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I. INTRODUCTION

Jupiter and Saturn consist predominantly of hydrogen and helium acquired from the

primordial solar nebula during the planet building epoch.  The formation of such gas giants

is believed to commence with the collisional accretion of a several earth mass core from solid

ice + rock planetesimals followed by the accretion of the gaseous component once the core

reaches a critical size  (e.g., Pollack et al. 1976; Wuchterl et al. 2000 and reference therein).

Seemingly at odds with this picture, however, are the very dissimilar obliquities, , of these

planets to their orbit planes, viz., 26.7° for Saturn vs. only 3.1° for Jupiter.  

The obliquities of the other planets in the solar system are likely due to the stochastic

nature of their accumulation from solid planetesimals (Lissauer and Safronov 1991, Dones

and Tremaine 1993; Chambers 1998; Agnor  et al. 1999), and the rock/ice cores of Jupiter and

Saturn probably had non-zero obliquities as well.  However, their massive gas component

derived from the nebula disk would have added angular momentum nearly perpendicular to

their orbit planes, overwhelming that of the cores, and ultimately resulting in small obliquities

for both planets. With 95 earth masses and a 10.7 hr rotation period, Saturn has considerable

spin angular momentum, making it problematic that an impact could have sufficiently changed

its pole direction after its formation.  Why then is Saturn’s obliquity so large?

We suggest the answer lies in solar system events following the formation of the

planets that caused an initially upright Saturn to suffer a tilt.  We are not the first to seek such

a mechanism.  It has been proposed that the obliquities of the outer planets may result from

a ‘twist’ of the total angular momentum of the solar system during the collapse of the

molecular cloud core that led to its formation  (Tremaine 1991).  It is possible to choose a time

scale for this event that would affect the planetary obliquities from Saturn on out, but have

only a minor influence on Jupiter.  Although this cannot be ruled out, this paper presents what

we believe is a more compelling mechanism for generating Saturn’s obliquity predicated on

a similarity between Saturn’s spin axis precession period and the regression period of

Neptune’s orbit plane (Harris and Ward, 1982), which seems too close to be a coincidence.

We propose that this period match and the obliquity of Saturn are cause and effect through the

operation of a secular spin-orbit resonance between these bodies.  This type of interaction is
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already known to cause large-scale oscillations of the obliquity of Mars (Ward 1973, 1974,

1979; Lascar and Robutel 1993; Touma and Wisdom 1993).  Here and in a companion paper

(Hamilton and Ward 2004; hereafter paper II) we detail how this mechanism could also

account for the spin axis orientation of Saturn, as well as provide a sensitive constraint on its

moment of inertia.

II. PRECESSIONAL MOTIONS

a.  Spin Axis

The equation of motion for a planet’s unit spin axis vector, s, is 

where n is the unit vector normal to the planet’s orbit plane.  The precessional constant "

depends on the strength of the torque exerted on the planet and its spin angular momentum.

For Saturn, most of the solar torque is exerted on its satellites instead of directly on the planet,

Titan ( ) being by far the dominant one (Ward 1975).  Saturn’s oblate

figure gravitationally locks the satellites to its equator plane so that the system precesses as a

unit (Goldreich 1965).   The precessional constant can be written (Ward 1975; French et al.

1993) 

where  is the spin frequency of Saturn, n  is its heliocentric mean motion,  J2 = 1.6297 × 10-2

is the coefficient of the quadrupole moment of its gravity field,  is the  moment of inertia,

I, of Saturn normalized to MsR
2, with  Ms and R being the mass and radius of the planet.  The

quantity

is effective quarupole coefficient of the satellite system with being the ratio of the solar

torque on the satellites to that directly exerted on the planet, and
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is angular momentum of the satellite system normalized to , where Mj , aj , and are

the masses, orbital radii and mean motions of its satellites, with ij being the inclination of a

satellite orbit to the equator of Saturn.1  French et al. (1993) give q = 0.05164 and  = 0.00278;

Hubbard and Marley (1989) find  = 0.2199 from their interior models, but this value is

uncertain by as much as 10% (French et al 1993; Marley personal communication). With these

numbers, equation (1) yields .  If the orbit plane of

Saturn were fixed in inertial space, its spin axis precession would occur at constant obliquity 

with a period P years. 

Nicholson and French (1997) have analyzed 22 reported ring plane crossings spanning

a period of 280 years to estimate Saturn’s pole precession frequency as , but

this is low largely because of a ~700 year modulation due to Titan’s 0.32° proper inclination

(Nicholson et al. 1999).  Using the nutation model of Vienne and Duriez (1992), the current

rate can be predicted to be 68% of the long term value, implying .

b.  Orbit Plane

All of the planetary orbits have small inclinations to the invariable plane and undergo

non-uniform regressions due to their mutual gravitational perturbations. The inclination I and

ascending node  of a given planet is then found from a superposition (e.g., Brouwer and

vonWoerkom 1950; Bretagnon 1974;  Applegate, et al.1986; Bretagnon and Francou 1992),

comprised of many terms of amplitudes {Ij} and frequencies {gj}.  Nevertheless, most of them

are of only minor importance, and the largest amplitude terms for Saturn’s orbit are listed in

Table 1; they represent contributions from three of the eight fundamental modes of a Laplace-
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Legrange solution of the secular evolution of the solar system as given by Bretagnon (1974).

The first of these is due to a strong  year mutual orbital precession of Jupiter and

Saturn, the next two are perturbations to Saturn’s orbit plane due to the nodal regressions of

Uranus ( years) and Neptune ( years),  respectively.  

 

                            TABLE 1: Largest Amplitude Terms for Saturn’s Orbit                             

  

      j     Ij (°)

    16    -26.34     0.910

    17    - 2.99     0.045

    18    - 0.692     0.064

The variations in inclination and precession rate of the orbit cause a complicated time

dependence for the orbit normal n(t) in the equation of motion for s. This can lead to

oscillations of the planet’s obliquity as the spin axis attempts to precession about the moving

orbit normal. In a linearized solution (e.g. Ward 1974; eqn. (5) below) conspicuous

oscillations occur because there is a near match between the spin axis precession rate 

and -g18, but again, the relative closeness of these frequencies for Saturn is due in part to its

current obliquity.  On the other hand,  there are very good reasons to believe that both  and

g18 were different in the past.  For example, the spin axis precession rate would have varied

during the early contraction of Saturn as its cooled soon after formation (Pollack, et al. 1976;

Bodenheimer and Pollack 1986), while the frequency g18 would have been faster in early solar

system due to the presence of a larger population of objects in the Kuiper belt (Holman and

Wisdom 1993; Duncan, et al. 1995; Malhotra, et al. 2000) whose gravitational influence

would have increased Neptune’s regression rate.  Thus, if the similar values of  and -g18

are not coincidental, something must have maintained this relationship during these changes.

The current paper applies the theory of secular spin-orbit resonance to the Saturn/Neptune

interaction, and demonstrates the ability of the resonance to drive up Saturn’s obliquity from
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an initially near zero value.  Our companion paper presents numerical experiments that further

support the efficacy of this mechanism.

 III. SECULAR SPIN-ORBIT RESONANCE

a.  Spin Axis Trajectories

  Since there are many terms in equation (4),  neither the inclination nor the regression

rate   of the orbit are constant.  In the case of small angles,  the equation of motion for the

spin axis can be linearized and solved analytically to give an expression for obliquity

variations of the form (Ward 1974)

where  is a long-term average obliquity and the { } are phase constants that depend on the

observed planetary orbits.   In general, the various sinusoidal terms cause rapid oscillations

compared to any change in .  However, if for some j = J, ,  that term’s small

denominator causes its amplitude to become very large while its frequency becomes very slow.

The combination of this J-term plus  can then be replaced by a slowly moving non-linear

guiding center about which the other terms cause a high frequency circulation of the spin

axis (Ward 1992).   It  turns out that the high frequency terms do not interfere much with the

motion of the guiding center even if  passes through , although in this case the

linearized version of  is no longer valid. One can show both analytically (Ward et al.

1979) and numerically (Ward 1992; paper II) that the motion of the guiding center is quite

similar to the spin axis motion in the case of uniform orbital precession provided we set I

.  We turn to that case now.

Consider an orbital precession obtained by retaining only a single term J in the

precession equation (4).  In this case, n maintains a constant inclination I  to the fixed

normal to the invariable plane k,  and precesses at a constant rate  (Figure 1).

If a coordinate frame rotating with angular frequency g is adopted, the orbit normal n will
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appear fixed. The equation of motion for the unit spin vector of a planet now takes the form

This problem is well studied (e.g., Columbo 1966;  Peale 1969, 1974; Ward et al. 1979;

Henrard and Murigande 1987), and an exact integral of the motion can be found, which is also

the relevant portion of the Hamiltonian of the system,  (e.g., Ward

1975).  In the next section we use H together with the elegant Cassini state theory as developed

by Colombo, Peale and others.  

b.  Cassini States

Columbo (1966) showed that the unit spin axis 

 traces out a closed curve on the unit sphere,

, given by its intersection with a cylindrical parabola, 

as shown in Figure 2.   This describes a family of parabolae with latus rectum 

and axis  but various vertices K.  Depending on the choice of  and the

resulting location of the axis  zo, there are either two or four locations (called Cassini states and

denoted by the vectors s1  s4  in Figure 2) where a parabola is tangent to the unit sphere for

some value of the vertex and the trajectory degenerates to a point.  Here the spin axis s remains

co-planar with n and k and stationary in the rotating frame, which means that in inertial space,

these vectors co-precess at the same rate g, as depicted in Figure 1.  Two of the states (labeled

1 and 4) are on the same side of k as n, while state 2 is on the opposite side (Cassini state 3,

which is retrograde, will not further concern us here).  If the convention introduced by Peale

(1974) of measuring  clockwise from n is used, the state obliquities can be found from the

single relationship,
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obtained by setting  in eqn. (6).   This  is equivalent to a quartic equation which

could be solved explicitly for its four roots.  Figure 3 shows a plot of the Cassini state

obliquities   as  functions of  where a value of I = I18  has been adopted.  It can

be seen that for less than some critical value, states 1 and 4 do not exist.  This value can

be determined  by differentiating eqn (8) and setting   at to find the

condition .  Combining with eqn (8), one can solve for the

critical values of  and , viz.,

For I18, and .

Rearranging eqn. (8) into the form , it is clear

that the LHS can be made small by either a small value of  for which ,

or by making the bracketed term small.   These conditions yield the following approximate

formulas,

When , the first expression approximates states 1 and 3 corresponding to

, respectively, while the second gives states 2 and 4.  When , the first

expression gives states 2 and 3, while the bracketed quantity cannot approach zero and the two

corresponding roots of the quartic equation are complex. In this case, states 1 and 4 do not

exist.  States 1 through 3 are stable in the sense that if the spin axis is slightly displaced from

them, it will tend to circulate the state; state 4 is unstable in this regard and lies on a  separatrix

(Figure 2b), which partitions the unit sphere into three domains, each containing a stable state.

c.  Spin Axis Position

 To evaluate whether Saturn could be in the resonance, its spin axis must be located

with respect to the j = 18 reference frame defined by a  z-axis that lies along the pole of the

term, and an x-axis along its ascending node on the invariable plane of the solar system.  The

right ascension and declination of s with respect to the equator and equinox at epoch J2000.0
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are 40.595° and 83.537° respectively (Yoder 1995).  Rotating about the vernal equinox by the

Earth’s obliquity, 23.439° (Yoder 1995), gives s with respect to the ecliptic and equinox as

                                                                TABLE II: 
             Coordinates of Saturn Spin Axis,  j = 18 Pole, and Normal to Invariable Plane
                                                                                                                                         
       Vector   Reference frame  i    Co-latitude*   Longitude          x                 y
                                                                                                                                       
           s          Ecliptic/equinox          28.049°      79.509°    8.546×10-2    4.624×10-1           
           k                    “                          1.579°      17.582°    2.627×10-2    8.322×10-3

                                                                                                                                          
           k         Invariable plane                0               ---                 0                 0        
           s                     “                        27.254°     68.491°    5.919×10-2   4.541×10-1

           n                    “                         0.0644°    66.476°     4.488×10-4  -1.031×10-3

                                                                                                                                        
           k         Intermediate                  0.0644°   113.523°   -4.488×10-4  1.031×10-3

           s                      “                       27.315°      82.264°    5.874×10-2  4.551×10-1  
           n                      “                            0              ---                  0                  0               
                                                                                                                                        
           k         j = 18 system                 0.0644°       90°                 0          1.124×10-3 
           s                      “                       27.315°       59.122°    2.355×10-1   3.938×10-1

           n                     “                              0              ---                  0                  0 
      _________________________________________________________________

         *  For s, the co-latitude is the obliquity, for k, n it is the inclination

shown in Table II.  The normal k to the invariable plane from Allen is listed as well.  Also

included in the table are the x and y components of each vector in each system.  Since the

inclination of the invariable plane is very small, to first order accuracy the coordinate system

can be transformed to that plane by subtracting the components of k from s.  We now

introduce the j = 18 pole from Applegate et al. (1986), who give2

, where .

Setting , and recalling that the longitude of the pole is 90° behind its

ascending node , we find the components of n listed in Table II.  We can transform again

to a system with n at origin by subtracting its components from the other vectors. This gives
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the vectors in an intermediate system.  A final counter-clockwise rotation of the coordinate

system by 23.523°puts k in the y-axis.  The spin axis lies  from k.

Figure 4 shows polar views of the j = 18 system for  = -1.16 along with the separatrix,

and s = .  The separatrix is more narrow than the example

of Figure 2 because the inclination is an order of magnitude smaller. Since the trajectory does

not enclose n at the origin, such motion produces the longitude libration diagnostic of

resonance trapping. 

 d. System Evolution

If the frequency ratio  changes for some reason, the Cassini states migrate along

the unit sphere in accordance equation (8) and Figure 3.  If changes occur slowly enough, it

can be shown that the area enclosed by the spin axis trajectory about the local Cassini state

remains nearly invariant (e.g., Peale 1974; Ward et al. 1979).  Slowly enough means that the

state migration rate is much less than the rate of spin axis motion: the so-called adiabatic

limit. In particular, if the spin axis starts near state 2  with  << 1, it will remain so as

 increases and the state migrates away from n (at  = 0).  As the frequency ratio passes

through the critical value, the obliquity rises steeply and can become quite large; this is

resonance capture.   

By contrast, with  >> 1, state 1 is near n, but rotates away as  decreases,

while state 4 rotates toward it.  The two states eventually merge at  ; past this, state

2 is the only prograde state.   A spin axis initially close to state 1 will track its motion until

its merger with state 4.   At this point it is left stranded and must establish a new trajectory

about state 2, enclosing an area that may no longer be small.  This sequence is resonance

passage in the non-capture direction and results in a ‘kick’ to the obliquity. Consequently,

passage through the resonance is not a reversible process, with the outcome depending on

direction.  Employing elegant analytical expressions derived by Henrard and Murigande

(1987) for the areas inside each of the domains, the above arguments are easily quantified.

The area inside the separatrix containing state 2 can be written as, 
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where 

which starts at  for , and diverges as .   The remaining functions

can be written  

where the second quadrant value of tan-1T is to be used when T < 0.  The other two domain

areas can now be written in terms of eqn. (11) ,

Figure 6 displays the domain areas as a function of .  Note

that when  = 0;  = 0, tan-1 T = , tan-1(1/ ) = /2 .  Substituting these values into eqn

(11) yields the critical value of A2 =  for which A1 vanishes, indicating the

merger of states 1 and 4.  Finally, setting , the area surrounding state 2

at merger becomes

If state 2 were to then migrate near the orbit normal (i.e.,  << 1) , the precession would

become almost uniform with an obliquity given by 

Figure 5 shows this obliquity as a function of inclination amplitude.   Again, these are

adiabatic values corresponding to arbitrarily slow passage.  The obliquities for amplitudes in
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Table I are indicated on the curve; for  I18  = 0.064°,  = 14.5°.

IV. TUNING MECHANISMS

If Saturn was captured into a secular spin-orbit resonance with Neptune, how and when

did this occur?  For the present frequency ratio, state 1 lies very close to the pole position of

the j = 18 term (Figure 4).  It is only because of Saturn’s large obliquity that the ratio of

Neptune’s orbit precession rate to Saturn’s pole precession rate could be near unity.  To

account for this as a result of resonance capture, the case must be made for either an increase

in  and/or a decrease in  to ‘tune’ the system through the critical frequency ratio in the

proper direction.  Below we discuss possible adjustments in the early solar system that could

account for this, although they may not be unique.

a. The Kuiper Belt.

 Neptune’s nodal line regression is caused by the orbit averaged gravity of the planets

interior to it.  If there were planets exterior to Neptune they would each contribute to g18 by an

amount 

where are the planet’s mass and semimajor axis,  

are the semimajor axis and mean motion of Neptune,  is the solar mass, and the

quantity  is a Laplace coefficient (e.g., Brouwer and Clemence 1961).  Pluto does this,

but its mass is so small (MP ) that its fractional contribution

is only .  However, Pluto is generally regarded as a remnant of a larger

Kuiper belt population that was eroded away over time (e.g., Holman and Wisdom 1993;

Duncan et al. 1995).  The contribution of a primordial Kuiper Belt of surface density  to

Neptune’s precession can be estimated by replacing Mp by  in eqn. (17) and integrating

over the width of the belt.  Starting at Pluto’s distance, , and integrating to ~50

AU where recent observations indicate an outer edge to the belt (Allen et al. 2001; Trujillo and
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Brown 2001) yields a fractional contribution of order , or about 1%

for each earth mass of material.  The present mass MK of the Kuiper Belt is of order

, but its primordial mass, estimated by extrapolating the planetesimal disk from

Neptune into the region, could have been as high as  (e.g., Stern and Colwell 1997;

Farinella et al. 2000; Malhotra et al. 2000).  This is sufficient to place Saturn to the left

of  in Figure 3, implying that it passed through the resonance in the capture direction

as the mass of the belt diminished.  We should also point out that a concomitant outward

migration of Neptune (e.g., Hahn and Malhotra 1999) would result in a decreasing | g18 | as

well.  Numerical experiments of the erosion of the belt indicate a time scale in excess of

 years for the portion of the belt beyond ~ 40 AU .    The final obliquity of Saturn would

then simply be the limiting value it acquired by the time the Kuiper Belt mass was exhausted.

b. Spin Axis Librations.  

 If Saturn is currently trapped in the resonance, Figure 4 shows that it is librating about

state 2.  The inferred libration amplitude  is sensitive to where we put the separatrix or

equivalently to the exact value of .  There is some uncertainty in g18,  but it is probably

small; the planetary theory constructed Bretagnon (1994) including fourth-order long-period

terms with short-period term corrections gives , while Applegate et al (1986)

Fourier transform the orbital elements of a 100 Myr numerical integration of the outer five

planets to find .  The greatest uncertainly in  is thorough the moment of inertia

of Saturn, but resonance occupancy places a constraint on .

The smallest area enclosed by a librating trajectory is found by making the current spin

axis position the amplitude , while the largest area is found by putting Saturn’s pole on

the separatrix itself, for  either greater or less than so that  .  The area inside

the current trajectory can be found as a function of  , 

where  and  the integration limits are the values of z for



14

(20)

(21)

(19)

which  (Ward et al. 1979). Saturn’s current pole position constrains allowable

values for the vertex, . The minimum  occurs when 

and .  The associated value of A = 0.0167 sets a minimum pre-

capture obliquity of  A curve of A values compatible with the current s is

included in Figure 6.  The inferred range of uncertainty in the frequency ratio, 1.078 < <

1.182, can be related to Saturn’s moment of inertia through equation (1), i.e.,

 gives the range of values for which Saturn could be currently trapped

in the resonance.  The minimum is ~1% larger than the Hubbard and Marley value but well

within its uncertainty.  

For  I18,  = 0.2003; projecting this case back to << ,

gives the maximum obliquity,  , for certain capture, which turns out to

recover equation (16), i.e., .   From Figure 6,  A = Acrit for  -1.084 and -

1.169.  The corresponding inertia range is 0.2257 <  < 0.2438.  Capture is possible for larger

, but at a decreasing probability given by  

The rate of change of A2 is found from , where the partial

derivatives are given by Henrard and Murigande (1987) 

Substitution into eqn. (19) yields 

which is to be evaluated at the moment of separatrix crossing.  If, when , the

original obliquity is  > 14.5°, the area   Ao  of the unit sphere below the
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trajectory is less than value of A3 when the separatrix first appears, i.e., the spin axis is in

domain 3 outside of the separatrix.  As  increases, both A1 and A2 increase at the expense

of A3 as shown in Figure 6.  The spin axis crosses the separatrix when Ao = A3 , or

.  Combining with eqn. (11) this condition reads,

which can be used to determine the transition values of  and .  Using these in eqn. (21)

yields the probability.   Figure 7 shows the capture probabilities as a function of the pre-

capture obliquity.

V. DISCUSSION

What would be a  likely origin of Saturn’s libration?  One clear possibility is a late

impact.  A fortuitous grazing impact near Saturn’s pole at its escape velocity will shift the spin

axis by , where m and  are masses of the

projectile and the Earth, respectively; more probable impact parameters and angles would

require several earth masses.  On the other hand, if the impact post-dated resonance capture,

the elongated nature of the trajectories decreases the required obliquity change by a factor

 (see paper II).  Indeed if the impactor shifts the axis more than the half-

width of the separatrix itself, ,  it would  knock Saturn out of the

resonance.  Another way to generate libration is by a somewhat non-adiabatic passage

through the  j = 18 resonance in the capture direction on a time scale comparable to the

libration time of ~ years.  We note this is not too different from the erosion timescale

of the Kuiper belt, and numerically assess this possibility in our companion paper II.  Non-

adiabaticity may also be introduced if Neptune migrates in a stochastic manner (Hahn and

Malhotra 2000).  This could cause diffusion of the spin axis inside the separatrix.  If the g18

splits into a cluster of similar terms, this could introduce chaos in a manner similar to that

found for Mars (Touma and Wisdom 1993; Lascar and Robutel 1993).  However, current orbit

theory does not yet show much evidence this.
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 An intriguing alternative is to evoke two passes through g18 starting with a non-

adiabatic passage in the non-capture direction during Saturn’s Kelvin-Helmholtz contraction.

During contraction, the spin angular momentum of Saturn, , remains constant

so that . Equation (1) then indicates that  increases with the quantity , while

the rotationally induced value of J2 is  (e.g., Kaula 1968).  Consequently,

, and  was larger when Saturn was more

distended, where ( , Ro) denote the current precession constant and planetary radius.

Accordingly, an increase of  would more than compensate for a

primordial increase in g18,  reinstating Saturn to the right of the resonance in Figure 3.

Contraction then drives Saturn through the resonance in the non-capture direction with a

maximum induced obliquity of 14.5°.  If the passage is fast enough to break the adiabatic

invariant at some point, the induced obliquity, ,  will be less than the adiabatic

value (Appendix).  Consequently, the minimum pre-capture obliquity  could be used to

put a limit on how fast Saturn could have contracted during its first resonance passage. The

minimum characteristic timescale, , for resonance passage is

which in turn implies a minimum characteristic contraction timescale

.   This is consistent with models of the

contraction of the gas giant planets using modified stellar evolution codes (e.g., Pollack et al.

1976;  Bodenheimer and Pollack 1986).  

VI. SUMMARY

  Saturn’s spin axis precession period is close to the precession period (1.87 × 106

years) of the Neptune’s orbit plane.  We propose that these planets are locked into a secular

spin-orbit resonance, and that this is the origin of Saturn’s relatively large obliquity (26.7°)

compared to that of Jupiter (3.1°).  We have outlined a sequence of events that could account
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for the establishment of this resonant state.  Initially forming with a small obliquity, Saturn

passed through the resonance in the capture direction as the Kuiper Belt was depleted,

pumping up its obliquity until eventually acquiring its current value. A Saturn currently in

resonance places a constraint on that planet’s normalized moment of inertia  >  = 0.2233

and implies the spin axis is librating with an amplitude . This could be a fossil remnant

of a  pre-capture obliquity generated in an earlier resonance pass during the planet’s Kelvin-

Helmholtz contraction.  Alternatively, the librations may have been caused by non-adiabatic

conditions during resonance passage (paper II) or excited by a late impact.  Numerical

experiments described in our companion paper illustrate  resonant capture in detail. The critical

precession frequency separating circulating from librating spin axis trajectories  is

, and perhaps further observational data will be able to

discriminate between them.
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APPENDIX: NON-ADIABATIC OBLIQUITIES

The equation of motion (6) in component form reads

Consider again a small angle approximation: , and introduce a new

independent variable , where we take t = 0 to be the moment when  = -g.

The x and y equations can be combined to yield a second order equation

 with solution
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(25)

(26)

(27)

We now expand  so that .  Integration of eqn. (22) then gives

(Ward et al. 1976)

were  are Fresnel integrals, and we have required  as .  As

, C1 and S1 approach ½, yielding an obliquity proportional to , viz.,
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FIGURE CAPTIONS

Figure 1.  Co-precession of orbit normal n and Cassini state position of spin axis si about the

normal k to the invariable plane.

Figure 2.  Spin axis trajectories and Cassini states [shown by vectors s1 through s4] traced on

the unit sphere for a coordinate system rotating about the normal to the invariable plane, k,

with the nodal regression frequency g.  The Cartesian coordinate system has its z-axis in the

direction of the orbit normal n and its x-axis along the line of the orbit’s ascending node, so

that the vector k lies in the y-z plane, inclined by angle I  to n.  The z-coordinate of the spin

axis position is the cosine of the obliquity, .   Figure 2b is a polar view of the same

unit sphere.  The trajectory passing through state 4 is the separatrix (shown bold) that partitions

the unit sphere into the three domains.  The inclination employed this example to more clearly

illustrate the morphology of the trajectories is an order of magnitude larger than the actual j

= 18 term is used in Figure 4.  
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Figure 3.  Obliquities of Cassini states 1, 2 and 4 as a function of the  frequency ratio .

Spin axis trajectories circulate about stable states 1 and 2; state 4 is unstable and lies on a

separatrix.  States 1 and 4 merge and disappear at the critical frequency ratio.

 Figure 4.  Illustration of the polar view of unit sphere for the j = 18 frame of reference for

.  The amplitude of the j = 18 terms is  I18 =  0.064°.  In addition to the Cassini

states, and separatrix, the current spin axis position of Saturn is indicated.   The spin axis lies

inside the separatrix and circulates state 2 on elongated trajectories that produce libration.

Figure 5.  Adiabatic values of the obliquity excited by an arbitrarily slow resonance passage

in the non-capture direction as a function of the inclination amplitude, I.  The values

corresponding to the j = 16, 17, and 18 terms for Saturn’s orbit are indicated.  

Figure 6.   Domain areas as a function of frequency ratio. Top line is sum of domains 1 and

2; second curve is domain 2 only.  Lowest curve shows possible loci of area A enclosed by

Saturn’s current spin axis trajectory.  Intersections with A2 limits the frequency ratio for

trapping; intersections with  Acrit (dotted line) limits the curve to pre-capture obliquities less

than 14.5° for which capture is certain.

Figure 7.  Capture probabilities into domain 2 as a function of the pre-capture obliquity.
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