\documentstyle[11pt]{article} \textheight 22cm \textwidth 16cm \hoffset= -0.6in \voffset= -0.5in \setlength{\parindent}{0cm} \setlength{\parskip}{15pt plus 2pt minus 2pt} \pagenumbering{roman} \setcounter{page}{-9} \newcommand{\be}{\begin{equation}} \newcommand{\ee}{\end{equation}} \newcommand{\bd}{\begin{displaymath}} \newcommand{\ed}{\end{displaymath}} \begin{document} %\baselineskip 12pt \begin{table} \smallskip \begin{center} {\LARGE Conic Sections - General Equations}\\ \end{center} These general formulae govern all types of orbital motion in the gravitational two body problem, including both bound and unbound conics. More specialized formulae, valid only for certain types of orbits, can be derived from these. \begin{center} \begin{tabular}{|c|c|c|c|c|} \hline Specific & Specific & Distance & Speed & Pericenter \\ Energy & Angular Momentum & & & Distance\\ \hline $ C = - {GM \over 2a}$ & $h=\sqrt{GMa(1-e^2)}$ & {\Large $ r = {a(1-e^2) \over 1 + e\cos f}$} & $v = \sqrt{GM\biggr({2 \over r} - {1 \over a}}\biggr)$ & $q = a(1-e)$ \\ \hline \end{tabular} {\baselineskip1pt \vskip 2pt \parbox[t]{6.0in} { }\\[1pt]} \end{center} \end{table} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{table} \smallskip \begin{center} {\LARGE Conic Sections - Equations for Specific Orbits}\\ \end{center} Energy determines whether an orbit is bound or not. Circles and ellipses are the only bound orbits; parabolas and hyperbolas are the only unbound ones. Note that $e=1$ orbits (rectilinear or straight-line orbits) may be elliptical, parabolic, or hyperbolic. \begin{center} ~~~~~~~~~~~~Bound Orbits $(C<0)$~~~~~~~~~~~ Unbound Orbits $(C\ge 0)$ \\ \begin{tabular}{|l|l|l|l|l|} \hline & Circle & Ellipse & Parabola & Hyperbola \\ \hline Semimajor Axis: & $a=r$ & $a>0$ & $a\rightarrow\pm\infty$ & $a<0$ \\ \hline Eccentricity: & $e=0$ & $0