
1. Convection in Stars

While it is possible to construct a solution to the equations of structure using only the

radiative equation for dT/dr – the equation with the opacity κ – such a solution would in

most cases contain regions that are unstable against convection. Because convective motions

move thermal energy from one layer to another, convection will change the temperature

gradient in a star and invalidate a radiative-only solution.

We can obtain the criterion for stability by considering the displacement of a blob of

gas from a point where the density and pressure are (ρ1, P1) upwards to a point where

the surrounding conditions are (ρ2, P2). After this displacement, the density and pressure

inside the blob will be (ρ∗, P∗). Now pressure differences will equalize at the speed of sound,

so we can assume that P∗ = P2 . If the blobs are large, the heat flow between the blob

and surrounding material will be slow – in fact, we can neglect heat flow and consider the

changes inside the blob to be adiabatic. Then all we need do is compare the density inside

the displaced blob ρ∗, with that outside (ρ2) as shown in the figure below.

Fig. 1.— Schematic density-pressure diagram illustrating the criterion for stability against convection.

We see from the graph that if the slope of the curve, dP/dρ, is like S, i.e., steeper than

the adiabatic curve A, then ρ∗ < ρ2, the blob will continue to rise, and the gas is unstable

against convection. Conversely, if the slope is shallower (like S’) ρ∗ > ρ2, the blob will sink

back and the gas is stable. So we see we can conclude that there will be stability against

convection as long as
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Let us recall the result we obtained earlier for the case of an adiabatic change:
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Now the specific volume V = 1/ρ , so we have
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and thus, for an adiabatic change,
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Now since ρ/P is a positive number, we can multiply the condition above [eq. (1)] by that

factor to obtain
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This is fine, but a stability criterion in terms of the temperature gradient is actually

more useful. Let’s start with the ideal gas law, and with its differential form:
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Divide the second equation by the first:
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This is a general relation for an ideal gas and applies to the gradients in the star as well as

the adiabatic changes in the moving blob of gas.

Now look at the stability criterion [eq (3)]. We can replace both sides by the relation

we’ve just obtained to get
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Both sides of inequality (3) are positive since the pressure must increase with density.

Let a represent the logarithmic derivative on the left of the inequality and b that on the

right. Then we can simplify the expression above as follows:
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We therefore arrive at the criterion for stability:
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From equations (3) and (4), we see that logarithmic derivative for adiabatic changes is just
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where it is customary to use the symbol ∇ (“nabla”) to represent the logarithmic derivative of

temperature with respect to pressure. For an ideal monatomic gas, γ = 5/3 , so ∇ad = 2/5 .

So we can write the criterion for stability as

(

P

T

dT

dP

)

star

< ∇ad Schwarzschild’s criterion for stability.

If the logarithmic derivative of the temperature with respect to the pressure exceeds 0.4,

convection will commence. Actually, it should be pointed out that there are many circum-

stances in stellar interiors where the value of γ < 5/3 and hence ∇ad < 0.4 . Examples are

(1) when radiation pressure is important, and (2) when a major constituent of the gas is

partially ionized. This makes convection more likely.

Let us return to our equation for the temperature gradient in a star when the energy

flow is by radiation:
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Now we know what to do: We integrate this equation, but at each point we check to see if the

Schwarzschild criterion is violated. If it should be, we observe that the transport of energy

by convection is so effective, that only the smallest difference from the adiabatic gradient is

sufficient to carry the luminosity. Therefore, we can drop the previous equation and switch

to one describing a purely adiabatic gradient:
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