ASTR695: DCR's Research '12

- Theme: High-performance computation of many-particle gravitational systems.
- Applications (planetesimal dynamics):
 - Planet formation.
 - Planetary ring dynamics.
 - Small body satellite formation.
 - Granular dynamics.

Biggest focus right now...

- Tools:
 - PKDGRAV (*N*-body code) & support code.
 - Commodity clusters & supercomputers.

Granular Dynamics Group

• Ron Ballouz (U Maryland, grad).

- Soko Matsumura (U Maryland, postdoc).
- Patrick Michel (Obs. Côte d'Azur, senior scientist).
- Brett Morris (U Maryland, undergrad).
- Stephen Schwartz (U Maryland, grad).
- Michael Sheaffer (TJHSST, high school senior).
- Eric Spieglan (U Maryland, undergrad).
- Kevin Walsh (SwRI Boulder, postdoc).
- Yu Yang (U Maryland, grad).
- ...and others...

Itokawa: A "Rubble Pile"

Courtesy: JAXA

More Evidence for Fragile Asteroids

Simulating Gravity and Collisions

- PKDGRAV: "Parallel k-D tree GRAVity code"
 - Combine parallelism and tree code to compute forces rapidly.
- Started as pure cosmology code written at U Washington.
- PKDGRAV solves the equations of motion for gravity (point masses):

Introduce collision constraint (hard-sphere model):

Separation
$$|\mathbf{r}_i - \mathbf{r}_j| = s_i + s_j$$
. Sum of radii

Tidal Disruption of Asteroids

• If asteroids are fragile, they can be broken up like SL9.

Binary Asteroids from Rotational Breakup

- Tidal disruption by Earth or Venus of fragile near-Earth asteroids (NEAs) accounts for only a few binaries (Walsh & Richardson 2008).
- Need a different mechanism to explain the 15% binary NEA population—YORP!

Spin-up by YORP

- Even sunlight, such as the "YORP" effect, can spin-up and disrupt asteroids.
- Depends on body size and distance from Sun.
- Spin-up timescale ~Myr.

Taylor et al. (2007)

54509 YORP: 12.2-minute rotation and speeding up!

Asteroid must be nearly strengthless to disrupt.

1999 KW₄: Radar-derived Model

Simulating KW₄

nature International weekly journal of science

ERS Vol 454 | 10 July 2008

 \vdash

Rotational breakup as the origin of small binary asteroids

Kevin J. Walsh^{1,2}, Derek C. Richardson² & Patrick Michel¹

Top view

Side view

Top Shapes and Ridges

1999 KW₄ radar model, Ostro et al. 2005

YORP spinup sims, Walsh et al. 2008

Single asteroid 1999 RQ₃₆ Howell et al. 2008, ACM

+

Binary 2004 DC Taylor et al. 2008, ACM

Šteins from Rosetta Images

Why investigate granular material?

- Surfaces of planets and small bodies in our solar system are often covered by a layer of granular material.
- Understanding dynamics of granular material under varying gravitational conditions is important in order to:
 - 1. Interpret the surface geology of small bodies.
 - 2. Aid in the design of a successful sampling device or lander.

Asteroid Sample Return Missions

Marco Polo-R

 ESA proposed mission to binary asteroid.

http://www.oca.eu/MarcoPolo-R/

OSIRIS-REx

• NASA funded mission to primitive asteroid.

http://osiris-rex.lpl.arizona.edu/

Hayabusa 2 Mission Concept

Simulating Granular Dynamics

Soft-sphere Discrete Element Method

- HSDEM fails in dense and/or near-static regimes.
- In soft-sphere approach, allow particles to overlap, then apply restoring forces with optional damping/friction.
- Disadvantage: need small timesteps to resolve forces.
- Summary equations:

SSDEM Test: Hopper ($N = 1.5 \times 10^6$!)

Hopper: Force Networks (Real Time!)

Eros: Evidence of Surface Flow

(arrows mark boundary of flow region)

Courtesy: A. Cheng

Landslides: Simulations

Losert lab apparatus (U Maryland Physics)

Granular Avalanches

- Start with loose particles on bed of glued particles.
- Gradually incline bed and measure avalanche angle.
- Bed dimensions: 80 cm × 60 cm; polished & etched glass beads (1.3 g/cc).
- Sims: R = 0.5 cm, N = 14,040; $\varepsilon_n = 0.95$, $\varepsilon_t = 1.0$; vary μ_s , μ_r .

$\mu_s = 0.000$ (static), $\mu_r = 0.0$ (rolling)...

$\mu_s = 0.180$ (static), $\mu_r = 0.2$ (rolling)...

$\mu_s = 0.180, \mu_r = 0.2...$ (from above)

Space Weathering (Binzel et al. 2010)

- Find "fresh" (unreddened) Q-class asteroids have high probability of recent Earth encounters (within ~1 Myr).
- Can tides expose fresh grains, like landslides?

Local Simulations: Concept

- Measure force at a point on asteroid during flyby.
- Apply to local environment.

Simple Demo: Apophis at 2 R_E

Overlaps: Measure of Pressure

$\cos \alpha$: Measure of Distortion

Brazil Nut Effect

Brazil Nut Effect

OSIRIS-REx Compliance Test

Yorp & Deepthought

- Yorp: mini cluster for department use.
 - 160 cores, 213 GB RAM, 32 TB disk.
 - http://www.astro.umd.edu/twiki/bin/view/AstroUMD/YorpCluster
- Deepthought: campus HPC.
 - Over 3000 cores, high-performance network and disk.
 - CTC has guaranteed time.
 - I'm on the advisory committee and TAC.
 - http://www.it.umd.edu/hpcc

Projects

Ongoing

- Impacts into sintered glass beads (Steve).
- Rubble pile collisions with rotation (Ron).
- OSIRIS-REx surface compliance (Ron).
- Impact cratering into granular media (Steve).
- Others: rigid body dynamics, Brazil nut effect, tidal resurfacing, avalanches, charged granular media.
- Open
 - Tumblers (dynamic angle of repose).
 - Spin-up of cohesive asteroids.
 - Surface reddening via impacts.
 - SSDEM in rings.

EXTRA SLIDES

Real, Practical Experiments...

Gravitational Aggregates

Non-gravitational Forces as a Function of Particle Size

Gravity & rotation:

 $F_{gr} = m \left| \omega^2 r - g \right| = \frac{4\pi\rho R^3}{3} g_a$

• Friction:

$$F_f = \mu \left(mg_a + F_{ng} \right) \longleftarrow$$

On surface, controlled by ambient weight and non-gravitational forces.

Electrostatics:

$$F_{es} = C_{es} R^2, \ C_{es} = [10^{-8}, 10^{-1}]$$

Max value, for localized regions at the terminator; not verified.

Courtesy: D. Scheeres

Solar radiation pressure:

$$F_{srp} = C_{srp} R^2$$
, $C_{srp} = 10^{-5} / d^2$ $d = distance from Sun in AU.$

Cohesion (due to van der Waals attraction):

$$F_{vdw} = C_{vdw} R, C_{vdw} = 5 \times 10^{-2}$$

 Derived from lunar regolith (Perko et al. 2001).

Van der Waals Cohesion

- Perko et al. (2001): lunar regolith $F_c \sim 0.05 r_1 r_2 / (r_1 + r_2) N$.
- Scheeres et al. (2010): ~cm-sized grains can stick to surface of 100-m asteroid with up to 6-min rotation period.

$$\Omega_{g,\max} = \sqrt{\frac{G4\pi\rho(r_1^3 + r_2^3)}{3(r_1 + r_2)^3}}$$
With cohesion: $\Omega_{g+c,\max} = \Omega_{g,\max} \sqrt{1 + \frac{Q}{G(\frac{4\pi}{3}\rho)^2} \frac{(r_1 + r_2)}{r_1^2 r_2^2}}$

Modeling Weak Cohesion

 Add simple Hooke's law restoring force between nearby particles.

- Deform elastically up to maximum strain (spring rigidity set by Young's modulus).
- Other force laws can be implemented, e.g., van der Waals.

Weak Cohesion in Granular Fluids

Cohesion in Planetary Rings?

Perrine et al. (2011), Perrine & Richardson (2012)

SSDEM + Springs

Asteroid Family Formation

