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ABSTRACT
Herein we use the Canadian Meteor Orbit Radar (CMOR) dataset to search for evi-
dence of a resonant swarm in the Taurid meteoroid stream at the 7:2 Jovian resonance.
We use a numerical method to estimate the reduction in radar orbit measurement un-
certainty required to detect this feature in a dataset. This is highly dependent on the
proportion of observed particles that are members of the resonant swarm. However,
we find that a meteor radar with uncertainties a factor of ten lower than those of the
current CMOR will be sufficient for detection to be possible, if the meteor shower con-
sists of more than 5% resonant particles (considered likely given the results of visual
meteor studies). Such an improvement will require accurate removal of deceleration
errors from pre-atmospheric meteor velocities, and improvement to the robustness of
echo inflection point identification algorithms and interferometric measurements.
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1 INTRODUCTION

Meteoroid particles ejected from cometary or asteroidal par-
ent bodies are subject to gravitational and nongravitational
forces. These act to perturb such particles from their initial
orbits, and eventually may cause their removal from the So-
lar System by collision with an additional body or by expul-
sion from the Solar System. Non-gravitational forces include
radiation pressure, Poynting-Robertson and solar wind drag
forces, and magnetic field effects. Gravitational effects in-
clude direct perturbations caused by planetary bodies, and
resonance effects, generally of Jupiter or Saturn, but the-
oretically also as a result of any large body in the Solar
System.

As well as causing dispersal of particles, such resonances
are able to concentrate or protect bodies at specific loca-
tions. Resonant swarms can be formed as a result of the ejec-
tion of particles by a resonant or near-resonant comet. Par-
ticles injected into the stream by the parent comet each have
slightly different orbits, with a small proportion having the
correct dynamics to place them inside a resonance, particu-
larly if the comet already librates within a given resonance.
These particles can remain in this region for relatively long
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periods of time, their existence inside the resonance (or near
a librating comet) protecting them from planetary perturba-
tions and other such effects that act to more quickly disperse
other stream particles. Inside the resonance, these particles
are concentrated in a narrow range of mean motions, thus
producing enhanced shower flux at the Earth when the dis-
placement between the Earth’s position and the resonance
centre is small. Built up over a number of comet returns to
the resonance centres, these regions have relatively high par-
ticle density, and are wider than outburst dust created by
dust trails from a single comet pass. These dust trails pro-
duce outbursts because the particles are young and have not
had sufficient time to disperse into the stream background.
It is important to distinguish between relatively old, wider
resonant swarms or filaments injected into the region over a
number of years, and young dust trails of recently released
material.

A resonant swarm at the 7:2 Jovian resonance in the
Taurid meteoroid stream was proposed and described by
Asher, Clube and Steel (1993). This paper also examined
records of elevated Taurid meteor observations from 1931
to 1988, and found five occasions that have |∆M | less than
40◦ (where, ∆M is the displacement in mean anomaly of
the resonant centre from the point at which the Earth and
swarm orbits cross in space and time), suggesting a poten-
tial link. The nearby 3:1, 4:1, 10:3 and 11:3 Jovian reso-
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nances were found incapable of matching these observations.
The authors construct a table of predicted years (‘swarm-
encounter’ years) in which the swarm may be observed on
Earth: these are years for which |∆M | 6 40◦.

Observational evidence in support of the existance of
this stream is given by Asher and Izumi (1998), Beech,
Hargove and Brown (2004) and Dubietis and Arlt (2007).
This swarm theory was proposed in conjunction with the
fragmentation of a ‘giant’ proto-Encke comet over the past
∼ 2 × 104 years, which may have inhabited a resonant or-
bit for a fraction of its lifetime (Asher and Clube (1998).
A concentration of particles in a resonant swarm at the 7:2
resonance is possible even without the existance of such an
object. However, formation of a resonant swarm is more dif-
ficult without a resonant or near resonant parent object.

It may be possible to observe this swarm in meteor radar
orbit data. Below we demonstrate that the Taurid swarm is
expected to be among the most easily-observed resonance
effects in radar data. It is expected that the size of the swarm
and the measurement uncertainties of the radar will limit the
observability of the swarm. In this paper we investigate these
limitations to develop an understanding of the capability of
radar techniques in discerning resonant swarms.

2 THE CANADIAN METEOR ORBIT RADAR

Canadian Meteor Orbit Radar (CMOR) data is used to
study the observability of resonance features in meteor
orbit radar. This is a three-station pulsed meteor radar
operated by the meteor group at the Department of
Physics and Astronomy, University of Western Ontario, Lon-
don, Canada. Situated near Tavistock, Ontario, Canada
(80.772◦W, 43.364◦N), it has two remote sites 8.1km and
6.2km from the central site. The three stations form an an-
gle of 96.8◦. It is a SKYiMet radar system (see Hocking
et al. (2001)) with a peak power of 6.0 kW capable of three
frequencies (17.45, 29.85 and 38.15 MHz). A five-element in-
terferometer allows determination of echo directions to ∼ 1◦

(above 20◦ elevation). CMOR uses vertically directed arrays
resulting in almost all-sky coverage down to ∼ 20◦ elevation.
A pulse repetition frequency of 532 Hz and a pulse length of
75 µs are used. Radiant directions have an uncertainty ∼ 6◦

(due to the uncertainty in the measurement of time-delays).
Further details are available in Jones et al. (2005).

CMOR meteor velocities are determined using multi-
station timing. Errors in time inflection picks are roughly
0.7 of the interpulse time, corresponding to errors of order
1.3 ms. This time inflection pick error dominates the error
in the final velocity, which is of order 10%. A pre-t0 Fresnel
oscillation method is used to provide speeds with uncertain-
ties ∼ 5% for approximately 10% of meteors that have high
signal-to-noise Fresnel patterns (Hocking 2000). Decelera-
tion corrections are computed using empirical expressions
determined by comparing the raw radar-determined speeds
with the speeds found in photographic studies of major me-
teor showers (Brown et al. 2004).

3 RESONANT SWARMS IN METEOROID
STREAMS

Here we evaluate which meteor streams are most likely to
provide evidence of resonant effects in meteor orbit radar
data. This will provide the most promising stream candi-
date for study in the current dataset. Meteoroid streams
in which resonant effects have been observed include the
Quadrantids, Perseids, Leonids, Orionids, June Bootids,
Lyrids, Ursids, and Taurids (see Jenniskens et al. (1998);
Jenniskens & Betlem (2000); (Emel’yanenko 2001a); Asher
& Emel’yanenko (2002); Sato & Watanabe (2007); Trigo-
Rodŕıguez et al. (2007); Rendtel (2008); Spurný & Shrbený
(2008)). From the analytic study of Emel’yanenko (2001a),
the Perseids, Eta Aquarids, Orionids, Lyrids, Leonids, and
June Bootids have dynamics that may allow stable swarms
to form at resonance locations. Ryabova (2005) also notes
that the Geminid stream may contain a resonant concen-
tration due to its close proximity to the narrow 7:1 and 8:1
resonance regions.

To evaluate the observability of resonance effects in
these streams in CMOR data we consider, the position of
the radiant of the corresponding meteor shower, the velocity
of incoming meteors, the zenith hourly rate, and the reso-
nance width. The radiant declination will determine whether
a radar system at a given latitude can observe the shower.
The velocity is used to determine semi-major axis values
for the particle orbits, but most importantly is indicative of
the relative uncertainties: observational radar uncertainties
increase as the geocentric velocity of the particle increases,
and are dependent on the relative impact geometry with the
Earth, being greater for head-on collision. Therefore, high
Earth-impact velocities can increase the difficulty of observ-
ing small-scale structure in the semi-major axis. The zenith
hourly rate (ZHR) is the number of meteors expected to be
observed per hour on a clear, moonless night with the shower
radiant at the zenith (Murad & Williams 2002). This pa-
rameter can be used as a relative measure of meteor shower
strengths: showers of higher ZHR are more likely to produce
statistics sufficient to overcome large measurement uncer-
tainties. However, ZHR values are usually based on visual
observations, and are not always representative of the shower
rates at the radar mass level. Therefore, here we instead use
the ‘maxZ’ parameter defined in Brown et al. (2008) as ‘the
relative activity strength at maximum’ (Brown et al. 2008).
The resonance width will determine if a resonant feature is
important with respect to uncertainties: a very small reso-
nant width compared with measurement uncertainties will
make detection difficult as the uncertainties will restrict the
ability to sense small-scale features.

Table 1 summarises approximate values for the above
parameters for the showers of interest. All of the showers are
within the observing limits for CMOR, having declinations
greater than ∼ −20◦. The effect of different impact veloc-
ities (Vg) is demonstrated by a representative semi-major
axis uncertainty δa at the resonance semi-major axis, which
we determine using CMOR data. A useful measure defined
here for deciding the potential for observation of resonance
effects by radar in a given meteor shower is the ratio of
the approximate width of the resonance to this representa-
tive δa. The greater the resonant width is in comparison to
the uncertainties (thus the higher the ratio), the higher the
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Table 1. Parameters of use in determining the suitability of meteor showers in resonant studies. Dec is the
shower mean declination; Vg is the shower mean geocentric velocity, with the associated error as measured
by CMOR; a is the shower mean semi-major axis; res is the known or theorised (marked with ?) Jovian
resonance in which shower particles are involved; aR is the approximate semi-major axis location of the
resonance; width is the approximate resonant width, generally taken from (Emel’yanenko 2001b); δa is
the range of uncertainties in CMOR semi-major axis values at a; maxZ is the relative activity strength
at maximum (an instrumentally-biased proxy for a ZHR-like measure of strength); and ratio is the ratio
between the resonant width and δa(a measure of the how appropriate the shower is for radar resonance
studies)

Shower Dec Vg a(AU) res aR(AU) width(AU) δa(AU) maxZ ratio

Quadrantids +48.5 42± 4 3.14 2 : 1 3.28 0.17 1.5–3.5 238 0.11
Perseids +56.9 62.1± 7.2 ∼ 25 1 : 11 25.7 1.4 128–230 103 0.011
Leonids +21.6 69 ± 6.8 9.8 5 : 14 10.3 0.13 20–38 82 0.0065
Orionids +15.5 66.4± 6.3 18 1 : 6? 17.2 1.0 55–105 132 0.018
Eta Aquarids −0.7 64.6± 6.2 16.16 1 : 5? 15.2 0.9 45–80 277 0.020
Lyrids +32.6 47.3± 4.1 45.7 1 : 12? 27.3 1.8 140–260 36 0.013
N Taurids +21.0 28.1± 2.9 2.12 7 : 2 2.25 0.05 0.6–1.6 31 0.083
S Taurids +8.0 27.9± 3.7 2.07 7 : 2 2.25 0.05 0.6–1.6 56 0.083
Geminids +32.1 35 ± 3.8 1.37 7 : 1 1.42 0.006 0.17–0.57 817 0.036
Ursids +74.6 37.6± 5.1 4.62 6 : 7 5.76 0.09 5.5–11.57 29 0.016

chance that the resonant feature will be discernable above
the uncertainty broadening of the radar data. These values
are also given in Table 1. Indeed, a resonant feature that is
too wide will blend easily into the background dust cloud.
Thus a relatively low resonant width, but a high ratio of res-
onant width to semi-major axis uncertainty is preferred. We
find the best showers (in order), chosen for their relatively
high ratio, are the Quadrantids, Taurids, and Geminids.

We choose the Taurids for continued study due to the
lack of observational support for resonant effects in the Gem-
inids, and the large radar meteor uncertainties that will re-
sult from the larger velocities and semi-major axis values of
the Quadrantids. The observational evidence in visual me-
teor data for the Taurid swarm at the 7:2 Jovian resonance
and the relatively low uncertainties in Taurid velocities and
semi-major axes make the Taurid 7:2 resonant swarm a good
candidate for a radar search.

4 THE TAURID METEOR COMPLEX

The Taurids are a Northern Hemisphere meteor shower ob-
served in October-November. Commonly, the shower is de-
fined by the Northern and Southern Taurid branches. These
are both part of a wider Taurid Complex, to which a num-
ber of asteroids have been associated. The ‘Giant Comet’
hypothesis was formed partially to account for the pres-
ence of these objects (Clube & Napier 1984) (Asher et al.
1993): however, the apparent asteroidal nature of many Tau-
rid complex bodies puts this hypothesis in doubt (Jenniskens
2006). Additionally, Valsecchi et al. (1995) found that a dy-
namical mechanism involving secular resonances is able to
transport bodies from the asteroid belt to the Taurid region,
though such a process requires a long timescale.

The potential resonant concentration of particles at the
7:2 Jovian resonance is usually investigated using a time-
based approach where the years in which the resonant swarm
should be visible are calculated. Here, however, we seek ev-
idence for the swarm in the semi-major axis distribution.
A possible detection of the swarm in semi-major axis data

is given in Steel et al. (1991). Furthermore, there are in-
sufficient years of CMOR data to search for a evidence for
increased Taurid rates in swarm years. Orbital element data
only encompasses one swarm-encounter year (2005). Single-
station data is available for more years, but this would not
allow extraction of Taurid particles from the dataset, as a
received signal from at least three stations is required for an
orbit to be calculated. Additionally, despite the presence of
stronger resonances in the Taurid vicinity (such as the 3:1
and 4:1 Jovian resonances), only the 7:2 resonance is studied
because Asher & Clube (1993) find that only this resonance
can explain the observed yearly rates of Taurid meteoroids.

As for Kirkwood gaps, resonant effects should be evi-
dent as a peak around the location of the 7:2 resonance at a
semi-major axis a = 2.256 AU. Here a number of methods
are employed to attempt to extract evidence of this resonant
swarm in CMOR radar data.

4.1 Extracting Taurid Data

We extract Taurid from the CMOR orbital datasets (of the
meteor group at the University of Western Ontario, Lon-
don, Canada) 2002–2007 using solar longitude limits, right
ascension and declination, and velocity specifications for the
shower in CMOR data (Brown et al. 2008).This resulted in
separate datasets of Northern and Southern Taurids, of 1617
and 6032 meteoroids respectively. These are combined here,
unless otherwise stated.

Given that the extended Taurid stream encompasses
showers either side of the Northern and Southern Taurids,
and also in June each year, additional resonance information
may be acquired by extension of the dataset to include these
showers. However, here we extract only Northern and South-
ern Taurids as determined by the previous CMOR shower
survey of Brown et al. (2008).

Though only the CMOR dataset is examined here, the
techniques developed in this work are applicable to the gen-
eral problem, and can be used to investigate whether evi-
dence exists for any dynamical feature in meteoroid streams
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in any radar dataset. Our purpose here is, in addition to
searching for evidence of the 7:2 Taurid swarm, to establish
a procedure for tackling searches for small-scale structure in
radar meteoroid stream data.

5 THE RESONANT WIDTH OF THE 7:2
JOVIAN RESONANCE

Here we determine the resonant width, or size of the region
of influence, for the 7:2 Jovian resonance at Taurid orbital el-
ements. This is important here as such knowledge aids in the
search for this resonance in the dataset; in the confirmation
that a particular feature meets resonant feature criterion;
and in determining the upper limits on radar sensitivities
and orbital resolution that would enable detection of the
resonance.

5.1 Definition of the Resonant Width

Broadly, the libration or resonant width describes the in-
fluence of the resonance: the variations in orbital elements
(particularly semi-major axis) that the resonance can pro-
duce; or the extent (again usually in semi-major axis) over
which the resonance exerts a significant effect. Values of the
width from these two definitions should agree and also match
the observed widths of physical resonance features, such as
the Kirkwood Gaps in the Asteroid Belt. In many cases it
is thus important to determine the resonance width in semi-
major axis, as this is closely related to the size of observable
resonance features in the Solar System. In this section we
assume that the resonance width refers to a semi-major axis
interval, unless otherwise stated.

Mathematically, the width can be defined (from the first
definition above) as a maximum libration amplitude by con-
sidering the librational motion within resonance. Consider-
ing a particle at the exact resonance position, the width is
then equal to the maximum change in energy or semi-major
axis that can occur and still leave the particle in resonance
(defined by the presence of libration). Note that this defines
a half width, and care must be taken to determine whether
a full width (from resonance edge to resonance edge) or half
width (from resonance centre to resonance edge) is given by
a particular method.

Here we consider two existing methods for determining
the width or strength of a given resonance. First, the deriva-
tion for an approximate libration width expression is out-
lined as given in Murray & Dermott (1999): this comprises
the purely theoretical standard libration width approxima-
tion, valid at low eccentricities. This approximation can be
used to give an approximate resonant width. Second, there
exists a semi-analytic or numerical method available for de-
termining resonance strength, developed by Tabare Gallardo
(Gallardo 2006). Due to the limitations of both methods at
high eccentricities, we primarily use a numerical method for
this investigation (see Section 5.4).

5.2 An Analytic Resonant Width Expression

An analytic expression for the resonant width is derived by
Murray & Dermott (1999). Determination of the resonant

width of a given resonance requires both the disturbing func-
tion and Lagrange’s planetary equations (see Roy (1988) and
Murray & Dermott (1999)). A simplification of the disturb-
ing function is required to allow an analytic derivation of an
expression for the resonant width: this requires reduction to
a circular (e = 0), planar (all inclinations zero), restricted
case (negligible mass for the inner perturbed body). These
restrictions provide simplified equations of motion in orbital
elements. Use of a pendulummodel to produce an expression
for the total energy of the system provides an expression for
the resonant width in semi-major axis:

δamax = ±
(

16

3

|Cr|
n

e|j4|
) 1

2

a. (1)

This can be used to directly obtain a resonant width from
knowledge of the resonance and the three bodies involved.
Orbital elements required are eccentricity e and semi-major
axis a. Here n is the mean motion and Cr describes a strength
term, and is given by:

Cr =
Gm′

na2a′
fd(α) = (

m′

mc

)nαfd(α) (2)

Here m′ is the mass of the outer perturbing body (Jupiter),
mc is the mass of the central body (Sun), fd(α) is a func-
tion of Laplace coefficients describing the direct terms of
the expansion of the disturbing function, α = a/a′, and
G = n2a3/mc is used.

For first order resonances it is more appropriate to use:

δamax

a
= ±

(
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3
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n
e

) 1

2

(
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1

27j22e
3

|Cr|
n

) 1

2

− 2

9j2e
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n

(3)

These expressions are valid for orbits with low eccen-
tricities (eccentricity less than ∼ 0.3) and low inclinations,
and are only easily computable for resonances for which
the product αfd(α) is easily obtainable. These values are
given for certain first and second order interior resonances
in Chapter 8 of Murray & Dermott (1999). These include the
2:1, 3:2, 4:3, 3:1, 5:3 resonances, but not the 7:2 resonance.

5.3 The semi-analytic resonance strength
program of Gallardo (2006)

The semi-analytic method of Gallardo (2006) evaluates the
disturbing function R(σ) numerically, and then calculates a
resonance strength SR(a, e, i, ω) = 〈R〉−Rmin, where 〈R〉 is
the mean value of R(σ) with respect to σ (equivalent to the
resonant argument ϕ), and Rmin is the minimum value of
R(σ). These resonance strengths are notably different from
the other methods in that they are expressed in energy units
with k2m = 1, k being the Gaussian constant of gravity. In
order to compare these values to semi-major axis resonant
widths of other methods, we must convert SR in energy
units to a semi major axis width. Here we derive this conver-
sion using the expression for the expansion of the disturbing
function for the circular, planar restricted problem as given
by Murray & Dermott (1999):

〈R〉 = Gm′

a′
[fs,1(α)e

2 + fd(α)e
|j4| cosϕ]

where

ϕ = j1λ
′ + j2λ+ j4̟.
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Figure 1. Resonant strengths as calculated for Taurid orbital
elements e, i and ω from the amplitude of the disturbing function
using SR(e, i, ω) = 〈R(σ)〉 − Rmin using numerical techniques
and programs developed by Gallardo (2006)

This is simplified using Cr as given in equation 2 and:

Cs =
Gm′

na2a′
fs,1(α) = (

m′

mc

)nαfs,1(α)

This simplification produces:

〈R〉 = Csna
2e2 + Crna

2e|j4| cosϕ

Gallardo’s resonant strength is the amplitude of the dis-
turbing function R(σ). Murray and Dermott’s expression is
a simple cosine function with amplitude Crna

2e|j4|, so that
we find:

SRapprox = Crna
2e|j4|. (4)

By substituting this into the expression for δamax (equa-
tion 1) we obtain an expression for the resonant width as a
function of Gallardo’s resonant strength:

δamax = ±
(

16

3

SRapproxa
3

GM⊙

) 1

2

(5)

Here the mean motion expression n =
√

µ

a3 is also used,
where µ = GM⊙. Similarly, for first order resonances we
obtain:

δamax

a
= ±

(

16

3

SRapprox

n2a3

)
1

2
(

1 +
SRapprox

27e4n2a2

)
1

2

+
2SRapprox

e2n2a2
(6)

Because this method relies on low eccentricity approxima-
tions, it is expected that these conversion formulae will only
be valid for eccentricities less than ∼ 0.3.

The strengths for Jovian resonances determined using
Gallardo’s program ATLAS for the region 2-2.5 AU and for
Taurid eccentricity, inclination and argument of perihelion
are shown in Figure 1.

5.4 A Numerical Width Determination Method

The resonance width can also be determined by simple ex-
amination of the dynamics of a body within the resonance
over time. This can be accomplished using an integrator such
as the Hierarchical N-Body (HNBody) integrator (Rauch &
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Figure 2. Behaviour of orbital elements over 104 year of nu-
merical integration, for particles at Taurid elements e = 0.83,
i = 5.4◦, Ω = 152.7◦, Ω + ω = 37.3◦, and at a = 2.2505 AU.
Medium-period resonant oscillations (of period ∼ 260 years) and
long-term variations are clearly visible.

Hamilton 2002). Here we use HNBody to inject particles into
Taurid-like orbits in the vicinity of the 7:2 resonance and
study their continuing motions over 104 years. The maxi-
mum size of oscillations of a particle in resonance provides
the resonant width. An additional measure of this width is
the size of the region inside which librational motion occurs.

HNBody is appropriate for use in self-gravitating sys-
tems with one object dominating the mass of the system,
such as is the case for the Solar System. It is primarily a sym-
plectic integrator, but provides Runge-Kutta and Bulirsch-
Stoer integrators that are useful in cases where the symplec-
tic integrator cannot provide sufficient accuracy. The Runge-
Kutta integrator is most suitable for our problem due to the
highly eccentric Taurid orbits.

In our implementation of the meteoroid resonant prob-
lem, Sun, Jupiter, and a number of test meteoroid particles
are included in the integrations. We find that the exclusion
of other planets and asteroids causes negligible error in the
resonant width. The meteoroids are given initial orbital ele-
ments of Taurid meteoroids, with the exception of the semi-
major axis, which is varied slowly between each of the test
meteoroids. The Taurid orbital elements used are e = 0.83,
i = 5.4◦, Ω = 152.7◦, Ω + ω = 37.3◦ (Jenniskens 2006). The
mean longitudes of both Jupiter and the particles are zero
at present.

We first analyse a region constrained near the 7:2 reso-
nance centre. We present the results obtained for one mete-
oroid particle in interaction with the Sun and Jupiter. The
particle is given a semi-major axis that starts it within the
resonance (2.2505 AU). Figure 2 shows the orbital element
variations of such a particle over 104 years. This particle
can be identified as resonant by the relatively long period
and large amplitude oscillations visible in semi-major axis
(of period ∼ 260 years). These oscillations are also present
in the eccentricity, superimposed on much longer scale os-
cillations caused by planetary (Jovian) perturbations (with
period ∼ 3000 years). Smaller scale variations exist, also the
result of predictable Jovian perturbations.
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Figure 3. Behaviour of orbital elements over 104 year of nu-
merical integration, for particles at Taurid elements e = 0.83,
i = 5.4◦, Ω = 152.7◦, Ω+ω = 37.3◦, and at (b) a = 2.22305 AU.
Only longer-term variations are visible (which is outside of the
resonance).

A small movement in the starting semi-major axis of
the meteoroids (to 2.2305 AU) moves the particle outside
the resonance. Figure 3 shows the orbital element variations
for this particle: the absence of the large resonant oscilla-
tions in the semi-major axis and eccentricity confirms that
this particle is not resonant. While the characteristics of
semi-major axis oscillations are a good indicator of resonant
behaviour, below we use a more rigorous libration test to
confirm this.

To examine the semi-major axis oscillations at a variety
of positions simultaneously, we analyse a range of particles
that scan through the resonance. These provide an indica-
tion of the size of the oscillations in semi-major axis over the
resonance region (in semi-major axis). We achieve this by
stepping through the 7:2 resonance region in steps of 0.0005
AU, with starting semi-major axes of 2.22 to 2.28 AU. The
particles are given a mean longitude of 327◦ and Jupiter
a mean longitude of 0. These conditions provide the maxi-
mum resonant width, and indicate the approximate location
of the resonant centre). For each particle we compute an ap-
proximate maximum size for the oscillations in semi-major
axis by taking the difference of the maximum and minimum
values over the 104 year integration. The result is approxi-
mately equal to twice the amplitude of the oscillations. This
method is limited in accuracy for several reasons, including
the presence of long-term variations, but it is found to be
sufficiently accurate for our purposes. These approximate
‘resonant widths’ (as defined in Section 5.1) can be plotted
as a function of semi-major axis position to create a pictorial
representation of the resonance effects in that region (Fig-
ure 4). Figure 5 demonstrates the agreement of the change
in the resonant argument (double the libration argument)
and the change in the size of semi-major axis oscillations.
For the 7:2 resonance at Taurid orbital elements the major
libration argument is:

ϕ = 7λJ − 2λP − 5̟P

The structure seen in Figure 4 defines a ‘resonant fea-
ture’ that contains valuable information on the dynamics of
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Figure 4. The variation in approximate size of resonant semi-
major axis oscillations for particles at starting locations of 2.21
to 2.30 AU. The labels indicate the resonant feature width and
height that can both define the width of the resonance.

2.2 2.22 2.24 2.26 2.28 2.3 2.32
0

0.01

0.02

0.03

0.04

0.05

0.06

A
pp

ro
xi

m
at

e 
m

ax
im

um
 s

iz
e 

of
 S

em
i−

M
aj

or
 A

xi
s 

O
sc

ill
at

io
ns

2.2 2.22 2.24 2.26 2.28 2.3 2.32
0

50

100

150

200

250

300

350

400

R
es

on
an

t A
rg

um
en

t R
an

ge

Semi−Major Axis (AU)

Figure 5. The variation in approximate size of resonant oscilla-
tions for particles at starting locations of 2.22 to 2.92 AU, com-
pared with the variation in the resonant argument. The resonant
argument range is equivalent to twice the libration amplitude.

the resonance. The height of this feature gives the maximum
size of the oscillations a particle is able to undergo within
the resonance. This is similar to the classical definition for
resonant width or libration width: the maximum librational
motion possible without the particle being lost from the res-
onance. The width of the feature provides a more physical
definition of resonant width: it is the size of the resonant
region in which amplified oscillations are present. Further-
more, Figure 5 demonstrates that the dynamics shown by
this resonant feature will represent the librational dynamics
of the resonance: the area of enhanced semi-major axis oscil-
lations is in agreement with the region in which the libration
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Figure 6. The resonance activity at Taurid orbital elements (e =
0.83, i = 5.4, ω = 115.4) at semi-major axes values 1.0 to 4.0 AU.
Gallardo resonant strengths (doubled for visibility) are given by
the stem plot below.

argument is constrained to a small range of values, and thus
the resonant feature well describes the location and extent
of the major Jovian resonances in that region.

We find that the width and height of the resonant fea-
ture have values (0.047± 0.001) AU and (0.047± 0.003) AU
respectively. We consider the width of the resonant feature
to be the more accurate measure of the resonant width as
it has a lower uncertainty and is less susceptible to other
factors, such as asymmetry of the resonant feature and the
definition of the size of small-scale super-imposed perturba-
tions. This is therefore used to give our final resonant width:

(0.047 ± 0.001)AU

The only previous result for the resonant width of the
7:2 resonance at Taurid orbital elements is that given by
Asher & Clube (1998), who find that librations are possible
between 2.23 and 2.28 AU, implying a libration width of
∼ 0.05 AU. Our final resonant width is in good agreement
with their result.

5.5 Demonstration of the limited effect of the
addition of all planetary bodies

We now use the resonance behaviour in the region 2 to 2.5
AU to demonstrate that only Jupiter significantly affects the
width of the 7:2 Taurid resonance. Figure 6 shows the res-
onant behaviour at Taurid eccentricity and inclination, for
orbits with semi-major axis values 1 to 4 AU (the asteroid
main belt region). Resonant strengths from Gallardo (2006)
are shown for major resonaces to indicate that each reso-
nance feature is present at the expected locations of these
major resonances.

The region 2 to 2.5 AU is the ‘Taurid region’. Figure 7
shows the resonant behaviour in this region, for integrations
for all planets and for Jupiter only. It is evident that little
error results from excluding other planets. We ran a simi-
lar test including four major asteroids in the Taurid region
(Ceres, Pallas, Juno and Vesta), but these bodies produced
no significant difference to the distribution of Figure 7.
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Figure 7. Resonant features for the region 2.0–2.5 AU, with a
comparison between the case with Jupiter only (crosses), and the
case with all planets (dots). Errors in resonant widths are within
0.002 AU.

5.6 Comparison of Analytic, Semi-Analytic and
Numerical Methods

Here we compare resonant width values (in semi-major axis)
given by the three methods outlined in this section. The
analytic method is as given in Murray & Dermott (1999):
it is derived using a simple pendulum model, and applies
in the circular, planar restricted case (see Section 5.2). The
semi-analytic method is that developed in Gallardo (2006)
(see Section 5.3), which can output a ‘strength’ for a given
resonance, at a given set of orbital elements. The numerical
method (see Section 5.4) is the subject of the majority of
this work, and involves a numerical determination of the
resonant width directly from integrated particle orbits. The
purpose of this comparison is to determine the accuracy of
the numerical method, and to verify that its results agree
with the resonant widths expected by other methods.

The HNBody numerical method we describe here does
not include other planetary bodies or radiation effects,
though in general it is able to. This method is not, however,
restricted by the assumptions of other methods. The ana-
lytic approximation requires low eccentricities and zero in-
clinations, and the Gallardo semi-analytic method assumes
that the perturbing planet has zero eccentricity and incli-
nation. HNBody integrations make no orbital element as-
sumptions, and are valid for all orbital elements. Both the
analytic and semi-analytic methods deal with an individ-
ual resonance, which does not allow for interference effects
between different resonances. HNBody considers all gravita-
tional effects of included planets and also includes separate
resonant splitting components of the same resonance.

In consequence, there will be intrinsic discrepancies be-
tween the brute-force numerical HNBody method and the
verification methods, but there should still be a good level
of agreement, particularly if HNBody is limited to restrict
the differences. In particular, we set the eccentricity and in-
clination of Jupiter to zero for agreement between the three
methods.

The numerical widths used here are the ‘width’ of each
resonant feature. To obtain an accurate width using the
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Figure 8. Comparison of numerical resonant widths, analytic
widths and semi-analytic widths approximations for the 3:1 res-
onance at eccentricities 0.1–0.83.

above numerical process, we first determine the mean lon-
gitudes that describe the resonant centres. These can be
estimated using dominant resonant argument equations for
each resonance. There will be a small error in this resonant
centre due to the presence of resonant splitting terms, but
this does not create a large error in the resulting resonant
width.

For the analytic case, we use equation 1 to provide di-
rect comparison values. However, its use is expected to be
limited to low eccentricities (below values of 0.3) due to the
circular orbits assumption inherent in its derivation. To eval-
uate this equation we require knowledge of the relevant di-
rect term in the expansion of the disturbing function fd(α).
This is difficult to compute, but is given as a product αfd(α)
with α = a/a′ for simple first and second order internal res-
onances in Murray & Dermott (1999). We therefore restrict
our comparison to the 2:1 and 3:1 resonances: at an eccen-
tricity of 0.1 for the 2:1 resonance (as high eccentricity orbits
in the vicinity of the 2:1 resonance can experience close en-
counters with Jupiter); and at eccentricities between 0.1 and
0.83 for the 3:1 resonance.

Comparision of the resonant strengths calculated by
Gallardo’s semi-analytic method with the numerical ap-
proach given here requires our conversion of Gallardo’s
strengths to semi-major axis units (equations 5 and 6). The
resulting resonant widths are are only valid for low eccentric-
ity, zero inclination cases as we developed these equations
from the circular planar restricted form of the disturbing
function given by Murray & Dermott (1999).

Table 2 sumarises the analytic, semi-analytic and nu-
merical widths for the 2:1 resonance. Figure 8 contains the
same information for the 3:1 resonance. We divide numerical
widths by two in order to give a half width or amplitude that
can be directly compared to the analytic and semi-analytic
amplitudes. Percentages differences between the methods do
not exceed 10% for low eccentricity values e 6 0.4. As ex-
pected, higher differences between the methods occur at high
eccentricities, as a result of the circular assumption used to
generate the analytic and semi-analytic equations. This is
also illustrated in Figure 9, which shows that the analytic
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Figure 9. Comparison of ‘Gallardo’ strengths determined ana-
lytically (given by equation 4), and the Gallardo strengths given
by the ATLAS program, for the 3:1 Jovian resonance. It can be
seen that divergence between the Gallardo strengths given by the
ATLAS program, and those determined here from the analytic
approximation diverge after an eccentricity of ∼ 0.4. The diver-
gence here indicates the error from our conversion of the Gallardo
strengths (in energy units) to semi-major axis widths, using equa-
tion 5.
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Figure 10. Comparison of numerical resonant widths and semi-
analytic widths approximations for the 4:1 resonance at eccen-
tricities 0.1–0.83.

strength model we derived here (given by equation 4) di-
verges from Gallardo’s resonant strengths after e ∼ 0.4.

Because the αfd(α) terms cancel out for the Gallardo
width equation, for comparison of the Gallardo method and
the numerical method only there is no restriction to only cer-
tain simple resonances such as the 3:1 and 2:1 resonances.
The 7:2 resonance is not studied here as this is very weak
at low eccentricities. Table 10 compares the numerical and
Gallardo widths for the 4:1 resonance at various eccentrici-
ties. The percentage differences in the methods are less than
∼ 5% for all eccentricities except e = 0.83.

We find that the numerical widths do not agree with the
analytic and semi-analytic widths within the uncertainties
of the numerical width method. This is not unexpected, due
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Resonance Numerical Analytic Semi-Analytic % Variation % Variation
Analytic Semi-Analytic

2:1 0.0635AU 0.0701AU 0.0648AU −9.4% −2.0%

Table 2. Numerical resonant widths, analytic width, and semi-analytic widths approximations for the 2:1 resonance for an eccentricity
of e = 0.1. Percentage variations are with respect to the numerical widths.

to the limitations of the various methods, as described at
the beginning of this section.

Overall, less than ∼ 10% differences between the nu-
merical widths and the comparison methods are found for
eccentricities e < 0.4. It is difficult to know what fraction
of the variation is from HNBody, and what is fraction is a
result of inadequacies of the analytic and semi-analytic ap-
proximations. The variation is limited by setting the eccen-
tricity and inclination of Jupiter to zero. Nevertheless, the
worst-case scenario is that the differences in the numerical
resonant widths are in fact ∼ 10%: this can be considered
an upper limit for the total inaccuracy of this numerical
width method. While the accuracy of the numerical width
method is interesting from a theoretical perspective, in this
case only an accuracy suitable for application to the me-
teor orbit radar data is required. Such 10% uncertainties
are supportable for this problem: CMOR uncertainties in
semi-major axis can be up to ∼ 30–40% in individual Tau-
rid orbits.

5.7 Summary

We achieve a numerical value of (0.047 ± 0.001) AU for
the width of the 7:2 resonance for Taurid-like orbits. Three
methods for determining the resonant width have been
found to agree to ∼ 10%. This may be considered an up-
per limit of the error in the numerical width method. It is
therefore concluded that the resonant width for the 7:2 res-
onance for Taurid orbital elements is:

(0.047 ± 0.005)AU.

One benefit of the Gallardo strength program is the
computation time: the strengths of a large number of reso-
nances can be calculated to high precision in seconds; while
the numerical width method may require tens of minutes
to calculate the resonant width (or several hours if several
planets are included), and requires use of both HNBody and
an additional script to process the output orbital elements.
However, the simple numerical width method presented here
is capable of determining the importance of resonances at
any orbital elements (as is also given by Gallardo (2006)),
and additionally provides a physical value which defines the
region of influence of the resonance. This numerical width
method is thus most useful in the case where information
is required on a specific resonance, or in which there is a
requirement for a semi-major axis width, as is the situation
here. In other situations, the method of Gallardo (2006) may
provide a faster approach to analysing the effects of several
resonances for objects with high eccentricity or inclination.

6 STATISTICAL METHODS

In order to investigate the existence of a swarm at the 7:2
Jovian resonance, we conduct a search for evidence of a sta-
tistically significant feature at the location of the resonant
centre (at a = 2.25 AU) in the semi-major axis distribution
of the selected Taurid meteoroids. The resonant width de-
termined in Section 5 provides the expected width of the
feature in semi-major axis. However, no knowledge is avail-
able on the height of the peak the swarm can produce. In
Sections 6 to 8 a search for evidence for the resonant swarm
in the CMOR Taurid dataset is outlined. Section 9 investi-
gates the effects of radar measurement uncertainties on the
ability to detect a resonant feature.

6.1 Statistics of Variations from a Mean Curve

We first use a simple statistical test to determine whether
the sizes of the small scale (less than ∼ 0.5 AU) variations
in the CMOR Taurid semi-major axis distribution are con-
sistent with the size of the random fluctuations expected for
this size of dataset. This involves fitting a model distribution
to the data excluding the region in which the resonance cen-
tre is expected to be present. Our resulting dataset should
not contain any signature of the resonance region. We ob-
tain variations by subtraction of the model distribution and
the data distribution. The standard deviation of these vari-
ations can then be compared with the size of the variations
in the resonance region.

Ideally, a model of the physical underlying distribution
would be used, including knowledge of observational biases.
Since such a theoretical model is unknown, the actual model
fit chosen is not a concern as long as it describes the data
well: an eighth-order polynomial fit is chosen to model the
underlying distribution of the data. Higher-order polynomi-
als can produce non-monotonic behaviour or be overdeter-
mined. Again, such issues are not of concern here provided
the polynomial fits the data, particularly given that there is
no attempt here to make predictions outside the data range.
For the polynomials used here, undesirable behaviour can
occur beyond the range over which the polynomial fitting is
applying, but the eighth-order polynomial works well within
the range of the data.

We create a semi-major axis histogram with a bin width
equal to 0.04 AU. This is chosen as it is approximately the
size of the resonant width for the 7:2 resonance and thus
is approximately the expected size of the resonant feature.
We remove an area around the expected location of the reso-
nance in order to ensure any signature of the resonance does
not bias the mean curve fit produced. In principle, the large
measured uncertainties of the CMOR data will broaden such
a resonant feature to cover a large area: this is further ad-
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Figure 11. The variation of the standard deviation of the result-
ing variations as an increasing percentage of the data around 2.25
AU is removed.
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Figure 12. The observed CMOR Taurid data semi-major axis

histogram, with the fitted eighth-order polynomial fit determined
from the data (black line), but with the section 2.0-2.5 AU re-
moved, as explained in the text.

dressed in Section 9. The removed section is centred on the
known resonance centre at 2.25AU.

It is necessary to remove the largest section possible
around the resonance centre that still produces a satisfac-
tory fit to the whole dataset. To test for the optimum num-
ber of data bins to remove, we monitor the fitting of the
data using the standard deviation. We progressively remove
an increasing set of points either side of the position of the
resonance centre, and find that the fitting is good and the
standard deviation steady up until the removal of about 14
data bins. After this point the fitting diverges from the data
distribution, and the standard deviation begins to rapidly
increase (see Figure 11). This is the result of removing in
excess of 20% of the data points before completing the fit-
ting. For this study the region 2.0 AU to 2.5 AU is removed
(a total of 12 histogram bins: a safe choice below 14 points)
before fitting an eighth-order polynomial to the histogram
(see Figure 12).
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Figure 13. The variations determined by subtraction of the
CMOR data histogram bin numbers from the polynomial fitting
to the reduced dataset.

The variations between the polynomial fit and the
CMOR data distribution (in units of standard deviation of
the variations) are shown in Figure 13. Five peaks are ob-
served at or above 1.95 standard deviations: in a statistically
random distribution ∼ 4 are expected, as 5% of fluctua-
tions are expected to exceed 1.95 standard deviations. Sim-
ilarly, there are 20 peaks above one standard deviation, and
a statistically random distribution is expected to have ∼ 24
(32%). While these numbers do not match exactly, they are
within acceptable fluctuation ranges given the small number
examined. This suggests the fluctuations in the CMOR data
distribution have a random statistical origin. In particular,
there is only one sample variation greater than two stan-
dard deviations in the region 2.0 AU to 2.5 AU (the region
in which resonance indications are expected to be present).
However, this feature is below the fitted curve (a variation
of −2.64) and therefore is not evidence of a resonant peak.
Moreover, there are fluctuations of this size in regions known
not to contain a resonant swarm. These reasons allows us to
disregard this feature as unrelated to our present problem.
However, the resolution of the issue does benefit from an
alternative approach: this is provided by the Monte Carlo
method in the next section.

6.2 Monte Carlo Random Testing

The aim of this section is to determine whether a random
selection of particles from the test distribution (an eighth-
order polynomial) can, by chance, form features of the same
level of significance as observed in the Taurid meteor data.
This would suggest there is no evidence for a resonant fea-
ture in the current data.

We use a simple Monte Carlo method to select a ran-
dom sample of semi-major axis values from a cumulative
distribution created from an eighth-order polynomial model
distribution. The result is a dataset of random meteors that
is the same size as the original CMOR Taurid dataset (of
7649 meteoroids). This is used to produce a semi-major axis
histogram (examples of which are seen in Figure 14) that
can be compared with the CMOR Taurid distribution of
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Figure 14. Four examples of random selections of 7649 parti-
cles from an eighth-order polynomial distribution (shown as the
overlying bold curve on each histogram). Note their similarly in

appearance to Figure 12.

Figure 12. Using the process of section 6.1, we determine
the statistical fluctuations of this random distribution from
a mean polynomial curve. In a very large dataset of semi-
major axis values these variations would be close to zero,
as there would be little or no statistical fluctuations. Thus,
in this case the size of the variations determines the size of
fluctuations from the mean curve that can be expected from
statistics alone. If the residual fluctuations in the real data
are of the same size as or lower than these variations, then it
is possible to conclude that the fluctuations in the real data
are statistically insignificant.

We create 600 such distributions of 7649 random meteor
semi-major axis values. In order to compare the statistical
fluctuations of the observed Taurid distribution and the ran-
dom distributions from the Monte Carlo process, the number
of variations in each dataset that exceed 2, 3 and 4 standard
deviations are counted. For the observational CMOR data,
12 features are 2 standard deviations above the mean of the
eighth-order polynomial fit, 3 exceed 3 standard deviations,
and 2 exceed 4 standard deviations. For the artificial data,
the average numbers of features (over the 600 datasets) ex-
ceeding 2, 3 and 4 standard deviations respectively are 12.12,
3.92 and 1.13. These values are in close agreement with those
for the CMOR data.

A second simple test using these random datasets in-
volves the simple maximum and minimum of the random
datasets at each point. We produce 500 random distribu-
tions and calculate the maximum and minimum bin heights
at each semi-major axis (see Figure 15). The CMOR data
distribution falls within the maximum and minimum bounds
produced by the random distributions, except at a sharp sec-
tion with positive gradient (a < 1.5 AU). In this region the
errors are a result of the poor fitting of the polynomial dis-
tribution. These errors are tolerated as this is not the region
in which resonant signatures are expected. We therefore con-
clude that the CMOR data fluctuations can be produced by
random distribution for at least the region a > 1.5 AU.
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Figure 15. The maximum and minimum bin values (thin black
lines) at each point here form a band inside which the majority of
the CMOR Taurid semi-major axis histogram distribution (bold
solid line) falls.

7 YEARLY VARIATIONS

Traditionally, the Taurid resonant swarm is investigated by
comparison of data over several years. It is possible to com-
pute a measure of the distance of the swarm from the Earth.
This is given by ∆M , which is defined as the displacement in
mean anomaly of the resonant centre from the point at which
the Earth and swarm orbits cross in space and time. In years
in which ∆M is small, significant increases in Taurid mete-
ors numbers are expected due to the resonant swarm. Asher
& Clube (1993) produce a list of such ‘swarm encounter’
years, defined as year for which |∆M | < 40◦ on November
23 (the expected swarm encounter date). In the period of
the CMOR observations used here, only 2005 is a ‘swarm
encounter’ year. In this year |∆M | < 11◦, which confirms
that this is expected to be a good year for observations of
this swarm: it is the closest November swarm encounter for
17 years.

We therefore repeat the statistical analysis of Section
6.1 for the individual years 2002 to 2007, to determine
whether there is any significant difference in the semi-major
axis distribution of 2005 relative to non-swarm years. How-
ever, in contrast to the method given in this section, only
five points either side of the resonant centre location are
removed before a mean fit curve is produced. This is be-
cause the 2005 data produces unstable fittings for six or
more points removed each side (see Section 6.1 for the test
used to determine this). This is a consequence of the reduced
size of the dataset.

The histograms and the resulting mean curves for 2004,
2005 and 2006 are displayed in Figure 16. Table 3 gives the
number of features that are more than 1, 2 and 3 standard
deviations above the mean curves for the years 2002 to 2007.
We make two observations:

(i) The size of the data variations are nearly, but not ex-
actly, consistent with the size expected for random statisti-
cal fluctuations. Histograms of the variations have a roughly
Gaussian form. The numbers of features expected do not
agree exactly with those given for 2005 in Table 3. However,
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Year # 1 std # 2 std) # 3 std

2002 18 6 1

2003 18 6 1

2004 15 6 2

2005 17 7 1

2006 17 6 1

2007 19 6 2

Approx. Expected Number 24 4 0 or 1

Table 3. The number of features in excess of 1, 2 and 3 standard deviations for CMOR Taurid data for 2002-2006. Here ‘# 1 std’ denotes
the number of features that are more than 1 standard deviation away from the mean curve for that year. The final row gives the expected

(comparison) numbers for the number of histogram bins used here drawn from the expected fluctuations in a random population.
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Figure 16. Histograms and mean curve fittings for 2004, 2005
and 2006 CMOR Taurid data.

the differences are not sufficient to conclude that there are
significant differences between the variations observed and
Gaussian random variations.

(ii) The data variations, as quantified in Table 3, are con-
sistent between each year. There is no significant difference
between the variations for 2005 and those for other (non-
swarm encounter) years. Thus, there is no evidence of addi-
tional features due to the presence of the resonant swarm in
2005.

8 HIGHER QUALITY TAURID ORBITS

It is possible to extract higher quality orbits from the to-
tal CMOR Taurid dataset. These are the result of higher-
precision velocity measurements made possible by the pres-
ence of Fresnel oscillations in the amplitude and phase of the
meteor echo. Such echoes have 6 5% speed errors instead
of about 6 10% (Jones et al. 2005), and should therefore

provide more reliable semi-major axis values. If the Fres-
nel oscillation pattern is sufficiently distinct (generally for
meteors with a high signal-to-noise ratio), then both a time-
delay speed and a hybrid Fresnel/pre-t0 speed are achievable
(see Hocking (2000) for further detail). Following Wiegert &
Brown (2005), we form a new dataset containing only echoes
for which a Fresnel/pre-t0 speed is given, and for which the
two speeds agree within 3%. The resulting dataset has 1025
meteors, 200 of which are from the year 2005. However, we
find that neither the new dataset nor the meteors from 2005
in this dataset display evidence of the 7:2 resonant swarm:
using the method given in Section 6.1 the variations of both
datasets do not significantly exceed those expected as a re-
sult of random fluctuations (see Table 4).

As mentioned above, these meteors have in-atmosphere
speed uncertainties of approximately 6 5%, as opposed to
about 6 10% for the time-delay speed method. Heliocentric
velocity (VH) uncertainties are related to semi-major axis
(a) uncertainties by (Galligan 2000):

(

∆a

a

)

=
V 2
H

1− V 2

H

2

(

∆VH

VH

)

. (7)

Here speeds are relative to the Earth’s orbital speed,
GM⊙ = 1, RE = 1 and it is assumed that rh = 1 AU.
VE and RE are the velocity in space and the radius of the
Earth, respectively; G is the gravitational constant and M⊙

is the Solar mass.

The uncertainty in heliocentric velocity ∆VH will in-
clude errors from several sources, most notably from errors
in atmospheric deceleration calculations. Thus, it can be de-
duced that reducing the error in the in-atmosphere speed by
a factor of two will reduce the semi-major axis uncertainties
by not more than a factor of two. In Section 9 we see that
such a reduction is not expected to allow us to resolve a
resonant feature of the size expected.

Analysis therefore suggests that there is no evidence
for a resonant swarm in CMOR-detected Taurids either in
the combined datasets, in the 2005 dataset, or within higher
quality orbits. This may indicate that the measurement un-
certainties are too large for such small scale structure to be
visible; or that the mass distribution of the swarm is such
that there are few radar-sized particles in the swarm. We
test the former in the following sections.
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Year # 1 std # 2 std) # 3 std

All Years 19 4 1

Approx. Expected Number All Data 24 4 0 or 1

2005 8 1 0

Approx. Expected Number 2005 Data 10 1 or 2 0

Table 4. The number of features in excess of 1, 2 and 3 standard deviations for CMOR Taurid data for a restricted dataset containing
higher-quality orbits, defined by echoes for which the time-lag and Fresnel/pre-t0 velocities agree to 3%. Results are shown for the whole
dataset, and for echoes from the year 2005 only. Here ‘# 1 std’ denotes the number of features that are more than 1 standard deviation
away from the mean curve for that year. Alternate rows gives the expected (comparison) numbers for the number of histogram bins used
for each dataset.

9 NUMERICAL STUDY OF OBSERVATIONAL
UNCERTAINTIES

It is important to gain an understanding of what issues
observational uncertainties may cause in the identification
of any resonant peak. In particular, such uncertainties will
broaden the Taurid semi-major axis distribution and indi-
vidual resonant features. It is useful, therefore, to determine
whether such features are detectable after they are broad-
ened by the meteor radar orbital uncertainties, or what level
of reduction in these uncertainties we require for such fea-
tures to become significant. For this study the uncertainties
we use are semi-major axis uncertainties. The results are
applicable to velocity uncertainties also, as reducing the ve-
locity uncertainties by a factor x will reduce the semi-major
axis uncertainties by the same factor x (see equation 7).

Our method involves a ‘convolution’ (or, here, an addi-
tion) of:

(i) The overall distribution of non-resonant Taurids: This
is modelled here by the observed Taurid distribution from
the CMOR dataset. This may contain a small component
of resonant swarm meteoroids, but this would make little
difference to the results obtained, as it is seen above that
the level of fluctuations from a random curve are consistent
with the expected level of statistical fluctuations.

(ii) A modelled resonant peak: This is modelled by ran-
domly selecting a number of meteoroids NR from a Gaus-
sian curve with the standard deviation equal to one quarter
of the resonance width (determined to be ∼ 0.047 in Sec-
tion 5). This is because the full resonant width is equated
with the 2σ 95% confidence section of the Gaussian distri-
bution: the resonant width is defined as spaning 4σ across
the Gaussian distribution. The number of meteoroids NR

injected into the swarm determines the height of the peak.
We vary this as no information is available on the height of
the resonant features in semi-major axis distributions. We
will usually express this as a percentage of the total number
of particles in the combined dataset. Here this is also called
the ‘resonant feature strength’.

(iii) The (assumed) Gaussian profiles for the uncertainty
on each individual observed particle: We convert each data
value from (i) and (ii) above from a point into a Gaussian
profile in order to simulate the effect of uncertainties. We
use the given semi-major axis uncertainties in the CMOR
datasets for the standard deviations σ for each Gaussian
profile. Each Gaussian is scaled to have an area of 1 under
the curve.

We conduct two separate tests using this model. The
first assumes zero uncertainties and thus only combines dis-
tributions (i) and (ii) above. We use this ‘perfect’ data case
to demonstrate the absolute lower size limit of a resonant
feature that can be detected in a meteor radar dataset (of
the size of the CMOR Taurid dataset used here). This is
given in Section 9.2. The second test includes uncertainty
broadening and thus all three distributions above are used.
This test is given in Section 9.3.

The addition of uncertainty broadening can also be
thought of as two distributions - the Taurid distribution
and a model resonant feature - each composed of many in-
dividual Gaussians instead of many individual points (delta
functions). This convolution is dealt with numerically by
creating a histogram Gaussian to represent each point. Each
Gaussian histogram meteoroid is defined from −4σ to +4σ,
with steps of 0.04 AU (approximately the expected width
of the resonance feature): thus, each meteoroid will cover
a different number of bins depending on its corresponding
uncertainty. The standard Gaussian formula is used:

G =
1

σ
√
2π

exp−(
z2

2σ2
)

where z defines the size of the region covered by the Gaussian
meteor in semi-major axis (−4σ to +4σ). By adding these
Gaussian-broadened meteoroids we achieve a histogram of
the semi-major axis distribution similar to that seen in Fig-
ure 12, but in which each meteoroid is fractionally split over
several bins. We scale the resulting distribution in situations
where the peak of the convolved distribution exceeds the
peak of the original CMOR distribution. This is to ensure
that the statistics remain comparable (to allow the standard
deviation for the original dataset variations to be used: see
Section 9.1).

Figure 17 shows a representative model resonant feature
peak of 200 meteoroids (2.5%) randomly selected from the
model Gaussian, and the complete distribution achieved by
the addition of the fictitious resonant feature meteors to the
Taurid dataset. Uncertainties are now applied to the com-
bined dataset of Figure 17(b). We then determind whether
the peak is statistically significant on application of uncer-
tainty broadening. We can then vary the percentage or num-
ber of meteors in the swarm, which is unknown. We can
also reduce the applied uncertainties by applying a frac-
tional multiplication factor to the orbital uncertainties in
the CMOR dataset.
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Figure 17. Model resonant features with NR = 200 meteoroids
in the resonance (that is, 2.4% of the total dataset are in the
model resonant feature). The left figure demonstrates the selected
peak alone, and the right figure its addition into the Taurid dis-
tribution.

9.1 A Statistical Test

A statistical test is required to evaluate whether the resonant
feature is statistically significant, both in the ‘perfect’ data
case and in the uncertainty-broadened case. For consistency
we use the first statistical test carried out on the CMOR data
distribution (see Section 6.1). In summary, this involves:

(i) Removal of the resonant area of the distribution (ap-
proximately 2.0 AU to 2.5 AU)

(ii) Fitting of a test distribution to the remaining sections
of the distribution

(iii) Analysis of the variations between the distribution of
interest and the fitted distribution

This was completed previously by comparing the variations
(of (iii) in the statistical test summary) to the standard devi-
ation of the variations themselves. Here we use the standard
deviation of the variations of the original data distribution as
the comparison value. This is because the uncertainty broad-
ening will remove the small statistical fluctuations. Thus the
statistical fluctuation information is contained only in the
standard deviation of the variations of the original CMOR
data.

By comparison with the statistical fluctuations in the
CMOR data distribution, we conclude that a peak is con-
sidered significant if two conditions are fulfilled:

(i) The peak is above three standard deviations
(ii) Two adjacent points are above two standard devia-

tions

The second condition is required because it is expected that
these peaks will cover more than one histogram bin, and will
not resemble the sharp statistical fluctuation features seen in
Figure 13. We expect the feature to be a peak, not a trough,
such that the variations should be positive if the distribution
of interest is subtracted from the fitted distribution.

In addition, the model resonant peak involves a random
element in the selection of particles from a Gaussian. This
means that the decision as to whether a particular resonant
feature peak size is significant may vary each time the pro-
cess is run. Thus, we require a positive detection of the peak
in 20 successive tests in order to conclude that the peak is
statistically significant for that uncertainty level and peak
size.
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Figure 18. The variation in the number of trials for which a
significant peak is found, for a variety of fictitious resonant peak
sizes. Above 112 meteoroids in the peak it can be seen that 99%
of trials result in a significant peak.
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Figure 19. The lowest resonant peak which is statistically sig-
nificant for ‘perfect’ data (that is, data with no uncertainties) for
99% of trials is one with 112 meteoroids (1.4% of a dataset of
this size). The combined semi-major axis distribution containing
the CMOR Taurid data and the ficticious resonant peak is shown
in (a), along with the eighth-order polynomial fit to the dataset
(without the resonant region 2.0 to 2.5 AU).

9.2 Perfect Data

Here we apply a statistical test to a ‘perfect’ dataset with
a range of sizes for the test resonant peak. ‘Perfect data’
is defined here as data with no uncertainties or negligible
uncertainties in the measured semi-major axis values: it is a
consideration of the case in which statistical variations are
larger than observational uncertainties. Therefore, no uncer-
tainty broadening is included at this stage: only a resonant
peak of a specific size (given by the number of particles in
the peak) is added. We then use the above process to deter-
mine whether the resulting peak is statistically significant,
and thus observable.

We first run this test 20 times and determine the first
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Figure 20. The variations between the data histogram (with res-
onant peak) and polynomial fit distributions, scaled to the stan-
dard deviation of the variations of the original CMOR dataset.

peak size that is significant in all 20 tests. This is found
to be a peak of 108 meteoroids: 1.39% of the total number
of particles in the distribution (for a dataset of this size).
This provides a result that can be compared with the un-
certainty broadening case (Section 9.3). A higher accuracy
test is then run, where this process is run 1000 times and the
point at which 99% of trials result in a significant peak is de-
termined (see Figure 18). An added resonant feature greater
than or equal to 1.44% (112 meteoroids) fulfills this crite-
rion. Additionally, any peak with size greater than 1.53%
(119 meteoroids) produces significant features 100% of the
time. We determine an uncertainty of 4 meteoroids from the
difference between the limiting values determined in 20 and
1000 consecutive tests. Thus, ∼ (1.44 ± 0.05)% is the lower
limit on the proportion of the stream that must be resonant
in order for detection to be made by radar for this size of
dataset. A distribution with a peak of this limiting size, and
the variations from the polynomial fit are shown in Figure
19. Variations between the data histogram and the eighth-
order polynomial are given in Figure 20.

9.3 Data with Varying Uncertainty Levels

Here we determine the approximate uncertainties (relative
to those of CMOR) required of a meteor radar system for it
to be capable of detecting a Taurid resonant swarm. This re-
quires the addition of uncertainty broadening, as outlined in
Section 9. To accomplish this we apply a range of fractional
multiplicative factors to the uncertainty Gaussians based on
CMOR uncertainties. We then determine which uncertainty
levels result in statistically significant detections of the mod-
elled resonant peak, for a range of sizes for this peak.

The range of integer-value ‘uncertainty reduction fac-
tors’ from three to fourteen are explored. These factors rep-
resent values by which the uncertainties are divided: that is,
an ‘uncertainty reduction factor’ of 3 represents a reduction
in the uncertainties to 1

3
of their original values. An uncer-

tainty reduction factor of 2 requires an unrealistically large
number of particles in the resonant swarm for a statistically
significant peak to be observed. Therefore, e do not include
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Figure 21. The effect of high resonant feature particle numbers
on the convolved dataset. An example of the behaviour of the
numerical convolution at an uncertainty reduction factor of 2 at
a resonant feature strength of 6000(44% of the total dataset).
The distribution is dominated by the resonant feature. However,
a statistical test would not be able to find evidence of a resonant
feature unless the underlying Taurid distribution was known.

uncertainty reduction factors less than 3. Furthermore, we
find that the method is less robust after the modelled reso-
nant swarm comprises ∼ 40% to 50% of the total dataset, as
after this point the convolution starts to move the peak of
the distribution away from the Sun (see Figure 21 ). How-
ever, the percentage of the total number of Taurid particles
that are in the 7:2 Taurid resonant swarm is unlikely to be
higher than 40% (see below). If this method were to be ap-
plied in a situation where a swarm may comprise more that
50% of the total dataset, use of this numerical convolution
would require a different model for the overall distribution
of non-resonant Taurids.

This restriction also implies that an uncertainty reduc-
tion factor of 1 (that is, no change to the current uncertain-
ties) will not result in a significant detection of the resonant
swarm, unless more than 50% of observed Taurids are reso-
nant, which is unlikely. Thus, broadening as a result of the
uncertainties of the CMOR dataset will not allow observa-
tion of the Taurid resonant swarm.

For uncertainty reduction factor values greater than
fourteen the method reaches its limitation as the uncertain-
ties begin to become smaller than the histogram bin size
used. This only affects the smallest semi-major axis values
at first (with the lowest absolute uncertainties), but will af-
fect the whole distribution for very high uncertainty reduc-
tion factor values. An improved algorithm would be able to
deal with this situation. However, given that by a reduction
factor of 14 the resonant feature values required for signif-
icance are close to those required in the ‘perfect’ case, this
is not pursued here.

For each uncertainty reduction factor we determine the
minimum modelled resonant peak size required. The method
for this is given in Section 9.1. Uncertainties are given by the
difference in resonant peak size between a size for which 1

20

tests provide a statistically significant result, and one that
allows 20

20
to pass. This is usually a maximum of ∼ 3 me-

teoroids, though in some cases it is 1 meteoroid or less. As
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Figure 22. The variation in the number of trials for which a
significant peak is found, for a variety of fictitious resonant peak
sizes, and at an uncertainty reduction factor of 9. Above 190 me-
teoroids in the peak it can be seen that 100% of the 20 consecutive
trials resulted in a significant peak.

1 1.5 2 2.5 3 3.5 4
0

50

100

150

200

250

300

350

400

Semi−Major Axis (AU)

N
um

be
r 

of
 M

et
eo

ro
id

s

Figure 23. The lowest resonant peak which is statistically sig-
nificant in 100% of 20 trials for uncertainty broadened data with
an ‘uncertainty reduction factor’ of 9. This is a feature with 190
meteoroids (2.4% of a dataset of this size), with an uncertainty
±3 meteoroids. The combined semi-major axis distribution con-
taining the CMOR Taurid data and the ficticious resonant peak,
both uncertainty broadened, is shown along with the eighth-order
polynomial fit to the dataset (without the resonant region 2.0 to
2.5 AU).

an example, this is demonstrated using the size of the reso-
nant feature required at an uncertainty reduction factor of
9. Figure 22 shows the percentage of tests that produce a
significant result for resonant feature sizes of 2.37% to 2.42%
(equivalent to 186 to 190 particles for an initial dataset of
7649 meteoroids). The minimum significant resonant fea-
ture size for which all 20 tests produce a significant result is
2.42% (190 meteoroids). The uncertainty is 1 meteoroid (or
0.013% of this total dataset), as only one ‘resonant feature
size’ below 190 meteoroids can produce a significant result
(see Figure 22). The resulting broadened distribution and
variations from the mean curve are given in Figures 23 and
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Figure 24. The variations between the data histogram (with res-
onant peak) and polynomial fit distributions, scaled to the stan-
dard deviation of the variations of the original CMOR dataset,
for a feature with 190 meteoroids (2.4% of a dataset of this size),
with an uncertainty ±3 meteoroids.

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

5

10

15

20

25

30

Inverse Uncertainty Reduction Factor

R
es

on
an

t F
ea

tu
re

 S
tr

en
gt

h 
R

eq
ui

re
d

(a
s 

pe
rc

en
ta

ge
 o

f t
ot

al
 n

um
be

r 
of

 d
at

ap
oi

nt
s)

Figure 25. The resonant feature strength detectable for each
inverse uncertainty reduction factor. For example, a reduction in
uncertainty by a factor of about 9 (or inverse 0.11, which is the
fraction by which CMOR uncertainties must be multiplied) is
required to observe a resonant feature with 200 particles (2.6% of
the dataset).

24. In particular, it is interesting to note the broad, smooth
form of the variations in Figure 24 compared with those for
the ‘perfect’ data case in Figure 20. We recognise that these
uncertainties will be larger as a result of the limitation of
using the current CMOR Taurid distribution in the method.
This is difficult to quantify but is addressed to some extent
in Section 9.5.

Figure 25 shows the resonant feature strengths that are
observable for a given reduction in the radar uncertainties.
This figure can be used either to determine the required
minimum uncertainty reduction factor for a CMOR type
radar for a given resonant feature size; or to determine the
required minimum resonant feature size for a given level of
uncertainty reduction.
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The values given in Figure 25 are only valid for the size
of CMOR dataset used here. An uncertainty reduction fac-
tor of 14 will allow a swarm of a similar size to be detected
as for the perfect data (120 meteoroids for a reduction in un-
certainties of 14; and 108 for a ‘perfect’ data). This implies
that a limit is reached by the radar uncertainties: after a re-
duction in uncertainties of 12 to 14 statistical variations will
largely govern the visibility of resonant swarms, and further
improvement in the radar will not assist greatly in detection.
This study, and the ‘perfect’ data study, thus imply that for
radar datasets of this size, swarms which comprise less than
∼ 1.5% of the meteoroid stream are unlikely to be detectable
using this methodology, regardless of the uncertainties of the
radar system.

Therefore, for a radar dataset of this size, and with the
requirement that resonant meteoroids comprise more than
∼ 2% of the radar Taurid dataset, a radar with improvement
in uncertainties given by a reduction factor of 12 or higher
(equivalent to 8% of the current uncertainties) should be
able to detect a resonant swarm in Taurid meteoroids (as-
suming that the radar system has approximately the same
mass sensitivity as CMOR). A resonant peak that is 2.2% of
the number of Taurids in the dataset should be detectable
by reducing CMOR uncertainties by a factor of 10. Such an
enhancement is considered feasible with the current tech-
niques of radar systems and signal processing.

9.4 Visual Data on Taurids

The uncertainty reduction levels considered above require
knowledge of the approximate proportion of Taurids that
are resonant. This is difficult to determine, and is dependent
on the location of the swarm with respect to the Earth, the
number of particles in the swarm and the size distribution
of these particles. Since few radar observations of the Taurid
swarm exist, we must use visual observations to obtain esti-
mates of the size of the resonant swarm. Results from visual
meteoroid studies will only be applicable to radar data if
the number of radar-sized particles in the swarm is similar
to the number of visual particles.

We use the activity profile (of ZHR as a function of so-
lar longitude) for visual Taurids of 2005 given in Dubietis
& Arlt (2007) to estimate the maximum proportion of 2005
Taurids that are resonant. ZHR is an indicator of particle
numbers: an actual mass flux is dependent on the popula-
tion index. However, Dubietis & Arlt (2007) find that the
population index of visual Taurids is roughly constant, fluc-
tuating around a population index of 2.4. We use simple
area calculations to determine the approximate number of
meteoroids in the 2005 profile, compared with the number
of meteoroids in a typical annual profile averaged over 1985-
2004. We find that the enhanced ‘swarm’ region of the pro-
file (the region that differs markedly from the typical annual
profile) contains ∼ 30% of the meteoroids contained in the
total 2005 profile. For 1988 and 1998 this provides 23% and
41% respectively. These values cannot be considered highly
accurate, and are only indicative. The three years tested
here represent optimal years for swarm detection, with the
mean longitude of the resonant centre of the swarm being
within 15◦ of the mean longitude of the Earth. However, the
proportion of swarm meteoroids and maximal ZHR values
(calculated by Dubietis & Arlt (2007)) are not well corre-

lated with the proximity of the swarm to the Earth. This
is still an issue after consideration of the presence of a full
moon in some years - particularly in 1995 and 1998. This
could reflect other variations in observational geometry of
the swarm.

Additionally, the proportion of swarm particles detected
by visual methods may be larger than that detected by radar
methods, because it is possible that larger particles are more
easily trapped in the resonance if ejected from a resonant or
near-resonant comet (such as is observed for Leonid mete-
oroids (Jenniskens & Betlem 2000)). This may depend on
the ejection mechanism for the Taurid resonant particles.

For these reasons we cannot be precise here on the ex-
pected proportion of swarm particles in radar datasets. In
general, however, we expect that the proportion of particles
will not exceed 20–30% of the total dataset for a swarm year.
This is equivalent to ∼ 5–8% of the total CMOR dataset
spanning the years 2002–2007.

9.5 Variation with the Dataset Size

Here we determine the variation of the results of Section
9.3 as a function of the size of the dataset. This serves two
purposes here: (i) to determine the effect if an improved
radar is operated for a shorter or longer time than the 2002–
2007 period producing the CMOR dataset used here; and
(ii) to determine the required number of particles in any
one year required to produce a statistically significant result
for a given reduction in uncertainties.

These aims require modifications to be made to the nu-
merical method given in Section 9. To obtain a representa-
tive dataset that has the same distribution shape as the
CMOR Taurid semi-major axis distribution, but is com-
posed of a different number of particles, we employ the
Monte-Carlo method given in Section 6.2. This allows the
random selection of a given number of particles from an
eighth-order polynomial fit to the CMOR Taurid semi-major
axis distribution. We calculate a standard deviation of the
variations between the random dataset and this fitted curve
in order to perform the statistical test given in Section 9.1.
The uncertainty values for each semi-major axis are deter-
mined using a quadratic fitting to the CMOR data uncer-
tainties, which provides the uncertainty as a function of
semi-major axis. We add a random component to each un-
certainty to model the scatter in uncertainty values, again
using a fitting to the CMOR data. The remainder of the
methodology is identical to that used in Section 9. Due to
the fact that the distribution is now randomly produced,
the uncertainty levels will be much higher than previously
(where only the model resonant feature was produced ran-
domly). However, this modified method is more robust as
it accounts for the variations in the statistical fluctuations
that can occur, whereas the results of Section 9.3 depend on
the statistical fluctuations of an improved dataset being the
same as those in the current CMOR Taurid dataset.

We choose four sizes of test datasets:

(i) the size of the CMOR dataset used here (7469 mete-
ors)

(ii) half the size of the CMOR dataset (3825 meteors)
(iii) double the size of the CMOR dataset (15298 meteors)
(iv) the size of the CMOR dataset for 2005 (1470 meteors)
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Figure 26. The variation in the size of the resonant peak (as a
percentage of the size of the total dataset) required for a statisti-
cally significant detection at each level of uncertainty reduction,
relative to the CMOR uncertainties of the current dataset. Each
line shows a different number of particles in the source dataset.
The lower three lines (15298, 7649 and 3825 meteors) represent
datasets of double, equal and half the size of the CMOR dataset
used in this chapter. The upper line (1470 meteors) represents the
number of particles detected in the 2005 swarm year by CMOR:
that is, this provides the approximate percentages of meteoroids
that must be in the observable radar Taurid stream in order for
detection to be made based only on one year of data. This is im-
portant given that the swarm’s location relative to the Earth is
only optimal for observation every 3 to 5 years. The bold points
above the curves demonstrate the resonant feature strengths re-
quired for a 95% probability of a significant detection of the reso-
nant swarm for a given uncertainty reduction factor and dataset
size.

The final dataset size is important as it provides the
requirements for detection of the swarm in one year of data.
This is necessary because the swarm is only in a good loca-
tion for observation relative to the Earth once every 3 to 5
years (see Section 7).

For each dataset, and for each integer-value uncertainty
reduction factor of 3 to 10, we find the first resonant feature
strength that produces 20 consecutive significant tests (see
Figure 26). Figure 26 identifies the approximate resonant
feature size that can be observed for a given uncertainty in
meteor radar semi-major axis data. It can also provide the
approximate uncertainty reduction required in order to de-
tect a feature of a given size. As expected, a smaller dataset
requires a larger resonant feature for significant detection to
be made. However, the differences in the required resonant
feature strength are not as large as the differences in the
size of the dataset. For example, case (iii) only decreases the
size of the resonant feature required by 15–25% compared
to case (i). Similarly, case (ii) produce significant detection
of a resonant feature 25–40% larger than case (i).

As mentioned above, there will be significant fluctua-
tions in the results due to the random element of the method.
This error is evaluated by testing a region around a num-
ber of the points on Figure 26. For each dataset size, for
uncertainty reduction factors of 4 and 8, we test between
50 and 100 resonant feature strength values (in steps of 5
or 10) either side of those resonant strength values given in
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Figure 27. The number of tests resulting in a significant resonant
feature for each resonant feature strength at datasets of sizes 1470,
3825, 7649 and 15298, for uncertainty reduction factors 4 and
8. Arrows on each graph indicate the values of resonant feature
strength plotted on Figure 26.

Figure 26. Again, we run 20 tests for each set of values. In
Figure 27 the number of tests out of 20 that produce a sig-
nificant result for each resonant feature strength is plotted.
The resonant feature strength values used to produce Figure
26 are indicated by arrows on each graph. It is evident that
the values given in Figure 26 refer to the resonant features
strengths that will in all but two cases provide a greater
than 80% chance of detecting a significant feature. The two
exceptions are for datasets of size 15298 and 1470 meteors,
with uncertainty reduction factor 8: in these cases there is a
greater than 70% of detecting a significant feature. In both
cases an increase in the resonant feature size of less than 5%
would produce a greater than 80% chance of sucess.

The resonant feature strength (for each uncertainty re-
duction factor) that would allow a significant detection of
the resonant feature in 95% (19 out of 20) of cases is also
of interest. It is at this level of confidence that we expect
a radar with such an orbital measurement uncertainty (or
uncertainty reduction) to be able to detect a swarm of that
resonant feature size. For an uncertainty reduction factor of
4, values ∼ 10% greater than those in Figure 26 are required
to achieve a significant resonant peak in 95% of cases. For an
uncertainty reduction factor of 8, values 11–17% greater are
required. The bold points in Figure 26 demonstrate the 10–
17% improvement in the results required to provide a 95%
probability of detecting the resonant swarm in the given val-
ues.

If one year of data from a swarm close-approach year is
available, then the expected proportion of resonant swarm
particles will be higher than in a general dataset: it may
be as high as 20–30% for a strong swarm encounter year
(see Section 9.3). If this is the case, it is possible that a
radar with an improvement of measurement uncertainties of
only a factor of 4–5 could detect this resonant swarm (see
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Figure 26). The required improvement in uncertainties will
depend on whether there are approximately the same num-
ber of radar-sized swarm particles as visual-sized particles.
However, as long as the resonant swarm results in a 5–6%
increase in radar-sized particles, a radar with uncertainties
one tenth of those of the CMOR dataset used here should
be capable of detecting the swarm.

10 SUMMARY AND CONCLUSIONS

The detection of a meteoroid resonance swarm with a radar
system requires improvement of the orbital uncertainties.
In this work we find no evidence for the 7:2 Taurid res-
onance swarm in CMOR data, which should theoretically
be amongst the most easily-observed resonance effects in
radar data (see Section 3). In addition, the uncertainties of
the CMOR dataset used here (which are typical of current
systems) are too large to allow observation of the resonant
swarm. The level of improvement required is highly depen-
dent on the size of the resonant swarm, and the resulting
increase in the number of Taurid particles observed in a
swarm year. If the resonant swarm comprises 20–30% of res-
onant particles in a swarm year, then potentially one year
of observations with a meteor orbit radar with orbital un-
certainties a factor of 5 lower than CMOR could detect the
swarm; however, if the swarm comprises only 5–6% of the
total Taurids, a factor of 10 improvement in the radar un-
certainties would be required. These factors of reduction in
semi-major axis uncertainties are equivalent to the required
reduction factors for the velocity uncertainties. The size of
the swarm that can be observed is found to plateau after
an improvement in orbital uncertainties of a factor of ∼ 10
(see Figure 25). At this point a swarm consisting of ∼ 5% of
the Taurid dataset would be observable in about one year
of radar data. Therefore, improvements above a factor of 10
are not likely to greatly improve the chance of observing a
resonant swarm.

Such improvements in meteor radar measurement un-
certainties, though they present technical difficulties, may be
feasible with current techniques of radar systems and signal
processing. In particular, the addition of more stations and
with the ability to recover phase information and interfer-
ometry from multiple stations would produce an overcon-
strained system of equations for speed/trajectory determi-
nation. These would allow calculation of the deceleration
of meteors in the Earth’s atmosphere, and would signifi-
cantly improve the velocity uncertainties for detected par-
ticles. This approach is the motivation behind an improved
CMOR II radar which will have five remote stations in ad-
dition to the home site (Brown et al. 2010). Higher sam-
pling rates (achieved by an improvement in the pulse rep-
etition frequency) would also improve orbital uncertainties.
The Fresnel velocity method can provide a factor of ∼ 2 im-
provement in the velocity uncertainties in comparison to the
time-delay method (see Section 8). An additional important
method of determining meteoroid velocities is the Fresnel
transform method, developed by Elford (2001). This method
is capable of producing speeds with precision of ∼ 0.1 km−1,
compared with uncertainties of ∼ 3 kms−1 for a 30 kms−1

meteor with the time-delay method: equivalent to a 10% ve-
locity uncertainty (Baggaley & Grant 2004). However, it is

limited to use for meteors with high signal-to-noise ratios.
It is therefore expected that improvement of deceleration
calculations provides the greatest chance of reaching the re-
quired accuracy for detection of resonant structures.
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