
1. The Equation of Hydrostatic Equilibrium and Scale Heights

Consider the cylindrical volume of gas shown in Fig. 1. The mass of the cylinder is

V olume×ρ = dA×dr×ρ . Thus the gravitational force on the volume is Fg = −g ρ dr dA .

If the cylinder is to remain at rest, Fg must be counterbalanced by the difference in the

pressure forces on the two faces: (dA P (r + dr)) − (dA P (r)) = dA dP . Equating these

forces gives us the equation of hydrostatic equilibrium:

dP

dr
= − g ρ (1)

Now in general, P will be a function of both ρ and T , and thus we will need an equation for

dT/dr to make further progress. But there are a number of important cases in astrophysics

where the pressure P is a function of ρ alone. For instance, it is sometimes the case that

P = ργ , so that the hydrostatic equilibrium equation becomes a function of ρ alone. We

will consider perhaps the simplest case, where the temperature is constant. If the fluid is an

ideal gas, then the pressure, density and temperature are related by the equation of state:

P = nkT =
ρ

m
kT =

NAk

µ
ρ T (2)

where NA is Avagadro’s number and µ is the mean molecular weight in atomic units. So we

can write the equation of hydrostatic equilibrium as

1

ρ

d

dr

(

kT

m
ρ

)

= − g (3)

and if T is constant, we can take it outside the differential
(

kT

m

)

1

ρ

dρ

dr
= − g (4)

and moving the constant terms to the r.h.s. we have

1

ρ

dρ

dr
=

d ln ρ

dr
= −

gm

kT
(5)

We can integrate this to obtain

ln ρ = −
gm

kT
r + const (6)

Since eln ρ = ρ , we have

ρ = C exp
(

−
gm

kT
r
)

(7)

where C is the (exponentiated) constant of integration. To set this constant, we suppose we

know the value ρ(r0) at some level r0. Then we see that we must have C = ρ(r0)e
gmr0/kT ,

and our solution becomes

ρ = ρ0 exp
[

−
gm

kT
(r − r0)

]

(8)
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Fig. 1.— The forces on a volume element in hydrostatic equilibrium.
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In view of equation (8) we are led to define the scale height, H , as

H =
kT

gm
=

c2
i

g
, (9)

where ci is the isothermal sound speed given by

c2
i =

kT

m
=

NAk

µ
T . (10)

(Note that the “normal” speed of sound is the adiabatic sound speed, ca , where c2
a = γc2

i .

This is because when a sound wave compresses a gas, it will usually heat it adiabatically, so

that T is not constant.) With this definition of H , the density in an isothermal atmosphere

under constant gravity is just

ρ(r) = ρ0 exp

[

−
(r − r0)

H

]

(11)

As a familiar example, consider the Earth’s atmosphere. We have g = 980 cm s−2,

T ∼ 280 K, a composition mostly N2, so that m = 28 mH = 4.7 × 10−23 g, and finally

k = 1.38 × 10−16. Thus the scale height of the Earth’s atmosphere (to the extent that the

temperature is constant) is

H =
(1.38 × 10−16)(280)

(980)(4.7 × 10−23)
= 839, 000 cm = 8.4 km, (12)

The peak of Mount Everest is about 8.85 km (29,000 ft) above sea level. From equation

(11) we see that the air density (and pressure) at the summit will be exp(−8.85/H) =

exp(−1.05) = 0.35 times that at sea level. Humans can only survive at pressures below half

an atmosphere for short periods of time.

2. Hydrostatic Equilibrium in Isothermal Thin Disks

Another application of hydrostatic equilibrium is the case of a disk of gas orbiting a

massive central object. This could be a proto-planetary disk in orbit about a young proto-

star, an accretion disk about a neutron star or a black hole, or even the interstellar gas in

the disk of a spiral galaxy. The important point for this application is that the self-gravity

of the orbiting gas is negligible compared to the gradient in the gravitational field of the

central object. Let the coordinate system be cylindrical, with distance R from the disk axis

and with z the height above the plane. Then the distance from the central mass M∗ to the

parcel of gas at (R, z) is just r = (R2 + z2)1/2 and the gravitational potential is

Φ(R, z) = −
GM∗

r
= −

GM∗

(R2 + z2)1/2
(13)

Now, unless z = 0, the gravitational force will not be entirely in the disk plane, but will

be directed towards M∗ and thus have a component in the z direction. But the parcel of
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gas cannot follow an inclined orbit about M∗; instead it must orbit parallel to the disk plane

with the other parcels of gas having different z but with the same R. Thus the parcels of

gas in this co-moving ring of gas will feel a gravitational force in the z-direction given by

gz = −
∂Φ

∂z
= −

GM∗

(R2 + z2)3/2
z (14)

For a thin disk, z << R , and therefore the effective gravity is

gz = −
GM∗

R3
z = − Ω2 z (15)

Note that this force is a tidal (differential) force and thus gz falls off as R−3. Ω represents the

angular velocity of particles in Keplerian orbits at distance R. This last form arises because

Ω = vcir/R and the circular orbital velocity vcir is

v2
cir =

GM∗

R
so that Ω2 =

v2
cir

R2
=

GM∗

R3
(16)

Now, returning to the equation of hydrostatic equilibrium, we insert gz to obtain

1

ρ

dP

dz
= − gz = −

GM∗

R3
z (17)

We will assume temperature to be constant in the z-direction (it can – and likely will – vary

with R). Then, from equations (2) and (10), we can write the pressure as P = c2
i ρ , and

we have

c2
i

1

ρ

dρ

dz
= − Ω2 z (18)

We can immediately integrate this:

ln ρ = −

(

Ω

ci

)2
z2

2
+ const (19)

and exponentiating we obtain

ρ(z) = ρ0 exp

[

−

(

Ω

ci

)2
z2

2

]

= ρ0 exp

[

−
z2

2H2

]

(20)

where we let ρ0 be the density at the mid-plane where z = 0. We see that in this case, the

scale height H is given by

H =
ci

Ω
=

(

kT

m

)1/2 (

GM∗

R3

)−1/2

. (21)

We see that H ∝ R3/2 , so we might expect the disk to increase in thickness as we go

outwards, but to make a firm prediction, we must have some idea of how T varies with R.

For example, in the classical theory of accretion disks, it turns out that T ∝ R−3/4. So in

this case H ∝ R−3/8 · R3/2 = R9/8 , and indeed the disk is expected to flare up as we move

outwards.
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3. The Theory of Isothermal Spheres

So far we have looked at cases where the gravitational force was external and given, but

now we want to consider the simplest case where the gravitational force is due to the gas

itself. We assume a spherical distribution, so that the gravitational force at any point r

will be due to the mass Mr contained within the sphere of radius r. Thus the equation of

hydrostatic equilibrium will be
dP

dr
= −

GMr

r2
ρ (22)

Since the density is not constant, we must treat Mr with care. The best we can do is

write down a differential equation for Mr: If we are at some radius r and we move outwards to

r+dr, we have added a shell of volume dV = 4πr2dr. The added mass is thus dMr = ρ(r)dV .

So the equation for Mr is
dMr

dr
= 4π r2 ρ . (23)

Let us write equation (22) as
r2

ρ

dP

dr
= − GMr (24)

and take its derivative, making use of eqn (23):

d

dr

[

r2

ρ

dP

dr

]

= − G
dMr

dr
= − 4πG r2 ρ . (25)

Taking r2 to the other side, we have a second order differential equation:

1

r2

d

dr

[

r2

ρ

dP

dr

]

= − 4π G ρ . (26)

In general, P = P (ρ, T ) and the equation above must be coupled with an equation for

dT/dr from energy flow arguments. But there are some important cases in astrophysics

where P = P (ρ) only. We can then solve for the structure P (r) and ρ(r) . An important

example of this are the so-called polytropes, which are the solutions which follow when

P ∝ ργ , where γ is a constant – in some cases the ratio of specific heats.

We will consider what may be the simplest case, that of an isothermal ideal gas. Then

once again P = c2
i ρ where ci is the constant isothermal sound speed and equation (26)

becomes
c2
i

r2

d

dr

[

r2

ρ

dρ

dr

]

= − 4π G ρ . (27)

Since d ln ρ/dr = (1/ρ)(dρ/dr) , we write this as

c2
i

4πG

1

r2

d

dr

[

r2 d ln ρ

dr

]

= − ρ . (28)

We now introduce the variable w through ρ = ρ0 e−w. Then ln ρ = ln ρ0 − w so that

d ln ρ/dr = −dw/dr.
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Equation (28) then becomes
(

c2
i

4πGρ0

)

1

r2

d

dr

[

r2 dw

dr

]

= e−w . (29)

Finally, let us introduce a new radial coordinate z scaled by some constant A: r = Az ,

dr = A dz . Then we see that
(

c2
i

4πGρ0

)

1

A2

1

z2

d

dz

[

z2 dw

dz

]

= e−w . (30)

We thus are led to set A2 = c2
i /(4πGρ0). With this choice our equation becomes

1

z2

d

dz

[

z2 dw

dz

]

= e−w (31)

where

r =
ci

(4πGρ0)1/2
z and ρ = ρ0 e−w . (32)

If we take as a boundary condition w = 0 at the center r = z = 0, then we see that ρ0 is the

central density. Also, as we approach the center, Mr goes to zero as r3, the pressure gradient

must vanish, and it follows that a second boundary condition is dw/dz = 0 at z = 0.

With these boundary conditions, equation (31) has no analytic solution, but must be

integrated numerically. We also see that we cannot start the numerical integration at z = 0

because of the 1/z2 term. By assuming that w(z) has the form a0 + a1z + a2z
2 + a3z

3 + · · ·

we can put this into equation (31) and, by equating like powers of z, find a series expansion:

w(z) =
1

6
z2 −

1

5 · 4!
z4 +

8

21 · 6!
z6 − · · · (33)

This series (and its derivative) can be used to evaluate w(z) and dw/dz for some z << 1 ,

say z = 0.01. (The series is useless for z > 1.)

The usual approach to the numerical integration of a second order differential equation

is to rewrite it as a pair of first order equations. Thus we define the first derivative as a new

variable y:
dw

dz
= y (34)

and inserting this into eqn(31) above we have

dy

dz
= e−w −

2

z
y (35)

The solution thus obtained has w(z) monotonically increasing as z → ∞, and thus

ρ(z) ∝ e−w decreases monotonically – but ρ(z) never reaches zero. This solution – up to

z ∼ 7.5 – is shown in Fig. 2.

Not only does ρ(z) extend to infinity, but even worse, for very large z, ρ(z) ∝ z−2, so

the mass inside a given radius, Mr, does not converge: the solution has infinite mass! So we
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Fig. 2.— The solution for the isothermal sphere for 0 < z < 7.5. The red curve is exp(-w) which is

proportional to the density.
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may well ask if such a solution has any relevance to actual physical situations. The answer is

yes. But we must truncate the solution at some point zedge, at which point the gas will have

a non-zero pressure Pedge = c2
i ρ(zedge), and this pressure must be matched by an external

pressure. For example, consider a cold, dense cloud of H2 surrounded by a hot, low density

interstellar medium: this medium can exert the pressure Pedge and the cold gas inside may

have the density distribution of the truncated isothermal sphere.

We said that there is no analytic solution of the isothermal equation with our boundary

conditions w(0) = 0 and w′(0) = 0. There is, however, a solution if we let ρ(0) → ∞. The

solution is simply

w = 2 ln(z) − ln(2) so that e−w =
2

z2
(36)

which is easily verified by substituting this w(z) into eqn(31). In terms of r, this is

ρ(r) =
c2
i

2πG

1

r2
(37)

This solution is called the “singular isothermal sphere” (SIS). It can be shown that for large

z the regular (numeric) solution approaches the SIS solution more and more closely. We

can see this in Fig. 3 where we plot both solutions on a log-log plot. But we get a hint

that things are not simple when we notice that the regular solution does not approach the

singular solution asymptotically, but rather oscillates around it, crossing first at z ∼ 1.7 and

then crossing back at z ∼ 15.7, etc. The behavior of the SIS density near the center may

seem absurd, but at least the SIS mass Mr is well behaved everywhere. Indeed, inserting

eqn(37) into eqn(23) and integrating, we find that for the SIS solution, Mr = (2c2
i /G) r

(or in terms of z , Mz = 8π z).

However, although the truncated regular solutions are all solutions, they are not all stable.

If we truncate the solution for small z, the enclosed gas doesn’t vary much in density, so if we

compress it, it pushes back like gas in a balloon. But for spheres truncated at larger z, with

a higher ratio of ρ(center)/ρ(edge), the gravitational energy is more important, and at some

point the disturbed sphere will collapse. This was discovered independently by Ebert(1955)

and by Bonnor(1956). It is easy to show from the numerical solution if we simply plot the

pressure vs. the volume of partial spheres while holding the mass constant. To do this we

first look at the mass of the sphere truncated at some edge r = R. Using equation (32) we

have

M(R) =

∫ R

0

4πr2ρ(r)dr = 4πρ0

∫ R

0

e−wr2dr =
4πρ0 c3

i

(4πGρ0)
3/2

∫ z(R)

0

e−wz2dz (38)

But from equation (31) we have that

d

dz

[

z2 dw

dz

]

= e−w z2 (39)
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Fig. 3.— The log density of the isothermal sphere for 0.1 < z < 250 (blue curve). The red curve is the

singular (SIS) solution 2 z−2 .
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so we can evaluate the integral:
∫ z

0

e−wz2dz =

∫ z

0

d

(

z2 dw

dz

)

=

[

z2 dw

dz

]

z(R)

(40)

The mass is therefore

M(R) =
c3
i

(4πG3ρ0)
1/2

[

z2 dw

dz

]

z(R)

(41)

Solving for the central density ρ0 we find

ρ0 =
c6
i

4πG3

1

M2
z4

(

dw

dz

)

(42)

which in turns lets us write the pressure at the edge r = R:

PR(z) = c2
i ρ = c2

i ρ0 e−w =
1

4πG3

c8
i

M2
z4

(

dw

dz

)2

e−w (43)

Again, from the scaling factor (equation 32), we can write

ρ0 =
c2
i

4πG

z2

r2
(44)

Equating this with ρ0 from equation (42) and solving for r = R, we find

R =
GM

c2
i

(

z
dw

dz

)−1

so that the volume is VR(z) =
4π

3

(

GM

c2
i

)3 (

z
dw

dz

)−3

(45)

Thus, as we vary z and use the values w(z) and dw/dz from our numerical solution of

equation (31), equations (43) and (45) give us the volume VR and boundary pressure PR of a

series of truncated isothermal spheres – called Bonnor-Ebert spheres – of constant mass M .

Ignoring the constant factors, in Fig. 4 we plot PR as a function of VR. The spheres become

unstable at the point at which P reaches its maximum. Beyond this point, ∂P/∂V > 0 , and

compression to a smaller volume results in a decrease in the boundary pressure and hence

to collapse. This maximum of P occurs at

zcrit = 6.45 , where z4

(

dw

dz

)2

e−w = 17.5635 and

(

z
dw

dz

)−1

= 0.4108 . (46)

In addition, the critical value of ρ0/ρedge(= e−w) is 14.04. Fig. 5 shows a sequence of

density profiles, including the critical sphere. (We note that even though the slope becomes

negative again beyond the first maximum of P , there will be internal (r < R) unstable

spheres, so there really are no stable solutions beyond this point.) Putting the values of (46)

into equations (43) and (45), we obtain

PR,max = 1.398
c8
i

G3M2
and Rmin = 0.4108

GM

c2
i

. (47)
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Fig. 4.— P vs V for isothermal spheres truncated at different radii but having the same mass. As z → ∞ ,

the curve spirals around the dot at (V= 1

8
,P=8), which marks the SIS solution.
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Fig. 5.— Stable and Unstable Isothermal Spheres. The limit of stability is reached when ρ0/ρedge = 14.04
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We may rearrange the first expression to give the maximum mass of a cloud with a given

sound speed (temperature), subjected to an external pressure PR or boundary density ρedge:

Mcrit = 1.182
c4
i

(G3PR)1/2
= 1.182

c3
i

(G3ρedge)
1/2

. (48)

Let’s compare this critical sphere with the well known Jeans mass:

MJ =
π5/2

6

c3
i

(G3ρ)1/2
= 2.916

c3
i

(G3ρ)1/2
, (49)

where in this case the medium is assumed to have a uniform density ρ. To compare the

two results, we should express equation (48) in terms of the mean density ρ̄ = M/V of the

Bonnor-Ebert sphere. We easily find from (47) and (48) that ρedge = 0.4057 ρ̄ (and also

ρ0 = 5.696 ρ̄). As a result equation (48) for the critical Bonnor-Ebert sphere can also be

written as

Mcrit = 1.86
c3
i

(G3ρ̄)1/2
. (50)

We see that Jeans mass is about 60% larger – this is not surprising as the gravitational

potential energy of the isothermal sphere is higher than the potential of the same mass and

mean density when distributed uniformly.

As an example, consider a cold H2 cloud surrounded by a hotter, lower density medium.

Take T = 20 K, and µ = 2.35 for molecular hydrogen plus helium. Then c2
i = (kT/µmH) =

7 × 108 (cm/s)2 (ci = 0.265 km/s). The pressure at the edge is P = nkT , and let us

take nedge = 105 cm−3 (ncore = 1.4 × 106) Then the pressure is PR = 2.76 × 10−10 dyn

cm−2. Putting these values into equation (48), we find Mcrit = 2 × 1033 g = 1 M⊙. The

corresponding cloud radius is Rmin = 8 × 1016 cm = 0.026 pc = 5300 AU.

Other systems can be modeled as isothermal spheres. Globular clusters are ∼ 10 billion

years old and have had time for stellar encounters to set up a spatially uniform velocity

distribution. It turns out that the density of stars in these objects is often well described by

the isothermal profile.

Finally, we note that the velocity of an object in a circular orbit within an SIS mass

distribution will be constant: vcir = (GMr/r)
1/2 =

√
2 ci . Recall that the rotation curve

of our Galaxy (and other spiral galaxies) is flat beyond the sun, and that this behavior is

generally attributed to a halo of dark matter. This dark matter then has to have the density

profile ρ ∝ r−2. The likely explanation is that the dark matter halo has the profile of an

isothermal sphere. Since most of the mass of the universe (aside from the dark energy) is

dark matter, equation (31), the isothermal sphere, may describe most of the cosmos!
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