
ASTR 300 Stars and Stellar Systems Spring 2011

Homework Set No. 1 Solutions

1. If the Earth did not rotate, could you define the celestial poles and celestial equator? (Chapt.
2, Review Question 8)

No, you could not define the celestial pole or equator. The direction to the pole is defined
by the Earth’s rotational axis.

2. As the earth turns on its axis, an observer on the earth’s surface sees the sun, moon and stars
(except forcircumpolar stars) rise in the east, traverse the sky, and set in the west.All these
objects reach their highest point above the horizon when they cross themeridian. For an
observer in the northern hemisphere, the meridian is the arcthat passes from the north point
on the horizon, up through the north celestial pole, throughthe zenith overhead, and on down
to the south point of the horizon. The angular distance alongthe meridian from the northern
horizon up to the north celestial pole (NCP) is equal to the latitude,φ, of the observer.

(a) For an observer in College Park, the latitude isφ = 39o . The celestial equator is90o

from the NCP. On March 20 (thevernal equinox) the sun will be on the celestial equator.
How high above the southern horizon will the sun be when it crosses the meridian on
March 20?

(b) On June 21 (thesummer solstice) the sun is23.5o above the celestial equator, while on
December 22 (thewinter solstice) the sun is23.5o below the celestial equator. How high
is the sun above the southern horizon when it crosses the meridian on June 21? How
high is it when it crosses on December 22?

The whole arc of the meridian (horizon to horizon) is180o. The part of the arc from
the north horizon to the NCP is 39o, and from the NCP to the celestial equator is90o.
The part that remains, 180o − (39o + 90o) = 51o, is thus the height of the celestial
equator above the southern horizon.

On June 21 it is just 51o + 23.5o = 74.5o. Likewise, on December 22, the height
above the horizon will be51o − 23.5o = 27.5o.

3. If a beam of light with a cross-section of one square meter makes an angle ofθ with a surface,
then that beam will be spread out over an area of1/ sin(θ) square meters when it strikes the
surface. Thus the heating of the surface will be reduced by a factor ofsin(θ) compared to the
heating that would be produced by a beam shining straight down (θ = 90o).

(a) Using your results from Question 2 above, how much is the heating by the sun reduced on
March 20 compared to a point on the earth’s surface where the sun is directly overhead?

(b) By what factor is the sun’s heating on June 21 greater thanthe heating on December 22
at College Park?
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(a) On March 20, the angle is51o, so the reduction is by a factor ofsin(51o) = 0.7771 .

(b) On June 21, the factor issin(74.5o) = 0.9636 , while on December 22 the factor is
sin(27.5o) = 0.4617 . Thus there is0.9636/0.4617 = 2.087 times more heating by
the noontime sun in June than in December.

4. The apparent visual magnitude of the sun is -26.8 (Table A-9). The magnitude of Sirius, the
brightest star, is -1.47. (Also, see Figure 2-6 on p 15.) By what factor is the sun brighter than
Sirius? (Hint: use the equation on page 16 of the text.)

The magnitude difference is(−1.47) − (−26.8) = 25.33.

We can now apply the equation

Isun

ISirius

= (2.512)(mSirius−msun) = (2.512)25.33 = 1.355 × 1010 .

Thus the sun appears over 13 billion times brighter than Sirius.

5. After theα Centauri system, the nearest star to our solar system is Barnard’s Star, which is
5.9 ly distant (see Table A-9, p 424). But the apparent visualmagnitude of Barnard’s star is
mV = 9.5, much too faint to be seen with the naked eye. If a star must have a magnitude of
6.5 to be seen with the naked eye, by what factor would the brightness of Barnard’s star have
be increased to become visible? Considering the inverse square dependence of brightness on
distance, how close would Barnard’s star have be to become visible?

The difference between its actual magnitude and what it would need to be visible is
just 9.5 − 6.5 = 3.0. Applying our formula again, we see that this corresponds toa
brightness ratio of just

Ivisible

Iactual

= (2.512)(mactual−mvisible) = (2.512)3.0 = 15.85 .

Since a star’s brightness varies as the inverse square of thedistance, the distance would
have to decrease by a factor of

√
15.85 = 3.981. (I.e., 3.9812 = 15.85.) Since

Barnard’s star is now at 5.9 ly, we would have to move it to5.9/3.981 = 1.48 ly.

Barnard’s star is actually moving towards us at 107 km/s, andin about 10,000 years it will
pass within 3.8 ly of us; after that its distance will increase again. When it is 3.8 ly away it
will be the nearest star. Will it be visible to the naked eye then?

No. We just saw above that it would only reach naked-eye visibility if it were to come
closer than 1.48 ly.

6. Both the Earth and the Moon orbit their common center of mass, but since the Earth is much
more massive, its orbit is much smaller that that of the Moon.Look up the mass of the Earth
and of the Moon in Table A-5 (p 422). How much more massive is the Earth than the Moon?
(I.e., what is the ratio of their masses?)

From Table A-5, MEarth = 5.976 × 1024 kg, MMoon = 7.350 × 1022 kg. Thus

MEarth

MMoon

=
5.976 × 1024

7.350 × 1022
= 81.31
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Look up the distance from the Earth to the Moon in Table A-11. Calculate the distance of the
Earth’s center from the center of mass of the Earth-Moon system. Express this distance in
units of the Earth’s radius.

From Table A-11, the Earth-Moon distance isa = 384400 km. Referring to slide 12
from ”lecture 2 (continued)”, you see that the distancea1 of the Earth’s center from the
center of mass is given by

a1 =
Mmoon

Mearth + Mmoon

a =
7.350 × 1022

5.976 × 1024 + 7.350 × 1022
384400 = 4670 km

Since the Earth’s radius isR⊕ = 6378 km, a1 = 0.73 R⊕. Thus the center of mass of
the Earth-Moon system isinside the Earth, about 3/4 of the way to the Earth’s surface.

7. We saw that the true form of Kepler’s third law can be written

P 2 =
a3

m1 + m2

if we express the periodP in years, the semi-major axisa in astronomical units (AU), and the
masses of the two bodies,m1 andm2, in solar masses. (If the orbit is circular, thena = r, the
distance between the two bodies.)

Consider a satellite orbiting the Earth. What is the mass of the Earth in solar masses? You
can neglect the mass (m2) of the satellite.

From Table A-5, M⊕/M⊙ = 5.976 × 1024/1.989 × 1030 = 3.00 × 10−6 . Here,
M⊙ stands for the mass of the sun.

The Hubble Space Telescope (HST) is in a relativity low orbit, 560 km above the Earth’s
surface. What is the radius of the HST’s orbit? What is this radius in AU (1 AU = 1.496 ×

108 km)? Now use the equation to find the periodP of the HST’s orbit in years. Finally,
convert your answer to minutes (there are 525949 minutes in ayear).

aHST = R⊕ + 560 = 6378 + 560 = 6938 km

aHST = 6938/1.496 × 108 = 4.638 × 10−5 AU

P 2 =
a3

m1 + m2

=
(4.638 × 10−5)3

3.00 × 10−6
=

9.975 × 10−14

3.00 × 10−6
= 3.32 × 10−8

so that the period is P =
√

3.32 × 10−8 = 0.0001822 years

Finally, the period in minutes is P = 525949 × 0.0001822 = 95.83 min.

Suppose we could triple the height of the Hubble’s orbit to 1680 km above the Earth’s surface.
What would it’s new orbital period be?

Now, aHST = 6378 + 1680 = 8058 km = 5.386 × 10−5 AU

We then find P 2 = 5.209 × 10−8 yr2, P = 0.0002282 yr,

so that in this case,P = 120.04 min.
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