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We have numerically investigated a three-body problem con- 
sisting of the Sun, an asteroid, and an infinitesimal particle initially 
placed about the asteroid. We assume that the asteroid has the 
following properties: a circular heliocentric orbit at R -- 2.55 AU, 
an asteroid/Sun mass ratio of/~ -- 5 x 10-12, and a spherical 
shape with radius R A -- 100 km; these values are close to those of 
the minor planet 29 Amphitrite. In order to describe the zone in 
which circum-asteroidal debris could be stably trapped, we pay 
particular attention to the orbits of particles that are on the verge 
of escape. We consider particles to be stable or trapped if they 
remain in the asteroid's vicinity for at least 5 asteroid orbits about 
the Sun, or about 20 years. Applying this criterion to particles 
started on circular orbits around the asteroid, we find that, as 
the starting distance from the asteroid is varied, a fairly abrupt 
transition between trapped and untrapped objects occurs. We de- 
fine the distance where the transition occurs to be the critical 
distance. 

Our orbital plots for Amphitrite can be scaled for application to 
other asteroids using the same functional dependence as the Hill 
radius which is rH = (P/3)I/3R; for Amphitrite rr~ - 450RA. We 
find empirically that initially circular prograde orbits remain bound 
out to a critical distance of about (rH)/2 = 225 RA, while initially 
circular retrograde orbits remain bound out to nearly twice that 
distance. Particle orbits that start out circular and are inclined 
with respect to the asteroid's orbital plane have critical distances 
between these two extremes. Note that our choice of initially circu- 
lar orbits is arbitrary; different initial conditions would generally 
lead to different critical distances. 

This study explores the three-dimensional aspects of stability 
more thoroughly than previous studies. To first order, particles 
that are on stable orbits reside within a region that is approximately 
spherical for angles [01 < 35 ° (0 is the latitude in a spherical 
coordinate system) such that Izl < 285 RA, but is fairly flat and 
parallel to the x-y  plane at z = +-285 R A over  the poles. The radius 
of the spherical surface is roughly 480R A. These distances would 
be reduced ff the model included the asteroid's orbital eccentricity 
or other perturbations such as those from Jupiter. This result 
does not address whether any mechanisms exist to populate such 
orbits. © 1991 Academic Press, Inc. 

INTRODUCTION 

Spacecraf t  have  now visited all classes of  solar sys tem 
targets,  excepting asteroids. This neglect of  the planetary 

explorat ion program should be  remedied  when  the Galileo 
spacecraft ,  launched in Oc tober  1989, encounters  the as- 
teroid 951 Gaspra  on October  29, 1991. It  is expected  
that the as teroid ' s  surroundings will be  a lmost  devoid of  
material  and therefore  benign since, in the analogous case 
of  the satellites of  the giant planets ,  significant debris has 
never  been  detected.  The analogy is imperfect ,  however ,  
and so the possibility that interplanetary debris may  be 
enhanced in the gravitational well o f  the asteroid must  be 
considered.  I f  this is the case,  the danger  of  collision with 
orbiting debris may increase as the asteroid is approached.  

Since the character  o f  the circum-asteroidal  environ- 
ment  cannot  be well character ized f rom ground-based 
observat ions  (Gradie et al. 1985, Terrile and Smith 1985), 
some have  argued that the dis tance of  closest  approach  
of  the first explora tory  space mission should be  chosen 
very conservat ively.  Counter ing this cautious point  o f  
view is the fact  that several  inst ruments  aboard  the Galileo 
spacecraft ,  notably the visual imaging and especial ly the 
infrared imaging systems,  would benefit by a close flyby. 
Hence ,  in order  to proper ly  weigh the scientific gain of  a 
close asteroidal approach  against  the increased risk of  a 
catastrophic collision with unseen circum-asteroidal  de- 
bris, we have  sought to determine those regions near  an 
asteroid where  material  may  orbit  stably.  Although not 
discussed in this article, the question of  how circum-aster-  
oidal debris might be  generated must  be addressed  before 
one can determine the likelihood that  material  might re- 
side near  an asteroid. 

Since the prob lem of  N gravitationally attracting bodies  
is well known to be  analytically unsolvable  for  N > 2, 
numerical  methods  must  be employed  to obtain quantita- 
tive est imates of  the mot ion of  a test  particle in the vicinity 
of  an asteroid that itself circles the Sun. The three-body 
problem has been numerical ly integrated m a n y  t imes pre- 
viously (consult Szebehely (1967) for  historical references  
while for  more  recent  work  see Zhang and Innanen  (1988), 
Murison (1989b), Chauvineau and Mignard (1990a,b)) but  
the space of  possible pa ramete rs  is so large that  the three- 
body p rob lem ' s  complete  solution is, fundamental ly ,  not 
understood.  For tunate ly  the prob lem that  we wish to 
solve is more  restr icted,  al though still analytically in- 
tractable.  
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We treat the case of hierarchical masses since the aster- 
oid's mass is insignificant relative to the solar mass, yet 
is very large in comparison to particles likely to be orbiting 
it. Hierarchical masses provide a limiting case of both 
Hill's problem and the restricted three-body problem 
(Hrnon and Petit 1986). We further narrow the space of 
parameters by giving the asteroid a circular orbit around 
the Sun, by choosing to study only those orbits that are 
weakly bound to the asteroid, and by starting test particles 
out on initially circular orbits. The second choice is made 
in order to explore the transition region between bound 
and unbound orbits and hence to delineate the zone in 
which the material could be stably trapped. 

In the numerical examples to follow, we model the 
asteroid 29 Amphitrite, a previously planned target of 
Galileo (see also Zhang and Innanen 1988), as having a 
circular orbit of radius R = 2.55 AU, and an asteroid/Sun 
mass ratio /~ = 5.0 x 10 -12. For an assumed asteroid 
radius of 100 km, the chosen/x corresponds to a reason- 
able density of 2.38 g/cm 3. Our investigation confirms and 
extends the study of Zhang and Innanen (1988) by using 
heuristic models to understand the nature of the observed 
orbits, by considering motion out of the orbital plane, by 
illustrating the shape of the volume filled by particles on 
stable orbits, by showing how results can be scaled to 
other asteroids, and by placing the problem in the context 
of modern ideas on chaos (Chauvineau and Mignard 
1990a,b, Murison 1989b). 

E Q U A T I O N  O F  M O T I O N  

We use two noninertial coordinate systems (Fig. 1), 
each with its origin on the asteroid which itself orbits the 
Sun: nonrotating coordinates that keep their axes fixed 
with respect to the distant stars, and rotating coordinates 
that maintain their axes fixed relative to the Sun. In each, 
the asteroid's orbit lies in the x-y plane. Because the 
orbits we consider are only weakly bound to the asteroid, 
solar perturbation forces are relatively large and, accord- 
ingly, most paths are more easily understood when viewed 
in a reference frame rotating with the asteroid's mean 
motion ~ .  around the Sun (Xro t,yrot,z in Fig. I). The mean 
motion is a vector that points normal to the orbit ($ is the 
unit vector in the z direction) and has magnitude 

R 3 , 
(1) 

where G is the gravitational constant, R is the Sun-aster- 
oid distance, and M is the mass of the Sun. The accelera- 
tion [ of a particle orbiting the asteroid is then approxi- 
mately given by Hill's equation (Szebehely, 1967), 
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FIG. 1. Two noninertial coordinate systems are shown as they follow 
the asteroid on its circular orbit o f  radius R about the Sun. The xyz 
system stays fixed in its angular orientation while the ( x Y Z ) r o t  system 
rotates uniformly so that the Sun always is atXro t = - R .  In the nonrotat-  
ing system the Sun is initially at x = - R  and it moves  with angular 
velocity l~ around the asteroid in the plane z = 0. In most  integrations 
the particle starts along the Sun-as te ro id  line at (x = d, y = 0, z = 0) 
with a velocity in the nonrotating frame that would put it on a circular 
orbit if the Sun were not present.  

= - -  G M A ^  "t- [~2(3XrotXrot Zl )  2 ~  × Vrot (2) 
r 2  lg - -  - -  

where r is the vector pointing from the asteroid to the 
particle, ~ is the corresponding unit vector, Vro t is the 
particle's velocity measured in the rotating frame, and 
MA is the mass of the asteroid. The terms on the right side 
of Eq. (2) are due to the asteroid's direct gravity, the 
combination of solar tidal and centripetal effects, and the 
Coriolis effect, respectively. Henceforth, the full second 
term will be referred to as the "tidal" term. In the deriva- 
tion of Eq. (2), we have neglected quantities that are 
second order in r/R. These terms, if included, would break 
the symmetry of the tidal term around the Yrot - -  Z plane. 
We have observed consequences of this broken symmetry 
in a few escape orbits, but do not judge it to be significant 
in estimating the trapped region or in describing most 
orbits. 

In order for the reader to gain insight into the trajector- 
ies to be shown later, we now discuss some of the proper- 
ties of the accelerations in Eq. (2). In these descriptions 
we will call an orbit prograde if the particle's angular 
velocity around the asteroid is in the same sense as the 
asteroid's angular velocity around the Sun; for a retro- 
grade orbit, the particle's angular velocity is in the oppo- 
site sense. Figure 2 is a sketch showing how the direction 
and magnitude of the various accelerations change along 
a hypothetical orbit that is coplanar and oval-shaped in 
the rotating frame. Notice that the accelerations all act in 
different directions: the direct term always points toward 
the asteroid, the tidal term invariably aligns parallel or 
antiparallel to the solar direction, and the Coriolis term is 
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FIG. 2. Sketches of the accelerations (magnitudes and directions) 
that are experienced by a particle at various places along a coplanar oval 
orbit whose long axis is aligned with the solar direction; the asteroid 
is at the origin. The direct acceleration is caused by the asteroid's 
gravitational attraction of the particle. The "tidal" acceleration is due 
to the local imbalance between the Sun's attraction and that needed to 
cause the asteroid's circular path [see Eq. (2)]. The sign of the Coriolis 
acceleration depends on whether the particle moves in the same (pro- 
grade) or opposite (retrograde) angular sense as the asteroid in its orbit 
about the Sun. 

always perpendicular to the orbit. Furthermore, the direct 
acceleration is inward and thus acts to bind particles to 
the asteroid, while the tidal acceleration, which has a 
component that points outward, acts to expel them from 
the system. The Coriolis acceleration points outward for 
prograde orbits but inward for retrograde ones; thus it 
tends to stabilize the latter but disrupt the former. 

Finally note that along a given orbit the tidal accelera- 
tion increases with growing separation distance, while all 
other accelerations decrease. Comparing the directions of 
the accelerations in the prograde and retrograde cases, 
we can already see that retrograde orbits should be stable 
out to greater distances than prograde ones since in the 
former situation the Coriolis acceleration is inward while 
in the latter it is outward. Numerical experiments support 
this statement as does nature's laboratory: the outermost 
moons of Jupiter and Saturn are on retrograde orbits. 

In order to quantify the radial dependences of the accel- 
erations, they are plotted in Fig. 3 as functions of distance 
from the asteroid for the special case of a circular coplanar 
orbit. Recall that the asteroid's mean density is assumed 
to be 2.38 g/cm 3 and its semimajor axis is assumed to be 
2.55 AU. To adjust the axes of this and all of the follow- 
ing plots to your favorite asteroid, simply multiply dis- 
tances measured in asteroid radii by the factor (R/2.55) 
(p/2.38) m, where p is the asteroid's density in grams per 
cubic centimeter and R is its semimajor axis in AU. The 
justification for this scaling will be presented in a later 
section; we also note here that differences in asteroid 
orbital eccentricities are not, and cannot be, accommo- 
dated. 

All of the curves plotted in Fig. 3 are normalized by the 
local direct acceleration of the asteroid's gravity. Since 
the strength of the tidal acceleration depends on azimuthal 
position (see Fig. 2), it varies along even a circular orbit 
and thus here we plot its maximum value. The total accel- 
erations for prograde [curve P] and retrograde [curve R] 
orbits as plotted in Fig. 3 were obtained by taking the 
various terms and simply adding them; even though this 
addition ignores the vector character of these accelera- 
tions, we believe that it is instructive. 

In the limit of small separations (i.e., on the left side of 
Fig. 3), the perturbation accelerations [curves C(P), C(R), 
and T] tend to zero, and thus both prograde and retrograde 
orbits approach the two-body solutions: circles and ellip- 
ses about the asteroid. Accordingly, the curves of Fig. 3 
are most applicable in this inner region, since only there 
do circular orbits actually exist. Nevertheless, the curves 
provide useful guides for estimating magnitudes in more 
complicated situations. Of course, care must be exercised 
in their application, especially when estimating the magni- 
tude of the Coriolis acceleration which, due to its velocity 
dependence, will vary substantially with the actual path 
taken. 

Both the restricted three-body problem and Hill's prob- 
lem admit an integral of the motion that can be derived 
by integrating, over time, the scalar product of Eq. (2) with 
the velocity Vro t. Chauvineau and Mignard's expression 
(1990a) for this "Jacobi"  integral can be generalized to 
three dimensions as 
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FIG. 3. The various accelerations acting on a particle as it moves 
along a circular coplanar orbit about the asteroid are plotted versus 
separation from the asteroid; all accelerations are normalized to G, the 
local gravitational attraction of the asteroid, which decreases as the 
inverse square of the separation. The dashed curves show the various 
perturbations, which are all zero for orbits atop the asteroid (i.e., at zero 
separation); T is the maximum"tidal" term, C(P) is the prograde Coriolis 
acceleration and C(R) is the retrograde Coriolis acceleration. P and R 
are the total perturbations that act on prograde and retrograde particles, 
respectively, ignoring the vector nature of the actual forces. 
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(Vrot) 2 --  ~2(3xZ - z 2) - (2GMJr)  = - C .  (3) 

where C is the Jacobi constant and r = ( x  2 -~- y2 

+ z2) u2 is the distance of the particle to the asteroid. Our 
Jacobi constant is conserved in a rotating frame centered 
on the asteroid and is related to the more usually defined 
Jacobi constant (see Szebehely 1967) which is conserved 
in a rotating frame with its origin at the systems center of 
mass. Subsequently we will give the quantity -C/2  the 
name "energy" to distinguish it from the heliocentric 
energy (energy of a body orbiting the Sun) and the two- 
body energy (energy of a body orbiting the asteroid if the 
Sun were not present). Since a particle's velocity must 
always remain real, and since C is fixed uniquely by initial 
conditions (position and speed), Eq. (3) restricts the mo- 
tion of any particle to lie within those regions of space 
where the following inequality is satisfied: 

place it on a circular orbit around the asteroid if perturba- 
tions from the Sun were absent. In many simulations the 
plane of the particle's orbit was given an initial inclination 
i with respect to the plane of the asteroid's orbit. The 
inclination is positive to the heliocentric north, and 
reaches 180 ° for a purely retrograde orbit. With these 
initial conditions, the ones used most frequently, the only 
degrees of freedom are the initial separation distance and 
the initial inclination. We also explored other initial condi- 
tions for the particle to assess the generality of our results. 
In these explorations, we altered one or more of the fol- 
lowing: the starting longitude, the direction of initial ve- 
locity, and the initial speed. We also ran a large number 
of tests with an asteroid whose orbit around the Sun has 
a moderate eccentricity. The effects of orbital eccentric- 
ity, as well as the forces from Jupiter and radiation pres- 
sure, will be discussed in a later paper. 

l)Z(3x 2 - z z) + (2GMA/r) > C. (4) 

The lines along which the velocity is zero (i.e., those 
places where the left-hand side of Eq. (4) equals C) are 
called zero-velocity or Hill curves. An escape criterion 
that can been invoked is that whenever, for given initial 
conditions, a particle lies within a zero-velocity surface 
that is closed about the asteroid, the particle cannot es- 
cape that region. Of course the converse does not hold: 
there is no guarantee that, just because the Hill curve is 
open, the particle will necessarily escape in a finite time. 
The distance to the positions along the Xrot axis at which 
the zero-velocity surface first opens can be computed to 
be r H = (lz/3)V3R for Hill's problem (Danby 1988). These 
points are two of the three co-linear Lagrange points (the 
other is on the far side of the Sun) and their distance from 
the asteroid defines the radius of the Hill sphere. The co- 
linear Lagrange points are unstable equilibrium points; a 
particle placed with zero velocity in one of these positions 
will remain there forever, but particles starting arbitrarily 
close will depart the neighborhood. 

GENERAL REMARKS ON THE SOLUTION 

Integrations 

Our numerical integrations call upon an efficient inte- 
grator that utilizes both the Bulirsch-Stoer and 
Runge-Kutta methods (Press et al. 1987). The routine 
takes advantage of the speed of the Bulirsch-Stoer tech- 
nique, falling back on the Runge-Kutta scheme during 
close approaches between the two bodies (cf. Murison 
1989a). 

In our integrations the particle was generally started 
along the Sun-asteroid line, on the far side of the minor 
planet (Fig. 1). It was usually given a velocity that would 

Nature o f  Orbits 

Since the relative strengths of the various perturbations 
change with separation (Fig. 3), orbits may have quite 
different characteristics depending on their distances from 
the asteroid (Chauvineau and Mignard 1990a). Within a 
few asteroidal radii, orbits are simple Keplerian ellipses 
since the asteroid's gravity dominates all perturbations 
(see Fig. 3 and the earlier discussion). Farther out, pertur- 
bations become large enough to induce orbital planes and 
pericenters to precess noticeably, although the orbits re- 
tain their basic Keplerian nature. As the distance is in- 
creased still further we come to a region in which quasi- 
periodic stable orbits are intermingled with chaotic paths. 
An orbit is quasiperiodic if it contains only a finite number 
of incommensurate frequencies. In many of our experi- 
ments the period corresponding to the particle's dominant 
frequency is seen to be commensurate with the asteroid's 
orbital period; such a commensurate "locking" between 
the forcing frequency and the natural response of a system 
is a common feature of nonlinear systems. 

This quasiperiodic/ehaotic zone gradually gives way 
to the realm of escape orbits which we define as those 
trajectories that depart the vicinity of the asteroid, but the 
division between these regions is not clearly defined; in 
fact, in the circular restricted three-body problem the 
boundary between these regions is self-similar in a fraetal- 
like manner (Murison 1989b). In an area where escape 
orbits predominate, isolated"islands" of stable quasiperi- 
odic orbits can occur (Chauvineau and Mignard, 1990a). 
And, likewise, in regions where mostly quasiperiodic or- 
bits exist, a few escape orbits can be found. Although the 
regions are not entirely disconnected, we observe that 
beyond a certain "stability boundary," the number of 
stable orbits drops very sharply. Our ultimate goal is to 
understand the size and shape of this boundary that sepa- 
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rates orbits bound to the asteroid from those that escape 
its influence. Since chaotic orbits are prevalent in the 
transition zone, our results for the size of the stability 
zone are probably conservative:  longer integrations would 
have shown additional escapes (Wisdom, 1982). But, to a 
first approximation, we can determine the locus of points 
forming the stability boundary by looking at the outermost  
regions where the majority of  orbits are stable. Chaos 
necessarily permeates these outer  regions, since a parti- 
cle 's fate certainly depends sensitively on initial condi- 
tions (Murison 1989b). 

Since the results of Chauvineau and Mignard (1990a), 
which follow on the pioneering study of  Hrnon  (1970), are 
so relevant to our findings, they will be summarized here. 
These  authors use the surface-of-section technique to 
study the stability of  motions in Hill 's problem. They find 
that, for prograde orbits that have a Jacobi constant much 
greater than the critical value at which the Hill curves 
no longer enclose the asteroid, the motions are regular: 
trajectories are nearly periodic, and stable. In nondimen- 
sional units, G = 1, 12 = 1, and rH = 1 (these choices set 
MA = 3), and the critical Jacobi constant occurs  at C = 
9. At values somewhat  above 9 (from 9.2 to 9.3604 to be 
precise), the topological structure of the mapping is such 
that new periodic orbits are introduced as C is lowered; 
more and more of  these periodic islands appear as 9.2 is 
approached and the regularity of  the mapping is lost. At 
9.2 and below, chaotic trajectories appear in parts of  the 
mapping. These ergodic regions tend to fill up more and 
more of  the phase space until, with C near 9, little of 
the surface of  section is populated with periodic islands; 
instead virtually all is a sea of  chaos. Note  that up to this 
point, since all the zero-velocity curves corresponding to 
C > 9 encircle the asteroid, the motions are bounded with 
the particles remaining about the asteroid, albeit moving 
along chaotic paths. However ,  once the Jacobi constant 
falls below 9, suddenly the ergodic region becomes con- 
nected with external parts of  the phase space. That  is, 
however,  not to say that all particles will necessarily es- 
cape in a finite time, merely that it is energetically possible 
for  particles with C < 9 to find their way through the 
ergodic region and escape. Some regular direct orbits do 
exist for  8.88 < C < 9.00, although they cover  little of  the 
available phase space. For  retrograde orbits Chauvineau 
and Mignard (1990a) find quite different results. With 
C >> 9 the mapping is usually regular and, as in the pro- 
grade case, chaos appears when C is a bit larger than 9. 
The striking difference is that many regular retrograde 
orbits are seen to persist for values of  C well below the 
critical value, unlike the prograde situation. For  complete- 
ness, we note that there are also a small number  of patho- 
logical orbits that oscillate between the direct and retro- 
grade states. 
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FIG. 4. The Jacobi constant, in nondimenstional units (G = 1, 
11 = 1,.r H = 1), is plotted for the family of orbits studied in this paper. 
These orbits are initially circular, are started from the positive x axis, 
and are inclined by an angle i with respect to the x-y plane. The critical 
Jacobi constant (C = 9) is also plotted. If the Jacobi constant of a 
particular orbit lies above the critical line, that particle is bound to the 
asteroid for all time. If, however, it lies below the critical line, the 
particle is energetically able to escape, although it is not required to do 
SO. 

To help the reader  connect  the results of  Chauvineau 
and Mignard (1990a) to the trajectories that we will be 
plotting later, we now show that a one-to-one correspon-  
dence exists between our usual initial conditions and the 
Jacobi constant.  Recall that we start a particle at (d,0,0), 
with a velocity that is inclined at an angle i f rom the 
x-y  plane and whose speed in the nonrotating frame is 
(GMA/d) 1/2. From Eq. (3) the Jacobi constant  for this initial 
condition is 

C = - -  [ ( G M A / d )  1/2 cos(i) - ~ ~ t l q  2 - (GMA/d)sin2(i) + 3d2f/2 
+ 2GMA/d. (5) 

Figure 4 is a plot of  C versus the starting distance d for 
various inclinations i; the plotted Jacobi constant  is given 
in the nondimensional units used by Chauvineau and Mig- 
nard (1990a). 

Scaling to Other Asteroids 

Even though most of  our  simulations considered a spe- 
cific case (/x = 5 x 10-12 and R = 2.55 AU), we can apply 
our results to other  asteroids with different semimajor 
axes and mass ratios. Consider a system of  N gravitation- 
ally interacting bodies viewed from an inertial frame. All 
forces in the system are gravitational, so the strength of  
each interaction varies as the inverse square of  distance. 
In particular, if all distances are multiplied by  a factor  t~, 
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the forces retain their directions and are reduced by a 2. 
One can then rescale time so that the resulting system 
of differential equations is identical to the original set: 
therefore, as long as the initial velocities are also appropri- 
ately modified, identical orbital paths will result. So, for 
example, if the asteroid's distance from the Sun is dou- 
bled, particle orbits around the asteroid will have the same 
shape as in the original case if starting distances from the 
asteroid are doubled and velocities are reduced by a factor 
of 21/2. Thus, the orbits scale with the asteroid's semimaj or 
axis R. 

Employing similar ideas to a change in the asteroid's 
mass, we find that the orbit scales with/.~1/3 for the case 
of the three-body Hill problem with the asteroid-particle 
distance much less than the distance to the Sun. This 
approximation is well satisfied for the motion of bound 
particles. When combined, these two results imply the 
powerful assertion that for each orbit existing around one 
asteroid, a corresponding orbit, differing only in absolute 
size, exists around a second asteroid provided that the 
two asteroids have the same orbital eccentricity. The ratio 
of the sizes of the two orbits is equal to the ratio of the 
radii of their respective Hill spheres: (i.t/3)l/aR. If the sizes 
are measured in asteroid radii, as in our plots, they scale 
as pl/3R. In particular the orbital stability zone, which is 
the union of all stable orbits, scales as this ratio. For 
Amphitrite, the Hill sphere has a radius of -450 RA, while 
for Gaspra it is -390 RA. 

At any rate, it is clear that Hill sphere scaling differs 
from/z2/SR, the size of the sphere of influence, which has 
been used by some mission planners to estimate the region 
within which material could be stably trapped. We recall 
that the sphere of influence is defined as that surface along 
which it is equally valid to consider the motion of the 
particle relative to the Sun with the asteroid as a perturber 
as it is to consider the motion of the particle relative to 
the asteroid with the Sun as a perturber (Roy 1978). That 
is to say, the sphere of influence is the locus of points 
where the ratios of the perturbing forces to the direct 
forces in the two cases are equal. This sphere lies within 
the Hill sphere for /z < 0.004 but the difference only 
becomes significant (Chebotarev 1964) when /x is very 
small, as in the case under consideration here. Amphi- 
trite's sphere of influence has a radius of 115 RA. 

As an example of scaling, we consider orbits about 
Galieleo's target asteroid 951 Gaspra, which has a semi- 
major axis of 2.2 AU. From its mean brightness, it is 
reasonable to assume a radius of I0 km for Gaspra, so 
that, if its density is taken to be 2.38 g/cm 3 (that chosen 
for Amphitrite), then /z = 5 x 10 -15 for Gaspra. Our 
scaling law then states that to apply our Amphitrite plots 
given below to an asteroid with Gaspra's parameters, but 
zero orbital eccentricity, distances measured in asteroid 

radii should simply be reduced by the ratio of the semima- 
jor axes, namely 2.55/2.2 = 1.16. 

ANALYTIC ESCAPE CRITERIA 

Many estimates of analytical escape criteria for circular 
orbits have been made; most follow either from consider- 
ing the Jacobi constant that will open the zero-velocity 
curves or from equating forces in a rotating frame (see 
Fig. 3). Szebehely (1978) has used the former method to 
predict that circular orbits will escape when they start 
beyond rill3. Markellos and Roy (1981) refined Szebe- 
hely's treatment by including all of the terms in the Jacobi 
equation [Eq. (5) with i = 0 ° and i = 180 °] to derive critical 
distances of -0.49r H for prograde circular orbits and 
-0.28rla for retrograde circular orbits (see Fig. 4). These 
distances are lower limits for escape; particles starting on 
circular orbits within these distances are constrained by 
closed zero-velocity surfaces that encircle the asteroid. 
Our numerical results for initially circular orbits are 
-0.49r u for prograde orbits and - r  n for retrograde ones 
(see Fig. 15). The agreement of the prograde results is 
impressive, while that of the retrograde results is appall- 
ing. But there is a simple explanation: the method outlined 
above ignores the influence of the Coriolis acceleration 
on the particle since the scalar product of the Coriolis 
term in Eq. (2) with Vrot is zero. The effect of this omission 
is abundantly clear in the results of Markellos and Roy 
which predict that retrograde orbits are less stable than 
prograde ones, even though the directions of prograde 
and retrograde Coriolis accelerations imply the converse 
(see Fig. 2). In fact, we find that prograde orbits slip 
away as soon as escape is energetically possible, pushed 
outward by the omitted Coriolis acceleration, while retro- 
grade orbits linger, held in by this acceleration. 

Equating forces in a rotating reference frame was origi- 
nally applied by King (1962) who showed that direct grav- 
ity balances the "t idal"  force along the x-axis at a distance 
r H. Innanen (1979) added the effects of the Coriolis force 
to obtain limiting radii for prograde and retrograde orbits 
of 0.69r n and 1.44rH, respectively. This work contains a 
subtle error which involves the translation of the particle's 
velocity into the rotating frame; after correction of this 
mistake, we find that the limiting radii calculated via Inna- 
nen's method should be 0.80r n and 2.60r H, respectively 
(these distances are the points where the normalized force 
curves P and R attain a value of zero in Fig. 3). This 
method shows that retrograde orbits are stable out to 
much greater distances than prograde ones, but gives poor 
agreement with numerical results (see the discussion of 
Fig. 3 for an explanation of why agreement is poor). 

Various arguments (see, e.g., Keenan and Innanen 
1975) have been given for the reason why retrograde orbits 
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PIG. 5. The path of a particle started on a prograde coplanar circular 
orbit at 221 R^ (C = 9.0505) as seen in the rotating coordinate system. 
The asteroid's position is given by an x, the particle's initial location by 
the small triangle with one point showing the direction of the initial 
velocity, and the particle's location at the end of the integration by the 
solid square. The Sun lies out the negative &ot-axis throughout the 
integration. The heavy line shows the zero-velocity curve specified by 
the initial conditions [see Eq. (4)] and the stars show the positions of the 
nearby Lagrange points (and accordingly the size of the Hill sphere). 

are so much  more  stable than prograde ones,  but one we 
find especially appealing relies on the nature of  epicycles,  
the paths of  particles on elliptical orbits as seen f rom a 
coordinate sys tem that moves  at the mean orbital rate;  
epicyclic motions are retrograde and, for small eccentrici- 
ties, take place along a 2 : 1 ellipse aligned with the long 
axis in the direction of the orbital motion. That  is to say, 
if a particle felt no gravitational at traction to the asteroid 
and had an elliptical path around the sun of  the same 
semimajor  axis as the as teroid 's ,  it would be observed  in 
the rotating sys tem to travel  along a retrograde path  (see 
Chauvineau and Mignard 1990a). In a very real sense the 
retrograde motion is preferred whereas  prograde motion 
must  be forced. 

INDIVIDUAL EXAMPLES 

Coplanar Trapped Orbits 

Our numerical  exper iments  for the Amphitr i te  case 
show that all trajectories that start  as circular prograde 
orbits within - 2 2 4  RA (C = 9.0000) are bound,  while most  
of  those outside this range escape  f rom the asteroid. Since 
we are concerned with the outer  limit where  material  can 
still be retained by the asteroid, we show an orbit  (Fig. 5) 
that is close to the stability limit, namely one that was 
initially circular at 221 R a (C = 9.0505). The displayed 
orbit  is quasiperiodic with two dominant  frequencies:  one 
is the inverse of  the synodic period, the other  eight times 
slower as will be seen in Fig. 6. The regular appearance  
of this orbit in the rotating f rame is due to the fact that the 
two dominant  frequencies are close to a ratio of  integers. 

Relevant  t imescales are the as teroid ' s  orbital period (4.08 
Ear th  years),  and the sidereal period of an unper turbed 
satellite at 221 R A (0.80 years).  The unit of  t ime in this and 
the following plots is taken to be  an asteroid year  (the 
period of  the as teroid ' s  orbit  around the sun). 

We can qualitatively unders tand the orbital evolution 
of  Fig. 5 by considering the accelera t ion [Eq. (1)] along 
an initially circular orbit. At first, the path  is elongated 
into an elliptical shape by  the act ion of  the tidal t e rm since 
the Coriolis te rm does  not change a circular orbit  (an orbit  
that is circular in the sidereal f rame will also be  circular 
in the synodic frame;  the Coriolis accelera t ion in this 
simple case merely  accounts  for the difference in orbital 
velocity measured  in the two frames).  As the orbit  elon- 
gates and is flattened further,  the Coriolis accelerat ion 
becomes  increasingly asymmetr ica l  (see Fig. 2); the 
strengthened Coriolis accelerat ion near  the per icenter  en- 
hances radial accelerat ions there whereas  the correspond-  
ing accelerat ion is diminished near  apocen te r  (Fig. 3). In 
fact,  the direction of  the Coriolis accelerat ion near  the 
apocenter  can switch sign if the eccentr ici ty  is high enough 
[ remember  that it is the veloci ty in the rotating f rame that 
appears  in Eq. (1)]; al though such a reversal  does not 
occur  in any of  the planar orbits displayed in this paper ,  
we have noticed it in some of  our  integrations. N o w  the 
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FIG. 6. The time history of the orbit shown in Fig. 5. Plotted are the 
osculating orbital eccentricity e, orbital semimajor axis a, and orbital 
radius r as functions of time in asteroid years. The orbit is most perturbed 
when it is farthest from the asteroid. It is bound and almost periodic. 
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fact that the Coriolis acceleration near the apocenter is 
less that that necessary to maintain a circular orbit allows 
local gravity to more effectively compete with the tidal 
force. This competition is most apparent in highly eccen- 
tric orbits where the apocenter end of the ellipse appears 
to be flattened (Fig. 5). The asymmetry of the Coriolis 
acceleration acts to circularize the orbit, and eventually 
it dominates the elongating effect of the tidal force. In 
the example under discussion, this occurs after the third 
synodic period. The elongation slows, stops, and reverses 
itself. The orbit then becomes more circular until the tidal 
force again dominates the Coriolis force and the process 
repeats. The period of this cycle is eight times the synodic 
period as was mentioned above. 

The entire orbital path of the prograde satellite shown 
in Fig. 5 lies well within the zero-velocity curve, defined 
by Eq. (4), that corresponds to the initial conditions. This 
occurs because a significant fraction of the "energy" in 
the Jacobi integral remains in kinetic energy. It is apparent 
from the zero-velocity curve that the specified starting 
conditions have too little initial "energy" to allow escape. 

The dynamical history of any particle can be described 
in terms of its initial vector position and velocity or, 
equally well, in terms of its four osculating orbital ele- 
ments for a two-dimensional problem (Danby 1988). The 
osculating orbital elements are defined to be those that 
describe the conic section that the particle would follow 
if all perturbations were turned off. These elements, which 
we define in the nonrotating frame, change with time as 
perturbations cause the particle to deviate from true ellip- 
tical motion. Of the orbital elements, the orbital semima- 
jor axis a is the most significant when addressing escape 
since the size of the orbit, 2a, formally becomes infinite 
and then attains negative values as the particle goes 
through the escape process. The time histories of the 
osculating orbital elements that describe the path about 
the asteroid shown in Fig. 5 are displayed in Fig. 6, Here 
the periodic nature of the solution is clearly visible. We 
note that the semimajor axis vs. time curve has local 
extrema near the points where the orbit crosses the Xro t 
and Yrot axes. This feature arises because orbital energy is 
directly related to the semimajor axis (Burns 1976) and 
because the work done by the tidal force changes sign in 
each quadrant of the Xrot-Yro t plane. In general, the work 
done by the tidal force will change sign four times in a 
single orbit, although this need not occur at the points 
where the orbit crosses the axes. 

The histories of the other osculating orbital elements 
can be determined by solving the Lagrange perturbation 
equations and, although we have made a start on that 
study, we will not present it here. 

In the next example (Fig. 7), the particle starts along a 
retrograde circular orbit twice as large as the first exam- 
ple; it begins at Xro t = 445 RA, Yrot = 0 ( C  = 1.5518), 
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FIG. 7. The  path o f  a particle s tar ted on a retrograde coplanar  circu- 
lar orbit at 445 R A (C = 1.5518) as obse rved  in the  rotating coordinate 
sys tem.  See the legend to Fig. 5 for a descr ipt ion of  the  symbols .  The  
orbit is bound  and has  a very  regular  appearance.  

very close to the transition between bound and unbound 
retrograde orbits. The unperturbed sidereal orbital period 
is about 2.3 years or about 4/7 of an asteroid year. As with 
prograde orbits, quasiperiodic retrograde orbits are also 
common; this one has two major frequencies that are not 
quite a ratio of integers (see Fig. 9). For this retrograde 
orbit the zero-velocity curves do not constrain the motion 
(Chauvineau and Mignard 1990a) since, as a result of the 
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FIG. 8. The  first few loops o f  the orbit shown  in Fig. 7. The  letters 
on the pa th  are used  in the  text  to descr ibe var ious  arcs along which 
particular accelerat ions domina te  the  motion.  
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FIG. 9. The time histories of some osculating orbital elements for 
the retrograde orbit displayed in Fig. 7. 

small C (due to the large apparent  velocity of  a re t rograde 
orbit  as measured  in the rotating frame),  the curves  do 
not enclose the asteroid. Never the less  the particle is obvi- 
ously bound;  indeed we note that it is strongly influenced 
by the asteroid since its orbital shape is not the 2 : 1 ellipse 
characterist ic  of  epicyclic motion.  

To analyze the par t ic le ' s  motion,  consider  the per-  
turbing effects of  the tidal and Coriolis te rms on a circular 
orbit (see Fig. 8, which shows the first three loops of  Fig. 
7). Initially the tidal t e rm dominates ,  since the Coriolis 
accelerat ion does not change the shape of  a circular orbit. 
This pushes the particle in the Xrot direction (arc AB) which 
displaces the orbit  as a whole to the right (positive Xrot). 
When the particle moves  to the left side of  the asteroid, 
it is much  closer to the asteroid due to this displacement  
(arc BC). Thus at point C the tidal term, being proport ional  
to Xrot (see Fig. 2), is smaller than it was at A. Hence  the 
total contribution of the tidal force along BC is smaller 
than the integrated effect along AB, resulting in a net 
displacement  of  the orbit to the right. In addition, the 
Coriolis acceleration,  which is s tronger over  arc BC than 
over  arc AB due to a larger velocity,  dominates  the weak-  
ening tidal force. The particle then swings around the 
asteroid (arc CD), most ly  under  the influence of  the aster- 
o id 's  gravity,  and out to large r where  Monsieur  Coriolis 
starts to tug it to the left (arc DB). The tidal force switches 
sign again, and pulls the particle outward along arc BE to 
the point  E, where it has roughly the negative of  its initial 
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FIG. I0. The trajectory of a coplanar prograde particle that escapes 
after starting on a circular orbit at 227.25R A (C = 8.9423). The symbols 
are defined in the legend to Fig. 5. Note that, in contrast to Fig. 5, the 
initial conditions here are such that the zero-velocity curve is open to 
heliocentric space and the particle, after bouncing chaotically around 
within the zero-velocity bottle, eventually slips out the neck to move 
along an elliptic heliocentric orbit having properties described in the 
text. 

velocity and position: the cycle repeats .  The histories of  
the osculating orbital e lements  a and e are presented in 
Fig. 9. 

Coplanar  E s c a p e  Orbits 

Figures 10 and 11 show planar  escape  orbits that have  
initial conditions that are close to the bound orbits of  
Figs. 5 and 7; thus all of  these orbits lie near  the stability 
boundary.  In those cases where  escape  is marginal (such 

- 5 0 0  0 5 0 0  
X~ot (in RA) 

FIG. 11. The trajectory ofa coplanar retrograde particle that escapes 
after starting on a circular orbit at 450RA (C = 1.5421). See the legend 
to Fig. 5 for a description of the symbols used. Note that on the last loop 
the path extends well beyond the radius of the Hill sphere and that the 
particle transfers to a prograde orbit before escaping. In this case, the 
transfer to a prograde orbit occurs in both the rotating and the nonrotat- 
ing frames. The character of the escape path is discussed in the text. 
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as all those discussed here), the direction of escape is 
always near the Sun-asteroid line because the outwardly 
directed tidal term is maximum there (Fig. 2). This result, 
which remains valid even for inclined orbits, can also be 
understood readily from the zero-velocity surface which 
opens first along the Sun-asteroid line (see Fig. 10). Of 
course, with large enough initial "energy" (or, equiva- 
lently, small enough C for the zero-velocity curves to be 
wide open), objects can escape in any direction, but in all 
of the cases that concern us, objects depart from the 
asteroid with little extra energy because the particle is 
initially bound (i.e., its energy in the two-body system 
composed of the asteroid and the particle is initially nega- 
tive) and the perturbation forces can modify this energy 
only slowly. In fact, the Coriolis acceleration, being per- 
pendicular to the orbital velocity, can do no work and 
thus does not alter the orbital energy at all. 

Figure 10 shows a chaotic prograde orbit started at 
227.25 RA (C = 8.9423) that escapes inward toward the 
Sun. The fact that the zero-velocity surface accurately 
delimits the accessible region of space is apparent. Note 
that since, by definition, speeds must be zero on zero- 
velocity surfaces, particles approach the surface perpen- 
dicular to it so as to form orbital cusps. 

Because the asteroid's orbit is circular, one can very 
simply calculate the parameters of the solar orbit that is 
attained by escaping particles. Since the particle departs 
the asteroid with a very low velocity relative to the rotat- 
ing frame, we can ignore this velocity as well as later 
influences of the asteroid (since it is so small and so dis- 
tant) when estimating the particle's heliocentric energy 
which determines directly the orbital semimajor axis of 
the particle in its new path around the Sun (Burns 1976). 
The particle's velocity in the rotating frame is lowest near 
the inner Lagrange point (see Fig. 10), so at this point its 
angular velocity about the Sun closely matches that of the 
asteroid. Making the simplification that the particle starts 
from the inner Lagrange point with zero velocity in the 
rotating frame, one can calculate the specific (i.e., per unit 
mass) heliocentric kinetic energy of the particle I~2(R - 
rH)2/2, and its specific potential energy -GM/(R - rH). 

Equating the sum of these two energies to the total spe- 
cific heliocentric energy in terms of semimajor axis (E = 

- GM/2a) ,  we find that the ratio of the semimajor axis a 
of the particle's orbit about the Sun to the asteroid's 
semimajor axis R is a / R  = (1 - 4rH/R). Since the particle's 
initial velocity in the nonrotating frame is perpendicular 
to the solar direction and the particle initially falls toward 
the Sun, the Lagrange point must be at the aphelion of 
the new solar orbit. Solving the equation for aphelion 
a(1 + e) = R - ria yields (to first order) an eccentricity 
of 3rH/R. Since the escaped particle's semimajor axis is 
smaller than the asteroid's the particle's orbital period is 
shorter, so its path trails off to the upper left as viewed in 
the frame rotating with the asteroid's mean motion (Fig. 
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FIG. 12. The  trajectory of  a particle s tar ted on a circular orbit at 230 
R^ with an inclination of  70 ° as viewed in a project ion onto the  x - z  plane 
of  the nonrotat ing sy s t em (C = 7.2747). The  symbols  are defined in the  
legend to Fig. 5. This  particle eventual ly  escapes .  

10). Alternatively, the direction of departure can be under- 
stood in the rotating frame by considering the effects of 
the Coriolis acceleration. 

Figure 11 shows a retrograde orbit starting at 450 
RA (C = 1.5421) that becomes prograde just prior to es- 
cape. Arguments similar to those for the prograde orbit 
can be used to find a' = R + 4r H and e' = 3rn/R; thus the 
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FIG. 13. An  x - z  projection of  a 50-year integration of  a particle 
s tar ted on a circular orbit at 250RA with an  initial inclination of  70 ° 
(C = 6.9306). This  particle, like m a n y  others  on three-dimensional  orbits 
with inclinations sat isfying 60 ° < i < 120 °, is seen  to reach roughly the  
same z value regardless  of  x. 
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FIG. 14. Effect of tidal forces on an inclined elliptical orbit. Notice 
that the actual orbital path for a single revolution around the asteroid is 
displaced to the right from where an unperturbed elliptical path would 
lie. This, of course, is due to the tidal acceleration. The orbit shown is 
part of that in Fig. 12. 

particle 's escape path trails off to the lower right. Again, 
although it is not as clear as in the prograde case, the point 
of  lowest relative velocity occurs near a Lagrange point. 

Inc l ined  Orbits 

Figures 12 and 13, which are plotted in nonrotating 
coordinates,  show orbits with initial inclinations of  70 ° . 
Figure 12, where the trajectory is seen as projected onto 
the x - z  plane, displays an orbit that starts out roughly 
circular at a distance of  230 RA (C = 7.2747) but changes 
to an oval shape that becomes  narrower  and narrower  
until, on the last loop, the direction of  rotation actually 
reverses!  When viewed in three dimensions, the ellipse is 
tilted out of  the asteroid 's  orbital plane by approximately 
45 ° and the direction of  its major axis is such that the 
latter 's  projection onto the orbital plane lies along the 
initial Sun-as teroid  line. The ellipse is not as narrow as it 
appears in this projection since it also extends in the y- 
direction. To lessen confusion in the diagram, we have 
elected not to show the further  evolution of  the orbit 
but will describe it. The highly eccentr ic  orbit is seen to 
broaden slowly until it is approximately circular. At this 
point, the cycle begins to repeat  with the circular orbit 
slowly becoming more eccentric,  but after a second close 
approach to the asteroid, the particle escapes. In many 
orbits (e.g., Fig. 13) this cycle continues without an es- 
cape. Each time the approximately circular orbit begins 

to increase its eccentricity,  the major axis of  the new 
ellipse is found to be tilted at - 4 5  ° from the x - y  plane and 
to lie along the reoriented Sun-as teroid  line. The axis can 
be tilted either toward or away from the Sun, and can lie 
either primarily above the x - y  plane or primarily below it 
due to the symmetry of  the tidal term. Figure 13 shows 
an orbit started at x = 250 RA (C = 6.9306) that was 
followed for 10 circuits of  the asteroid around the Sun. 
Notice that the maximum z values attained by the orbit 
are approximately independent of  x. This characteris- 
tic, which was observed on many distant orbits with 
60 ° < i < 120 °, will have an important  influence on the 
shape of  the stability zone described below. 

In the depicted case, tidal perturbations alone must be 
responsible for the motion since the results are plotted in 
nonrotating coordinates,  where no Coriolis term appears. 
The form of  the tidal perturbation in the nonrotating frame 
is ~-~2 (3Xrotirot _ r~), which differs from the second term 
of  Eq. (2) since that term included the centrifugal accelera- 
tion of  the rotating frame. In the following, we lump the 
radial part of  the tidal term in with the asteroid's  gravity, 
and consider only the effects of  the X~ot term. Consider a 
particle that would be on an elliptical orbit primarily in 
the x - z  plane in the absence of  perturbations (Fig. 14), 
and ignore for the moment  the fact that the Sun is not 
always along the x-axis. We see that, starting from x = 0, 
the tidal perturbation pushes the particle to larger values 
of  x than would be experienced in a two-body problem. 
Because of  this added acceleration, the particle drops 
along an orbital path that brings it closer to the asteroid 
than its unperturbed counterpart .  Throughout  the region 
of  close approach,  the tidal force is negligible so that we 
can approximate the motion there by the solution to the 
two-body problem. Hence ,  after one revolution,  the parti- 
cle emerges on a more highly eccentr ic  ellipse, and the 
cycle repeats.  The outcome of  the narrowing ellipse is 
either an impact with the asteroid or a reversal  of  the 
direction of rotation (see Fig. 14). I f  the latter occurs,  the 
tidal acceleration operates in the opposite way to broaden 
the orbit out to a circle where the whole process  begins 
anew. Because of  passage through many of  these very  
narrow ellipses, the probabili ty for  a particle on an orbit 
of this type to impact the asteroid is very  large. We note 
that the reverse of  such an impact orbit offers a mecha- 
nism by which material, blasted from the surface of  the 
asteroid by a collision, could be put into distant orbits. 

The essence of  this argument is unchanged when we 
take into account  that the Sun is not always along the x 
direction as measured in the non-rotating frame. There- 
fore in general the tidal acceleration contains both x and 
y components  that vary in time. Because the particle 's  
orbital motion remains primarily in the x - z  plane, the 
direction of  the tidal acceleration varies roughly sinusoi- 
dally as this plane moves with the asteroid 's  angular fre- 
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FIG. 15. The  critical dis tance,  which divides stable f rom unstable  
orbits,  as a funct ion of  initial inclination. All particles are injected on 
initially unper turbed  circular orbits along the Sun-as t e ro id  line. A large 
solid dot  signifies an  orbit that  remains  near  the asteroid for at least  5 
asteroid years ,  a small  dot  is an orbit that  escapes  in less than  this 
amoun t  of  t ime,  and  an open circle with a dot  inside is an orbit that  
strikes the  asteroid. Note  that  orbits with i > 90% particularly those  
that  approach purely retrograde orbits,  are stable out  to much  greater  
d is tances  than  coplanar  prograde paths  (see text  for discussion).  

these exceptions, however, decreases rapidly as one 
moves away from the transition region. 

Figure 15 shows the results of almost 700 different inte- 
grations in which the initial distance and initial inclination 
were varied in increments of I0 RA and 10 °, respectively. 
The diagram distinguishes between orbits that escape, 
those that remain captured, and those that crash into the 
asteroid. Note that the collision orbits occur predomi- 
nantly for inclinations around 90 ° where orbits undergo 
the "narrowing ellipse" motion described above. It is 
apparent that there is a fairly crisp "boundary" between 
the bound and escape orbits; this boundary is the critical 
distance. Most of the graph' s features can be interpreted 
as due to the Coriolis acceleration. Taking a circular orbit 
for illustration, consider the radial part of the Coriolis 
term (i.e., toward or away from the asteroid), which is 
proportional to cos i and which therefore attains its maxi- 

quency around the Sun. Thus generally the x-component 
of the tidal acceleration dominates the y-component for 
the simple reason that the orbit never samples large y 
values. The argument can be generalized for orbits whose 
motions are primarily in the x ' -z  plane where x' is some 
linear combination of the x and y directions. Orbits with 
inclinations in the range 60 ° < i < 120 ° have their motions 
primarily in some x ' - z  plane, and thus exhibit this type 
of dynamical motion. 

G L O B A L  S T R U C T U R E  

Escape as a Function o f  Inclination 

To explore the effects of orbital inclination on the stabil- 
ity of particles, we studied weakly bound orbits that began 
at various inclinations but otherwise chose the same initial 
conditions for purposes of comparison. We define the 
critical distance as the initial displacement within which 
most orbits remain bound, and outside of which most 
escape. We find that the critical distance displays a strong 
dependence on initial inclination. Naturally, because of 
the problem's fractal-like nature (Murison 1989b), occa- 
sional orbits within the critical distance escape, while 
some others outside this distance are bound; in this sense 
the critical surface is a very complex structure that cannot 
be truly represented by a single curve. The number of 
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FIG. 16. Plot of  the  upper  half  of  the  stability surface v iewed f rom 
pitch = 60 °, yaw = 10 °, and  roll = 0 ° as sugges ted  by the  reference cube.  
Note  that  the scale is distorted due to the viewing angle. The  flattened 
top surface is at an approximate  alti tude o f  z = 285R A, and the  surface 
drops off precipitously to the roughly circular base  region (r - 480RA). 
To determine this surface we took the exterior  envelope  o f  the  orbits of  
about  1000 particles that  were s tar ted near  the  critical dis tance but  
remained  captured for 5 asteroid years .  Thus ,  if pathological  cases  are 
ignored, particles found within the  surface are general ly bound  to the 
asteroid while those  outs ide are not.  See the  t ex t ' s  d i scuss ion  for more  
details about  how this figure was cons t ruc ted .  This  figure clearly illus- 
t rates that  stable orbits are more  closely confined in the  polar  region. 
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mum inward and outward strengths at i = 180 ° and i = 0 °, 
respectively. This predicts the upward trend of  the critical 
distance with inclination in Fig. 15. 

We find a local minimum in the critical distance near 
i = 90 °, confirming previous results of  Keenan  (1981). 
This feature and the rough symmetry for -+30 ° around i = 
90 ° can be explained by abrupt inclination shifts that we 
have observed in orbits with initial inclinations in the 
range 60 ° < i < 120 °. We have found that many escape 
orbits with inclinations i in this range switch to orbits with 
an inclination - 1 8 0  ° - i via the narrowing ellipse process 
outlined above (see the section on inclined examples), and 
thus escape for both i and 180 ° - i orbits can occur  at the 
smaller inclination where the Coriolis binding acceleration 
is weaker.  Together,  these two effects predict the overall 
shape of  Fig. 15. Nonradial  Coriolis accelerations,  which 
are maximum near i = 90 °, may also influence the struc- 
ture and exact  location of  the minimum. 

T h e  " S t a b i l i t y  B o u n d a r y "  

Figure 16 illustrates the shape of  the boundary within 
which stable orbits lie. The  surface represents  the maxi- 
mum z value obtained by a particle as a function of  Xrot 
and Yrot, not for a single orbit, but for  the union of  the 239 
stable orbits lying within the critical distance in Fig. 15. 
The rare stable orbits found in regions where unstable 
orbits predominate were not included (see prior discus- 
sion of  the fractal-like nature of  the stability boundary and 
Fig. 15). The output  of  our  integration routine is a series 
of  points in the rotating system (Xrot, Yrot, Z) through which 
a given orbit passes. We divided the Xrot-Yro t plane up into 
a 20 x 20 grid of  60 x 60-km squares and recorded the 
maximum z value occurring above each square from the 
union of  all of  the points in each of  the stable orbits. The 
data were then interpolated out to an 80 x 80 grid to 
optimize the viewing. 

We also exploited two symmetries to quadruple the 
effective number  of  input orbits to Fig. 16. It can be shown 
that the transformation of  initial conditions (z ~ - z ,  
v z ~ - v z) results in an orbit that is the reflection of  the 
original orbit through the x - y  plane [see Eq. (2)]. This 
follows most simply from considerations of  the symmetry 
of  the gravitational forces in an inertial frame centered on 
the Sun. Thus each of  our orbits has a mirror image 
through the Xrot-Yro t plane and we can incorporate this 
image by taking not the maximum z, but the maximum Izl 
attained. This effectively doubles the number of  input 
orbits. Fur thermore,  the transformation (r ~ - r, Vro t 
vrot) also yields identically shaped orbits in Hill 's problem, 
so we can again double the number  of  input orbits. All 
told, there are almost 1000 separate initial conditions in- 
corporated in Fig. 16, each pertaining to an orbit that is 
stable for at least 5 asteroid years. 

Figure 16 shows that the stability surface is roughly flat 
on top with very  steep sides. The plateau region is at an 
average height of about 285 RA above the x - y  plane with 
the highest orbit rising to 307 RA above the plane; its base 
is roughly circular with a radius of  about 480 RA. The 
flattened polar region arises from the fact that maximum 
z values attained by orbits with 60 ° < i < 120 ° are roughly 
independent of  x and y (see Fig. 13). The plotted surface 
is not based on enough different orbits to validate com- 
ments on its second order  structure; in addition, we re- 
mind the reader that this surface pertains to particular 
initial conditions, and thus the detailed shape may change 
somewhat with different modes of  injection. 

DISCUSSION 

We have found that the stability zone consisting of  
the vast majority of  bound orbits resembles a circular 
mesa with precipitous edges rising to a height of  z -- 
285 R A. Due to the effect of  the tidal acceleration on 
orbits with 60 ° < i < 120 °, none of  our  orbital trajectories 
rise above z = 310 R A and only a few rise above z = 
300 R A. Beyond this surface (i.e., more than 310 R A 

above or below the asteroid's orbital plane), no stable 
orbiting particles can exist unless trapped on a patho- 
logic path. Fur thermore,  many orbits that populate large 
z values on this diagram would in fact be lost since they 
have a high probability of  colliding with the asteroid as 
previously noted. As we have seen, particles on stable 
prograde coplanar orbits can be found out to 360 R^ 
(see, e.g., Fig. 6) but material on stable coplanar retro- 
grade orbits reaches nearly 500 R A (Fig. 9). Thus,  if 
debris on prograde and retrograde orbits are equally 
likely, these results argue in favor of  having the space- 
craft 's  close approach (especially for the flyby of  the 
first one!) take place out of  the orbital plane. 

The stability surface shown in Fig. 16 corresponds to 
the case where the asteroid is on a circular orbit and 
the only perturbations on the system are due to the 
gravitational attraction of  the Sun. Many effects that we 
have ignored here and will take up in a later paper  will 
reduce the size of  the stability zone. Radiation pressure,  
for example,  will sweep c e n t i m e t e r  and smaller-sized 
particles from the system in less than one orbit of  the 
asteroid around the Sun. The remarkable efficiency of  
these solar photons is due to the fact that the gravita- 
tional attraction of  the asteroid is really quite small. 
Perturbations from the planets, especially Jupiter,  cause 
a drift in the value of  the Jacobi constant ,  thereby 
allowing some previously bound particles to escape 
(Whipple and White 1985, Chauvineau and Mignard 
1990b), as will asteroids that pass close t o - - o r  even 
th rough- - the  system. 

Finally, one would expect  an asteroid with a nonzero 
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orbital eccentricity to have a smaller zone of stability 
than one with zero eccentricity for several reasons. First, 
eccentricity will cause the asteroid to periodically have a 
closer approach to the Sun, at which point the Hill sphere 
is smaller, and hence escape occurs more readily. Second, 
in the elliptic problem the equation of motion will contain 
an additional acceleration term that is destabilizing for 
most orbits. We have run several simulations for asteroids 
with nonzero orbital eccentricity and these numerical re- 
suits, as well as the results of Zhang and Innanen (1988), 
verify that the zone of stability is reduced; this result will 
be presented elsewhere. 

The boundary discussed above is only a limit on where 
bound orbits can exist, not an absolute boundary within 
which debris must be found. Since it depends not only on 
which orbits are stable but also on how material is supplied 
to the region, the location of any actual debris cloud, it is 
likely to be much closer to the asteroid. In fact, it is not 
known whether circum-asteroidal debris will be prevalent 
enough to threaten a spacecraft at all. Clearly mechanisms 
for populating orbits must be included in any estimate of 
the location of material orbiting an asteroid, and therefore 
in any spacecraft trajectory planning. Most schemes 
(Weidenschilling et al. 1989) to populate stable debris 
orbits favor paths of much smaller size than those consid- 
ered here, suggesting that a safe distance of close ap- 
proach could be considerably smaller than the distances 
that we have computed. Future evaluations of the debris 
hazard about asteroids should be focused on bettering 
our understanding of population mechanisms for circum- 
asteroidal particles. Only once these mechanisms are un- 
derstood can one fully answer the question of how close 
an asteroid flyby should be. 
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