressure to magnetic pressure,

P
TN o

The magnetic tilt angle is directly tied to the effectiveness of
the angular momentum transport at a given field strength, and
can be used to probe whether a given simulation has correctly
captured the nonlinear saturation of the MHD turbulence.

We calculate ©p within the midplane regions of the disk,
restricting to half a scale height above and below the disk
midplane in the well-resolved region. The temporally averaged
magnetic tilt (neglecting the first 200 ISCO orbits) is
Op ~ 11°3 (Figure 4), comparable to estimates from both
analytic theory (Pessah 2010) and previous high-resolution
local (Hawley et al. 2011) and global (Sorathia et al. 2012;
Hawley et al. 2013) simulations.

We further assess the fidelity of our fiducial simulation by
performing two additional high-resolution comparison runs. The
first comparison simulation had the exact same geometry as the
fiducial simulation, but twice the resolution in each of the three
dimensions (hence voxels of 1/8th the volume). The second
comparison simulation also doubles the number of zones in each
of the three dimensions, but then extends the domain to include
the full 27 in azimuth. Both of these comparison simulations
possess Ng X Ny X Ny = 1280 x 576 x 256 = 1.89 x 108 total
zones with a vertical resolution of 56 #-zones per disk scale-
height. Of course, the AR : RA¢ ratio was larger in the 27
higher resolution simulation due to the extension of the ¢
domain. The evolution of ©p for the simulation used in our
analysis and the two test simulations is shown in Figure 4.

In the higher resolution simulations the evolution of Op is
slightly faster than our fiducial run, but settles at similar levels as
the MRI driven turbulence saturates. One difference between the
development of the turbulence in the comparison simulations
and our fiducial run is that our fiducial run has a transient spike
in magnetic tilt angle 5,790 GM/ ¢® (94 ISCO orbits) into the
initialization. From visual inspection, we see the growth and
break-up of a large channel flow in the disk body in the fiducial
run. This does not develop in the higher resolution comparison
simulations because the non-axisymmetric parasitic instabilities
are more effective at breaking up nascent channel flows. With
this minor difference, the similarity in the evolution and
saturation of the turbulence between the three simulations
indicates that our fiducial run is adequately resolved.

In all, we can be confident in the convergence of our model.
By standard measures, the simulation is adequately resolved
and has reached a level of saturated turbulence. The quality
factors are slightly lower than what has been deemed well-
resolved by prior convergence studies (i.e., Hawley et al. 2011,
2013; Sorathia et al. 2012), but the similarities between O in
our long science run and those of our two shorter, high-
resolution comparison simulations demonstrate that the turbu-
lence has reached a saturated level.

HoGcG & REYNOLDS

o 1 2 3 4 5 6 7 8
Time (GM/c?) Ted
Figure 5. Time trace of the effective v parameter in the disk after averaging

over radius. The « parameter is highly variable and fluctuates between o ~
0.04 and a ~ 0.08 in a quasi-periodic manner.
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Figure 6. Histogram of « fit with a normal distribution (red line) and log-
normal distribution (blue line). The normal distribution provides a better fit to
the distribution. The distribution is best fit by a log-normal distribution.

3. TURBULENCE AND THE EFFECTIVE a DESCRIPTION
OF THE MODEL DISK

3.1. Fluctuating Effective o

We will now look at the behavior of the effective «v in the
disk. Of particular interest is the variable behavior of the
effective « as this is required to drive fluctuations in M. Using
Equation (1), we calculate the effective a by restricting the
domain over which we average to the disk midplane,
0 = [7/2 £ h], where h is one disk scale height. For each
data output from our simulation (Ar = 123.2 GM/C3) we
calculate the average stress and pressure within one scale
height across the entire azimuthal domain for each radial bin.
The ratio of the stress to pressure was then taken to provide the
effective « as a function of radius and time.

Figure 5 shows the time variability of the effective «
parameter in the disk after averaging over radius. Large
variability occurs on an intermediate timescale, longer than a
dynamical time and shorter than a viscous time. The value of
the effective « in the disk typically fluctuates between o ~ 0.03
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Figure 7. Instantaneous values of vym/cs. The fluctuations in vy /c, are
correlated with the changes in « seen in Figure 5, indicating that as the stress
increases in the disk the gas is accelerated. Instantaneous values of Ax/h. Ax/h
fluctuates stochastically around / = 0.32 and is not correlated with a. The
turbulent spatial scales are independent of the disk stress at all times.

and o = 0.08 in a quasi-periodic manner. On the lower end
of the fluctuating range, o ~ 0.03 seemingly acts as a floor
where the minima consistently returns. The upper range
on the effective « is less well-defined with the maxima
found at different levels as low as a = 0.07 and as high
as a = 0.13.

Figure 6 shows the histogram of effective o with normal
(Gaussian) and log-normal fits to the probability density
function (PDF). Statistically, the PDF of the effective « is
better fit by a log-normal distribution. The best fit with
a normal distribution has x?/dof = 44.7/24 = 1.9 and the
best fit with a log-normal distribution has x*/
dof = 29.6/24 = 1.2.

3.2. Characterizing Velocity and Length Scales
of the Turbulence

Here, we have a brief digression in order to characterize the
velocity and length scales of the turbulence. Given the range of
time- and length-scales involved in a global disk simulation, we
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choose to perform this exercise over a limited range of radii; we
select the region R € [15r, 18r,], 6 € [n/2 — 0.35,
w/2 4+ 0.35], ¢ € [0, 7/3). In physical coordinates, this
domain spans AR = 3r,, RAO = 10.5r,, RA¢ = 57r,. The
size of the subdomain was chosen such that any localized
turbulent structure would be well contained within the box, but
also so that any medium-scale structure would be captured by
our analysis if it is present.

3.2.1. Measuring Turbulent Velocity

Within this region, we first calculated the ratio of
the turbulent speed to the sound speed within the disk
midplane as a function of time. The turbulent velocity is
defined as

[v] = \/vrz + vHZ + (v — (vp))? (19)

and the sound is defined in its usual form

6= |2 (20)
p

For each data dump, we calculated the volume weighted spatial
average of |v|/c¢, to serve as a diagnostic for the average
velocity of the turbulence within the disk.

Figure 7 shows the time variability of (|v|/c;). This ratio is
highly variable and fluctuates within a range of |v| /¢, = 0.3 to
[v|/cs =~ 0.5. Comparing with the time variability of « in
Figure 5, the correlation between « and |v|/c; can be readily
observed. The average value is (|v|/¢;) = 0.37.

3.2.2. Measuring Turbulent Scales

Measuring the spatial scales of the turbulence is significantly
more involved than measuring the turbulent velocity, but,
nevertheless, provides a method for characterizing the
turbulence in simple terms. The spatial scales of the density,
magnetic field components, and Maxwell stress of the
turbulence were measured in our r = 15-18r, subdomain
using the autocorrelation method of Guan et al. (2009) &
Beckwith et al. (2011) with some modifications. For each data
dump after the initialization of the simulation, the two-point
autocorrelation of a given quantity of interest, F (r, 0, ¢, 1),
was calculated within this subdomain in the following way.
First, large-scale structure of F (r, 0, ¢, t) was removed. For a
given time step, 7, the average over AT = 1232 GM/ I (11 data
dumps) for each cell in the subdomain was calculated. The time
average was centered on the time step of interest such that the
average for a single cell included its values five data dumps
before and after. This was then subtracted off of the present cell
value:

Eub(r, 67 d)? t):F(r3 99 d)? t)
1 t+0.5AT

- — E , 0,0, Hdt (21
AT [70,5AT norm (r (b ) ( )

leaving only the high-frequency perturbation. Since the average
was determined for an individual cell, this also removes vertical
gradients.

Next, the physical coordinates were normalized by the
local scale height to express the turbulent scales in terms of A.
This converts the wedge geometry into a rectangular geometry
and allows for easier comparison with prior work. In
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Figure 8. Slices of 3D autocorrelation function along x—y, x—z, and y—z planes
for p, B,, By, B¢, B, and BB,

this normalized geometry, r maps to x, ¢ maps to y, and € maps
to z.

After the normalization of the coordinates, the three-
dimensional Fourier transform was then taken of Fy,:

Flky ke ey, 1) = f f Fx, 2, y)
x el kX tkzthe) dxdzdy. (22)
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From this, the autocorrelation, Cr (Ax, Az, Ay), was calcu-
lated according to:

Cr (Ax, Az, Ay) = f f f |F s ke, Ky D2
x el btk gk di,dky.  (23)

For the first part of our analysis into the spatial scales, we fit
the time averaged three-dimensional autocorrelations. Two-
dimensional slices through the origin along the x—y, x—z, and y—
z planes are shown in Figure 8. To measure the shape of the
three-dimensional autocorrelations, we defined three surfaces
corresponding to where the value of the autocorrelation falls to
Cr(Ax, Az, Ay) = 0.5, ¢ !, and ¢ 2. The standard definition
of the correlation length is the full-width, half-max of the
autocorrelation which is where the autocorrelation falls to 0.5.
However, other works use different definitions of the
correlation length, so we present those values to aid in
comparing the turbulent scales between simulations.

A least-squares minimization was used to fit these surfaces
with an ellipsoid of the form:

[x cos (0) — ysin (0]

a2

_ in (@ 2 2
" [y cos(0) b2x31n( )] " % (24)

where 0 is the tilt angle introduced by the disk shear and a, b,
and c are the axes corresponding to the x, y, and z directions,
respectively. The tilt angle and best fits for the three different
correlation lengths are given in Table 2.

The radial correlation length of the gas density, p, provides
an estimate for the characteristic length scale, I, of the
turbulence. In the Shakura & Sunyaev a-prescription the
turbulent scales are less than the disk scale height. This
requirement does not strictly hold for the y- and z-directions,
but it does hold for the x-direction, which is the important
direction for the angular momentum transport. Figure 7 shows
the time variability of / calculated at individual data dumps.
Unlike |v|/c;, the variability of [ is stochastic and lacks the
structure seen in the time variability of vy /c,. Instead of
varying in lock step with «, the time trace of / is flat and simply
fluctuates around / = 0.32. This means that increases in stress
act to drive the turbulence more quickly, rather than injecting
energy at a larger scale and allowing it to cascade down to
smaller scales, and that the turbulent eddy scales are preserved
regardless of the magnitude of the stress in the disk.

1=

4. DISK DYNAMO AND INTERMEDIATE
TIMESCALE o VARIABILITY

We will now study the disk dynamo and its influence on the
variability of the effective o in the simulation. The cyclical
magnetic dynamo is a well-established phenomenon in
accretion disks and is seen in both local (Brandenburg
et al. 1995; Hawley et al. 1996; Stone et al. 1996; Turner 2004;
Johansen et al. 2009; Suzuki & Inutsuka 2009; Davis
et al. 2010; Bodo et al. 2015) and global (Beckwith et al.
2011; O’Neill et al. 2011; Flock et al. 2012; Parkin &
Bicknell 2013) MHD simulations. It is characterized by rising
bundles of toroidal magnetic field in which the toroidal field
flips polarity between two such events. The dynamo is quasi-
periodic in nature with w ~ 107! Wayn, Where wyyy is the local
dynamical frequency.
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Table 2
Ellipsoid Fit Parameters

Variable s Fit Parameters Fit Parameters Fit Parameters
0.5 e e?
a-0.32 a-0.41 a-0.66
p 1627 b-1.17 b-1.67 b-3.49
c-0.24 c-0.42 c-1.08
a-0.29 a-0.38 a-0.60
Br 3072 b-0.75 b-0.97 b-1.79
c-0.07 ¢c-0.10 c-0.17
a-0.20 a-0.24 a-0.36
By 1428 b-0.56 b-0.74 b-1.20
c-0.14 c-0.21 c-0.38
a-0.27 a-0.35 a-0.58
B, 2272 b-0.97 b-1.31 b-2.52
c-0.10 c-0.14 c-0.24
a-0.20 a-0.28 a-0.47
B’ 22%2 b-0.78 b-1.03 b-2.03
¢-0.07 c-0.10 c-0.21
a-0.23 a-0.30 a-0.53
BrB, 2624 b-0.70 b-0.92 b-1.64
c-0.07 c-0.10 c-0.17

Notes. Ellipsoid fit parameters to autocorrelations shown in Figure 8 of
turbulent quantities at Cr = 0.5, e~!, e2. From the autocorrelations, we
find that the turbulent components of the magnetic field are coherent on spatial
scales smaller than the gas density (p).

 Inclination of autocorrelation with respect to the azimuthal direction.
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Figure 9. Azimuthally averaged B, at t = 3.7 x 10* GM / ¢®. Within the disk
midplane the fluctuations in B, are largely random. Large, stratified regions of
coherent magnetic field develop in the corona as buoyancy lifts highly
magnetized gas vertically and regions of similar polarity grow through
magnetic reconnection. The coronal regions are symmetric across the midplane,
but have opposite polarity.

The influence the dynamo has on the disk is not fully
understood. Since the Maxwell stress and, thus, turbulent
injection from the MRI is proportional to BgB; we might
imagine that the stress would be modulated by the large-scale
toroidal magnetic field generated by the dynamo. Indeed,
a correlation between stress and toroidal magnetic field
has been found (Davis et al. 2010; Flock et al. 2012),
however, the coupling of Maxwell stress to the low-frequency,
periodic fluctuations of the dynamo has not been well-
investigated.
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4.1. General Dynamo Behavior

We begin with an overview of the spatio-temporal properties
of the magnetic field in the disk. After the initialization of the
simulation, a stratified magnetic field geometry developed and
was sustained. Figure 9 shows a snapshot of the azimuthally
average of B, at an arbitrary time (r = 3.7 x 10* GM /c3).
Correlated regions of the field in the corona are seen spanning
large portions of the disk. Like other simulations, the large-
scale magnetic field is generated in the disk and is then slowly
lifted by magnetic buoyancy (Davis et al. 2010; O’Neill
et al. 2011).

This growth can be seen in the PSDs of the azimuthally
averaged By. Shown in Figure 10 are the PSDs of By as a
function of radius for the midplane and 2 k, 3 h, and 4 h above
the disk midplane. The PSDs were calculated similarly to
Reynolds & Miller (2009) and are defined as P (v) = |f(v)|?
where f () is the Fourier transform of the time sequence of the
variable of interest,

F @) = [rweiar 25)

In our case, the time sequence is the time variability of the
azimuthal average of By in the disk midplane. The Fourier
transform was calculated for each point on the radial grid. The
large gas reservoir supplies additional material to the disk
during the simulation which protected from secular changes
due to the draining from accretion. Therefore, there was no
need to “pre-whiten” before taking Fourier transforms of the
basic fluid variability, as Reynolds & Miller (2009) discuss the
need for in the case of significant secular evolution.

In the disk midplane the dynamo behaves similarly to the
dynamo in Davis et al. (2010). Rather than having a single
characteristic frequency, a band of enhanced power parallels
the orbital frequency at frequencies =~0.1§2. For a given
frequency, a band of power extends 10-15 r,, highlighting the
radial coherence of the dynamo action pointed out by O’Neill
et al. (2011). For a given radius, the band of power spans
approximately a factor of three.

The PSDs of the azimuthal magnetic field above the disk
show a larger radial range of enhanced power. As the the
height above the disk midplane increases, the vertical bands
of power at a given frequency stretches to smaller radii. At 4h,
power at the lowest frequencies is enhanced along the entire
radial domain of the simulation. All the while, the high-
frequency envelope seen in the PSD of the disk midplane is
preserved.

4.2. Modulation of Stress By Dynamo

Figure 11 shows the spatio-temporal evolution of the dynamo
(probed by the azimuthal average of Bj) compared with the
Maxwell stress for three distinct radii (15 r,, 20 7,, and 25 r,).
We will refer to these three radii in order to provide a comparison
of different properties related to the magnetic field throughout the
disk. As we saw in the previous section, the dynamo plays a
central role in the disk’s magnetic field evolution and, as we can
see from the butterfly diagrams, this translates into modulation of
the Maxwell stress—when the magnetic field is stronger at the
maxima and minima of the dynamo cycle, the stress is largest.
This behavior is quite similar to that seen in the stratified shearing
boxes of Davis et al. (2010). Since the polarity of the global field
flips during the dynamo cycle, the stress is always positive. It is
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(b) PSD of By at 2h
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Figure 10. PSDs of B, at different elevations above the disk with the orbital frequency overlaid as the black, dashed line. Within the midplane, the standard af2
dynamo behavior is seen. A band of power vertically spanning ~10 r, follows the shape of the orbital frequency at 10x lower frequency. The radial correlation of By
increase with increasing height above the disk due to the stratification that develops in the corona.

also worth noting that while the dynamo defines the trend within
a given cycle, the fluctuations in the stress are dominated by
high-frequency variability.

Shown in Figure 12 are the frequency-weighted PSDs of B,
and BB, for 15, 20, and 25 r,. The modulation of the Maxwell
stress by the dynamo is more clearly seen in the strong, multi-
peaked bands of power in the PSDs of both B, and BgB,
corresponding to oscillations of the low-frequency dynamo.
However, the PSDs of BgB, also have an additional high-
frequency component to its variability from fluctuations due to
MRI-driven turbulence. This component is much more significant
than the high-frequency variability in B Interestingly, the bands
of low-frequency variability in the frequency-weighted PSDs of
BrB, are found around the local dynamo frequency, but the
frequency of the variability is constant across the radii we probe.
The strong band of power in the PSDs of By show the expected
shift to lower frequency with increasing radii due to the decrease
in orbital frequency. This discrepancy seems to indicate that while
the dynamo does introduce the low frequency variability in «
needed to drive the propagating fluctuations, the frequency at
which the effective a-parameter is modulated is subject to a more
global interaction of the magnetic field.

Fluctuations of the effective a-parameter on the viscous
time were a priori assumed by Lyubarskii (1997) and

10

Cowperthwaite & Reynolds (2014). The frequencies at which
the Maxwell stress fluctuates in our simulation are higher than
that assumed in those previous models of propagating
fluctuations in mass accretion rate. Even though the frequency
is a bit higher than previously assumed, the dynamo
frequency is only a factor of a few longer than the inflow
timescale, providing the required “low”-frequency oscilla-
tions for this model.

5. PROPAGATING FLUCTUATIONS IN THE
MODEL DISK

5.1. Overview of Global Behavior

In the analysis of propagating fluctuations we are interested
in the behavior of the instantaneous mass accretion rate,

MR) = f ovRsin(0)dédd), (26)
and how it is related to the local disk variables, specifically the
surface density and the effective a-parameter. Additionally, we
are interested in how evolution of the accretion disk might
appear if we could observe our simulated disk. If ZEUS was an
energy conserving code, we could use the simulation’s cooling
function as a measure of the radiated energy. However, it is not,
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Figure 11. Spacetime diagrams of azimuthally averaged B, and BB, for 15,
20, and 25 r,. The characteristic “butterfly” pattern is seen in the spacetime
diagrams of B;. When B is stronger, BgB, is stronger, although the variability
is mostly dominated by high-frequency variability.
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Figure 12. Frequency-weighted PSDs (vP) of B (left panel) and BgB,, (right
panel) for 15 (top), 20 (middle), and 25 (bottom) r,. The strong, multi-peaked
bands of power correspond to the oscillations seen in Figure 11. A noticeable
difference between the frequency-weighted PSDs of B, and BB, is the strong
power at high-frequencies in BgB.

which means the turbulent losses are not fully transferred into
heat and captured by the cooling function. Therefore, we
employ a dissipation proxy to generate a synthetic, time-
dependent measure of the disk luminosity. In accretion disks,
the outward transport of angular momentum liberates gravita-
tional potential energy from the disk gas. This is then converted
to thermal energy through the turbulent cascade of MRI driven
turbulence and removed from the system through radiative
processes. Assuming the disk is radiatively efficient, the
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magnetic stress can be used as a tracer of energy dissipation
since the energy injected by the stress is quickly radiated away.
Adopting Equation (9) from Hubeny & Hubeny (1998), the
local flux at the photosphere of the disk (at one scale height)
due to dissipation is given by

|IGM (A k

where A and B are relativistic correction factors given by

27)

A=1— 2G]2VI (28)
rc
and
B=1-— 3G12\4. 29)
re

This scheme has been used to produce synthetic light curves in
other studies of global accretion disks, e.g., Hawley & Krolik
(2001) and Armitage & Reynolds (2003).

Shown in Figure 13 are the spacetime diagrams of 3, M, and
the emission proxy. As can be seen in the figure, periods and
regions of enhanced accretion (higher M) are coincident with
higher X. The correlation of M with surface density acts to
(partially) preserve the pattern of fluctuations in surface density
as disk material loses angular momentum and moves to smaller
radii. Additionally, when M is greater at a given radii, there is a
corresponding increase in the emission proxy. It is worth noting
that the name “propagating fluctuations” is a slight misnomer
as there is no real propagation mechanism at play in the disk.
Rather, the mass accretion is a diffusive process that scales with
Y, providing the qualitative appearance of “propagating” to
smaller radii.

Figure 14 shows the time trace and PSD of M at the ISCO (6
rg). As expected, there are stochastic accretion events when M
dramatically increases (by a factor of 3-5), and then returns to a
stationary baseline value, a value of 0.1. The PSD is featureless
and is best fit with a power law with index of I' = —1.01 £
0.07, corresponding to flicker-type noise.

5.2. Log-normal M Distribution

The histogram of the instantaneous mass accretion rate at the
ISCO in our simulation is shown in Figure 15. The shape of the
distribution resembles the distribution of GBHB systems like
Cygnus X-1 (Uttley et al. 2005) and is, similarly, very well fit
by a log-normal distribution of the form

(Inx — p1)? ]

(30)

f &, 0) =Py eXp[ Y

where P is the normalization, p is the log of the mean, and o is
the standard deviation. The best-fitting model parameters for
the PDF of the mass accretion rate at 6 r, are 4t = —1.84 and
o = —0.38, and gives an Xz/dof of 17.9/24. For comparison,
the best fit with a normal distribution has an x?/dof of 79.8/24.
Statistically, the log-normal distribution is overwhelmingly
favored (sz = 62), and, visually, we can see the normal
distribution fails to reproduce the fast rise of the distribution at
low M values and the shallower tail of the distribution at higher
M values. The implication of this distribution is, hence, that
fluctuations in M combine multiplicatively, rather than
additively in our MHD disk.
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Figure 13. Spacetime diagrams of ¥ (top panel), M (middle panel), and logarithm of the synthetic emission (bottom panel). Given the scale-free nature of the
simulation, units are arbitrary and dimensionless. The preservation of fluctuations in the accretion flow that gives the appearance of “propagating fluctuations” is
readily observed in the spacetime diagram of > and M. While a simple estimate of the radiation, our emission proxy does track the other two quantities well,

demonstrating that the behavior of the accretion flow will be observable.

We can also quantify the asymmetry of the distribution by
measuring skewness. Skewness is the third momentum of the
distribution and is given by,

S X - /N

3

M= €1V

o
where p is the mean, o is the standard deviation, and N is the
number of data points. The distribution of M at the ISCO has a
value of v; = 1.08, indicating a strongly positively skewed
distribution.

5.3. Correlations Between o, M, and ¥

We will now look at the correlations in o, M, and ¥ to verify
that M does indeed scale with both o and ¥. It is typically
assumed « is independent of X, thus, according the canonical
disk equation, M is expected to be higher when o and ¥ are
larger. However, there is a degeneracy between these three

12

parameters and we must remove the stochasticity of the third in
order to tease out relationships between any two quantities. The
easiest way to find the underlying trend is to simply bin the
data, which essentially averages out the stochasticity of the
variable we are not interested in. Since there are radial
gradients in the disk, we focused on the behavior at r = 15 r,.
Ten bins were used with 70 data points per bin. The bars
indicate the standard deviation of the bin.

Figure 16 shows the M-%, a — %, and M — «
correlations. We find that, indeed, the mass accretion rate
scales with both a and ¥, validating the a priori assumptions
that went into the phenomenological motivation of the
propagating fluctuations model. The Pearson correlation
coefficient between X and M is 0.87 and between o and M
it is 0.70, indicating these are both statistically strong
correlations. Additionally, the correlation coefficient of o with
3l is r = —0.66, which is considered a moderately strong anti-
correlation. While the strong positive correlations of M with a
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Figure 14. M at the ISCO (left panel) and its PSD (right panel). The PSD is best fit by a single power law with a slope of I' = —1, shown by the blue line.

9
1e4

90 : ‘ ,
8ol Histogram Fitat6 r, |
=== | 0g-Normal Fit
70/ = Normal Fit |
60}
[0
e
& 50t
=
8 40;
O
30;
20}
10 N
(900 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45

Accretion Rate

Figure 15. Histogram of M at the ISCO fit with a normal (red line) and log-
normal (blue line) distribution. The log-normal distribution provides a
superior fit.

and ¥ confirm the underlying assumptions of the propagating
fluctuations model, the negative a—X correlation isslightly
different than expected. We believe the anti-correlation
between « and X can be attributed to the magnetic buoyancy
in the disk. In the higher density regions, pressure balance in
the disk displaces magnetically dominated (lower () gas
upwards, decreasing the local field strength, thereby decreasing
o and causing the negative trend.

5.4. Radial Coherence

The strongest evidence for propagating fluctuations in our
simulation comes from radial coherence and frequency
dependent phase shifts of the M variability. At the heart of
the propagating fluctuations model is the predication that
modulations in the accretion rate at larger radii will be seen at
the inner radii with a time-lag set by the viscous inflow time.
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The coherence function provides the cleanest way to assess the
causal connection in the disk.

Adopting the convention of (Nowak et al. 1999a), we will
consider M at two radii, s, (¢) and s, (¢), with Fourier transforms
S1(f) and S,(f), respectively. The coherence of these two
signals, given by

2 USEDS: ()P
(ISt (HP) (152 (HFF)
is a real-valued positive function that has a maximum of unity
if and only if s, (¢) is related to s, (¢) via simple a linear transfer
function,

(32)

20 = [ Ta-nsmdr (33)
where 7, is some transfer function. In the other extreme, 7> = 0
implies no linear relationship between s;(¢) and s,(z). In
general, 7> can be considered a measure of the fraction of
variability in s, (¢) that is coherently related to s;(¢), and has
values between O (completely incoherent) and 1 (perfectly
coherent). For non-zero coherence, we can compute the cross-
spectrum S; (f)*S> (f). The complex phase ®(f) of the cross
spectrum gives the frequency-dependent phase shift of the
coherent parts of s;(¢) and s, (¢).

The coherence function and phase shifts are shown in
Figure 17. The coherence function was calculated with the
ISCO taken to be the inner, reference radii. The M “signal” was
broken into three segments for averaging and the coherence
function was calculated with each radial bin. Similar to
Cowperthwaite & Reynolds (2014), we find the coherent regions
at frequencies below that of the local viscous frequency,

27m(R — 6r,)
(vr(R))

The viscous time can hence be interpreted as a minimum
timescale on which inward communication of flow fluctuations
can occur.

From the average phases, time-lags can be determined. The
frequency-dependent time lag at a given radii is

wrise (R) = (34)
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Figure 16. Correlations between M — X (left panel), o — ¥ (middle panel), and M — « (right panel) at r = 15 1y in the simulation. There is a clear positive, linear
trend in the M dependence on both o and . Surprisingly, there is a negative trend in the Y—« relationship which we believe is a caused by magnetic buoyancy of

more strongly magnetized gas in the disk.

7(f) = ®(f)/2nf. Figure 18 shows the coherence function
calculated between M at the ISCO and 10 r,. Given the length
of our simulation, only the inner regions have been run for a
viscous time, so we only show the structure of the phases and
time lags calculated at these two radii. From the two plots we
can see fluctuations in M have phase shifts that increase with
frequency, but a constant time lag up until the fluctuations
become incoherent at w &~ 3 X 107". The constant time lags of
the fluctuation in M at different radii was seen in the semi-
analytic model of Cowperthwaite & Reynolds (2014). This
implies that the behavior of the propagating fluctuations in our
MHD simulation is consistent with those of the one-dimen-
sional viscous disk.

5.5. RMS-flux Relationship

We finish our analysis of M by looking at the rms-flux
relationship. While the rms-flux relationship is a staple of
broadband variability (Heil et al. 2012), its physical origins
remain uncertain. This relationship is of great interest because
it appears to be an intrinsic property of the accretion process

14

and, possibly, even more fundamental than the PSD of the
variability. Uttley & McHardy (2001) originally hypothesized
the rms-flux relationship is evidence of Lyubarskii (1997) type
propagating fluctuations in M since the rms-flux relationship is
a ubiquitous property from all black holes, regardless of mass.

If the rms-flux relationship in the photometric variability is
truly due to the propagating fluctuations in the accretion disks
of these sources, it should be seen in the M of our simulation.
To test this we calculated the mean,

(35)
and rms

(36)

of the mass accretion rate at the ISCO over a sliding window of
40 ISCO orbits (N = 20 data dumps). Shown in Figure 19 is a
plot of the raw (M) versus o scatter plot. The relationship was



THE ASTROPHYSICAL JOURNAL, 826:40 (20pp), 2016 July 20

(a) Coherence
25

1.0

0.9

0.8
10.7
10.6
10.5
10.4
0.3
0.2
0.1
0.0

Radius (rg)

24
1.6
10.8
10.0

Radius (rg)

1-0.8

-1.6

-2.4

Frequency (1/M)

Figure 17. Coherence (left panel) and phase (right panel) maps. The black
dotted line indicates the local viscous frequency calculated from the average
radial velocity of the gas. The region of high coherence and net phase shift is
enveloped by the viscous frequency indicating fluctuations above the viscous
frequency at a given radii are quickly damped out while fluctuations below the
viscous frequency are preserved.

fit using a Bayesian, Markov Chain Monte Carlo (MCMC)
method with a linear function of the form

5=k({M)+ C) 37
with £k = 0.30 £ 0.03 and C = (-3 4 3) x 1073,

The linear correspondence of the rms to the average mass
accretion rate is expected, as well as the intercept passing
through the origin, i.e., when there is no flux there should be no
variability. However, the observed rms-flux relationships are
typically offset and best described by a model with a constant
baseline flux, Fos(t) = Feonst + Foar (t) (Gleissner et al. 2004),
that varies with the black hole spectral state. Our results suggest
the variable component is related to the underlying MHD
turbulence of the disk, and the flux offset can be attributed to
disk processes not captured by our simulation.
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Figure 18. Frequency dependent phase differences and time lags between M at
6 r, and 10 r,. At frequencies greater than w ~ 3 x 107> the coherence breaks
down, as can be seen by the large scatter in the two plots.
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(b) Average Disk Emission Profile
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Figure 20. Synthetic light curve (left panel) and disk emission profile (right panel, blue dots). The integrated synthetic emission from the disk displays large, rapid
fluctuations and behaves similarly to M across the ISCO. Qualitatively, the variability is quite similar to the variability of real astrophysical black hole systems. The
rapid variability indicates the inner regions of the disk have the largest contribution to the variability, which is confirmed by the radial profile of the synthetic emission

proxy.

6. PROXY LIGHT CURVE ANALYSIS

We now discuss the global behavior of our emission proxy
and how the propagating fluctuations in M might appear as a
photometric variability. The full details of the radiation
produced through the interaction of the accretion flow with
the various emission mechanisms can only be captured by
including more realistic radiation physics, which our simulation
lacks. Nevertheless, we can use our emission proxy to explore
the emission variability in a broad sense. In particular, we want
to determine if the structure of the M variability can be easily
observed when the emission is integrated over the entire disk.
The flux we observe from GBHBs and AGNs s is, in effect, the
integrated emission from a range of radii that evolve on
timescales proportional to their dynamical times. Conse-
quently, there is the possibility some of the variability could
be smoothed out as lower-frequency variability from larger
radii can wash-out higher-frequency variability. Given how
clear the nonlinear signal is in astrophysical sources, we want
to check if it is reproduced by the variability of the emission
proxy from our simulation.

Figure 20 shows the synthetic light curve and radial profile
of the average emission for our disk. We created the light curve
by integrating the dissipation from the emission proxy over the
well-resolved region of the simulation (445 r,). Given our
radial range, the synthetic light curve is composed of signals
from radii with dynamical times that vary by a factor of 37.5,
imitating observation with a broadband filter. Several aspects of
the disk emission are apparent. First, the light curve is similar
to the time trace of M at the ISCO. The signal is aperiodic, and
flares in the light curve correspond to large accretion events.
Second, any flares in the light curve quickly decay down to a
well-defined, stationary average. The property of mean-
reversion is of statistical interest as a way to model its
behavior. Finally, and worth the most discussion, is the
dominate role emission from the inner region plays in driving
variability. This is more clearly seen in the radial profile of the
emission per unit area of the disk, but can also be inferred by
the high-frequency flares. In Figure 20 the disk profile of
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Shakura & Sunyaev (1973) is shown for comparison. The two
profiles trace each other well at larger radii, but diverge in the
innermost regions. In the canonical a-disk, the energy flux goes
to zero at the ISCO because it was believed at the time that no
torques could be felt from the gas in the inner plunging region.
MHD simulations have shown that, in fact, torques can be felt
across the ISCO and radiation can originate from closer to the
black hole than the ISCO (Hawley & Krolik 2001, 2002;
Krolik & Hawley 2002). In addition to the physical effect of
torques spanning the ISCO region, there may also be a
nonphysical contribution to our profile because we assume any
energy from stresses is immediately converted into radiated
energy. In reality, there is a time delay between the injection
and the dissipation as the energy is transported through the
turbulent cascade. In the inner regions near the black hole the
material could be rapidly swept into the hole before it has had
time to completely radiate the injected energy. This would lead
to an overestimation of the emission from the inner regions by
our emission proxy due to this advection of energy.

6.1. Signatures of Propagating Fluctuations

In our analysis of the mass accretion rate in the simulation
we found the variability of M had near-identical structure to the
universally observed flux variability from black hole systems.
Real disk emission is much more complicated than what is
captured by our emission proxy, however, the following
analysis serves to provide a proof of concept demonstration that
the M fluctuations in our simulation will translate into
fluctuations in disk luminosity. While rudimentary, we will
analyze the synthetic emission using the diagnostics used in
Section 5.

Figure 21 (upper and middle panels) shows the flux
histogram and rms-flux relationship for the total (“broad-
band”) proxy light curve shown in Figure 20. The preferred fit
to the flux histogram is a log-normal distribution with
parameters ;1 = —5.7 and o = —0.39. The x*/dof of this fit
is 18.1/24 which is statistically well-fit and much better than
that of a normal distribution with x?/dof of this fit is 98.9/24.
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Figure 21. Histogram of light curve (top), light curve coherence (middle), and
rms-flux relationship (bottom). The structure of the synthetic light curve
variability is similar to that of M at the ISCO, as is seen in Figures 15, 17,
and 19.

The skewness of this distribution is v; = 1.28, indicating the
histogram of the light curve is more highly skewed than the
histogram of the M and the log-normal distribution is more
pronounced. Naively, the increased skewness is surprising
given that the light curve is integrated over the disk and
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Figure 22. Synthetic light curve PSD with broken power law fit (blue line).

presumably additively combining many random processes.
According to the central limit theorem, this should drive the
distribution to be more Gaussian. However, since M is radially
coherent, the fluctuations of the emission proxy are not
independent, as is assumed in a Gaussian process.

The full synthetic light curve also has a linear relationship
between the rms of the variability and the average flux value.
As we did with M, the light curve was broken into 20 sections
and the standard deviation and mean values were calculated for
each. The distribution is well fit by a linear function with
k=034 +007 and C = (-3 4+ 3) x 1074

Examination of radial coherence in the emission proxy
requires that we first create two light curves to imitate
observation in different energy bands (in a loose sense this
can be thought of as observing an accreting stellar mass black
hole in the hard and soft X-rays). The light curves we use were
generated by integrating the emission proxy in the regions
spanning 4-10 r, and 10-15 r,. Then, as we did with M, the
coherence function was calculated by dividing the light curves
into three sections, resulting in the coherence function shown in
Figure 21 (bottom panel). The coherence shows the same
behavior as found for the mass accretion rate, with highly
coherent signals at low-frequencies, and a falling coherence at
higher-frequencies. De-coherence is seen at w ~ 300 ¢’/GM
which, while a relatively high frequency, agrees with the
coherence and phase plots of M fluctuations with the ISCO in
Figure 17.

6.2. Timing Properties

Having established the signatures of propagating fluctuations
in M are present in the variability of our emission proxy, we
will now look at the PSD and the statistical behavior of the
variability by fitting a simple Ornstein—Uhlenbeck (OU)
process.

Shown in Figure 22 is the PSD of the synthetic light curve fit
with a broken power law. The last 512 data points of our light
curve were used to calculate the PSD which ensures no phase
dependencies were present. Following the method described in
Reynolds & Miller (2009), the PSD was fit with a power law
plus white-noise component and broken power law plus white-
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noise component of the form

Kw™h if w < Wi

Aw) = .
Ko Twl if w > wpnk

(38)
where K is a normalization constant, I'; is the low-frequency
slope, I'; is the high-frequency slope, and wy, is the break
frequency, to determine which model provides the best
description of the PSD. The power density was assumed to
have an exponential probability distribution with the prob-
ability of measuring a given power between p and p + dp
expressed by,

P(p)dp = —e?/mdp,
Po

(39)

where py is the mean power. For an individual bin, the
likelihood of a measuring power pops,; is

L= (1/pmod,i)exp(pobs,i/pmod,i)'

For the entire PSD, the likelihood is the product of the
individual likelihoods. Since this can often be very large or
very small, the standard statistic used is the log likelihood,

In £ = Z[_lnpmod,i - pobs,i/pmod,i]' (41)

(40)

A Markov Chain Monte Carlo (MCMC) algorithm was used to
conduct the fitting and find the parameters that maximize the
log likelihood of each PSD model.

The PSD is well fit by both a broken power law with
I'n =05 £03, I, = 1.8 £ 02, and wpx = (29 =+
1.4) x 107*, and a single power law with T' = 1.38 & 0.18.
However, the broken power law provides a much better
statistical fit with Aln £ = 5.08 at the expense of two degrees
of freedom. This translates into a Ay* = 10.16.

Hence, while the underlying PSD of M at the ISCO in our
simulation has I' = 1, the integrated emission proxy has a
steeper PSD. This is simply due to the integrated contributions
from across the accretion disk, with additional low-frequency
power from large radii being added to the PSD. It is not
immediately clear what physics sets the break frequency, which
corresponds to a timescale of 20006500 r,/c. It is faster than
the nominal viscous time and approximately matches the
cooling/thermal timescale out to approximately r = 20 r, in the
disk. In order to ensure that the low-frequency break is not
imposed by the truncation of our emission proxy at r = 45 r,,
we generated light curves and the corresponding PDSs
truncating at » = 20, 30, 40r,. In all cases, the break persisted
and the frequency was unchanged.

In addition to the PSD, the statistical properties of the
variability of the synthetic light curve are of interest and
provide an additional method of characterizing the synthetic
light curve. Recent work has shown that a damped random-
walk, and more specifically an OU process, provides a very
good statistical model of GBHB and AGN variability (Kelly
et al. 2009, 2011; Koztowski et al. 2010; MacLeod et al. 2010).
The OU process is part of a class of statistical models called
continuous time, first order autoregressive, CAR(1), processes.
CAR(1) processes can take many forms and behave very
differently depending on their model parameters. The OU
process describes a noisy relaxation process where a system is
stochastically perturbed from a stationary mean and decays
back to the mean with a relaxation time 7 (Gillespie 1996). The
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stochastic differential equation describing such a process is:
dx (@) = A(u — X @))dt + odW, 42)

where A\ = 1/7, p is the mean and o is a measure of the
average magnitude of volatility per +/dz. This equation has the
following direct solution:

1 — -2\

2X
where § is the time step and Ny is a zero-centered, Gaussian
distribution with a variance of 1.

The even sampling of our light curve provides some

simplicity in fitting the OU process. X, is linearly dependent
on X; and takes the form:

Xit1=AXi + b+ e,

Xip1=Xie M+ (1 —e ) + o Noy  (43)

(44)

where € is a normal-random term that is independent and
identically distributed. From a simple linear fit, we can solve
for A, u, and o where

—Ina
A= s 45
5 45)
o= b , and (46)
1 —a
—2Ina
= sd . 47
7 =sd(€) |z (47)

Since the OU process is inherently a Gaussian process we must
therefore perform the fit to the synthetic light curve in log-space
since our “flux” distribution is log-normally distributed. Thinking
in terms of real observations, this is equivalent to fitting in
magnitude space. For our light curve, the best fit parameters are
A=0B5+£12) x 1073, pu=3.34£0.6) x 103, and o=
(6 £ 3) x 107>. The )\ parameter corresponds to a decay time
Of Laecay = 286 GM/C’.

7. DISCUSSION

In our simulation we find that Lyubarskii (1997) type
“propagating fluctuations” quickly develop and are sustained
throughout the entire simulation. The multiplicative manner by
which fluctuations in M combine and grow defines the
behavior and subsequent evolution of the disk. The most
significant consequence from the multiplicative combination of
M fluctuations is that the accretion history of a given parcel of
gas is retained, allowing for the apparent propagation of
fluctuations on a viscous time. The M variability at the ISCO in
our simulation bears striking resemblance to variability
observed from astrophysical black holes and shares the same
phenomenological properties. In particular, it reproduces the
log-normal flux distributions, rms-flux relationship, and radial
coherence ubiquitously observed from GBHBs and AGNs.
These nonlinear features have typically been difficult for
variability models to account for, but are a consequence of a
scenario where the mass accretion rate is proportional to the
multiplicative product of a stochastically varying viscosity and
the local surface density. In our simulated disk they develop
naturally from the MRI driven turbulence.

Additionally, we use an emission proxy to generate a disk-
integrated synthetic light curve to verify that the nonlinear
characteristics of the M variability will actually translate into
observable features in the disk emission. While rudimentary,
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our emission proxy follows the turbulent energy injected to the
gas, which we assume is quickly radiated away since we are
considering a radiatively efficient disk. We find that, indeed,
the nonlinear features of M are present when the entire disk
integrated emission is considered, and are not lost with the
addition of low-frequency variability originating from gas at
large radii.

Our work was able to address several issues raised by
Cowperthwaite & Reynolds (2014) regarding the timescale on
which the effective o parameter of the disk fluctuates and how
well an MHD disk can really be described by a strictly viscous
disk on long timescales. The previous efforts to model
propagating fluctuations in the mass accretion rate of
Lyubarskii (1997) using a linearized model, and Cow-
perthwaite & Reynolds (2014) using a one-dimensional viscous
disk model, relied on the a priori assumption that the low-
frequency fluctuations in effective o occurred on a viscous
time. However, this is very long for the magnetic field to vary.
When Cowperthwaite & Reynolds (2014) allowed « to vary on
a dynamical time, the typically assumed evolutionary timescale
for the MRI, they found that the fluctuations were too rapid,
and propagating fluctuations did not develop. We find the disk
dynamo can provide the necessary intermediate timescale
modulation of the effective « to drive propagating fluctuations
in the mass accretion rate. Dynamo action is universally
observed in modern accretion disk simulations and seems to be
intimately tied to the MHD physics of a differentially rotating
plasma. Thus, the dynamo can provide a natural mechanism to
introduce variability in the effective «. While the ubiquity of
the dynamo has been established, its presence is typically
neglected when considering accretion disk evolution. Our
results highlight the significant impact the dynamo can have on
the disk and that it is a fundamental ingredient in the driving of
propagating fluctuations.

The properties of the M and light curve variability from our
global, ab initio MHD simulation are very similar to those from
the simple viscous disk with stochastic viscosity parameter of
Cowperthwaite & Reynolds (2014). From this similarity, we can
conclude that on long timescales our MHD disk acts in a viscous
manner. This is not surprising, but there is not a trivial connection
between the internal MHD stresses that transport angular
momentum and the expected viscous behavior of the disk, even
though it has largely been intuited from empirical results.

Our MHD simulation captures gross aspects of real disk
variability, but it is not without limitations. In particular, we use
simple prescriptions to approximate the affects of general
relativity and radiative physics. As a first effort at modeling
propagating fluctuations in the mass accretion rate in an MHD
disk, we are mainly concerned with capturing the dynamics of the
disk and the interplay of the accretion flow with the stochastically
fluctuating effective «. To do this, a long, high-resolution
simulation is required. Therefore, the priority of where computa-
tional resources are used shifts away from more complex physics
and into the duration and resolution of the simulation.

While the focus of our analysis has been on understanding
the signatures of propagating fluctuations around black holes,
we do not expect the effects of general relativity and radiation
physics to have a significant impact on the characteristics of the
disk evolution with which we are primarily concerned. In fact,
the phenomenology we seek to understand is also readily
observed in CV systems (Scaringi et al. 2012a, 2012b, 2014)
and young stellar objects (YSOs, Scaringi et al. 2015). These
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systems are non-relativistic and not hot enough to be largely
affected by radiation pressure in the disk. The similarity of the
broadband variability between YSOs, CVs, GBHBs, and
AGNs implies that propagating fluctuations are a generic
feature of highly ionized accretion disks. The fluctuations
resulting from the underlying accretion processes behave
consistently across many orders of magnitude of mass,
temperature, and evolutionary time implying that the growth
of propagating fluctuations is not unique to a specific class of
systems, but rather intrinsically tied to the angular momentum
transport resulting from MHD turbulence. Therefore, we
believe that the results from this simulation are robust enough
to provide a qualitative description of the accretion mechanism
for highly ionized accretion disks.

8. CONCLUSIONS

We have performed the first examination of the propagating
fluctuation picture using ab initio MHD turbulent models of
disk accretion. The propagating fluctuations model has served
to explain the universally observed nonlinear features of
photometric variability from accreting black holes of all
masses. In our simulation, propagating fluctuations in M form
and behave in a manner consistent with those of the viscous
disk model of Cowperthwaite & Reynolds (2014). Our main
results are summarized here:

1. The effective a-parameter in our simulated disk is highly
variable. The variability has two components: a high-
frequency component due to local fluctuations from the
MRI, and a lower frequency component due to modula-
tion of the stress by the disk dynamo.

2. The lower frequency variability in the effective -
parameter from the disk dynamo drives fluctuations in M
by modulating the internal disk stress on an intermediate
timescale. As was shown in Cowperthwaite & Reynolds
(2014), if fluctuations in « are too rapid, fluctuations will
be damped out and propagating fluctuations will not grow.
The dynamo frequency is low enough that propagating
fluctuations can easily grow. Previous efforts directed at
understanding the role of propagating fluctuations in M
relied on ad hoc prescriptions for the variability timescale.
We show, for the first time, that the dynamo fills this role
and provides a natural driver for fluctuations in M.

3. The M in our simulation is positively correlated with X
and the effective c. In the analytic disk equations the
mass accretion rate is proportional to the product of the
local surface density and the local viscosity. These
correlations are found in our ab initio simulation,
suggesting that they naturally result from the interaction
of the MRI with accretion flow.

4. The M variability at the ISCO of our simulation resembles
the photometric variability observed from GBHBs and
AGNSs. The M variability is log-normally distributed, has a
linear rms-flux relationship, and displays radial coherence.
These features are empirically observed and have been
attributed to propagating fluctuations in M. We find that
they are, in fact, properties of accretion flow when
propagating fluctuations in M are present.

5. Using an emission proxy to generate a disk integrated,
synthetic light curve, we find that the qualitative proper-
ties of the accretion flow are reflected in the observable
emission. While the nonlinear signatures are preserved in
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the light curve, integrating over the disk adds additional
low-frequency power from more distant radii. However,
since inner region of the disk is brightest, the high-
frequency variability is preferentially weighted and the
nonlinear properties of M are preserved.
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