

GALEX Galaxy Evolution Explorer

The Transient UV/Optical Universe

Suvi Gezari

Research Class – October 15, 2012

GALEX Galaxy Evolution Explorer

The **Transient** UV/Optical Universe

Suvi Gezari

Research Class – October 15, 2012

Science Drivers

Tidal Disruption Events

• UV bright for months to years.

Supernova Shock Breakout

• UV bright for hours to days depending on the radius of the progenitor star.

Active Galactic Nuclei

• UV bright, and amplitude of variability increases with shorter wavelength.

Variable Stars

- M-dwarf stars flare in UV for $\Delta t \approx 100$ sec.
- RR Lyrae have periodic fluctuations on the timescale of 0.5 d.

Outline

- Why study transients in the UV?
- GALEX Time Domain Survey + Pan-STARRS1.
- Selection and characterization of UV variables.
- GALEX TDS transient discoveries.
- Potential projects for grad students.

Supernova Shock Breakout

- Most luminous phase of a core-collapse explosion.
- UV/X-ray burst of radiation when shock emerges at the surface of the star.

Supernova Shock Breakout

The duration of shock breakout signal is sensitive to the radius of the progenitor ($\tau \sim R_{\star}/c$) and the presence of a wind.

Expanding Cooling Ejecta

The early evolution of the UV light curve from the expanding, cooling ejecta is determined by R_{\star} and E/M_{ej} .

Expanding Cooling Ejecta

In the optical, the shock breakout peak is 3 mag fainter, and there is no distinction between progenitors for t > 6 h.

Opportunity for GALEX

- SNe discovered in optical surveys are caught too late, when the UV emission is already fading rapidly.
- Parallel wide-field monitoring in the UV can catch SNe early, when the hot, thermal emission from the ejecta is bright in the UV.

Tidal Disruption of a Star

Probe for M_{BH}

Tidal Disruption Radius

• $R_p < R_T \approx R_\star (M_{BH}/M_\star)^{1/3}$

Characteristic Timescale

• $t_{min} = 0.11 \text{ yr} (M_{BH}/10^6 \text{ M}_{\odot})^{1/2} (M_{\star}/M_{\odot})^{-1} (R_{\star}/R_{\odot})^{3/2}$

Critical Black Hole Mass

• $M_{crit} = 10^8 M_{\odot} (M_{\star}/M_{\odot})^{-1/2} (R_{\star}/R_{\odot})^{3/2}$

Bolometric Luminosity

• $L_{bol} \approx L_{Edd} = 1.3 \times 10^{44} \text{ ergs s}^{-1} (M_{BH}/10^6 \text{ M}_{\odot})$

Characteristic Temperature

• $T_{eff} \approx [L_{Edd} / (\sigma 4 \pi R_T^2)]^{1/4}$ = 2.5x10⁵ K M₆^{1/12} (R_{*}/R_☉)^{-1/2} (M_{*}/M_☉)^{-1/6}

Probe for M_{BH}

Tidal Disruption Radius

• $R_p < R_T \approx R_{\star} (M_{BH}/M_{\star})^{1/3}$

Characteristic Timescale

• $t_{min} = 0.11 \text{ yr} (M_{BH}/10^6 \text{ M}_{\odot})^{1/2} (M_{\star}/M_{\odot})^{-1} (R_{\star}/R_{\odot})^{3/2}$

Critical Black Hole Mass

• $M_{crit} = 10^8 M_{\odot} (M_{\star}/M_{\odot})^{-1/2} (R_{\star}/R_{\odot})^{3/2}$

Bolometric Luminosity

• $L_{bol} \approx L_{Edd} = 1.3 \times 10^{44} \text{ ergs s}^{-1} (M_{BH} / 10^6 \text{ M}_{\odot})$

Sensitive probe of the lower mass range of SMBHs where the M_{BH} - σ relation is poorly constrained.

Type of Star Disrupted

GALEX

λ [Angstroms]

Pan-STARRS1

Total Throughput

GALEX TDS + PS1 MDS

Band FOV Depth FWHM Cadence Stack

GALEX NUV 1.1 deg 23.3 mag 5.4" 2 d 24.8 mag

PS1 g,r,l,z,y 3.3 deg 23.0 mag 1.0" 3 d 24.3 mag

GALEX TDS and PS1 MDS well-matched in area, depth, and cadence.

GALEX: m_{lim} (per epoch) = 23.3 mag, m_{lim} (stack) = 24.8 mag m_{lim} (per epoch) = 23.0 mag, m_{lim} (stack) = 24.3 mag **PS1**: GALEX TDS Fields

GALEX TDS Cadence

 $\Delta t (GALEX) = 2 days$ $\Delta t (PS1) = 3 days$

Characteristic timescales: 2d, 4d, 6d, 8d, 1y, 2y

GALEX TDS Timescales

GALEX TDS 5σ Selection

Point Sources

GALEX TDS Classifications

GALEX TDS Unclassified Sources

GALEX TDS Unclassified Sources

SN IIP 2010aq

Following shock breakout, the ejecta expand and cool, causing the peak of the emission to shift into the NUV band.

RSG, R₊≈ 700 ± 200 R_s

Constrain NUV Solid Lines: progenitor star g Analytical Model for SBO in a RSG radius from the time of the NUV Ζ peak and the temp at the time of the earliest UV/ optical detection. ₩ –15 $L \sim M^{-0.87} R E^{0.96} t^{-0.17}$ $T \sim M^{-0.13} R^{0.38} E^{0.11} t^{-0.56}$ -14Nakar & Sari 2010 0 2 3 Rest Frame Days Since t_{SBO} Gezari+ (2010)

GALEX TDS Unclassified Sources

PS1-10jh

Transient discovered on 31 May 2010

PS1 MDS

photpipe difference images

PS1-10jh

- Flare coincident with inactive galaxy nucleus GALEX TDS
- z=0.1696
- M_r = -18.7 mag
- $M_{gal} = 3.6 \times 10^9 M_{\odot}$
- $M_{BH}^{-} = 4^{+4}_{-2} \times 10^{6} M_{\odot}$
- SFR < 0.022 $M_{\odot} \text{ yr}^{-1}$

PS1 MDS

Gezari+ 2012

Slow Rise/Power-law Decay

Fit to Mass Accretion Rate

Hot Blackbody Emission

Hot Blackbody Emission

Long-lived hot blackbody emission and extreme UV to X-ray ratio rule out a SN and AGN origin, respectively.

Photoionized Stellar Debris

- Broad He II emission (FWHM = 9,000 km/s)
- He II 3203/4686 → E(B-V) < 0.08
 mag
- He II 4686/ Hα → X < 0.2
- Tidal disruption debris expelled at high velocities (v_{max}~10⁴ km/s)
- Expelled debris from a heliumrich stellar core!

An ultraviolet-optical flare from the tidal disruption of a helium-rich stellar core

S. Gezari¹, R. Chornock², A. Rest³, M. E. Huber⁴, K. Forster⁵, E. Berger², P. J. Challis², J. D. Neill⁵, D. C. Martin⁵, T. Heckman¹, A. Lawrence⁶, C. Norman¹, G. Narayan², R. J. Foley², G. H. Marion², D. Scolnic¹, L. Chomiuk², A. Soderberg², K. Smith⁷, R. P. Kirshner², A. G. Riess¹, S. J. Smartt⁷, C. W. Stubbs², J. L. Tonry⁴, W. M. Wood-Vasey⁸, W. S. Burgett⁴, K. C. Chambers⁴, T. Grav⁹, J. N. Heasley⁴, N. Kaiser⁴, R.-P. Kudritzki⁴, E. A. Magnier⁴, J. S. Morgan⁴ & P. A. Price¹⁰

- L_{bol} > 2.2 x 10⁴⁴ erg/s, E_{tot} > 2.1 x 10⁵¹ erg, M_{acc} > 0.012 M_{\odot}
- Tidally stripped Red Giant (precursor to a helium white dwarf)
- For M = 0.23 M_{\odot}, R = 0.33 R_{\odot}: M_{acc}/M_{\star} > 0.058 and M_{BH} = 2.8 x 10⁶ M_{\odot}
- We can weigh black holes with tidal disruption events!

GALEX TDS Unclassified Sources

Potential Projects

Variable Stars: A Joint UV/Optical Perspective

- UV M dwarf flaring rate.
- UV/optical light curves of RR Lyrae stars.

Probing Accretion onto SMBHs via Variability

- UV/optical light curves of QSOs. λ-dependent variability.
- Spectroscopic properties of large-amplitude variable AGNs.

Time-domain Astronomy

Light-curve classification in preparation for LSST.

Combining PS1 with Multi-Wavelength Wide-Field Surveys

FERMI, Swift/BAT, UKIDSS, WISE, FIRST