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Abstract

Fluctuating amounts of water vapor over an antenna in an interferometer add phase shifts
to the instrument, shifting the fringe pattern on the sky to decrease signal correlation. Op-
tically thin line radiation from the same water vapor that causes the decorrelation can be
accurately measured, however, allowing an estimate of the column of water above individual
antennas. Knowledge of the water column allows an equivalent but opposite phase to be
inserted in the data processing; this is the radio equivalent of adaptive optics. This memo
explores the instrumental requirements for a multi-channel radiometer capable of measur-
ing pathlength differences to 35 µm, a goal for interferometry at 1 mm wavelength. An
examination of linear and nonlinear error sources shows that residual amplifier or detector
nonlinearity is likely to be the most significant instrumental limit for atmospheric phase
correction.

1 Introduction

Variations in tropospheric water vapor introduce electrical pathlength changes through the at-
mosphere. Fluctuating pathlengths decrease signal correlation between elements of millimeter
wave aperture synthesis arrays, degrading their sensitivity to astronomical signals. Increases
in the water column produce not only a longer pathlength, but also stronger water vapor
line emission; an observation of the integrated intensity of water line is a direct measure of
the pathlength. APHID (Atmospheric PHase Inference Device) is a heterodyne spectrometer
(multi-channel radiometer) optimized for precise measurements of the optically thin 22.235 GHz
transition of water vapor. APHID’s measurement goal is λ/20 for 1 mm wavelength observa-
tions, or 50 µm changes in pathlength. Allowing a factor

√
2 for combination of independent

measurements for two antennas on an interferometric baseline, APHID’s measurement accuracy
at any one antenna must be 35 µm rms.
An absolute measurement of the total column of atmospheric water vapor with this precision

is impossible at present, requiring more exact information of the line shape and atmospheric
structure than is known or practically measurable. Differential pathlength measurements are
nearly as useful for correcting millimeter-wave phases, however, and are much less sensitive to
the details of atmospheric lineshapes.
Model calculations indicate that a 35 µm pathlength change corresponds to a 6 × 10−5

fractional change in the water line’s integrated intensity [1]–[2] under typical conditions: a
20 K peak line temperature, 80 K receiver temperature, and a 400–4000 MHz spectrometer
bandwidth with the line folded about its center. If APHID is to correct phases by absolute
measurements alone, its measurement accuracy goal is consequently 1 ×10−5, a few times better
than the accuracy necessary for typical measurements. Demands on measurement precision
can be reduced with frequent recalibration of the phase relationship to line temperature, which
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replace absolute precision measurements with lower accuracy relative and empirically calibrated
measurements.
In either case, the degree of accuracy is considerably higher than is necessary for typical

astronomical radiometry, with the exception of Cosmic Microwave Background instruments.
Astronomical radiometers extract very small signals from large backgrounds, but uncertainties
in the astronomical signal’s absolute scaling of several percent are often permissible. In addition,
since APHID uses spectral information to separate the water line from antenna spillover and
atmospheric quasi-continuum components, its demands on spectral fidelity are also extremely
high.
The primary purpose of this note is to explore the instrumental requirements for radiometry

with this degree of accuracy. If the system cannot be internally calibrated to this degree, it
is still possible to calibrate against astronomically-derived phases; in this case, results in this
note are useful for determining the range of operating conditions that still allow the necessary
accuracy.

1.1 Precision Radiometry

An ideal radiometer would measure spectra with a perfectly constant conversion factor between
a spectral channel’s input noise temperature and its output voltage. In a real radiometer,
even one which is perfectly linear, calibration load temperatures drift, optical standing waves
change the coupling between loads and the radiometer input, power measurements have a
certain accuracy, and the system’s gain drifts with small changes in temperature or device bias
conditions. Establishing APHID’s sensitivity to these effects is the topic of Section 2.
All real radiometers are also nonlinear at some level, with some gain dependence on input

power level, temperature, bias voltage, or other environmental parameters. Although tem-
peratures and voltages can be carefully stabilized, the radiometer itself must be insensitive to
changes in input power, since that must be permitted to vary. Changes in signal power shift the
operating conditions of amplifiers, detectors, and other components, causing gain saturation at
some level. Saturation causes errors by reducing the measured power below its true value and
by adding spectral distortions. Section 3 explores the effects of changing input power level for
a multi-channel radiometer with a nonlinear relationship between its input and output power
levels.

1.2 Signal Combinations

APHID measures the following powers (after conversion from correlator lag voltages) on the
sky, hot load, and cold load:

ss = k(Ts + Trec)BG (1)

sh = k(Th + Trec)BG (2)

sc = k(Tc + Trec)BG (3)

where k is Boltzmann’s constant, B is the channel bandwidth, G is the system’s power gain;
and Ts is the power from the sky, Th and Tc are the hot and cold calibration load radiation
temperatures, and Trec is the radiometer’s noise temperature referred to its input. Ts, Th, and
Tc are observed and may have additional contributions from, for instance, spillover. All of the
temperature terms and the gains G in equations (1)–(3) will be frequency dependent, and G
may have some dependence on input power level.
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2 Errors for a Linear Radiometer

Assuming that the system gain is constant with value Gcal during the calibration, and has value
Gobs during observations, solving equations (1)–(3) for Ts yields:

Ts =
(gss − sc)Th − (gss − sh)Tc

sh − sc
(4)

for the absolute temperature in a given spectral channel, where the gain ratio g = Gcal/Gobs.
Using equation (4), the difference between two sky measurements using the same load calibra-
tion is:

δTs ≡ Tsky,1 − Tsky,2 =
Th − Tc

sh − sc
(g1 ss,1 − g2 ss,2) . (5)

Errors in difference measurements will depend on errors in power, gain, and temperature. These
enter the conversion factor Kδ = δTs/δss anew at each calibration cycle. Some simplification
is possible when the gain is stable during the measurements, so g1 = g2 ≡ g, but saturation or
other effects change the gain between calibration and observations (see sec. 3). In this case,

δTs = Kδ(ss,1 − ss,2) , (6)

with the gain factor

Kδ =
Th − Tc

sh − sc
g . (7)

This expression also gives a good estimate of the difference signals’ general sensitivity to gain
variation.

2.1 Error Sensitivity

2.1.1 Absolute Measurements

Differentiating equation (4) gives the linearized sensitivity to small errors in its component parts.
For errors in Th, the change in Ts normalized to the calibration difference, ∆Tcal = Th − Tc, is:

∆Ts

∆Tcal

≈ 1

∆Tcal

∂Ts

∂Th

∆Th =
gss − sc
sh − sc

∆Th

∆Tcal

, (8)

with errors in Tc,
∆Ts

∆Tcal

≈ 1

∆Tcal

∂Ts

∂Tc
∆Tc = −

gss − sh
sh − sc

∆Tc

∆Tcal

. (9)

For errors in sh,
∆Ts

∆Tcal

≈ 1

∆Tcal

∂Ts

∂sh
∆sh = −

(gss − sc)sh
(sh − sc)2

∆sh
sh

, (10)

errors in sc,
∆Ts

∆Tcal

≈ 1

∆Tcal

∂Ts

∂sc
∆sc =

(gss − sh)sc
(sh − sc)2

∆sc
sc

, (11)

and errors in ss,
∆Ts

∆Tcal

≈ 1

∆Tcal

∂Ts

∂ss
∆ss =

gss
sh − sc

∆ss
ss

. (12)

Errors in the normalized gain factor g = Gcal/Gobs enter as:

∆Ts

∆Tcal

≈ 1

∆Tcal

∂Ts

∂g
∆g =

gss
sh − sc

∆g

g
. (13)
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2.1.2 Difference Measurements

Differentiating Kδ and dividing by Kδ (eq. 7) gives the linearized fractional error sensitivity for
differential sky measurements:

∆Kδ

Kδ

≈ 1

Kδ

∂Kδ

∂Th

∆Th =
∆Th

∆Tcal

; (14)

the sensitivity to Tc is the same but has the opposite sign. For errors in sh,

∆Kδ

Kδ

≈ 1

Kδ

∂Kδ

∂sh
∆sh = −

gsh
sh − sc

∆sh
sh

, (15)

and for sc,
∆Kδ

Kδ

≈ 1

Kδ

∂Kδ

∂sc
∆sc =

gsc
sh − sc

∆sc
sc

. (16)

The sensitivity to gain variations between two observations or an observation and calibration
is:

∆Kδ

Kδ

≈ 1

Kδ

∂Kδ

∂g
∆g =

∆g

g
. (17)

2.2 Representative Requirements

2.2.1 Absolute Measurements

In some cases an absolute measurement is required, but one with relaxed accuracy. For instance,
an uncertainty of ∆Ts = 100 mK may well be adequate for finding the approximate total
water vapor column. In this case, equations (8)–(13) set limits on load and measurement
uncertainties. As a concrete example, take ∆Ts = 100 mK and APHID’s typical operating
conditions of Ts ≈ 100 K, Th ≈ 300 K, and Tc ≈ 80 K. Letting g = 1 and choosing an
(arbitrary) scale factor that produces corresponding powers of ss = 100 W, sh = 300 W,
and sc = 80 W, equations (8)–(13) yield individual limits of ∆Th < 1.1 K, ∆Tc < 110 mK,
∆sh/sh < 3.7 × 10−3, ∆sc/sc < 1.4 × 10−3, and ∆ss/ss < 1.0 × 10−3. Fractional temperature
error of a part in 103 requires a fractional gain stability of 1.0 ×10−3 for this set of assumptions.
If all of the errors are present and uncorrelated, then this “error budget” for each should be
divided by approximately the square root of the number of independent terms, or

√
6 = 2.45.

For typical integration times, temperature and gain errors dominate, so a factor of 1.5–2 is
more realistic (also see sec. 2.3).
The practical limit on load temperature knowledge is likely to be in the optical path rather

than in the thermometry. Apertures, windows, and other elements have frequency-dependent
transmission and emission from beam truncation and scattering. This can make it difficult to
relate measurements of the load’s physical temperature to its radiation temperature.

2.2.2 Difference Measurements

Estimates for differential measurements follow a similar logic, but now for the conversion factor.
A fractional measurement accuracy of 10−5 requires |∆Kδ|/Kδ < 10−5. Using the powers and
temperatures from sec. 2.2.1, equations (14)–(17) indicate calibration with reproducibility (but
not absolute accuracy) of ∆Th = ∆Tc < 2.2 mK, ∆sh/sh < 7.3 × 10−6, ∆sc/sc < 2.8 × 10−5,
and ∆g/g < 10−5.
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2.3 Measurement Time

A given fractional power accuracy requirement in the spectrum determines the minimum inte-
gration time τ through the radiometer equation,

∆s

s
=

1√
Bτ

, (18)

where B is the bandwidth of the channel in the spectrum. For ∆s/s = 5 × 10−6 and B =
3.5 GHz, τ = 88 ms, much shorter than the typical integration times. Measurement time
should not limit the measurement accuracy for calibration.

3 Errors for a Nonlinear Radiometer

3.1 Saturation or Gain Compression

Gain saturation (or compression) can be generally modeled by a polynomial in power (vout =
α0 + α1Pin + α2P

2
in + · · ·) or a number of analytical approximations. A power law fit is very

accurate over the range of input data but has no simple form for investigating the general
properties of saturation. A hyperbolic tangent tanh(s) function is not necessarily exact, but is
a useful and tractable approximation for the saturation behavior of many devices.
Figures 1 and 2 show that a tanh(s) behavior is a very good working approximation to the

saturation law for the Gilbert-cell analog multipliers in the APHID spectrometer and microwave
amplifiers at low power levels. The tanh(s) compression law is expected theoretically for sim-
ple Gilbert cells [4]–[5], although a variety of effects and embedding circuits can change this
characteristic [4]. Figure 1 is laboratory confirmation that the Gilbert cell devices in APHID
do not have predistortion circuits, and that they follow a clean tanh(s) law. The dashed line in
the figure shows an ideal linear behavior; the ratio of the linear curve to the measured points
is the gain compression factor.
Devices with feedback will operate linearly over a wider range of low power inputs than a

tanh(s) approximation would indicate, but will saturate in a generally similar way. If the gain
per stage with feedback is not large, as is often the case for microwave amplifiers, feedback’s
effect on transistor nonlinearity may not be very large. Figure 2 summarizes measurements
of power saturation with a broadband noise input measurements a typical power amplifiers
[3]–[7]. A tanh(s) fit works well for modest compression, but then slowly fails as the output
power compression increases, quite possibly because the dominant nature of the nonlinearity
changes from transistor gain to bias constraints. This measurement shows that a tanh(s)
approximation is quite useful for understanding the general effects of low-level saturation and
for making quantitative estimates of system performance.

3.1.1 Absolute and differential gain and compression

The output signal from a device with a hyperbolic tangent relationship between input and
output signals si and so is

so = GA a tanh

(

si
a

)

, (19)

where GA is an overall linear gain factor and a is the asymptotic saturation value referred to
the input. For si ¿ a, the expansion tanh(x) = x − x3/3 + · · · shows that this expression
properly reduces to the ideal linear case, so = GA si. The absolute gain compression factor fA
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Figure 1: Compression curve for APHID’s multiplier modules at a sample frequency of 1.2 GHz
(points) and a least-square fit with a tanh(s) function. The dashed line is a perfectly linear
response. The fitted value for the saturation factor a is 7.3 mW at the module’s input.

Figure 2: Measured gain compression factor with broadband noise (points) and an uncon-
strained plot of a a/si tanh(si/a) function fixed to the point at a compression near 0.5 dB.

6



is the gain ratio between the compressed and ideal linear systems:

fA =
so(compr)

so(ideal)
=

a

si
tanh

(

si
a

)

(20)

as a function of the ratio of input to saturation values, si and a. The 1 dB compression point
occurs at si/a = 0.905; for 0.5 dB compression, si/a = 0.612.
Essentially all astronomical measurements are differences between two signals. Common

differences are between on and off source positions, or hot and cold calibration loads. In some
cases (e.g. switching between on and off source positions) the difference signal is miniscule. The
comparatively large background signal affects the radiometer by establishing its average oper-
ating point. In other cases (e.g. passband gain calibration) the signals themselves considerably
shift the operating point between measurements. From equation (20) the ratio of compressed
to ideal difference outputs for arbitrary input levels is:

f∆ =
∆so(compr)

∆so(ideal)
=

a [tanh (si1/a)− tanh (si2/a)]
si1 − si2

. (21)

For instrument design, when a domain but not the exact operating conditions are known, the
limiting cases of equation (21) are useful. In the large differential signal limit, one signal is much
larger than the other, si1 À si2, and the gain compression factor is given by equation (20) with
si = si1. In the small differential signal limit, si1 ≈ si2, and the difference ∆si tends to zero
around an average operating point si,

∆so ≈
d

ds

[

GA a tanh

(

s

a

)]

si

∆si = GA sech
2

(

si
a

)

∆si . (22)

Combining this expansion with an ideal linear system’s ∆so = GA∆si and the identity
sech2(x) = 1− tanh2(x) yields:

f∆,diffl = 1− tanh2
(

si
a

)

. (23)

Equation (23) is the more stringent limit on the gain compression factor.
It may seem odd that changes in the gain compression factor is larger for small differential

signals than for large-scale signal swings. The reason for this is that large-signal case describes
a single signal which retains most of its amplitude, while the small-signal differential limit is
very sensitive to the local slope of the curve that describes the saturation.
A direct solution involves examining how saturation changes the gain ratio g as the input

power increases by amount ∆s from si. The gain ratio in this situation is:

g =
G(si +∆s)

G(si)
=

1

1 + y

tanh [x (1 + y)]

tanh (x)
, (24)

where x = si/a and y = ∆s/si. There is no closed-form solution to the factor y in equation (24);
Figure 4 shows the numerical solution. For a device operating 10 dB below its 1 dB compression
point, for instance, a fractional gain change below 10−5 implies a maximum signal shift of about
27 dB below the input power level, or a 0.2 K shift for a 100 K system temperature.
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Figure 3: Gain compression factor defect limits versus output level for a device with a tanh(s)
nonlinearity. The solid curve is for small differences, the dashed curve is for large signal changes.

Figure 4: Gain compression error from equation (24) as a function of input signal level. Each
curve represents a different gain error.
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3.2 Calibration dynamic range

A common calibration problem is minor amplifier gain saturation during measurements of loads
with temperatures well above the sky temperature. The system gain (passband) derived from
this measurement will be artificially low at frequencies where the amplifier has saturated slightly,
typically at frequencies where the system gain is highest. When applied to measured signals as
a passband correction, these incorrect gains will distort the spectrum, even if the power level
for sky measurements is low enough to avoid saturation.
Calibrating one spectrum by dividing by another will introduce an additional gain error.

Dividing an atmospheric spectrum by a blackbody spectrum measured with a maximum power
at 10 dB below the 1 dB point introduces almost a 1% error in the atmospheric scale. Unlike
uncertainties that come from changing amounts of sky power, however, these error sources are
stable (for the stable load temperatures) and can be removed by an initial calibration, at least
to some degree.

3.3 Direct differential gain measurement

It is possible to measure the radiometer’s differential gain directly by injecting and synchronously
detecting a small amount of modulated noise. The radiometer equation links the length of time
tmod necessary to measure the modulated noise, compared with the time tsky needed to integrate
the sky signal to a given rms σ, as:

tmod

tsky
= 2

(

σ

p ∆Tm

)2

, (25)

where p is the necessary accuracy, ∆Tm is the amount of modulated noise, and the factor two
accounts for error propagation in the two independent measurements of ∆Tm. For instance, if
σ = 1 mK and ∆Tm = 2 K, measuring the system gain with a fractional accuracy p = 10−5

requires an integration 5000 times longer than the sky signal integration. The magnitude of
the maximum allowable noise modulation is given by equation (24) (Figure 4).

3.4 Device Effects

3.4.1 Amplifiers

Amplifiers can introduce spectral shape as well as overall gain reduction as they saturate.
Saturation occurs for a given output power level, and spectral distortion and structure arises for
a given input power level at frequencies of maximum gain, with decreasing saturation levels at
frequencies where the gain is lower. Signals outside the amplifier’s nominal passband sometimes
also cause saturation.
Compression is usually measured with a coherent signal, which sets an upper limit for

broadband noise inputs. Broadband noise combines with amplifier nonlinearity to generate
intermodulation products throughout the band. This causes saturation for a broadband input
signal even when its average power is the same as a coherent source’s. Measurement of satura-
tion in the WASP microwave amplifiers [6]–[7] shows that the amplifier saturates in the same
way for noise and coherent signals, but with the noise saturation curve shifted to an output
noise power 1.5 dB below the coherent signals’.
To minimize saturation effects, the usual rule of thumb for amplifiers is to operate at a

maximum power level about 10 dB below the 1 dB absolute gain compression point. Figure 3
indicates that operation at this power level causes calibration errors of about 1%, which is
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Figure 5: Compression in correlator multipliers for an input signal with a smooth bandpass.
The upper curve in each frame is the input spectrum, the similar curve slightly below is the
spectrum with a tanh(x) compression, and the slightly tilted line below is the difference between
the two magnified by factors of 5, 10, 50, and 500 in panels with decreasing compression.

acceptable for many applications if not for APHID. For APHID in the absence of active gain
measurement, values from Figure 3 and the additional 1.5 dB margin for broadband noise
suggests that the signal level should be 22 dB below the coherent signal 1 dB compression
point.

3.4.2 Autocorrelation spectrometers

Autocorrelation spectrometers shift and distort the spectrum as their multipliers saturate. The
effect of multiplier saturation is different than amplifier saturation, which to first order simply
scales the entire spectrum. Figure 5 is a MATLAB model result for the WASP 128-lag analog
correlator spectrometer [3], showing the saturation effects over a range of compression levels.
Each input spectrum was transformed to the time (lag) domain, multiplied by an a tanh(x/a)
saturation term (Eq. 19) with a common saturation factor a determined from the saturation
level and peak value of all lags, and then transformed back into the spectral domain. Figure 5’s
panels show these input and output spectra and the difference between them.
Compared with the input spectra, the output spectra have both an overall shift in total

power and a roughly cosine shaped structure across the passband (the plots also contain edge
effects that are artifacts of smoothing near the band edges). These spectral distortions are
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easy to understand qualitatively: the zero time lag, measuring total power, has the highest
amplitude and saturates most strongly. Subsequent lags, containing information on line shape,
have lower amplitudes and saturate less. Since the shape of the distortion depends on the input
level in a nonlinear manner, it changes somewhat with saturation level. The distortion also
changes with input spectrum because the lag voltages are distributed differently. In both cases,
synchronous detection of a small modulated noise signal can provide a good channel-by-channel
estimate of each lag’s saturation.

3.4.3 Power Detectors

A typical power detector has a simple relationship between between input power Pin and output
voltage vout,

vout = R

(

Pin

Po

)α

+ voff , (26)

where R is a scaling constant in volts at a reference power level Po. An ideal detector has
α = 1 and voff = 0; deviations from these are nonlinear errors. The power law coefficient α
can be tuned close to unity over a reasonable power range by changing the impedance of the
circuit following the detector. For voff = 0, a mistuning in the circuit causes a scaling error
of (Pin/Po)

α−1, which may be important depending on the necessary accuracy, the value of α,
and the difference in power from the reference level. APHID does not depend on precise power
detectors of this sort, but filter bank or digital correlator spectrometers rely on linear power
detectors.

3.4.4 Analog to Digital Converters

Depending on construction, analog to digital converters (ADCs) can introduce significant non-
linearity. Averaging over many noise samples with rms of at least a least significant bit (LSB)
yields average values with precision better than a LSB, so the important specification is de-
viation from nominal linearity. Successive-approximation or flash converters can deviate from
linearity by up to one half least significant bit (LSB), although they are often better for modest
numbers of bits. Charge-balancing converters, for instance dual slope or ∆–Σ, are slower but
have substantially better specifications on linearity. The manufacturer of APHID’s ADCs [8]
specifies a maximum integral nonlinearity of ±0.024% of full scale range for a full-scale sig-
nal. The linearity is better for smaller signals. In APHID’s case, ADC linearity enters in the
same way as autocorrelator multiplier linearity, affecting the lags with higher signal levels more
strongly than the lags with lower signal levels.

4 Conclusion

Meeting APHID’s measurement goal for phase correction by requiring a raw instrumental frac-
tional precision of 10−5 under all conditions will be extremely difficult. Measuring an amplitude-
modulated noise signal injected at the radiometer’s input seems to be necessary to compensate
for residual amplifier, spectrometer, and ADC nonlinearity. The time necessary for the mea-
surement may not be short compared with the time over which the entire system drifts, however.
Temperature measurement resolution of 1 mK is necessary for the calibration black-body loads
but is a secondary problem.
A fractional accuracy of 10−4 is a more reasonable goal, however. Correcting the interferom-

eter maps will still be possible but will require a tight interplay between radiometer calibration
and measurements of the millimeter-wave phases: the “kelvins per radians” at the spectrometer
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output will not be a constant, but will need to be empirically recalibrated as the weather or
source altitude change. With a frequent and empirical calibration, very optically thin lines have
no fundamental advantage over lines with moderate depth for phase recovery. The choice of
line will come to tradeoffs between line intensity and the separation of water vapor emission
from continuum and atmospheric quasi-continuum contributions.
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