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Orbital resonances in the inner neptunian system
I. The 2:1 Proteus–Larissa mean-motion resonance
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Abstract

We investigate the orbital resonant history of Proteus and Larissa, the two largest inner neptunian satellites discovered by Voyager 2. Due
to tidal migration, these two satellites probably passed through their 2:1 mean-motion resonance a few hundred million years ago. We explore
this resonance passage as a method to excite orbital eccentricities and inclinations, and find interesting constraints on the satellites’ mean density
(0.05 g/cm3 < ρ̄ � 1.5 g/cm3) and their tidal dissipation parameters (Qs > 10). Through numerical study of this mean-motion resonance passage,
we identify a new type of three-body resonance between the satellite pair and Triton. These new resonances occur near the traditional two-body
resonances between the small satellites and, surprisingly, are much stronger than their two-body counterparts due to Triton’s large mass and orbital
inclination. We determine the relevant resonant arguments and derive a mathematical framework for analyzing resonances in this special system.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Prior to the Voyager 2 encounter, large icy Triton and dis-
tant irregular Nereid were Neptune’s only known satellites.
Triton is located where one usually finds regular satellites
(close moons in circular equatorial orbits, which formed to-
gether with their parent planets). The moon follows a cir-
cular path, but its orbit is retrograde and significantly tilted,
which is common only among irregular satellites (small distant
moons following highly-inclined and elongated paths, thought
to be captured objects). Triton’s unique properties imply a cap-
ture origin followed by orbital evolution featuring tidal damp-
ing and circularization. Although different capture mechanisms
have been proposed (McKinnon, 1984; Goldreich et al., 1989;
Agnor and Hamilton, 2006), in all scenarios Triton’s post-
captured orbit is expected to be remote and extremely eccentric
(e > 0.9). During its subsequent orbital circularization, Tri-
ton forced Neptune’s original regular satellites into collision
and self-disruption, resulting in a circum-neptunian debris disk.
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Most of the debris was probably swept up by Triton (Ćuk and
Gladman, 2005), while some material close to Neptune sur-
vived to form a new generation of satellites with an accretion
timescale of tens of years (Banfield and Murray, 1992). Among
the survivors of this cataclysm are six small moonlets discov-
ered by Voyager 2 in 1989 (Smith et al., 1989).

Voyager 2 also found several narrow rings interspersed
amongst the satellites within a few Neptune radii, and found
the ring arcs hinted at by stellar occultation years earlier.
Karkoschka (2003) reexamined the Voyager images later, and
derived more accurate sizes and shapes of the new satellites.
Proteus, the largest one, is only about 400 km in diameter, tinier
than even the smallest classical satellite of Uranus, Miranda.
Owen et al. (1991) used Voyager data to calculate the orbital
elements of these small satellites, which were later refined by
Jacobson and Owen (2004) with the inclusion of recent data
from the Hubble Space Telescope and ground-based observa-
tions. Both analyses show that all the small moons are in direct
near-circular orbits with small, but non-zero, inclinations. Their
parameters are listed in Table 1.

Smith et al. (1989) estimated the cometary bombardment
rate near Neptune and pointed out that, of the six small satel-
lites, only Proteus was likely to survive disruptive collisions
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Table 1
Small neptunian satellites

Name R̄ (km) a (RN ) e (×10−3) iLap (◦) ifr (◦)

Naiad 33±3 1.912 0.4 ± 0.3 0.5118 4.74 ± 0.03
Thalassa 41±3 1.985 0.2 ± 0.2 0.5130 0.21 ± 0.02
Despina 75±3 2.082 0.2 ± 0.2 0.5149 0.06 ± 0.01
Galatea 88±4 2.456 0.04 ± 0.09 0.5262 0.06 ± 0.01
Larissa 97±3 2.916 1.39 ± 0.08 0.5545 0.205 ± 0.009
Proteus 210±7 4.664 0.53 ± 0.09 1.0546 0.026 ± 0.007

Note. Average radii of the small satellites (R̄) are from Karkoschka (2003); their
orbital elements (semi-major axis a, eccentricity e, inclination of local Laplace
plane iLap relative to the invariable plane, and free inclination ifr; the two in-
clinations are defined in Section 5.1) are from Jacobson and Owen (2004). The
equator plane is tilted by ε = 0.5064◦ from the invariable plane; these small
satellites lie nearly in the equator plane.

over the age of the Solar System. The innermost and small-
est satellite, Naiad, might not last much longer than 2 to 2.5
billion years, while the intermediate objects might have been
destroyed during an early period of heavy bombardment. In any
case, all six small satellites probably formed only after Triton’s
orbital migration and circularization was nearly complete and
the large moon was close to its current circular tilted retrograde
orbit (Hamilton et al., 2005). In this unique system, the orbits
of the small satellites might have evolved in unusual ways. Ac-
cordingly, we seek to reconstruct the orbital evolution history
of the satellites in order to place constraints on the tidal dissipa-
tion factors (Q; see Goldreich and Soter, 1966) of both Neptune
and its satellites, as well as on satellite masses and, therefore,
densities.

Tides raised on the planet and the satellites determine the
long-term evolution of satellite orbits through their systematic
influence on orbital size and shape. In addition, as tides change
orbital semi-major axes (orbital migration), a satellite pair may
encounter mean-motion resonances, which are the only loca-
tions where perturbations between small satellites are signif-
icant. The present paper is the first of a series on the orbital
evolution of the small neptunian satellites; it details the most
recent mean-motion resonance between Proteus and Larissa,
which we argue is responsible for the current eccentricities of
the two outermost and largest satellites (Table 1). In the next
section we provide some background information on the theory
of tidal evolution and mean-motion resonances. We then intro-
duce our numerical techniques in Section 3. In the following
two sections, we present our analytical and numerical results
for the resonant and tidal effects first on the eccentricities and
then on the inclinations of Proteus and Larissa. Finally, in Sec-
tion 6, we discuss the constraints on satellite masses that arise
from this recent resonance passage.

2. Tidal migration and mean-motion resonance passage

Tidal friction between a satellite and its parent planet de-
termines the satellite’s orbital evolution over a long time span
(Darwin, 1880; Burns, 1977). How tides affect orbits physi-
cally is described by Goldreich and Soter (1966) and Burns
(1977). Proteus and Larissa raise tides on Neptune (planetary
tides), which then act back on the satellites, driving them to
migrate either inwards or outwards, depending on their mean
motions. If a satellite’s angular speed is faster than the rotation
of Neptune, it spirals inwards; otherwise, it slowly drifts away
from the planet. The distance at which a satellite’s orbital pe-
riod matches the spin period of the planet is usually referred as
the synchronous radius (Rsyn), and the orbit at that distance is
called the synchronous orbit, or the co-rotation orbit. A satel-
lite in the synchronous orbit is directly aligned with the tidal
bulge that it raises on the planet, resulting in minimal tidal fric-
tion and, hence, stalled orbital evolution due to planetary tides.
The tidally-induced migration rate of a satellite reasonably far
away from the synchronous orbit and with a small eccentricity
is (Murray and Dermott, 1999, §4.9):
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Here ms , a, and n are the mass, semi-major axis, and mean-
motion of the satellite, respectively. The Love number k2N mea-
sures the internal rigidity of Neptune, mN is the planet’s mass,
RN is its radius, and QN is its tidal dissipation factor, which
parametrizes the energy loss due to tides; a smaller QN means
stronger tidal friction and higher energy loss rate. QN generally
depends on the amplitude and frequency of tides (Goldreich
and Soter, 1966), but this dependence is very weak for low-
frequency tides with small amplitudes, which is true for most
planetary and satellite tides. We assume constant Q’s for both
Neptune and its satellites. The plus sign in Eq. (1) is for satel-
lites exterior to Rsyn, and the minus sign is for those inside Rsyn.

For the neptunian system, the synchronous orbit lies between
Proteus and Larissa, which means that Proteus’ orbit has ex-
panded over time while Larissa’s has shrunk. The large gap be-
tween the orbits of the two satellites provides evidence for this
divergence. The migration time scales, however, are difficult
to estimate because of the uncertainty in QN (Goldreich and
Soter, 1966). Banfield and Murray (1992) estimated 12,000 <

QN < 330,000, leading to timescales uncertain by more than
an order of magnitude. Here we note that the distances between
the two satellites and the synchronous orbit are 1.3 RN for Pro-
teus and 0.4 RN for Larissa, implying that they have migrated
by no more than ∼RN over the age of the Solar System. Triton,
due to its distant retrograde orbit, spirals slowly inward with
a typical timescale ∼1012 years; this motion can be safely ig-
nored.

Due to tidal migration, the semi-major axis of a satellite, and
hence its orbital period, changes over time. When the ratio be-
tween the periods of two satellites is a rational number, a mean-
motion resonance, or an orbit–orbit resonance, occurs. Physical
representations of mean-motion resonances can be found in
Peale (1976), Greenberg (1977), and Peale (1986). These au-
thors have shown that when two satellites are near resonance,
satellite conjunctions always occur near the apocenter of the
outer satellite or the pericenter of the inner satellite, which pro-
tects the pair from very close approaches (i.e., conjunctions
when the outer satellite is at its pericenter and the inner one
is at the apocenter) and helps stabilize the orbits. The repetition
of the same orbital configuration, however, allows the orbits to
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be systematically perturbed, leading to dramatic orbital varia-
tions in a relatively short period of time.

Each resonance can be characterized by an angular parame-
ter, known as the resonant angle or resonant argument, which
takes the form:

(2)φ = (p + q)λ2 − pλ1 + j1Ω1 + j2Ω2 + j3�1 + j4�2.

Here (λ1, λ2), (Ω1,Ω2), and (�1,�2) are the orbital mean lon-
gitudes, longitudes of the ascending nodes, and longitudes of
pericenters of the two satellites, respectively; the coefficients
p, q , and ji are restricted to integers, and are further con-
strained by two rules: (i) the sum of all coefficients must be zero
(q + j1 + j2 + j3 + j4 = 0), and (ii) j1 + j2 must be an even
number so that nodes appear in pairs. Hamilton (1994) showed
how these constraints arise from considerations of spatial sym-
metry. For satellite systems, eccentricities and inclinations are
usually small quantities, and the resonant strength is propor-
tional to i

|j1|
1 i

|j2|
2 e

|j3|
1 e

|j4|
2 , where the sum of the exponents is the

order of the resonance, which is usually equal to |q|.
There are two possible behaviors for the resonant angle φ:

circulation through a full 360◦ when the two orbits are far away
from all resonances, or libration through a restricted range of
values when a resonance is close. The libration amplitude of
φ decreases to zero as the resonance is approached, and the
resonant argument satisfies

(3)φ̇ = 0

at exact resonance. If the orbit does not precess, i.e., Ω̇1 =
Ω̇2 = �̇1 = �̇2 = 0, Eqs. (2) and (3) imply (p + q)n1 −
pn2 = 0, or resonances occur when the two orbital mean-
motions are an exact ratio of integers. In reality, however, both
the oblateness of Neptune (due primarily to rotational deforma-
tion) and secular perturbations from other satellites cause orbits
to precess, leading to resonance splitting qualitatively similar to
the Zeeman effect in which the energy levels of an atom split
when a magnetic field is applied. Since the precession rates of
the Ω’s and � ’s in Eq. (2) are much smaller than orbital mean
motions, these resonances are packed into a small region around
the location determined by the ratio of the satellite mean mo-
tions.

The time rates of change of the six angular parameters in
Eq. (2) depend on the semi-major axes of the satellites. When
satellites tidally migrate, their orbital frequencies shift, bring-
ing them in and out of resonances (Greenberg, 1973). If the
two orbits diverge from each other (as Proteus and Larissa) and
pass through a resonance, the orbital eccentricities and incli-
nations are subject to sharp changes or kicks (Hamilton and
Burns, 1993), which can be either positive or negative. The
signs and magnitudes of these kicks depend not only on the
resonant strength, but also on the exact phase (value of φ) when
the resonance is encountered (Peale, 1986). However, kick am-
plitudes are predictable if the two satellites diverge so slowly
that the variation of orbital elements is in the adiabatic limit
both before and after a resonance encounter. In this case, the
phase of φ when entering the resonance is always the same, the
kicks to eccentricities and inclinations are always positive, and
the kick magnitudes can be obtained analytically by a Hamil-
tonian analysis (Peale, 1976; Murray and Dermott, 1999). In
contrast, when two converging orbits pass through a resonance,
they can be captured into a resonant state and remain locked
therein unless perturbations from other objects or nearby reso-
nances force them out (Greenberg et al., 1972). If tides continue
to act on objects trapped in a resonance, the affected eccen-
tricities and/or inclinations keep growing on the tidal migration
timescale (Hamilton, 1994).

Triton’s presence in the neptunian system complicates the
orbital dynamics of the small satellites during tidal migration.
In the next several sections, we study the 2:1 mean-motion res-
onance passage between Proteus and Larissa numerically and
analytically, and investigate Triton’s role on the evolution of
the orbits of the two moons.

3. Computing techniques

Our simulations were carried out with the HNDrag mod-
ule in the HNBody package (Rauch and Hamilton, 2002). HN-
Body is a general purpose hierarchical N-body integrator, which
implements both the symplectic mapping algorithms and the
classical Bulirsch–Stoer and Runge–Kutta algorithms. HNDrag
expands the functionality of the original HNBody code by al-
lowing additional drag forces to act on the satellites, which can
simulate a wide range of gravitational and non-gravitational
perturbations. Since our interest lies in long-term orbital evo-
lution, we use the symplectic integrator for better performance.
The integration stepsize is chosen so that there are at least 20
steps during each orbital period. We have performed conver-
gence tests for several of our simulations with the number of
sampling points per orbit ranging from 1 to 100. The results
are consistent for all tests with greater than five steps per or-
bit. In the results presented here, we use a cautious 20 steps
per orbit to guarantee convergence. We have also tested the sta-
bility of the code by performing a series of simulations with
slightly different initial conditions. The test case consists of a
planet and two satellites with an artificial drag force pulling the
satellites through several mean-motion resonances—similar to
our problem. The test results are well-behaved over timescale
of ∼100 Myr, longer than the typical ∼10 Myr timescale of our
actual simulations.

The output of HNDrag can be set to either osculating orbital
elements or Cartesian positions and velocities. The osculating
elements are a set of projected Keplerian orbital elements for
each instant, calculated with the assumption of no extra per-
turbations. However, perturbations from both Neptune’s oblate-
ness and Triton cause the osculating elements to vary artificially
over a single orbital period. We minimize this artificial effect by
using geometric elements, which define the actual shape of the
orbit. Following Greenberg (1981), we take the position and
velocity output from HNDrag and convert it to geometric or-
bital elements, correcting for first-order J2 perturbations with
our conversion program cj2. This procedure greatly reduces un-
physical oscillations in the orbital elements.

To determine the evolutionary history of the two neptunian
satellites, it would be best to follow their orbits for 4.5 billion
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years. As this is not practical with current computing technol-
ogy, we take advantage of the fact that mean-motion resonance
passages only take place at discrete locations. During most of
the evolution when the moons are not in resonance, we apply
the tidal evolution equations to damp eccentricities and move
satellites away from the synchronous orbit. Typical resonance
passage times, with the slowest migration rate that we use,
are on the order of 10 million years; we only simulate these
10-million-year segments, which greatly reduces the computa-
tional burden.

The simulated system consists of Neptune, Proteus, and
Larissa, with Triton included (for inclination study) or excluded
(for eccentricity study). We ignore the Sun in our simulations
because its perturbation on the small satellites is much smaller
than Triton’s. For simplicity, we fix the semi-major axis of
Larissa, and apply an artificial drag force on Proteus to move it
slowly outward across the resonant zone. In reality, both satel-
lites are moving at time-dependent rates. But since most of
the strong resonances are transversed slowly (in the adiabatic
limit), the kicks to the orbital eccentricities and inclinations are
independent of whether one satellite or both are migrating, the
rate of migration, and even the nature of the drag force.

Most of our simulations are performed on the Borg Beowulf
cluster of 85 processors in the Astronomy Department at the
University of Maryland. HNDrag is a single-thread program,
and different simulations are dispatched to different nodes of
the cluster through the Condor job control system. With these
resources, typical simulation times range from 2 days to 2
weeks.

4. Eccentricity evolution during and after the PL 2:1
passage

As noted above, the eccentricities of Proteus and Larissa
are larger than average in the neptunian system (Table 1). Al-
though Jeffreys (1961) showed that satellite orbits are usually
elongated due to planetary tides, the radial tides raised on satel-
lites damp their orbital eccentricities (Goldreich, 1963). In the
neptunian system and most other satellite systems, eccentric-
ity damping due to satellite tides dominates eccentricity growth
due to planetary tides, resulting in fast circularization of orbits.
An estimate of the eccentricity damping rate can be found in
Murray and Dermott (1999):
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Here Rs is the radius of the satellite, Qs is its tidal quality fac-
tor, and μ̃s is the ratio between the elastic to gravitational forces
in the satellite—a measure of the internal strength.

Based on reasonable assumptions for QT and μ̃T , Goldreich
and Soter (1966) estimated that the circularization timescale
for Triton is of order 108 years. Triton, therefore, has fol-
lowed a nearly circular path for most of Solar System history.
The eccentricity damping timescales for the small satellites are
longer because of their small sizes, but are still significantly
shorter than four billion years. Thus the non-zero eccentricities
of Larissa and Proteus require a recent excitation, and the PL
2:1 passage is a natural candidate.

The 2:1 mean-motion resonance between Proteus and Larissa
(PL 2:1) is located only about 900 km inside Proteus’ current
orbit or 600 km outside Larissa’s, implying that the satellites
passed through the resonance in the recent past (a few hundred
million years ago). The proximity of this resonance suggests
a resonant origin for the larger-than-average eccentricities of
these two satellites (Table 1). In Fig. 1, we simulate the passage
of Proteus and Larissa through this resonance at roughly the
correct tidal migration rate. We plot the orbital semi-major axes,
eccentricities, and inclinations of Proteus and Larissa when they
diverge slowly through the resonant zone. The orbital elements
of the two moons jump at several locations where different in-
dividual resonances occur. We name the resonances after the
orbital elements they affect with a capital R to signify the ap-
propriate term in the disturbing function (Murray and Dermott,
1999, §6.9), and mark all of the first- and second-order ones in
Fig. 1. Depending on which orbital elements are most strongly
affected, the resonances can be classified as eccentricity-type,
inclination-type, or mixed-type.

The eccentricities of the two satellites are shown in the
middle panels of Fig. 1. The two first-order eccentricity-type
resonances, ReL

and ReP
, dominate the satellites’ eccentric-

ity growth. Second-order resonances Re2
L

and Re2
P

occur at
exactly the same locations, respectively, while ReLeP

falls be-
tween the two. Larissa’s semi-major axis drops while that of
Proteus grows with each eccentricity kick to conserve the en-
ergy and angular momentum of the system. If aL and aP are
not significantly altered by the resonances, then ReLeP

would
be midway between Re2

L
and Re2

P
; we derive a similar result in

Section 5 for the inclination-type resonances.
The amplitudes of resonant kicks depend on the strengths

of the resonant perturbations, which are functions of satellite
masses and the instantaneous values of the orbital elements.
Since Proteus’ mass is about 10 times Larissa’s, a given res-
onance (e.g., ReP eL

) gives a stronger kick to Larissa than to
Proteus. The strength of the second-order resonance ReLeP

de-
pends on two small eccentricities, so it is much weaker than
the first-order resonances and contributes only about 1/6 of the
growth of eP . The tiny kicks to eP before ReP eL

in Fig. 1 are
due to higher-order resonances.

Additional simulations with different tidal migration rates
suggest that the tidal migration rate is slow enough that the first-
and second-order resonances are traversed in the adiabatic limit.
Higher-order resonances are not traversed adiabatically, so their
eccentricity and inclination kicks depend on the drag rate and
are difficult to predict. For the 2:1 passage, though, higher-order
resonances are weaker by about an order of magnitude and their
contributions are minimal (Fig. 1). We do not include Triton in
these simulations since its orbit is nearly circular and its pertur-
bation on the small satellites’ eccentricities is minimal. We will
verify this assertion with a direct comparison between simula-
tions with and without the large moon in Section 5.

The masses of Proteus and Larissa are not well constrained
observationally. The higher the masses, the stronger the reso-
nances, and in turn, the larger the eccentricity excitation. Since
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Fig. 1. Proteus and Larissa diverge through PL 2:1. Triton is excluded from this system. Plots show the semi-major axes, eccentricities, and inclinations of the
two small satellites. Larissa has a fixed semi-major axis at aL = 2.93 RN , and Proteus migrates outward with a rate of 3.6 × 10−10 RN/yr. As only the relative
divergence rate is important in most cases, it is a good approximation to move Proteus alone. We assume satellite densities ρ̄ = 0.8 g/cm3. Both satellites begin on
circular orbits with inclinations of 0.5590◦ and 1.0667◦ measured relative to the invariable plane, respectively. These inclinations are the same as would be forced
by Triton were it included in the system. Orbital element kicks due to first- and second-order resonances are marked in the plots. The unlabeled small kicks are due
to higher-order resonances.
the small satellites formed from the same circum-neptunian de-
bris disk, we might expect that they should have similar com-
positions and densities. We make the simple assumption that
both satellites have the same density, and calculate their masses
based on their observed sizes. In the simulation shown in Fig. 1,
we use a mean density of ρ̄ = 0.8 g/cm3. The satellites might
have a higher or lower density, depending on their composi-
tion and porosity. The current eccentricities of the two satellites,
0.00053 for Proteus and 0.00139 for Larissa, place a lower limit
on the resonant excitation, which then limits the minimum den-
sity of the two satellites. We simulate the resonance passage
with a number of different assumed mean densities for Proteus
and Larissa. These simulations show ρ̄ > 0.05 g/cm3 in order
for Proteus to acquire an eccentricity eP > 0.00053. With this
density, Larissa’s eccentricity is excited to a value significantly
higher than its current 0.00139.

After the resonance, the satellite orbits must migrate outward
while simultaneously circularizing; this provides a constraint
on satellite Q’s, which we now explore. Our analysis of the in-
clination resonances in Section 6 suggests an upper limit on the
satellite density of ρ̄ � 1.5 g/cm3, which provides the largest
possible eccentricity excitation through the resonance passage:

eP < 0.0017, eL < 0.012.

Since tidal migration is determined by planetary tides
[Eq. (1)] and eccentricity damping is mostly accounted for by
satellite tides [Eq. (4)], the ratio between a satellite’s Qs and
Neptune’s QN can be estimated based on the satellite’s migra-
tion distance and the change of its eccentricity subsequent to
the resonant passage:

(5)
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= 21
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k2Nμ̃s

(
ρN
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∣∣∣∣,
where ρN and ρs are the densities of Neptune and the small
satellite; the subscripts “i” and “f ” indicate initial and final
values of the semi-major axis and eccentricity, respectively.

Immediately after PL 2:1, the satellites’ semi-major axes
must satisfy a3

P /a3
L � 4; they then evolve following Eq. (1), and

the two satellites migrate to their current orbits simultaneously.
Based on these constraints, we calculate the semi-major axes
displacements of the two satellites after the PL 2:1 encounter:
Larissa has migrated 0.014–0.016 RN inward, while Proteus’
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Fig. 2. Proteus and Larissa diverge through PL 2:1. The system consists of Neptune, Triton, and the two small satellites. Plots show the semi-major axes, eccentric-
ities, and free inclinations (measured relative to the Laplace plane) of Proteus and Larissa. Larissa’s semi-major axis aL is fixed at 2.93 RN , while Proteus migrates
outward with ȧP = 1.8 × 10−10 RN/yr. The density of the satellites is ρ̄ = 0.8 g/cm3. The first- and second-order resonances are identified, including a few strong
three-body resonances (ReLiP iT

, R∗, RiP iT
, and RiLiT

); smaller kicks are due to higher-order resonances.
semi-major axis has increased by 0.010–0.013 RN . The uncer-
tainties are primarily due to the observational error of satellite
sizes.

We adopt Neptune’s Love number k2N = 0.41, as computed
by Burša (1992). The internal strength, μ̃s , is unknown for most
satellites, but it is not expected to be as sensitive to satellite
composition and shape as Qs is. We estimate μ̃P and μ̃L based
on the formula μ̃s ≈ (104 km/Rs)

2 given in Murray and Der-
mott (1999). We then estimate the lower limits of the satellites’
Q’s based on the upper limits of their eccentricities right after
the resonance passage:

QP > 0.001QN, QL > 0.0008QN.

Given that QN > 12,000 (Banfield and Murray, 1992), the Q’s
of the satellites have lower limits around 10. This result is not
particularly constraining; the only satellite with a known Qs

is our own Moon, with QM ≈ 27 (Yoder, 1995), and a rough
estimation of most of the icy and rocky small satellites suggests
their Q’s are on the order of several tens to hundreds. To get
better estimates of QP and QL, more accurate constraints on
satellite masses and QN are essential.
5. Inclination resonances in the PL 2:1 resonant zone

In addition to eccentricities of the Proteus and Larissa, Fig. 1
also shows the change of the satellite inclinations in the bottom
two panels. First-order inclination-type resonances do not exist
due to the constraints on resonant arguments (Hamilton, 1994).
The three second-order inclination resonances, Ri2

P
, RiP iL , and

Ri2
L

, are equally-spaced in time, which can be explained by con-
sidering the corresponding resonant arguments:

(6)φ′
i2
P

= 4λP 1 − 2λL − 2ΩP 1,

(7)φ′
iP iL

= 4λP 2 − 2λL − ΩL − ΩP 2,

(8)φ′
i2
L

= 4λP 3 − 2λL − 2ΩL,

where the subscripts 1, 2, and 3, denote the three different lo-
cations of Proteus. We use φ′ instead of φ here to distinguish
these arguments from their new definitions introduced later in
this section. Since the three resonant locations are very close,
we can safely neglect the difference between Ω̇P 1 and Ω̇P 2.
Applying Eq. (3) and subtracting pairs of equations yield

nP 1 − nP 2 ≈ nP 2 − nP 3,
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Fig. 3. R
i2
L

transit during the PL 2:1 resonance passage and the corresponding

resonant angles. Top: the free inclination of Larissa; middle: the tradition-
ally-defined resonant argument φ′

i2
L

= 4λP − 2λL − 2ΩL; bottom: resonant

argument with new definition φ
i2
L

= 4λP −2λL −2Ω̃L . In the Neptune–Triton

system, φ′
i2
L

fails to librate in the vicinity of resonance; instead, φ
i2
L

is the true

resonant argument.

which, for closely-spaced resonances, is equivalent to

aP 2 − aP 1 ≈ aP 3 − aP 2.

Furthermore, since the migration rate of Proteus is nearly con-
stant during the resonance passage, these locations are equally
spaced in time as well (Fig. 1).

We continue our investigation by running a simulation that
includes Triton (Fig. 2). Compared to Fig. 1, the eccentric-
ity histories in the new simulation show similar features, with
only a few very weak additional kicks arising from high-order
mixed-type resonances. This justifies our neglect of Triton in
the previous section. In addition, the tidal migration rate used
in Fig. 2 is half of that of Fig. 1, and the similarity of the ec-
centricity traces demonstrates that the strong resonances of this
resonant passage are traversed in the adiabatic limit.

The inclinations shown in Fig. 2 are free inclinations with
superscript “fr,” which are directly comparable to those listed
in Table 1. The pattern of inclination kicks is quite different
from what is shown in Fig. 1. We identify the three traditional
second-order inclination-type resonances (Ri2

P
, RiP iL , and Ri2

L
)

by their positions and spacing (compare with Fig. 1). In ad-
dition, there are several new and stronger resonances that ap-
pear near the standard ones. Evidently, Triton has a significant
impact on the tilts of the small satellites’ orbits. It exerts a
secular perturbation which slightly augments the moonlets’ or-
bital precession rates. More importantly, it alters the inclination
resonant pattern itself. In fact, the definition of the resonant ar-
gument has been fundamentally changed.

When two satellites pass through a mean-motion resonance,
the corresponding resonant argument has a stationary value
at the exact resonant location [Eq. (3)]. In our simulations
with Triton, however, we notice that the resonant angles of the
three second-order inclination-type resonances, as defined by
the standard Eqs. (6)–(8), are not stationary even when the res-
onant kicks occur. For example, Fig. 3 shows the inclination
of Larissa during the R 2 traverse. The traditional resonant an-
iL
gle φ′
i2
L

, plotted in the middle panel, shows no sign of libration.

This problem motivates a careful theoretical consideration of
orbital elements in the Neptune–Triton system. Apparently the
presence of Triton revises the resonant arguments. Below, we
combine secular perturbations from both Neptune’s oblateness
and Triton’s orbit into a new definition of orbital elements uti-
lizing the concept of the Laplace plane and derive the proper
resonant arguments.

5.1. Laplace plane and free inclination

If Neptune were perfectly spherical, the rotational angular
momentum of Neptune (LN ) and the orbital angular momentum
of Triton (LT ) would both be constant with fixed directions in
space. In reality, however, the oblateness of Neptune resulting
from spin deformation causes Triton’s orbital plane to precess
slowly. For a circularly-orbiting Triton, the nodal precession
rate is (Danby, 1988, §11.15)

(9)Ω̇T = −3

2
J2nT

(
RN

aT

)2

cos iT ≡ gobl
T ,

where J2 is a dimensionless constant which quantifies the
planet’s oblateness. For Neptune, J2 = 0.003411; Triton’s or-
bital node advances since iT > 90◦, and the precession period
2π/Ω̇T is about 600 years, significantly longer than Triton’s
5.88-day orbital period.

Although LT is no longer a constant vector due to the preces-
sion of Triton’s orbital plane, the system still conserves its total
angular momentum Ltot = LN + LT and, as a result, the plane
perpendicular to Ltot is fixed in space, which makes it a natural
reference plane for orbital elements measurement. This plane is
usually referred as the invariable plane. In the Neptune–Triton
system, it is tilted by ε = 0.5064◦ from Neptune’s equatorial
plane (Jacobson and Owen, 2004). Neptune’s equatorial plane
is always locked with Triton’s orbital plane and the two precess
together about the invariable plane. We ignore the spin angu-
lar momentum of Triton and the orbital angular momenta of the
other satellites since they are much smaller than |LN | and |LT |.

Small inner neptunian satellites (ms 	 mT 	 mN ) experi-
ence secular perturbations both from Neptune’s oblateness and
from Triton. The overall effects of these two perturbing com-
ponents force the orbit of a small moon to precess about the
moon’s local Laplace plane, which is distinct from both the
invariable plane and Triton’s orbital plane. Fig. 4 shows the
warped Laplace plane in the neptunian system. Near Neptune,
the Laplace plane is close to the planet’s equatorial plane, near
Triton it is close to the large moon’s orbital plane, and in be-
tween it is tilted at different angles. The nodes of Laplace planes
at different distances, however, all lie along a line and move
slowly with Triton’s secular precession rate. Thus the whole
warped disk precesses as a rigid body along with Triton’s orbit
and Neptune’s equator. The location of the local Laplace plane
at different distances from the center planet can be determined
by an analysis of the two competing perturbations. We under-
take this analysis here, as it will lead to both a resolution of
the problem with the resonant angles shown in Fig. 3 and the
identification of the new resonances in Fig. 2.
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Fig. 4. Laplace plane of the Neptune–Triton system. The plot shows a side view
of the invariable plane, Neptune’s equatorial plane, Triton’s orbital plane, and
the local Laplace plane of a small satellite. Here, iT and ε are the inclinations of
Triton’s orbit and Neptune’s equator, respectively. Note that they are measured
from different sides of the invariable plane due to Triton’s retrograde orbit.
The inclination of the small satellite’s local Laplace plane is given by iLap.
The thin curve defines the shape of the warped Laplace plane for satellites at
different distances, or a debris disk inside Triton’s orbit. The whole Laplace
plane precesses together with Triton’s orbit and Neptune’s equator.

Neptune’s oblateness causes the orbit of a small satellite
to precess with a rate gobl given by an expression similar to
Eq. (9). Triton, as an external perturber, also causes both the
satellite’s pericenter and node to precess. The eccentricity ef-
fects are trivial due to Triton’s nearly-circular orbit, but the
inclination effects are important. The corresponding nodal pre-
cession rate is

gsec = −1

4

mT

mN

nα2b
(1)
3/2(α).

Here α = a/aT is the semi-major axis ratio of the satellite and
Triton, and b

(1)
3/2(α) is one of the Laplace coefficients, which

depend only on α (Murray and Dermott, 1999, §6.4).
Combining both the perturbations from Neptune’s oblate-

ness and the secular effects of Triton, we obtain the disturbing
function for a small satellite:

R = na2
{

1

2

(
gsec + gobl)i2

− gsec(π − iT )i cos(Ω − ΩT − π)

}
,

where the extra π symbols are due to Triton’s retrograde orbit.
The solution to Lagrange’s planetary equations with the above
disturbing function is

(10)i sinΩ = ifr sinΩ fr + iLap sinΩLap,

(11)i cosΩ = ifr cosΩ fr + iLap cosΩLap,

where

Ω fr = (
gsec + gobl)t + Ω fr

0 .

The free inclination ifr and the free node at the epoch Ω fr
0

are constants determined by the initial state. The angles iLap

and ΩLap define the local Laplace plane of the satellite, as il-
lustrated in Fig. 5a. The inclination of the local Laplace plane,
also called the forced inclination, is

(12)iLap = gsec

gsec + gobl
(π − iT ),

and the node of the local Laplace plane, or the forced node, is

(13)ΩLap = ΩT + π,

both of which are independent of the initial inclination and node
of the satellite. Once the satellite semi-major axis is given for
a nearly-circular orbit, the satellite’s local Laplace plane is de-
termined. This plane precesses together with Triton’s orbit and
Neptune’s equator. Our solution for the Laplace plane, Eqs. (12)
and (13), is consistent with that derived by Dobrovolskis (1993)
in the case of solar perturbation on satellite orbits. However,
his solution is simplified based on the fact that the external per-
turber is much further away from the planet than the perturbed
satellite, which is not the case in the Neptune–Triton system.
(a) (b)

Fig. 5. Definition of key orbital elements. iLap, ΩLap: inclination and longitude of ascending node of the local Laplace plane; ifr, Ωfr: free inclination and node
of the satellite’s orbit measured relative to its local Laplace plane; i, Ω : inclination and node of the satellite’s orbit measured relative the invariable plane. The
longitude of ascending node of the orbit is defined as the bent angle Ω̃ = ΩLap +Ωfr measured in two separate planes. (a) The physical representation of the planes
and orbital elements. (b) The phase diagram showing the solutions (10) and (11).
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Fig. 6. Inclination and node of a satellite at a = 8 RN measured relative to the
invariable plane (i,Ω) and the satellite’s local Laplace plane (ifr,Ωfr). Mea-
sured from the Laplace plane, the free inclination, ifr, is nearly constant, and
the free node, Ωfr, regresses uniformly with a ∼50-year period. Orbital ele-
ments measured from the invariable plane display more complicated evolution:
here both i and Ω oscillate due to the satellite’s orbital regression, while Ω is
also dragged along with Triton’s 600-year orbital precession.

Fig. 5b illustrates the solutions (10) and (11) in a phase
diagram of i sinΩ versus i cosΩ . Perturbations on Triton by
Neptune’s rotational bulge cause

−−−→
OO ′ to precess (rotate coun-

terclockwise) about the origin at rate |gobl
T |, and perturbations

on the small satellite by both Neptune’s oblateness and Tri-
ton cause

−−−→
O ′A to regress (rotate clockwise) around O ′ at rate

|gsec + gobl|. The vector sum of
−−−→
OO ′ and

−−−→
O ′A represents the

inclination i and the longitude of the ascending node Ω of the
small satellite relative to the invariable plane and an arbitrary
reference direction. Measuring the direction of

−−−→
O ′A from the

reference direction, we find the angle

(14)Ω̃ = ΩLap + Ω fr,

which we redefine as the longitude of the ascending node of
the satellite. Fig. 5a shows its physical meaning: a bent an-
gle partially in the invariable plane and partially in the Laplace
plane, much like the longitude of pericenter � . The free incli-
nation is the tilt of the satellite’s orbit with respect to its local
Laplace plane, and the free node is measured from the node of
the Laplace plane on the invariable plane.

Fig. 6 illustrates the difference between (i,Ω) and (ifr,Ω fr).
We simulate the orbital evolution of a satellite at 8 RN (the
satellite depicted in Fig. 4) in the Neptune–Triton system. Mea-
sured relative to the Laplace plane, ifr ∼ 3.5◦ is a constant over
time and Ω fr regresses at a constant rate. However, measured
relative to the invariable plane, i oscillates around iLap ∼ 8.5◦,
and Ω is forced to precess at nearly the same rate as the Laplace
plane. If a small satellite is initially in its local Laplace plane
(ifr = 0◦), it always stays in the plane and its inclination re-
mains constant relative to the invariable plane. However, if it
starts out of its local Laplace plane, it precesses about this plane
and its inclination measured from the invariable plane oscil-
lates. Hamilton (1996) noticed similar behavior when studying
the orbit of a dust grain around Mars subject to strong solar per-
turbations (his Fig. 7).

The concept of the bent angle Ω̃ can be more intuitively un-
derstood through a direct comparison to � = Ω + ω. For an
inclined orbit, ω is measured in the orbital plane, while Ω is
measured in a reference plane (here the invariable plane). With
the addition of Triton, however, there are two dynamically-
important planes in addition to the orbital plane—the invari-
able plane about which Triton’s orbit precesses, and the local
Laplace plane about which the small satellite’s orbit regresses
(Fig. 5). Because the local Laplace plane determines the dy-
namics, Ω fr is measured in that plane, and we require an addi-
tional angle ΩLap to specify the location of the Laplace plane.
As with � , we are led to a bent angle definition [Eq. (14)]. Al-
though not necessary for this work, the definition of � must
also be updated in the Neptune–Triton system to �̃ = Ω̃ + ω,
a perverse bent angle measured in three planes (represented
with an equally perverse symbol). Here ω is measured from
the ascending node of the orbital plane on the Laplace plane
rather than on any other reference plane. For the orbits of Pro-
teus and Larissa, the differences between �̃ and � are tiny
because their free inclinations are so small. It is safe to replace
�̃ with � in most cases.

With the new definition of the longitude of the ascending
node Ω̃ [Eq. (14)] replacing Ω , as well as the new longi-
tude of pericenter �̃ replacing � , resonant arguments de-
fined in Eq. (2) hold the same form for resonances among the
small satellites in the Neptune–Triton system. The new reso-
nant angles have stationary values at the exact resonant loca-
tion (bottom panel in Fig. 3), supporting our arguments. The
resonances kick free inclinations rather than the standard in-
clinations measured relative to the invariable plane, and the
resonance strengths depend on ifr rather than i. For this rea-
son, all subsequent plots and analysis in this paper will use free
inclinations ifr.

5.2. Three-body resonances

In a two-satellite system, the inclination evolution during the
2:1 resonance passage is dominated by three equally-spaced
second-order resonances: Ri2

L
, RiLiP and Ri2

P
(Fig. 1). In the

Neptune–Triton system, however, several stronger kicks appear
near the traditional second-order kicks (Fig. 2). What are these
new resonances?

A careful examination of their resonant locations shows that
the strongest kicks (labeled RiLiT and RiP iT in Fig. 2) are
shifted the same distance to the left of RiP iL and Ri2

P
, respec-

tively, which implies that the resonant arguments of the two
new resonances, φiLiT and φiP iT , can be derived by adding a
common term to the corresponding second-order resonant ar-
guments. Because RiLiT only affects Larissa and RiP iT only
affects Proteus, Ω̃L cannot appear in φiP iT , and Ω̃P not in φiLiT .
The locations of the new kicks thus suggest the following reso-
nant arguments:

(15)φiLiT = 4λP − 2λL − Ω̃L − ΩT ,

(16)φiP iT = 4λP − 2λL − Ω̃P − ΩT ,
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Fig. 7. Resonant arguments (φiP iT
and φiLiT

) of the three-body resonances RiP iT
and RiLiT

. Top panels show the free inclinations of Proteus (ifr
P

) and Larissa (ifr
L

)
as they traverse the two resonances; bottom panels show the corresponding resonant arguments from Eqs. (15) and (16). These simulations use similar parameters
as in Fig. 2, except that Proteus migrates at a slower rate (3.6 × 10−11 RN/yr).
which we verify by noticing their forced libration (Fig. 7) im-
mediately prior to the resonant kicks. The node of the Laplace
plane appears in both arguments through ΩT , which means
that the resonances can be considered to be amongst Proteus,
Larissa and the warped rotating plane. When the system is
close to RiLiT and RiP iT , the associated angles φiLiT and φiP iT

begin to oscillate around equilibrium points at 180◦ and 0◦, re-
spectively. The libration amplitude decreases and the affected
inclination rises as each resonance is approached. When the res-
onance is crossed, the free inclination of the affected satellite is
kicked up sharply and the corresponding semi-major-axis jump
brings the two out of resonance. The resonant angle ceases to
librate and begins to circulate again.

Since the Laplace plane is only a mathematical description
of Triton’s secular effects, these new resonances can also be in-
terpreted as three-body resonances among Proteus, Larissa, and
Triton, which is why we use ΩT rather than ΩLap in Eqs. (15)
and (16). Three-body resonances are usually weaker than two-
body ones because the involvement of Triton as a resonant per-
turber introduces an extra factor of mT /mN in the expression
for resonant strengths. However, this effect is counter-balanced
by Triton’s large orbital tilt. Specifically, the strengths of the
three-body resonant kicks on Proteus and Larissa scale as

(17)RiP iT ∝ mT

mN

mL

mN

sin ifr
P sin iT ,

(18)RiLiT ∝ mT

mN

mP

mN

sin ifr
L sin iT ,

while those of the respective two-body resonances obey

Ri2
P

∝ mL

mN

sin2 ifr
P ,

RiLiP ∝ mP

mN

sin ifr
L sin ifr

P .

The first pair differ from the second only by a factor of

mT

m

sin iT

sin ifr
≈ 0.2,
N P
implying comparable resonant kicks.
This type of resonance is different from previously-studied

three-body resonances (e.g., the Laplace resonance among the
three jovian satellites: Io, Europa, and Ganymede) in that the
third body’s orbital longitude does not appear in the resonant
arguments. Nevertheless, Triton’s node is involved in both argu-
ments, implying that its inclination should also be kicked during
resonance crossing. This effect is, however, extremely weak due
to Triton’s huge mass. Since resonant locations are mostly de-
termined by the coefficients of the orbital longitudes appearing
in the resonant angles, the new resonances are located close to
the standard two-body resonances.

In general, the resonant argument of a three-body resonance
has the form

φ = p1λ1 + p2λ2 + p3λ3 + j1Ω1 + j2Ω2 + j3Ω3 + j4�1

+ j5�2 + j6�3,

where the integers pi and ji still need to satisfy the two con-
straints mentioned before. With different integer coefficients,
three-body resonances should be thickly packed throughout the
region of the inner satellites. In our simulations, however, we
fail to locate any that involve the longitude of Triton (i.e.,
p3 �= 0), from which we conclude that these resonances are very
weak. It is unclear why they are so weak since their strengths
should scale similarly with satellite masses and inclinations as
RiLiT and RiP iT . A definitive explanation would require a Tay-
lor expansion of a three-body disturbing function similar to
what has been done for two interacting satellites (Murray and
Dermott, 1999, §6.4), and an examination of the relevant reso-
nant terms. This, however, is a monumental undertaking that is
beyond the scope of this paper.

5.3. Important higher-order resonances

By definition, RiLiT and RiP iT are second-order resonances
since their strengths depend on inclinations of both Triton and
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Fig. 8. Detail of the R∗ resonance in Fig. 2. Larissa’s orbit is fixed at 2.931 RN

and Proteus migrates outwards at 3.6 × 10−11 RN/yr. Satellite densities are
taken to be 0.8 g/cm3. The simulation covers a very small vicinity around the
location where 2nP = nL , which occurs here at t ∼ 1.04 × 105 year. The plots
show free inclinations of the two satellites, together with resonant arguments
of four third-order resonances which are marked in the inclination plots and
detailed in the text.

a small satellite. Generally, however, “order” should refer to an
expansion over small quantities. Since sin iT is not small here,
these three-body resonances [Eqs. (17) and (18)] should really
be considered as first-order in inclinations. But they are much
weaker than the first-order eccentricity resonances due to the
extra dependence on mT /mN , and it is better to consider these
resonances to be second-order in the small quantities ifr

P , ifr
L ,

and mT /mN . We adapt this definition of “order” here.
In addition to the two second-order three-body resonant

kicks, a few fairly strong higher-order kicks also contribute sig-
nificantly to satellite inclinations, two of which are identified in
Fig. 2. The strong resonance ReLiP iT occurs right after ReL

, and
has a resonant argument

φeLiP iT = 2λP − λL − �̃L − Ω̃P + ΩT .

It is a third-order mixed-type resonance that affects the eccen-
tricity of Larissa, the free inclination of Proteus, and the incli-
nation of Triton. We expect the strength of this resonance to
be of order eL ∼ 0.01 times the strength of the second-order
RiP iT , but simulations show that the two are comparable. Thus,
ReLiP iT must have a large numerical coefficient in its strength
term that could be derived through Taylor expansion of the
three-body disturbing function.

Another interesting resonance is marked as R∗ in Fig. 2.
It occurs almost exactly at the location where 2nP − nL = 0.
Since this resonance affects the inclinations of both satellites,
both nodes, Ω̃P and Ω̃L, should appear in the resonant argu-
ment. Nodal precession normally should displace the resonant
location from the precise 2:1 commensurability. R∗, however,
is not displaced, suggesting that the satellites’ pericenters (�P
Fig. 9. Similar simulation as shown in Fig. 8, but the satellites have a slightly
higher density ρ̄ = 1.0 g/cm3. With a larger density, the resonances are stronger
and the inclination excitations behave rather stochastically. The resonance an-
gle plots show that multiple resonances are active simultaneously. The final
inclinations are impossible to predict.

and �L) must also be involved in the resonant argument. The
pericenters are required to explain the lack of offset, since, to
first-order in small eccentricities and inclinations, Ω̇P = −�̇P

and Ω̇L = −�̇L. A single resonance with all of these properties
would need to be at least fifth-order, e.g.,

φ = 4λP − 2λL + �̃P + Ω̃P − �̃L − Ω̃L − 2ΩT .

This is surprising, as a fifth-order resonance should not be as
strong as the second-order resonance RiP iL (Fig. 2). A care-
ful examination of resonances in the vicinity of R∗ reveals two
pairs of third-order resonances:

φeLiLi3
T

= 2λP − λL + �̃L + Ω̃L − 3ΩT ,

φeP iP i3
T

= 2λP − λL + �̃P + Ω̃P − 3ΩT ;
and

φeLiLiT = 2λP − λL − �̃L − Ω̃L + ΩT ,

φeP iP iT = 2λP − λL − �̃P − Ω̃P + ΩT .

Although each individual resonance affects the orbit of only one
small satellite, the two resonances in either pair occur almost
on top of each other, and the two pairs themselves are so close
that we cannot resolve them in Fig. 2. The first pair is weaker
than the latter pair by a factor of ∼ sin2 iT ≈ 0.15, although the
exact factor again depends on the numerical coefficients in their
strength expressions.

A magnified look at R∗ with a slower migration rate shows
the slightly different locations of these four resonances (Fig. 8).
The tiny offsets between the locations of the resonances in each
pair are due to higher-order eccentricity and inclination effects
on the nodal and pericenter precession rates. At the beginning
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of the simulation, φeLiLiT (fifth panel) shows large amplitude
libration because ReLiLiT is the strongest resonance in the vicin-
ity. However, the weaker resonances ReLiLi3

T
and ReP iP i3

T
are

traversed first. As the orbits approach these two resonances,
φeLiLiT becomes out of phase for libration, and the arguments
of two earlier resonances circulate even more slowly. At the
resonant locations, these angles reverse their direction of cir-
culation. The arguments of the latter pair of resonances behave
similarly. Due to their weak resonance strengths, none of the
four arguments strongly librates as shown for RiP iT and RiLiT

in Fig. 7. The two Larissa resonances, which should be stronger
due to higher values of e and i as well as mP > mL, display
long-range effects visible as concentration in the resonant argu-
ments around t = 0.

The overlap of these resonance effects is a recipe for chaos,
especially if the resonances are a little bit stronger, e.g., with
larger satellite masses, or if orbits linger in the region due
to a slower Proteus migration rate. When two orbits diverge
through an isolated resonance, the semi-major axis of the in-
ner satellite decreases, while that of the outer satellite increases.
The resulting jump causes the two orbits to diverge from each
other more quickly than during tidal migration. If another res-
onance is in the immediate vicinity, however, the system can
be affected by it before completely leaving the first resonance,
resulting in stochastic behavior. In other words, all resonances
have effective widths—near resonance effects emerge before,
and continue after the exact resonant location. Stronger reso-
nances have broader widths. If two resonances are located very
close to each other, and if they are strong enough that their
widths overlap, temporary capture can occur and the kicks to
orbital elements behave somewhat like a random walk. Fig. 9
shows the same resonances as Fig. 8 does, but with satellites
just 25% more massive. As the system steps into the first pair
of resonances, the two resonant angles start to librate. But the
system does not exit the resonant region quickly and cleanly
as in Fig. 8. Instead, the two resonant angles alternate be-
tween libration and circulation in a complicated way, and the
inclinations are kicked up or down randomly until the sys-
tem escapes these resonances. The second pair of resonances
interacts chaotically in a similar manner. The random behav-
ior of the inclinations throughout this region make it impos-
sible to predict their total excitation. However, given certain
migration rates and low enough satellite densities, these tem-
porary captures only continue for a limited time. In the sim-
ulation shown in Fig. 9, the maximum inclination gains of
Proteus and Larissa are of the same order as the RiP iT and
RiLiT kicks. Similar chaotic interactions have also been no-
ticed in simulations of the orbital resonances among the uranian
satellites by Tittemore and Wisdom (1988). The existence of
these chaotic zones puts an intrinsic limit on how well the
orbital histories of Neptune’s small satellites can be recon-
structed.

6. Constraints on satellite masses

We now constrain the satellite masses with the observed free
inclinations of Proteus and Larissa, 0.026◦ and 0.205◦, respec-
Fig. 10. Magnitudes of the sum of all 2:1 inclination kicks versus satellite den-
sity. Triangles represent the data points obtained through different simulations
with different satellite densities (assuming ρP = ρL = ρ̄). The dashed lines
show the current free inclinations of the satellites. Top panel shows the incli-
nation kicks on Proteus; bottom panel shows those on Larissa. The inclinations
shown here represent the sum over all inclination kicks in plots similar to Fig. 2.

tively (Table 1). The debris disk forced by Triton, in which the
satellites formed, however, should have damped very quickly
into a thin layer similar to Saturn’s rings, but lying in the warped
Laplace plane (see Fig. 4). Satellites formed within this slim
disk should have free inclinations initially less than ∼0.001◦.
Our simulations imply that, with strong inclination kicks from
the three-body resonances with Triton, mean-motion resonance
passages are effective in exciting satellites’ free inclinations to
near their current values.

Tides affect a satellite’s inclination as well because plane-
tary rotation carries the tidal bulge in and out of the moon’s
orbital plane. For a satellite with a small tilt, however, this effect
is very weak (Burns, 1977). The free inclinations of the inner
neptunian satellites should decay by less than a tenth of their
current values over the age of the Solar System. Thus, Proteus
and Larissa should retain the free inclinations that they obtained
through the PL 2:1 resonance passage.

The inclination kicks through a resonance passage depend
on the satellite density just as the eccentricity kicks studied in
Section 4 do. Thus, the current free inclinations of the satellites
can be used to place constraints on their densities. We study
the relation between satellite density (assuming ρP = ρL = ρ̄)
and total inclination growth numerically, and plot our results
in Fig. 10. A larger mean density results in greater inclination
growth for both Proteus and Larissa. This 2:1 resonance pas-
sage can excite Proteus’s free inclination to its current value
if the satellites’ mean density is ρ̄ ∼ 1.5 g/cm3. Their density
cannot be much greater, or Proteus’s free tilt would exceed its
observed value, and there is no mechanism to damp this incli-
nation in just a few hundred million years.

Although Proteus is able to obtain its free inclination through
a single PL 2:1 passage if ρ̄ ∼ 1.5 g/cm3, Larissa can only ac-
quire half of its current tilt. Perhaps this can be explained by
relaxing the assumption of equal densities. We might suspect
that Proteus has a greater density than Larissa due to its larger
mass, even if they formed with similar compositions. In gen-
eral, the resonant kicks on one satellite depend on the mass of
the other one [see Eqs. (17) and (18)]. Thus, if we keep Laris-
sa’s density at 1.5 g/cm3, while allowing Proteus to be denser,



398 K. Zhang, D.P. Hamilton / Icarus 188 (2007) 386–399
Fig. 11. Similar simulation as shown in Fig. 2, but Proteus and Larissa have larger and unequal densities: ρP = 4.0 g/cm3 and ρL = 1.5 g/cm3. Proteus’ migration
rate is 3.6 × 10−10 RN/yr. Due to heavy masses, high-order resonances become important, resonance overlap occurs, and temporary captures and stochastic
processes fill in the region.
we might be able to maintain ifr
P ≈ 0.026◦ and raise ifr

L to ≈ 0.2◦
at the same time. We have run simulations with Proteus’s den-
sity ρP ranging from 1.5 to 4.0 g/cm3. Our results show that for
ρP < 3.5 g/cm3, we are able to keep ifr

P ≈ 0.026◦, with ifr
L in-

creasing smoothly to 0.17◦. The resonant kick to Proteus’ free
inclination does actually drop a little bit due to its weak de-
pendence of on mP . If ρP � 3.5 g/cm3, however, high-order
resonances become too strong to be ignored (Fig. 11). Tempo-
rary captures and stochastic processes, similar to what we have
seen for R∗, occur throughout the region, and the prediction of
final inclinations is impossible.

It is unlikely that Neptune’s small satellites can have densi-
ties as high as 4.0 g/cm3. Even 1.5 g/cm3 is probably too large
since moonlets formed in the outer Solar System are most likely
icy, with densities �1.0 g/cm3 (e.g., Janus and Epimetheus,
Nicholson et al., 1992; Amalthea, Anderson et al., 2005). We
conclude here that (i) ρ̄ < 1.5 g/cm3, and (ii) the PL 2:1 reso-
nance passage acting alone cannot account for ifr

L . Instead, we
suggest that Proteus and Larissa must have passed through more
than one mean-motion resonance. Since tides are not capable
of damping satellite inclinations, excitations from multiple res-
onance passages accumulate. We will pursue this avenue in a
future publication.
7. Conclusion

We have carried out a numerical study of the recent 2:1
Proteus–Larissa mean-motion resonance. Resonant excitations
of the satellites’ eccentricities and inclinations during this pas-
sage provides useful constraints on satellite masses and tidal
Q’s.

Assuming that the two satellites have the same density,
a lower limit of their density can be derived from their current
eccentricities. The eccentricities must be excited to more than
their current values through the 2:1 resonance, which requires
an average density ρ̄ > 0.05 g/cm3. Satellite tides have then
damped the eccentricities to their current observed values. The
maximum density of the satellites is limited by their current free
inclinations. Due to the lack of an efficient mechanism to damp
inclinations, this resonance should not excite the satellites’ tilts
to much higher than their current values. The current free incli-
nation of Proteus limits the average density of the satellites to
ρ̄ � 1.5 g/cm3.

The large free inclination of Larissa, however, exhibits a
problem. With a density of 1.5 g/cm3, Larissa can only get
half of its current tilt through the PL 2:1 resonance passage.
Nevertheless, the kicks received by Proteus and Larissa dur-
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ing the PL 2:1 passage are of the same order as their measured
free inclinations, which supports our contention that the current
inclinations are signatures of past resonance passages. Larissa
might be able to acquire enough inclination through a combina-
tion of several mean-motion resonance passages.

The upper limit on density, together with the satellites’ cur-
rent eccentricities, places a lower limit on their tidal Q’s; for
both satellites, Qs > 10. Better constraints require a more accu-
rate determination of both satellite densities and Neptune’s Q.

We have also worked out a new mathematical framework
to analyze resonances in this system. Due to its large mass
and orbital tilt, Triton’s secular perturbations affect small satel-
lite mean-motion resonances strongly. We define new orbital
elements that automatically take account of Triton’s secular
effects, and apply our theory to the new type of three-body res-
onances that we find in this system. While our mathematical
approach has limited practical applications in the Solar System
since most large bodies have small eccentricities and inclina-
tions, it may be applied to extra-solar planetary systems. Extra-
solar planets usually display large eccentricities, and some will
likely have large inclinations as well. Our model can be readily
adapted to these situations.
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Ćuk, M., Gladman, B.J., 2005. Constraints on the orbital evolution of Triton.
Astrophys. J. 626, L113–L116.

Danby, J.M.A., 1988. Fundamentals of Celestial Mechanics, second ed.
Willmann-Bell Inc., Richmond, VA.

Darwin, G.H., 1880. On the secular effects of tidal friction. Astron. Nachr. 96,
217–222.

Dobrovolskis, A.R., 1993. The Laplace planes of Uranus and Pluto. Icarus 105,
400–407.

Goldreich, R., 1963. On the eccentricity of satellite orbits in the Solar System.
Mon. Not. R. Astron. Soc. 126, 257–268.
Goldreich, P., Soter, S., 1966. Q in the Solar System. Icarus 5, 375–389.
Goldreich, P., Murray, N., Longaretti, P.Y., Banfield, D., 1989. Neptune’s story.

Science 245, 500–504.
Greenberg, R., 1973. Evolution of satellite resonances by tidal dissipation. As-

tron. J. 78, 338–346.
Greenberg, R., 1977. Orbit–orbit resonances among natural satellites. In:

Burns, J.A. (Ed.), Planetary Satellites. Univ. of Arizona Press, Tuscon, AZ,
pp. 157–168.

Greenberg, R., 1981. Apsidal precession of orbits about an oblate planet. As-
tron. J. 86, 912–914.

Greenberg, R.J., Counselman, C.C., Shapiro, I.I., 1972. Orbit–orbit resonance
capture in the Solar System. Science 178, 747–749.

Hamilton, D.P., 1994. A comparison of Lorentz, planetary gravitational, and
satellite gravitational resonances. Icarus 109, 221–240.

Hamilton, D.P., 1996. The asymmetric time-variable rings of Mars. Icarus 119,
153–172.

Hamilton, D.P., Burns, J.A., 1993. Lorentz and gravitational resonances on cir-
cumplanetary particles. Adv. Space Res. 13 (10), 241–248.

Hamilton, D.P., Zhang, K., Agnor, C., 2005. Constraints on Triton’s orbital evo-
lution. AAS/Division of Dynamical Astronomy Meeting 36. 11.04.

Jacobson, R.A., Owen, W.M., 2004. The orbits of the inner neptunian satel-
lites from Voyager, Earth-based, and Hubble Space Telescope observations.
Astron. J. 128, 1412–1417.

Jeffreys, H., 1961. The effect of tidal friction on eccentricity and inclination.
Mon. Not. R. Astron. Soc. 122, 339–343.

Karkoschka, E., 2003. Sizes, shapes, and albedos of the inner satellites of Nep-
tune. Icarus 162, 400–407.

McKinnon, W.B., 1984. On the origin of Triton and Pluto. Nature 311, 355–
358.

Murray, C.D., Dermott, S.F., 1999. Solar System Dynamics. Cambridge Univ.
Press, Cambridge.

Nicholson, P.D., Hamilton, D.P., Matthews, K., Yoder, C.F., 1992. New obser-
vations of Saturn’s coorbital satellites. Icarus 100, 464–484.

Owen, W.M., Vaughan, R.M., Synnott, S.P., 1991. Orbits of the six new satel-
lites of Neptune. Astron. J. 101, 1511–1515.

Peale, S.J., 1976. Orbital resonances in the Solar System. Ann. Rev. Astron.
Astrophys. 14, 215–246.

Peale, S.J., 1986. Orbital resonances, unusual configurations and exotic rotation
states among planetary satellites. In: Burns, J.A., Matthews, M.S. (Eds.),
Satellites. Univ. of Arizona Press, Tuscon, AZ, pp. 159–223.

Rauch, K.P., Hamilton, D.P., 2002. The HNBody package for symplectic inte-
gration of nearly-Keplerian systems. Bull. Am. Astron. Soc. 34. 938.

Smith, B.A., Soderblom, L.A., Banfield, D., Barnet, C., Basilevsky, A.T.,
Beebe, R.F., Bollinger, K., Boyce, J.M., Brahic, A., Briggs, G.A., Brown,
R.H., Chyba, C., Collins, S.A., Colvin, T., Cook, A.F., Crisp, D., Croft,
S.K., Cruikshank, D., Cuzzi, J.N., Danielson, G.E., Davies, M.E., De Jong,
E., Dones, L., Godfrey, D., Goguen, J., Grenier, I., Haemmerle, V.R., Ham-
mel, H., Hansen, C.J., Helfenstein, C.P., Howell, C., Hunt, G.E., Ingersoll,
A.P., Johnson, T.V., Kargel, J., Kirk, R., Kuehn, D.I., Limaye, S., Ma-
sursky, H., McEwen, A., Morrison, D., Owen, T., Owen, W., Pollack, J.B.,
Porco, C.C., Rages, K., Rogers, P., Rudy, D., Sagan, C., Schwartz, J., Shoe-
maker, E.M., Showalter, M., Sicardy, B., Simonelli, D., Spencer, J., Sro-
movsky, L.A., Stoker, C., Strom, R.G., Suomi, V.E., Synott, S.P., Terrile,
R.J., Thomas, P., Thompson, W.R., Verbiscer, A., Veverka, J., 1989. Voy-
ager 2 at Neptune—Imaging science results. Science 246, 1422–1449.

Tittemore, W.C., Wisdom, J., 1988. Tidal evolution of the uranian satellites.
I. Passage of Ariel and Umbriel through the 5:3 mean-motion commensu-
rability. Icarus 74, 172–230.

Yoder, C.F., 1995. Astrometric and geodetic properties of Earth and the Solar
System. In: Ahrens, T. (Ed.), Global Earth Physics: A Handbook of Physical
Constants. American Geophysical Union, Washington, DC.


	Orbital resonances in the inner neptunian system
	Introduction
	Tidal migration and mean-motion resonance passage
	Computing techniques
	Eccentricity evolution during and after the PL 2:1 passage
	Inclination resonances in the PL 2:1 resonant zone
	Laplace plane and free inclination
	Three-body resonances
	Important higher-order resonances

	Constraints on satellite masses
	Conclusion
	Acknowledgments
	References


