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Abstract

We discuss design considerations for radiometers that use correlation to difference powers
between two positions on the sky. Our summary of theoretical analysis and practical ex-
perience with the GBT’s Ka-band correlation radiometer is that symmetry is a key design
principle, as is usual good practice for high-performance radiometer design.

1 Introduction

This memorandum summarizes design considerations for radiometers that use correlation to
difference powers between two positions on the sky. Radiometers with this architecture have
many names: continuous comparison [1, 2], differential [3], or correlation radiometers [4], and
correlation [5] and pseudo-correlation [6] receivers. We discuss general correlation radiometer
design considerations, whatever the names, based on a combination of theoretical considerations
and our experience with the Green Bank Telescope’s (GBT’s) Ka-band correlation radiometer.

An ideal correlation radiometer produces the power difference between two neighboring po-
sitions on the sky; it is a high-frequency differential amplifier for powers. This mode contrasts
with usual total-power radiometry, in which the output is a difference of sequential observa-
tions of the two sky positions. The principal advantage to the continuous comparison arrange-
ment is higher stability than total-power radiometers: receiver gain fluctuations multiply the
small difference signal rather than the much larger system temperatures within the total power
radiometer’s beam, so output fluctuations due to rapid gain fluctuations are proportionally
smaller. The goal is to improve the radiometer system stability to a timescale long enough
that moving the telescope to interchange the two beams on the source (a telescope “nod”) on
a timescale of tens of seconds removes drifts and fluctuations, eliminating the need for a fast
“chop” with a timescale near or below a second.

Figure 1: Correlation radiometer block diagram.

Figure 1 is a block diagram of a correlation radiometer. Signals from two feeds at positions
X and Y in a focal plane combine in a hybrid, then pass on to amplification at the hybrid’s
outputs. In this way signals from both sky positions simultaneously pass through the same
amplifiers. Phase modulators follow to provide ±180◦ phase switching of the signal voltage,
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and an overall phase shift ϕ provides proper phasing for correlation. A multiplier and integrator
(a correlator) produce the cross-correlation function (the second hybrid in the GBT’s Ka-band
radiometer is part of a multiplier circuit; see sec. 2.4). Standard circuits for the multiplier
include a 180◦ hybrid and pair of power detectors (the GBT’s CCB), a 180◦ hybrid and pair
of autocorrelation spectrometers (the GBT’s Spectrometer), or direct voltage multiplication in
transistor multipliers (the Zpectrometer). All of these circuits are identical in function, differing
only in implementation (sec. 2.4).

In the ideal case, the cross-correlator’s output u is

u = (TX − TY )K , (1)

where TX,Y are the input radiation temperatures and K is a constant that accounts for system
gain and unit conversions. A more complete expression for the output of the cross-correlator is

u = [GX (TX + TOX) − GY (TY + TOY )]αβ gAg∗B cos(φ) gM + uo , (2)

where GX = |gX |2 and GY are the power gains (generally less than unity) of the elements
before the hybrid, TOX and TOY are offsets in the inputs, α and β are the voltage transmission
coefficients of the hybrid, gA,B are the complex voltage gains after the hybrid, φ is the differential
phase between the two circuits between the hybrid and the multiplier, gM is the complex
multiplier responsivity, and uo is a correlator output offset. Recasting equation (2) into a
somewhat more convenient form,

u = GX

[(

TX − GY

GX
TY

)

+ ∆TO

]

αβ gAg∗B cos(φ) gM + uo . (3)

In the following we discuss the terms in equation (3) and explore ways to reach the ideal
case described by equation (1).

2 Design principles

2.1 Symmetry before the hybrid

The term in equation (3)’s square brackets shows why receivers with gain before the hybrid
are impractical: for good common-mode rejection and low offsets the gains must be extremely
well matched, frequency by frequency, across the entire band. Excellent matches for the input
losses as a function of frequency of the components before the hybrid are also needed for good
common-mode rejection and low offset ∆TO. Tight matching is more practical with simple
passive components. Poor common mode rejection implies poor sky noise rejection: an offset
provides a signal for gain instability to affect, so stability suffers. We had direct experience
with gain imbalance with the Ka-band radiometer, where we traced the large output offsets
and consequent stability degradation to reflection loss mismatches involving the orthomode
transducers (OMTs) [7, 8, 9]. Symmetry is the key to reducing the mismatch imbalances
in gain and phase, especially across broad bands, and the radiometer performance improved
substantially when we removed the OMTs [10] and reconfigured the circuit to be as symmetrical
as possible.

Reflections from circuitry before the hybrid (S22 for the components before the hybrid)
produces offsets from noise radiated by components following the hybrids. The offset will have
an amplitude proportional to the power reflection coefficient difference. Reducing the contribu-
tion of reflected and then correlated noise is the reason that some correlation radiometers have
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isolators between the hybrid and subsequent amplifiers. Ensuring a good match to the feeds is
important to reduce spurious correlation offsets.

Noise radiated from the amplifier inputs will pass through the hybrid and radiate from
the feed antennas. Coupling from one feed to another provides another path to produce a
correlated signal. Cross-polarizing the input feeds attenuates the coupled signals [3], but at
the cost of introducing some asymmetry. The Ka-band receiver without the OMTs is linearly
cross-polarized with two 45◦ waveguide twists, which are identical except for the sense of twist.
This maximizes symmetry to minimize the differential reflections, while still providing cross-
polarized beams.

An analysis that includes noise terms [11] shows that cross-polarizing the inputs of ra-
diometers with 180◦ input hybrids also rejects a term from correlated field emission from the
atmosphere that is common to both beams. It is unclear how well these cross-polarization
arguments hold within the very near fields of the horns and antenna, but there should be a
useful effect. The GBT Ka-band radiometer is patterned on the WMAP architecture, which
has a 180◦ hybrid. Rejecting atmospheric effects is obviously not a concern for space-based
radiometers (e.g. WMAP); symmetry in the input circuit is more important for ground-based
radiometers.

2.2 The hybrid

Superior phase smoothness and amplitude balance over broad bands, as well as improved re-
jection of post-hybrid and some atmospheric noise terms, favor 90◦ branch-line hybrids over
180◦ “magic tee” or ring hybrids. If the first hybrid is a 90◦ device, a second 90◦ phase shift,
probably produced by another hybrid, is needed before correlation. Reference [11] contains a
comparative analysis of the two hybrid types and provides references for hybrid properties and
performance.

Balancing the hybrid’s voltage transmission coefficients, α and β, gives the maximum signal.
Hybrid balance is only important for signal loss; imbalance does not generate spurious correla-
tions by itself. Leakage between nominally isolated hybrid ports causes signal loss and allows
signals to couple from one port to another, but this is not a major source of offsets since the
signals generally have little correlation (e.g. amplifier noise with input signal). A hybrid phase
deviation δθ from ideal decreases the output signal by a factor cos(δθ). Phase shifts later in the
system can correct for the hybrid’s phase deviations, but the correction must be appropriate at
every frequency across the band, a general problem that we discuss in sec. 2.3.

2.3 Symmetry after the hybrid

Symmetry in the circuits at the hybrid’s outputs preserves phase balance, which is necessary
both to retain the signal and to minimize nonideal terms that are not apparent in this simple
analysis (reference [11] covers noise and imbalance; reference [4] covers amplifiers that are
dissimilar in phase, amplitude, and bandwidth). Amplitude balance is less important than phase
balance because amplitude imbalances do not introduce nonideal terms, but simply change the
signal’s strength. In principle it is possible to compensate for phase errors stemming from
phase mismatches in the complex voltage gain product gAg∗B and the hybrid’s phase deviation
δθ by trimming a phase offset ϕ (Fig. 1). It is, however, practical to match only simple and
smooth phase variations. This sets a requirement of well-behaved and well-matched phases
throughout the entire receiver, something that is most easily accomplished by symmetry in the
circuit layout.
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2.4 Correlator

The correlator’s output is proportional to its two input voltages,

vout = gM 〈vA v∗B〉 , (4)

where the angle brackets indicate a time average from low-pass filtering or integration. Time
averaging is the result of finite post-detection amplifier bandwidth or a separate integration
circuit.

There are many ways to implement the correlator’s four-quadrant multiplication. The Ka-
band setup uses two multipliers: the classical hybrid-and-two-power-detectors multiplier for the
CCB and Spectrometer, and a Gilbert-cell transistor voltage multiplier for the Zpectrometer. In
the former case the multiplier’s hybrid is mounted within the receiver structure with the power
detection outside; in the latter case signals from the two amplifier chains feed the external
Zpectrometer system.

Some radiometer descriptions drop the distinction between the multiplier section and the
rest of the radiometer. We cover this approach in the Appendix, where we analyze the receiver
as a beamswitching, instead of correlation, radiometer. Incorporating the multiplier circuit in
the receiver obscures the basic receiver architecture and makes the overall system seem more
complex. It also masks the close relationship with other correlation receivers, such as interfer-
ometers, that is apparent in Figure 1. The imperfections in the multiplier section itself then
become less obvious. This muddling of multiplier and receiver properties led to the designation
of “pseudo-correlation radiometer.” One might as well name a total-power radiometer with
a power detector that deviates slightly from a perfect square law as a “pseudo-total-power
radiometer.”

The principle behind the classical power detector multiplier circuit is straightforward. First,
take the squares of a 180◦ hybrid’s voltage outputs,

vΣ ∝ (vA + vB)2 = v2

A + v2

B + 2vAvB

v∆ ∝ (vA − vB)2 = v2

A + v2

B − 2vAvB . (5)

Second, difference the power detector outputs to get vΣ − v∆ ∝ vAvB , a value proportional
to the voltage product of the hybrid’s input signals. Hybrid imbalances leave residual total
power terms v2

A and v2
B , which phase switching (sec. 2.6) reduces. Compensating for power

detector responsivity, as discussed further in the Appendix, is necessary for many applications.
References [2, 4, 12] describe some of the correction methods.

The Zpectrometer’s multiplier is a Gilbert-cell multiplier circuit [13] implemented with
microwave transistors. Modulating transistor gain forms the basis of multiplication, for an
output of

vout ∝ tanh

(

vA

2vT

)

× tanh

(

vB

2vT

)

≈ vAvB (6)

for vA,B ≪ vT , where vT = kT/q ≈ 25 mV at room temperature. Although Gilbert cells are
not perfectly linear, they are nearly so when the input voltages are small compared with vT .
The Zpectrometer operates in the small-signal regime, and the multipliers are sufficiently linear
for practical work.

2.5 Gain stability

The basic principle of differential radiometry is that the radiometer reduces the fluctuations
by reducing the signal available for multiplication by system gain rather than by some form
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of gain stabilization. Intrinsic amplifier stability is still extremely important. The correlation
architecture minimizes but cannot completely eliminate the effects of amplifier gain fluctuations,
although phase switching may help; see sec. 2.6. Equation (3) shows that amplifier gains, the
multiplier gain, and phase changes scale the inevitable residual offsets as gAg∗B gM cos(φ).

Even if the radiometer is in perfect balance, with TX = TY on average, the difference
fluctuates about zero, and gain fluctuations increase the output noise. Faris [4] calculated the
noise produced by gain fluctuations for this case. He starts with amplifier gains related by a
factor a,

gB = [1 + a(t)] gA . (7)

If a(t) = a, a constant, the correlator’s output output scales by a2, another constant. If a(t) is

a zero-mean stochastic function, the output noise increases by a factor
(

1 + a2

)1/2

. A similar

scaling applies to the multiplier gain or fluctuating phase.
Our measurements of the Ka-band system with cryogenic terminations at the hybrid inputs

[9] showed Allan variance minimum times often beyond 100 seconds. At other times we recorded
fluctuations correlated across many lags, indicating overall system gain fluctuations. We ruled
out electric field pickup on the first-stage low noise amplifier (LNA) bias lines by driving 1 V
p-p into a wire draped along the wiring harness and synchronously detecting the IF total power;
we could not detect a signal. This result pointed to fluctuations in bias or ground potential
(see sec. 2.6), rather than in pickup as the main cause of gain fluctuations.

Another potential source of gain fluctuations is changes in the standing wave pattern inside
the cryostat [14]. The cryostat is a resonator whose dimensions can change with temperature
and gravitational loading. Absorber within the innermost radiation shield of the GBT’s Ka-
band receiver damps standing wave patterns that can couple into signal path optically or
through cracks in component bodies or waveguide flanges.

2.6 Correlator offsets and phase modulation

Phase modulation is not a fundamental part of the correlation radiometer architecture; its pur-
pose is to allow LNA operation above their 1/f gain fluctuation knees and to reduce offsets
at the correlator output. Modulating at frequencies above 10 kHz pushes the detection above
typical LNA gain fluctuation frequencies, improving stability (sec. 2.5). We varied the mod-
ulation frequency to map the improvement from 4.17, 6.25, and 10.4 kHz [7], verifying that
rapid modulation decreases the radiometer noise. Since the multiplier 1/f knees are below a
few kilohertz, we presumably traced the LNA noise spectrum. Efficiency considerations from
the finite transition times for the modulators limit the upper phase switch frequency.

Phase modulation also removes offsets at the correlator outputs. Offsets may come from
the correlator itself or, as we have seen with the Ka-band receiver, from electrical pickup
synchronous with the receiver’s phase switching. It is likely that a slight ground loop through
the receiver’s mechanical frame, which also serves as the ground return for both the phase
switch and LNAs, is the cause of the pickup. Whatever the origin of the modulation, it must
be stable to avoid compromising the overall system stability. Correlator offsets, the uo term in
equation (3), enter the analysis on a slightly different footing because they do not depend on
the high-frequency gains.

We traced large offsets to small ground-loop currents in the Ka-band receiver frame from the
phase modulator drive signals [7]. The modulators themselves are standard double-balanced
mixers that are not electrically isolated from the rest of the receiver, and the current return
included the receiver’s mechanical structure. Switching two modulators in quadrature, as shown
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Figure 2: Quadrature modulation and demodulation waveforms.

in the upper two traces in Figure 2, reduced the pickup to a satisfactory degree. Figures 8 and
9 in reference [9] show the effect particularly clearly. With quadrature switching, the only
currents at the demodulation frequency (bottom trace in Fig. 2) come from small differences in
the switch rise and fall times and, to a very small extent, waveform asymmetries from delays
in the signal generation logic. We did not find pickup coupling through the receiver’s common
power supply, a frequent conduit for synchronous pickup, so an isolated power supply for the
phase modulator drives was unnecessary for the Ka-band receiver.

The phase switching patterns in Figure 2 are low-order Walsh functions [15, ch. 7.5]. We
experimented briefly with higher-order Walsh function switching sequences. These take higher-
order derivatives of the input stream and should remove drifts and curvature as well as the
constant term that the lowest-order Walsh functions eliminate. We did not find any improve-
ments with the higher-order waveforms, perhaps because the drifts were small, and returned to
the low-order waveforms for highest switching efficiency.

Unequal gain in the phase modulator’s states will produce an offset at the correlator output.
A pure continuum radiometer can use different drive currents in the two states to produce gains
that are identical on average [6], but this is not possible for a radiometer with multiple spectral
channels unless the switch gains are absolutely flat across frequency. Quadrature switching with
two modulators is an advantage here. If a single modulator has a gain difference of ∆g between
the two states, the offset from quadrature switching will be ∆g2, which can be substantially
smaller for reasonably well-matched modulator gain states. We have had experience with
instruments that work well with a single active phase switch (as did WMAP [6]), but dual
phase modulators preserve symmetry and generally perform better.

3 Total power measurements

Total power measurements are needed for calibration (e.g. atmospheric transmission, system
temperature) and system characterization (e.g. receiver temperature). Since correlation ra-
diometers are intrinsically differential, some supplemental total power monitoring is necessary.
It may be possible to extract total power signals at the multiplier, depending on type (see the
Appendix).

It is also possible to monitor the power before the multiplier inputs both for calibration
and for setting the multiplier power levels. The multiplier input powers A and B (Fig. 1) are
weighted sums of the input powers PX and PY :

PA ∝ PXGXβ2 + PY GY α2 − 〈vXvY 〉αβ (gXg∗Y + g∗XgY )

PB ∝ PXGXα2 + PY GY β2 − 〈vXvY 〉αβ (gXg∗Y + g∗XgY ) , (8)

where the terms in angle brackets account for correlated power between the two beams. This
term will be zero for independent blackbody loads covering each feed, and should be small if
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the signal arises in the telescope’s near field where the beam overlap is large but the feeds are
cross polarized.

4 Conclusions

Design considerations for correlation radiometers include:

• Cross-polarized input beams.

• Symmetry, including frequency-dependent losses and reflections, in the circuit before the
hybrid.

• A 90◦ branch-line hybrid for signal division at the input.

• Symmetry, including any frequency-dependent phasing, in the circuit after the hybrid.

• Symmetrical phase modulators, running with quadrature modulation at a demodulation
frequency above the electronics’ 1/f knee frequencies.

• High gain stability throughout the system, in both active and passive components.

• Good gain and noise power flatness across the band; for spectroscopy, no narrowband
suckouts.

• Supplemental total power monitoring for calibration use.

From this list we find two main summary points. First, symmetry is an overarching consider-
ation for the highest common-mode rejection. Second, symmetry does not relieve the need for
a well-engineered receiver: it should be built with all the care customary for high performance
radiometry.
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Appendix: Beamswitching mode

It is possible to use the separate outputs of the classical power detector multiplier to detect
power in the individual beams and make an electronic beamswitching receiver. This may be
useful if gains throughout the system and the detector responsivities are not well known or are
not carefully matched. The following simplified analysis eliminates the distinction between the
receiver and multiplier sections to explore the total power mode. Neglecting various constant
terms, the output of the two detectors at the Σ and ∆ ports of the second hybrid are

vΣ = 〈|(gXβF gAαS + gXαF gBβS) vX − (gY αF gAαS − gY βF gBβS) vY |2〉RΣ

v∆ = 〈|(gXβF gAβS − gXαF gBαS) vY − (gY αF gAβS + gY βF gBαS) vX |2〉R∆ , (A.1)

taking voltage transmission coefficients αF,S and βF,S for the first and second hybrids, gains
including the modulator phase gA,B , and detector responsivities of RΣ,∆ for the detectors fol-
lowing the second hybrid. For the ideal case, αF = αS = βF = βS = 1/

√
2 and gX = gY = 1,

so equation (A.1) becomes

vΣ =

〈

∣

∣

∣

∣

gA + gB

2
vX − gA − gB

2
vY

∣

∣

∣

∣

2
〉

RΣ

v∆ =

〈

∣

∣

∣

∣

gA − gB

2
vX − gA + gB

2
vY

∣

∣

∣

∣

2
〉

R∆ . (A.2)

For gA = +1 and gB = −1, as an example, the detector outputs are

vΣ = 〈|vY |2〉RΣ ∝ PY RΣ

v∆ = 〈|vX |2〉R∆ ∝ PXR∆ . (A.3)

Here the Σ detector’s output is proportional to the power at the receiver’s X input, PX , and
the ∆ detector’s output is proportional to the power at the Y input. Table 1 shows how the
detector outputs correspond to different beams as the the modulator states change.

gA gB vΣ v∆

1 1 PXRΣ PY R∆

1 −1 PY RΣ PXR∆

−1 1 PY RΣ PXR∆

−1 −1 PXRΣ PY R∆

Table 1: Outputs of the power detectors at the second hybrid’s Σ and ∆ ports for different
phase modulator combinations, from equations (A.2).

If RΣ = R∆, the ideal case, the difference of the detector voltages is the power difference
at the receiver inputs: this is the correlation receiver with the the second hybrid and detectors
used as a multiplier.

If RΣ 6= R∆, the power difference is unequally weighted by responsivity. In this case, differ-
encing each detector output separately will produce better common-mode rejection because the
responsivity is the same for both input signal selections. This mode corresponds to a sequential
beamswitching receiver, not a correlation receiver, with beam selection driven by the phase
modulator settings. The tidy results in equations (A.2) and Table 1 deteriorate rapidly as the
mixture of signals from both feeds apparent in equations (A.1) grows with imperfect phase
modulator matches in both phase states and at all frequencies, with unequal hybrid voltage
transmission coefficients across frequency, and with input gain imbalance.
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