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The equations of celestial mechanics that govern the time rates of change of the orbital

elemepts are completely derived using elementary dynamics, starting from only Newton’s
equation and its solution. Two orbital equations and the four most meaningful orbi

ﬂé? M(Bﬁ

elements—semimajor axis a, eccentricity e, inclination i, and longitude of peasi {)—are
written in terms of the orbital energy E and angular momentum H per unit mass. The six
resulting equations are differentiated with respect to time to see the effect on the orbital
elements of small changes in E and H. The usual perturbation equations in terms of
disturbing force components are then derived by computing the manner in which perturbing
forces change E and H. The results are applied in a gualitative discussion of the orbital
evolution of particles in nonspherical gravitational fields, through atmospheres, and under the

action of tides.

[. INTRODUCTION

Celestial mechanics, once of interest only to erudite ap-

plied mathematicians, has been found to be important in

today’s space age to a wide class of scientists. It is used by
the engineer for the precise missions of modern spacecraft,
by the geophysicist to learn of the Earth’s interior density
from variations in satellite orbits, by the observational as-
tronomer for the prediction and explanation of occultation
and eclipse phenomena, by the theoretical astrophysicist
to build interpretative models for the evolution of binary
star systems composed of exotic stellar classes, and by the
cosmogonist to reconstruct the solar system’s primordial
configuration from current data. For all of these scientists,
it is the perturbation equations of celestial mechanics—the
six equations which describe how an orbit evolves under the
action of small disturbing forces—that are especially use-
ful.

Despite numerous applications, the perturbation equa-
tions are often poorly understood by those who employ
them. It is difficult for many noncelestial mechanicians to
completely appreciate the perturbation equations because
their derivation historically relies on somewhat sophisti-
cated classical mechanics. These fundamental equations
are classically derived (see, e.g., the texts of Moulton,!
Plummer,? or Brown3) either through a perturbed Hamil-
ton-Jacobi equation or by an inversion technique, the
variation of the elements. While each scheme is mathe-
matically elegant, neither provides much physical insight:
the end result is that frequently the nonspecialist applies
equations that he has accepted on faith. Even among the
post-Sputnik texts concerning celestial mechanics and as-
trodynamics, most (see, e.g., Deutsch,* Roy,’ or Brouwer
and Clemence®) give derivations developed more than a
century ago. Sterne,’ on the other hand, while emphasizing
the perturbed Hamilton-Jacobi technique, does interpret
four of the perturbation equations in a manner similar to
our dynamical approach below. Only Danby® provides a
complete physical basis for the perturbation equations by
considering the direct effect of impulses on the parameters
which describe an orbit. Most contemporary research which
considers the effects of particular disturbing forces does not
attempt to develop physical intuition. Blitzer® has consid-
ered, however, a specific perturbation problem—the effect
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of the Moon and Sun on the motion of a near Earth satel-
lite—using basic dynamical concepts, such as we will, but
does not treat the general perturbation problem. Blitzer!©
has also presented for the general reader a valuable review
of reference material on the dynamics of satellite orbits. In
the historical past, all pedagogic discussions!! of the per-
turbation equations relied heavily on intricate geometrical
arguments of the properties of ellipses. These have little
appeal today. ) .

Here we wish to present a derivation of the perturbation
equations of celestial mechanics that is elementary, yet
complete of itself, starting from Newton’s equation and its
solution, and using only fundamental concepts familiar to
most sophomores in physics. Our derivation and the form
of the equations will make clear their physical basis; in that
way they may improve the understanding of the professional
scientist while at the same time providing a significant ap-
plication of elementary dynamics for the undergraduate.
For the first time, to the author’s knowledge, the pertur-
bation equations will be written in terms of only the orbital
energy and angular momentum, whichare constants of the
motion in the unperturbed problem, and their time rates of
change. Such equations often have a simpler interpretation
than the usual perturbation equations, particularly if one
is interested in ledrning of the qualitative effects of specific
disturbing forces. From this set of equations, knowing how
energy and angular momentum change with time, we will
derive without difficulty the classical perturbation equations
of celestial mechanics in terms of the disturbing forces.
Application of the perturbation equations in‘terms of energy
and angular momentum will then be made to +gem the ef-
fects of a few of the more common pcrturbati;n forces in
celestial mechanics.

lMI’?L

II. PRELIMINARIES

A.. Unperturbed Orbit

In order to define quantities for later use, we first consider
a particle m moving in the r~2 gravitational field of a fixed
point mass M. For a force F per unit mass, Newton’s
equation of motion is

F=¢=—ur 3, Y

Copyright© 1976 American Associatiori of Physics Teachers 944

—

all-ef

APOCEN1

Fig. 1. Diag
nition of the
anomaly ¢, a

where u =
constant;
signifies ¢
Becaus
= 0. Thus
vector; it :
about M.
place in tl
and cont:
tude,

be conser
from som
line to be
2.

Since’
of the pa
be —u/r.
served ar

The o
portion ¢
of a conit
14 and sc

The qua
initial cc

The rigl
simple g
otherwit

The ¢
introduc

the pan
(the poi

The«
simple
interest
elliptic:
semima

_of peric
One




G(l_elZ)l/?_
APOCENTER/ k
A g

Fig. 1. Diagram of the orbit plane of an elliptic orbit, showing the defi-
nition of the orbital elements {a,e,w), the true anomaly f, the eccentric
anomaly ¢, and pericenter location.
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where u = GM, with G being the universal gravitational
constant; r is the position vector from M to m, and the dot
signifies differentiation with respect to time.

Because the force in Eq. (1) is radial, r X i = d(r X £)/d?

= (. Thus, H, which is defined as r X , must be a constant v

vector; it is the particle’s angular momentum per unit mass
about M. The constancy of H implies that the motion takes
place in the orbit plane, a fixed plane which is normal to H
and contains M. it also requires that the vector’s magni-
tude,

H = r2j, 2)

be conserved. The angle 8 is the position angle measured
from some fixed line in the plane; below we will choose this
line to be the line of nodes which is later defined in Fig.
2.

Since V X F = 0, the line integral fF-dr is independent
of the path and gives the potential energy per unit mass to
be —u/r. Therefore, the total energy per unit mass is con-
served and is ‘

E=(1/2)tt—p/r. 3)

The orbit r = r(#) can be found by solving the radial

portion of Eq. (1), making use of Eq. (2). The sohition, that

of a conicsection, is developed in many elementary texts,!2-
14 and so we merely quote it:

r=p/[1 + e cos(d — w)]. 4)

The quantities e and w are constants determined from the
initial conditions. The parameter

p=HYu=a(l —e?). )

The right-hand equation defines a and is made to allow a
simple geometric description of the orbit; it is not necessary
otherwise at this time and will be derived later.

The argument of the cosine term in Eq. (4) is used to
introduce the true anomaly,

fEe—w, (6)

thé particle’s angular position meastred from pericenter
(the point of closest approach to M; see Figs. 1 and 2).
The quantities a, e, and w are constants which have the
simple geometric representation of Fig. 1 for the case of
interest in most celestial mechanics problems, namely an
elliptical solution (where the eccentricity e < 1). The
semimajor axis of the ellipse is @, where w is the argument

_of pericenter.

One can geometrically show!? that an equivalent solution
is
r=a(l — e cose), N
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where e is the eccentric anomaly, which is the position angle
measured from pericenter of a point directly above the ac-
tual particle on a circle of radius a (see Fig. 1). Comparing
Eq. (7) to Bq. (4) relates the true anomaly to the eccentric
anomaly by

_ etcosf
cose = 1+ e cosf ®)
and, thus,
(- e2)1/2
o 1 — e cose de ®)

Differentiation of Eq. (4) with Egs. (2) and (6) yields the
particle’s radial velocity as

F = (H/p)e sinf, 10)
while its transverse velocity is
ré = (H/p)(1 + e cosf). (11)

B. Orbital elements

To completely deseribe the particle’s orbit as a function
of time, six constants—the orbital elements— are required:
they correspond to the six initial conditions (ro,Fg) appearing
in'the general solution of any three-dimensional, second-

.order ordinary differential equation of motion such as (1).

Three orbital elements, @, e, and w, have already been
presented. A fourth is needed to completely describe the
two-dimensional motion of the particle in the orbital plane.
It, in essence, is used to specify a reference time which lo-
cates the particle: frequently, 7, the time of pericenter
passage, is chosen. The remaining two orbital elements
orient the orbital plane as shown in Fig. 2. The inclination
i gives the angle between the orbital plane and some arbi-
trary fixed plane. The latter usually is taken to be the
equatorial plane of the central body for two-body problems
or the orbital plane of the central body in cases where the
central body itself is in orbit about another mass. The lon-
gitude of the ascending node Q locates the point at which
the orbit pierces the arbitrary plane on its upward path. The
line of nodes is the intersection of the arbitrary plane and
the orbit plane.

The above set of orbital elements (a,e,i,w,Q,7) is selected
as the most understandable; however, other choices, which
also uniquely define the orbit, are possible and often used.
For example, the longitude of pericenter & = w + (2,2 sum
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Fig. 2. Sketch of part of a three-dimensional orbit, illustrating the angular
momentum vector H and how it determines the orbital elements Q and
i.

Joseph A. Burns 945




of noncoplanar angles, frequently replaces w. Also the mean
motion n (the time average of the orbital angular velocity);
which is given by Kepler’s third law as derived immediately
below [Eq. (14)], sometimes takes the place of a. A variant
of x = —n, the mean longitude of pericenter, is preferred
to 7 for reasons which will appear later.

C. Kepler’s equation

An orbital equation that explicitly contains the time is
needed in order to find the perturbation equation for .
Kepler’s equation is such an equation; it can be derived from
the integral of Eq. (2) evaluated from pericenter toa general

time t:
1 I
HJ' dt=50 rdf. (12)
By means of Egs. (7), (9), and (16) below, this is

t — 7= a32p~1/2(e — e sine). (13)
After one orbital period P, Eq. (13) reads
P/2rw=n" = a®2um1/2, (14)

which is Kepler’s observationally discovered third law.
Substituting Eq. (14) into Eq. (13), we arrive at Kepler’s
equation

n(t — ) = ¢ — e sine. (15)

D. Energy and angular momentum of the orbit

We now wish to express the orbital elements in terms of
the orbital energy and angular momentum. Substitution of
Eqg. (11), combined with Eq. (2), and the time derivative of
Eq. (10) into Eq. (1), and the use of the first and last parts
of Eq. (5) give ‘

H = [pa(l —e)]'/?, (16)

which supports the definition given on the right-hand side
of Eq. (5). Squaring Egs. (10) and (11), and placing them
in Eq. (3) with Egs. (4) and (16), we find

= —p/(2a); (17)

that is, the semimajor axis is determined solely by the total
orbital energy per unit mass. Inverting Eq. (16) and making
use of Eq. (17) show that the orbital eccentricity is specified
‘uniquely by a combination of the energy per unit mass and
the orbital angular momentum per unit mass:

e=(1+2H2Eu"2)1/2 (18)

Similarly, as can be seen from Fig. 2, i and Q are given
by components of the angular momentum vector. We define
the inclination by

cosi = H,/H. (19)

The projection of H onto the xy plane is normal to the line
of nodes, and so the longitude of the ascending node is given
by

tanQ = —H,/H,, (20)

where H,, H,, and H, are the components of H. The (x,3,2)
inertial coordinate system is fixed to M with the z axis
normal to the arbitrary plane discussed above; the x axis
points in an arbitrary direction, usually selected to be the
direction of the vernal equinox for motions in the solar
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system: Equations (17)-(20) give four orbital elements in
terms of the four pieces of information contained in Hand
E. 1t is perhaps worth noting that (£,H,H,; w,Q,7) are the
Jacobi elements, one set of canonical constants for the un-
perturbed Hamilton-Jacobi equation. 16

I1I. PERTURBED PROBLEM

A. Osculating orbital elements

As already noted, the fundamental problem of celestial
mechanics is to find how an orbit, which if unperturbed
would be a conic section, is modified by a disturbing force
dF taken to be small in comparison to F. This is most com-
monly done by considering an auxiliary orbit called the
osculating orbit. This orbit is the (elliptical) path along
which the particle would move if dF suddenly vanished, say
at t = t,, and the particle continued along its way under the
action of F alone with r(¢;) and #(z;) as initial conditions.
Because dF is present, the osculating orbit changes with
time but does so slowly since dF is small. The osculating
orbit is so called because it “kisses” the real orbit at time
1,. The orbital elements which specify the osculating orbit
are called the osculating elements. Once these elements are
known as functions of time, the particle’s position is deter-
mined at any time.

The problem to be solved is then: find the equations
governing the time rates of change of the set (a.¢,i,0,,7)
caused by the action of the small disturbing force

dF=R+T+N=ReR+TeT+NeN, (21)

where the e’s represent an orthogonal unit vector triad, and
the perturbing force is broken into its components; Ris
radially outwards along r, T is transverse to the radial vector
in the orbit plane (positive in the direction of motion of the
particle), and N is normal to the orbit plane in the direction
RXT. ‘

B. Perturbation equations

Once the disturbing force dF is introduced, Egs. (17)-
(20), which give the orbital elements as functions of E and
H, are satisfied only instantaneously; that is, they hold when
the orbital elements, as well as E and H, are considered as
functions of time. To find the relation between the time
rates of change of the orbital elements and the variations
of E and H, we merely differentiate the defining equations

with respect to time. For example, differentiating Eq. (17),

we have

fd_ﬂ_ 2,~-NE
7 (2a*u~hE (22)

as our first perturbation equation. We immediately see that
perturbing forces which dissipate energy cause satellite
orbits to shrink. To convert Eq. (22) to the usual form of a
perturbation equation in which the disturbing forces appear,
we recognize that £ is the work done péf unit-mass on the
body per unit time by the disturbing foices: T

dE _

— = dF = 7R + r0T, (23)

according to Eq. (21); N does not appear since the motion
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Fig. 3. Force diagram to depict the change of the angular momentum
vector under the action of the disturbing force dF.

lies in the orbit plane. Substituting Egs. (10) and (11) into
Eq. (23), and that result into Eq. (22) gives

da = 2~ 12g32(1 — e2)71/2

di . C,oS‘F
X [Resinf+ T(1 + ew]; (24)

only forces lying in the orbit plane can change the orbit
size.
Taking the time derivative of Eq. (18),
% = (1/2)e~ (e — 1)(2H/H + E/E).  (25)

Since dH and dE can be of either sign, the two terms may
compete with one another to determine whether the orbit
is circularized with time or not. The time rate of change of
angular momentum equals the applied moment:

% = X dF = rTey — rNer. (26)
Equation (26) requires that the magnitude of H change
according to

‘-11{— =rT, 27)

since —rN e, being perpendicular to H, merely varies the
direction of H. Substitution of Egs. (16), (17), (23), and
(27) into Eq. (25) with Egs. (4), (10), and (11) gives

de

&= la(l — D)

X [R sinf + T(cosf + cose)], (28)

the classical result. Again, only forces in the orbit plane can
change the orbit shape.
Differentiating Eq. (19) yields

di . .
oo [(H/H,)* = 1]"YVX(H/H — H,/H;).  (29)
It is seen from Fig. 3 that
de = pT cosi — rN cosfl sini, (30)
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and so from Egs. (16), (19), (27), (29), and (30) with Egs.
(4), (10), and (11)

g—l;= [ap='(1 — e%)]/2 N cosf/(1 + e cosf). (31)
)
For clarity this can better be written
di _rN cosB’ (32)
dt H

where the numerator is the component of the torque which
rotates H about the line of nodes (and which thereby moves
the orbit plane). Forces in the orbit plane cannot change the
plane’s orientation.

The derivative of Eq. (20) provides

dQ . .

L—i_t_z (HZ—HZZ)_I(HXH)’—H)'H,\') (33)
or

dQ o s . .

o (H sini)~" (sinQ H + cosQ Hy). (34)
Figure 3 illustrates that
de = r(T sini sinQ + N sinf cosQ

+ N cosf cosi sinQ?)  (35)

and

d—dI-—? = r(—T sini cos + N sinf sin{

— N cosf cosi cos). (36)

Equations (35) and (36) can be placed in Eq. (34) to pro-

duce, using Eqgs. (16) and (4),

%: [ap—'(1 = e2)]'/2
X N sind/[sini (1 + e cosf)]. 37

The dynamics contained in Eq. (37) are more simply un-
derstood when it is written

9 _ iV sind, (39)
dt H sini

where the denominator is the angular momentum which lies
normal to the line of nodes in the xy plane and the numer-
ator is the moment acting to precess the orbit plane.

The development of the final two perturbation equations
is not as straightforward as those above since the orbital
elements w and 7 are not explicit functions of £ and H. We
can, however, find their variations by returning to the
equations which define the orbit. Rewriting Eq. (4) after
substituting Egs. (5) and (18),

H?=pr[1 + (1 + 2EH?p~2)/2 cos(f — w)].  (39)
If a disturbing force dF is considered to be applied for an

instant, E, H, and  change, but r does not since the particle
location instantaneously remains the same:

% =0+ [r™! — E(en)™" cos(6 — )]
X 2HH/[ew sin(f — )]

— H(ep)™2 E cot(fl — w).  (40)
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Fig. 4. View along the edge of the orbit plane to illustrate that changes
in Q affect 6.

The angular position 6 of the particle changes instanta-
neously only because, as can be seen in Fig. 4, a change in
the longitude of node Q affects the evaluation of 8, which
is the particle location measured from the line of nodes. For
algebraic simplicity we have not replaced e in Eq. (40) by
its form in E and H [cf. Eq. (18)]. Substituting Egs. (23)
and (27) in Eq. (40) gives
dw

A0 i py=1(] — 22)]1/2
I [ap=1(1 —e?)]

X [—R cosf + Tsinf'mg%j] —cosi @ (41)
in terms of the disturbing fo(ééé.?ocr%e in the orbit plane
affect w by changing a and e, as is apparent from the above

derivation.

The same approach is taken with 7, except we instead
differentiate Kepler’s equation (15) with respect to time,
substituting ¢ as evaluated from the derivative of Eq. (7),
to obtain

dx 3
i SR tE—l
dt < 2"
(1 —e2)¥2(2e —cosf — e coszj)> i
2e?sinf(1 + e cosf)E
— (1 — e2)3/2H~1e~2H cotf, (42)
recalling that x = n7. Again for relative algebraic simplicity

we leave e rather than substituting its value in terms of E
and H [Eq. (18)]. In terms of forces, Eq. (42) is

- [3if—t>[au—'(1 = e?)~']V2e sinf

dt
1oy, [ S ___2____>]
T -eatu ( e +1+ecosf R

+ <3(T— Dlap=1(1 — e2)~1]1/2(1 + e cosf)

sinf (2 + e cosf)
1 + e cosf > T. (43)

It is the presence of time on the right-hand side of Egs.
(42) and (43) which makes both x and  undesirable as the
final orbital element since their time derivatives grow with
time. As alluded to earlier, schemes using a variant of x are
used to eliminate this difficulty.!7-20 Briefly, what is done
is that a new orbital element is defined which varies with
time in such a manner that its time derivative does not
contain time. However, since Eq. (43) was derived here
strictly for the sake of developing a complete set of pertur-

+ (1 —e?a?u~le™!
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bation equations and since it will not be used in later dis-
cussions, we do not consider this complication further.
Equations (22), (25), (29), (33), (40), and (42) are the
perturbation equations written in terms of energy per unit
mass and angular momentum per unit mass, and their time
rates of change. By knowing the latter quantities in terms
of forces, we have transformed these perturbation equations
into Egs. (24), (28), (31), (37), (41), and (43), the usual
perturbation equations of celestial mechanics written in
terms of perturbing forces, which are classically derived by
other means.2!-24 The perturbation equations can as well
be expressed in terms of a disturbing function whose partial
derivatives equal the force components we have used.

IV. APPLICATIONS

We now wish to apply the equations derived above to
understand the gross features of several typical orbital ev-
olution problems in celestial mechanics.2’> The primary
concern in most astronomical applications is with the
variations of (a,e,i) because these orbital elements ap-
proximately characterize the orbit and are those which
appear in the perturbation equations themselves. Stress will
be placed in our discussion on understanding very long time
orbital changes as caused by changes in energy and angular
momentum; however, the perturbation equations in terms
of forces will be used when a clearer understanding is de-
veloped from them. .

A. Motion in nonspherical gravitational fields

Since any gravitational field can be derived from a po-
tential function, energy is conserved. This implies by Eq.
(22) that the semimajor axis a does not vary for motion in
any static, gravitational field. An axially symmetric grav-
itational field, such as that of an oblate planet, cannot
change H since T = 0. It can produce changes in H,,; how-
ever, these will be short periodic effects when NV is an odd
function of # as it is for an oblate planet. Thus, according
to Egs. (25) and (29), e and { are constant, ignoring short
period effects. The line of nodes does rotate in the passeme
direction at a constant average rate for an oblate plangt as
can be seen from Eq. (38). Similar arguments apply {pr an
orbit perturbed by a third body.

B. Atmospheric drag

A particle moving through an atmosphere dissipates
energy and so a shrinks, according to Eq. (22). The eccen-
tricity also decreases because the right-hand term in Eq.
(25) is positive, considering Egs. (23), (27), (10), and (11),
since

(E/E) _ (1 + e cosf)?
|2H/H] ~ 1 —e?

for any reasonable atmospheric drag law with a solely
transverse force; this is true only until e = 0 when | 2H/H |

>1 (44)

- = E/E: the orbit thereafter remains circular. Since the drag

lies in the orbit plane, N = 0 and the orbit plane stays fixed
in space. Thus, the orbital inclination is constant [see Eq.
(32)] and Q is unchanged [see Eq. (38)].

C. Planetary tides

The tidal forces produced by a secondary body distort the
shape of the primary body. To first order, the distortion is
an elongation of the primary along the line connecting their
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Fig. 5. Tidal effects. (a) Leading tides (s > n). A secondary body distorts
the primary which then rotates from beneath it. The secondary body is
pulled forward more by the near buige than it is slowed by the far bulge.
(b) Lagging tides (s < n). The satellite is pulled in by tidal forces.

centers (see Fig. 5). However, because energy dissipation
delays the tidal response of the primary, the tidal bulge
rotates from beneath the secondary that caused it. As shown
in Fig. 5(a), for the usual case in the solar system (where
the secondary’s orbital angular velocity n is less than the
primary’s rotational angular velocity s), the tidal bulge
leads the secondary body by A and applies a force on the
satellite in the positive T direction. Hence, energy and an-
gular momentum are added to the satellite’s orbit. The orbit
grows. The eccentricity e usually increases in accordance
with the discussions presented immediately above, [cf. Eq.
(44)] recalling that E and H here are of opposite sign to the
atmospheric drag case; however, this does not remain true
for close satellites where higher order tidal terms can be-
come important and reverse the signs of E and H. This
approach has been graphically depicted by Counselman?®
and Greenberg.2” The orbital inclination and longitude of
node undergo changes (unless i = 0) because the primary’s
rotation moves the delayed tidal bulge out of the particle’s
orbit plane along a constant longitude, and so V £ 0; since
N is an odd function of (f — ) and X is small, the integrated
change of i is much greater than the change of Q [cf. Egs.
(32) and (38)]. :

When n > s, as it is for Phobos, the innermost satellite
of Mars, and for Neptune’s retrograde Triton, the situation
in Fig. 5(b) obtains. The tidal forces then withdraw energy

and angular momentum from the orbit: the orbit collapses -

and usually is circularized.

D. Satellite tides

In light of the growth of e for most satellites in the solar
system under the action of planetary tides, it might appear
surprising that virtually all close satellites have nearly cir-
cular orbits. The resolution of this quandary is contained
in Eq. (25). All close satellites are known to be in synchro-
nous rotation (i.e., their rotational angular velocities equal
n) and so tides in the satellites produce only radial pertur-
bations. Thus, H is conserved, but E decreases due to fric-
tional losses during the tidal flexing of the satellite. To put
it in terms of Eq. (23), work is done by the particle because
the maximum tidal force occurs slightly after pericenter at
the time of greatest tidal distortion. This means that more
work is done by the particle in going from pericenter to
apocenter than is done on the particle in returning from
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apocenter to pericenter. Since NV = 0, the elements i and Q

remain constant. The orbit size does not significantly
change since the energy loss is generally very small; a
comparison of Eq. (22) with Eq. (25) shows that for nearly
circular orbits é = e~ ![4/(2a)], indicating that substantial
variations in e can occur with little effect on a.

V. CONCLUSION

We have developed the perturbation equations of celestial
mechanics, which might appear to be complicated at first
glance, from a very elementary dynamical basis. By
applying the insight gained from this new approach we have
been able to predict simply the orbital evolution of particles
acted on by some disturbing forces that are common in ce-
lestial mechanics.
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