
Introduction to Unix

DISCLAIMER: This document leaves out lots of stuff. If you want to learn Unix properly, read the O’Reilly
handbook. There is also a web-based tutorial1 available (or find your own by doing a google search for
“unix tutorial”).

The Unix Philosophy

Unix consists of a multitude of tiny commands that each generally accomplish only one task, but accomplish
it well. This is a deliberate choice to make the operating system as lightweight as possible. The commands
can be combined using stream control (see below) in any number of ways to perform more sophisticated
compound tasks. An experienced user has tremendous freedom for manipulating data under Unix, something
that is sorely lacking in more “user-friendly” operating systems like Windows. With a bit of practice you’ll
wonder how you could ever live without it. Note that MacOS adds the power of Unix to a Windows-like
environment, which is a very useful combination.

The Man Pages

Every Unix command has an associated “man page,” i.e. a terse description of the command usage and
function. For example, man man will tell you more about how to read man pages. Unfortunately, if you
don’t know the name of the command you’re looking for, this doesn’t help you very much. In that case, try
man -k keyword , which will search for man pages with keyword in the description. This often leads to a
bewildering screenful of possible commands. Generally you need only concern yourself with man pages from
section 1 (Unix commands), 2 (library calls), and 3 (C and FORTRAN functions), which are indicated by
the corresponding number in parantheses in a man -k listing (sometimes with a small letter appended, e.g.
3c for C functions). WARNING: the man command often behaves differently on different operating systems.
For example, under Solaris, by default only the first matching man page is shown (use -a to show them all)
and sections are specified using -s.

System Information

Some flavours of Unix have commands or files that show useful system information. Under SunOS/Solaris,
try sysinfo, under SGI IRIX try hinv, and under Linux look at the contents of /proc/cpuinfo. Information
available usually includes total memory, processor speed, cache size, attached devices, etc.

Quick Summary of Important Unix Commands

In the table below a variety of the most important Unix commands are listed with their common usage and a
brief description. This is intended only as a quick reference; check the man pages for more details. Entries in
italics are built-in shell commands (csh) and entries underlined are used most frequently in scripts. Square
brackets [] indicate optional arguments. An ellipsis ... indicates multiple arguments of the given type are
supported. Note that the syntax for arguments varies between commands (e.g. whether you can use -al in
place of -a -l); unfortunately only the man page can tell you for sure.

Using I/O Streams

When we say a command “prints” a value we typically mean that it displays the value on your terminal
screen. What’s really happening is that the result of the command is being sent to “standard output”
(stdout), which by default is your screen. Similarly, “standard input” (stdin) is by default your keyboard.
Data moving from the standard input to the standard output is an example of an I/O stream. It is possible
to divert such streams to a certain extent. The following table summarizes the most common stream controls
used in the csh environment with some examples:

1http://www.ee.surrey.ac.uk/Teaching/Unix

1

Command with Common Usage Description

alias [name [string]] Make name an alias for string
awk script [file] See description below

basename [path] Return everything after last / in path

bg [%job-id] Put job in the background
break Escape from control loop
cat [file ...] Concatenate and display files
cd [dir] Change working directory
chmod mode file Change permissions mode of file
continue Continue next iteration of control loop
cp source target Copy source file to target file
diff file1 file2 Display differences between file1 and file2

dirname [path] Return everything before last / in path

echo [-n] string Write string to standard output

exit [value] Exit from current shell with optional return value
fg [%job-id] Return job to foreground
foreach word (list) [...] end Succesively set word to elements in list

grep [-i] pattern [file] Search for pattern in file

head [-number] [file] Print first few lines of file
hostname Print name of current host
if (expr) [then ... else ... endif] Conditional evaluation (else if also supported)

kill [-signal] pid Terminate or signal a process
ln -s source [target] Make “symbolic” link from target to source
ls [-alrt] List contents of directory
make Maintain and regenerate related programs and files
man [-k] command Display man page for a command or keyword
mkdir dir Make directory
more [file ...] Browse or page through a text file
mv source target Move or rename source to target
nice [-priority] command Execute command with specific priority
ps Print information about active processes
pwd Return working directory name
rehash Refresh command search path
renice priority pid Change process priority
rm file Remove file
rmdir dir Remove directory
sed script [file] See description below

set [variable [= value]] Set shell variable to value (opposite unset)
setenv [VARIABLE [word]] Set environment variable to word (opposite unsetenv)
sort [file] Sort lines of text file
source file Execute commands from text file
switch (expr) case: [...] endsw Choose from among a list of actions (like in C)

tail [-number] [file] Print last few lines of file
tee [file] Replicate standard output
time command Time a command
top Display information about top CPU processes
touch file Create empty file or update access & mod times
uptime Show system load and how long system has been up
w Display information about logged-in users
wc [file ...] Count lines, characters, and bytes in file

whatis command Display summary about a command
which command (also where command) Locate a command; display its pathname or alias
while (expr) [...] end Loop while expr true

2

Operator Function Example Description

< redirect stdin mail dcr < myfile mail dcr the contents of myfile
> redirect stdout myprog > log write output from myprog to log

>> append stdout myprog >> log append output from myprog to log

<< word redirect stdin until word myprog << STOP send next lines to myprog until STOP
| pipe stdout to stdin echo test | lpr send phrase “test” to printer

There are also modifiers like >& (to redirect both stdout and “standard error” (stderr), the diagnostic
stream) and >! (to “clobber” an existing output file without confirmation).

awk

awk is a sophisticated file parser that is capable of manipulating data in columns and performing some
high-level math operations. A reasonably general representation of a typical awk invocation is as follows:

awk ’BEGIN {commands} /pattern/{commands} END {commands}’ file

The BEGIN and END steps are optional. They are used to issue commands before and after the parsing step,
usually to first initialize counter variables and then print the result at the end. The pattern is compared
against every line in the file and when a match occurs the associated commands are executed (see sed below
for more info on pattern matching). Omitting /pattern/ is equivalent to matching all lines. The commands
can refer to columns in the data file, e.g. print $3 simply prints the third column (columns are delineated
by “whitespace”—any combination of tabs and spaces, up to the end of the line). You’ll notice that the
commands have a very C-like look and feel. Even the printf() function is supported, which makes awk a
powerful way of generating nicely formatted data files.

Here are a few examples:

1. To count the number of lines in a file (this is equivalent to the Unix command wc but it’s illustrative
of the power of awk):

awk ’BEGIN {nl=0} {nl++} END {print nl}’ file

Variables are actually automatically initialized to zero, so the nl=0 step is unnecessary, but it’s good
practice. Also, awk has a special variable NR which contains the current line (record) number in the
file, so awk ’END {print NR}’ file would accomplish the same thing as this example.

2. To compute the average of the values in the 4th column of file:

awk ’BEGIN {sum=0} {sum += $4} END {printf("%.2f\n",sum/NR}’ file

Here we used printf() to restrict the output to two places after the decimal. Note the \n to force a
new line, just like in C.

3. To print fields in reverse order between all “start” and “stop” pairs (why not?):

awk ’/start/,/stop/{for (i=NF;i>0;i--) printf("%s ",$i); printf("\n")}’ file

4. A useful trick—you can access awk’s math library from the command line:

echo ’’ | awk ’{print sqrt(2)}’

(The echo ’’ is needed because awk always expects input.)

One handy argument to awk is -Fc, where c is any character. This character is used as the delimiter
instead of whitespace, which can be useful for, say, extracting the month, day, and year digits from an entry
like “MM/DD/YY”.

There’s lots more you can do with awk. In fact, there’s an entire O’Reilly book on both awk and sed if
you’re interested...

3

sed

sed is a useful editor that can alter text that matches a particular pattern in a file or I/O stream. The
basic syntax is sed script file, where the script contains a pattern to match and replace using “regular
expression” rules (man regexp). The usage is best illustrated with examples. For more information, check
the man pages or that awk and sed book by O’Reilly.

1. Replace all occurrences of “foo” with “bar” in a file:

sed s/foo/bar/g file

The g instructs sed to replace all occurrences on a given line, rather than the first as is the default.
Note that this invocation directs the output to the screen; use redirection to put it in a new file. Also,
any character (except \) can be used in place of / to delimit the target and replacement, so long as
the same character is used throughout. This can be useful when dealing with pathname substitutions.

2. Replace all occurrences of “foo” with “bar”, but only in lines containing the keyword “doh”:

sed /doh/s/foo/bar/g file

3. Same again, but this time replace the 4th occurrence of “foo” and only on lines starting with “doh”:

sed /^doh/s/foo/bar/4 file

4. Same again, but now “doh” must be at the end of the line:

sed ’/doh$/s/foo/bar/4’ file

Note the ’’ to hide the special meaning of $ to the shell.

5. See the shell scripting section below for another example, using sed to rename files.

Shell Scripting

Shell scripting is a lot about trial and error. The most frustrating aspect can be sorting out the correct
syntax for double quotes, single quotes, and reverse single quotes! The following examples highlight some of
the most common features used in typical csh scripts:

#!/bin/csh

rename -- simple script to rename .txt files to .dat

#

if ($#argv < 1) then

echo "Usage: $0 txt_file [txt_file ...]"

exit 1

endif

#

foreach txt_file ($argv)

echo $txt_file

set dat_file = ‘echo $txt_file | sed s/.txt/.dat/‘

mv -f $txt_file $dat_file

end

The first line indicates to the shell that we want to use csh (you can actually specify any command that
accepts scripts here, e.g. /bin/bash, /local/bin/perl, etc.). After the first line, anything following a # is
ignored as a comment. We next check to see that at least one argument was passed (the $#var construct
returns the number of elements in a multi-valued shell variable var). The double quotes "" are necessary in

4

the echo statement to avoid misinterpretation by the shell of the square brackets [] while at the same time

allowing the shell to expand $0, which stands for the name of the script itself (confusing, isn’t it?). Crudely,
double quotes allow for some interpretation by the shell of special characters on an input line, single quotes
allow for none, while no quotes allow full interpretation.

A return code of 1 is used to indicate an error and can be tested by immediately checking the value of
the special shell variable status after running the script.

The main procedure is to loop over all the arguments and use sed together with mv to change the
extensions of the files. The intermediate variable dat file is unnecessary but helps to make the procedure
clearer. Note the use of the reverse single quotes which causes the result of the enclosed command, in this
case a pipe of the name of the .txt file to sed, to be returned as a value.

To use this script like a normal command, you need to chmod it to executable status, e.g. chmod a+x

rename. Then type rename to run it (or ./rename if ‘.’ is not in your path).
Here’s another example:

#!/bin/csh

examine -- simple script to graphically show file size

#

if ($#argv < 1) then

echo "Usage: $0 file [file ...]"

exit 1

endif

#

foreach file ($argv)

echo -n $file’: ’

@ nl = ‘wc $file | awk ’{print $1}’‘

while ($nl > 0)

echo -n ’*’

@ nl--

end

echo ’’

end

The main loop here uses wc together with awk (which we use to extract the first column of the output from
wc) to get the number of lines of each file (recall we could write @ nl = ‘awk ’END {print NR}’ $file‘

instead). This value is then used in a decremental loop to print one asterix for each line in the file. The -n

argument to echo suppresses the linefeed; the echo ’’ command forces one. Note the use of @ for shorthand
integer variable manipulation and arithmetic (set nl = $nl - 1 would also work but it’s not as clean).

Hint: You can get the shell to echo each line of your csh script before it’s executed by adding a -x

argument at the end of the shell declaration line (e.g. #!/bin/csh -x). This is very useful for debugging...
As a final example here’s a script to run a code three times with three different inputs that are specified

at the beginning of the script (this is done to make the values easy to change later on; alternatively these
values could be passed to the scripts via argv):

#!/bin/csh

set run_values = (10 100 1000) # specify run values here

if ($#argv != 0) then

echo $0 takes no arguments

exit 1

endif

#

foreach value ($run_values)

echo Starting run with value = $value

./myprog $value >&! log$value

if ($status) echo WARNING: Problem during execution

end

5

Notice that a shell variable can be set to an array using the () notation. To access elements of an array,
use []: $run value[2] has a value of 100 in this example. WARNING: array indices start at 1, not 0, in
csh. Why this is different from C (which starts at 0) is one of those unanswered mysteries of life.

The call to myprog simply passes the index value $value as an argument. It’s up to myprog to use the
argc and argv formalism in main() to read the passed value (assuming myprog is written in C/C++ of
course). Output (including stderr) is redirected forcefully to a log file that will be different for each run.
The status variable is checked to see if there was a problem during the run (an example of how rigorously
returning meaningful values from your codes can be useful).

A Word on HTML

It’s a great idea to learn how to write your own web page. In a competitive job market you should be
striving to advertize yourself effectively to potential employers. These days a good web page can make all
the difference. Most web browsers have built-in editing facilities, but if you want to learn from scratch, check
out some online tutorials:

http://www.htmlgoodies.com/

(or do a web search). If you’re interested in style sheets, strictly conforming HTML (XHTML), and/or
javascripting, see:

http://www.w3schools.com/css/default.asp.

For those new to the Astronomy department, see the document:

http://www.astro.umd.edu/computers/homepage.html (broken link as of 8/28/09)

for information on how to link your content to the department web pages.
By the way, this tutorial (along with most of the other handouts for this class) was converted automatically

from LATEX to HTML using latex2html. See the man page or

http://www.latex2html.org/

for more details. (NOTE: latex2html stopped being supported in 2001. A more modern replacement that
may suit your needs is TeX4ht: http://www.cse.ohio-state.edu/ gurari/TeX4ht/.) For convenience,
the HTML versions contain hyperlinks for URLs like this.

6

