OF MATHEMATICS, ASTEROIDS, AND BRAZIL NUTS

An investigation of the paper The Spherical Brazil Nut Effect and Its Significance to Asteroids, by Viranga Perera, Alan Jackson, Erik Asphaug, Ronald-Louis Ballouz, *Icarus* November 2016

presented by Ken Koester

Rubble Piles in Space

- Many asteroids likely rubble piles, weakly cohesive
 - Low bulk densities observed
 - Limited spin rates suggest low cohesion
- Impacts that do not disrupt will shake the pile
- Cumulative effects may differentiate bodies by size

 Some observations show boulders protruding from surface

When All Else Fails, Simulate!

- 500 uniform spheres 80 m radius, 500 40 m radius, density 3 g/cm³
- Settle into one aggregate mass ~800 m radius, 3.62X10¹² kg, density 1.7 g/cm³
- Each seismic event: each particle gets random velocity within run bounds
- Treat particle collisions as springs
- Let aggregate settle (~5 simulation hours)
- Repeat 515 times (102 simulation days)

Results I (marbles)

Тор

Cross-

Results II (shell game)

Run 7	0.0% (53)	0.0% (58)	0.0% (45)	0.0% (61)	0.0% (57)	0.0% (42)	0.0% (43)	0.0% (52)	0.0% (49)	0.0% (40)
Run 8	1.9% (54)	1.7% (59)	-2.2% (44)	1.6% (62)	1.8% (58)	2.4% (43)	2.3% (44)	3.8% (54)	8.2% (53)	-23% (29)
Run 9	1.9% (54)	3.4% (60)	13% (51)	4.9% (64)	18% (67)	21% (51)	37% (59)	0.0% (52)	-24% (37)	-88% (5)
Run 10	7.5% (57)	-5.2% (55)	20% (54)	0.0% (61)	12% (64)	62% (68)	46% (63)	7.7% (56)	-55% (22)	-100% (0)
Run 11	3.8% (55)	12% (65)	20% (54)	16% (71)	39% (79)	69% (71)	37% (59)	-23% (40)	-88% (6)	-100% (0)
Run 12	9.4% (58)	10% (64)	42% (64)	25% (76)	33% (76)	90% (80)	40% (60)	-58% (22)	-100% (0)	-100% (0)
	Shell 1	Shell 2	Shell 3	Shell 4	Shell 5	Shell 6	Shell 7	Shell 8	Shell 9	Shell 10

Energize

- Max particle speeds for runs 8-12 (cm/s):
 6.95,17.4, 20.9, 27.8, 34.7 (v_{esc} = 75 cm/s)
- Is there a reasonable impactor? Assume r = 40 m, inelastic collisions, no ejecta, then:

	Run 8	9	10	11	12
Avg v (cm/s)	3.47	8.66	10.4	13.9	17.3
Total E (J)	2.17E+09	1.36E+10	1.96E+10	3.48E+10	5.43E+10
Impactor v (m/s)	4.80	30.0	43.3	76.8	120.1

Home Brew

Run	Nut/MM	1st nut	1st layer	# on top	# on
				at 150	bottom
1	18/100	20	70-80	6	1-2
2	18/100	20	70	8	1
3	18/100	10-20	60-70	6	1
4	16/100	5	40-50	8	1
5	8/100	50	80	6 (200)	1-2
6	6/100	5	40	4-5 (200)	1
7	5/100	30	100	4 (200)	1
8	4/100	40	120	3 (200)	1
9	22/44	4	30	8	5
10	22/100	12	110	9	6

Packing

Can't do better than 0.74, single size; 0.8245, binary (de Laat, Filho, Vallentin, June 2012)
 Denser packs should be energetically favorable, but —

	800-600 m	600-400 m	400-200 m	200-0 m
Initial ratio l/s	250/225	185/190	70/75	10/13
Initial PF	0.5508	0.7032	0.7257	~0.74
Final ratio l/s	275/5	155/365	70/80	11/14
Final PF	0.4768	0.6758	0.7314	0.816

Packing It In

Mechanism seems plausible:
 sizes do get sorted
 energy requirements feasible

Simulation doesn't tell us if physics or math more important – but doesn't rule out physics

"Experiments" suggest i.c. pretty influential