
1. Quantum Principles

So far, we have considered astrophysical systems and processes that can be understood

using classical physics – i.e., physics as it was developed at the end of the 19th century. Of

course, while the physical principles – i.e., the basic sets of equations – had been enunciated,

the application of these principles to understand complex (and even simple!) astronomical

systems had only developed to a limited extent at that point. Much of contemporary theo-

retical astrophysics is still primarily based on classical physics, although in most areas there

is a mixture of “classical” and “quantum” that is required.

The quantum “revolution” that took place in physics in the first ∼ 25 years of the 20th

century also profoundly changed astronomy. With quantum theory, it was understood why

astronomical objects emit spectra that have “lines”, and it became possible to diagnose the

conditions (e.g., ρ, T) within astronomical bodies based on the relative strengths of observed

lines. In the 1920s and 1930s, the understanding of how nuclear fusion – a quantum process

– powers stars was developed. In the 1930s, it was also realized that quantum effects are

crucial for understanding the possible pathways of stellar evolution. Ultimately – but not

yet! – the nature of dark matter and dark energy may be revealed based on quantum physics.

Given the limited time we have, we cannot here provide a full development of quantum

theory. Instead, we will introduce some of the basic principles, in order to be able to use

them for astrophysical applications. The main applications we will consider are to stellar

structure; this includes understanding the regulation of fusion within the cores of stars.

One of the key developments of quantum theory was Einstein’s 1905 proposal that all

light consists of energy “quanta”, based (in part) on his realization that the threshold fre-

quency behavior of the photoelectric effect could be explained if light is quantized. Einstein

reasoned that a minimum energy was needed to liberate electrons and produce a current

when light is shone on a metal, and that the observed minimum frequency of light that

was required could be explained if there is a relationship between packets of energy and

frequency. This relationship is E = hν . Since light is also a wave, it must have both wave

and particle nature – this is known as “duality”. Since ν = c/λ , energy is also related to

wavelength by E = hc/λ .

In 1905, in addition to developing the idea of radiation quantization, Einstein also de-

veloped the theory of special relativity. One of the key results of special relativity if that

energy, momentum, and mass are all related by

E2 − c2p2 = m2c4 .

Since photons are massless, m = 0, this implies that E = cp , which when combined with

E = hν = hc/λ implies p = h/λ . Thus a photon’s momentum is related to the wavelength

of the corresponding wave. (Instead of using λ and h = 6.63 × 10−27 ergs s (Planck’s

constant) it is convenient to use ~ = h/2π = 1.05 × 10−27 ergs s and the wavenumber

k = 2π/λ : p = ~k .)

1



Another key development in quantum theory was Bohr’s proposal (1913) that the energy

states of atoms are discrete rather than continuous, and that transitions between states

occur by quantized jumps, with the energy difference carried by a photon that is emitted or

absorbed.

Bohr’s theory was based on the idea that the orbital “action” of an electron in an atom is

quantized; this is equivalent to quantization of the orbital angular momentum in an orbital

model, rp = n~ for some integer n. With this, Bohr showed that

En = −
mee

4

2~ n2

for the hydrogen atom. Bohr’s model successfully explained explained what was then known

– but not understood – about spectral lines following certain patterns.

In 1924, de Broglie introduced a key idea that underlies all of quantum theory. This idea

is that all matter, not just light, has a dual wave-particle nature, with free particles having

effective wavelengths λ = h/p , and hence ~k = ~ 2π/λ = ~ 2π(p/h) = p , or, using vectors

~p = ~ ~k .

This proposal was experimentally verified by the electron diffraction experiments of Davisson

and Germer (1927).

Following de Broglie, Heisenberg (1925) and Schrödinger (1926) developed quantum

mechanics, in which positions and momenta of particles are not unique, but instead obey

probability distributions that can be calculated. Schrödinger’s technical approach using

wavefunctions to describe probability densities became standard. The Schrödinger equation

describes how wavefunctions evolve, and the possible measurable values of observables are

eigenvalues of the corresponding operators, with any wavefunction a superposition of eigen-

functions of the operators representing observables. (This is all fully explained in Physics

401 and 402.)

After the development of quantum mechanics, Dirac (1928) extended the theory to in-

clude special relativity. Subsequent developments led to quantum electrodynamics and quan-

tum field theory, which are covered in graduate-level physics courses.

1.1. Free Particles

Since much of the matter in the universe is in the form of free particles in a plasma,

and photons are also free particles, it is essential to understand the implications of quantum

theory for distributions of free, independent particles. Even though the particles are free,

it is always necessary to consider some particular volume, since we will always describe the

end result in terms that include “per unit volume”. So, we’ll consider a particle within a

cube of sides L; the value of L will not appear in the final result.
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The particle is taken to have momentum ~p = (px, py, pz). According to de Broglie, the

corresponding wavenumber with this value of momentum is

~k =
~p

~
.

Since, according to Schrödinger, the wavenumber is that corresponding to the probability

density of where the particle can be found spatially within the box, the constraint imposed

by having walls is that the particle cannot lie inside the walls. It turns out that this is

consistent with a probability density that is proportional to

P ∝ sin2
(nxπ

L
x
)

· sin2
(nyπ

L
y
)

· sin2
(nzπ

L
z
)

.

For this functional form, notice that P = 0 at x = 0 and L, y = 0 and L, z = 0 and L. Here,

(nx, ny, nz) are a three-tuple of integers

Since this has the same form as P ∝ sin2(kxx) sin2(kyy) sin2(kzz) , we conclude that the

only possible values of ~k are

~k =
π

L
~n for ~n = (nx, ny, nz).

and hence

~p = ~ ~k =
h

2L
~n .

For massive, nonrelativistic particles, the corresponding energy is

ENR =
|~p|2

2m
=

~
2|~k|2

2m
=

~
2

2m

(π

L

)2

|~n|2 ,

while for relativistic particles, the corresponding energy is

EREL = c |~p| = c~ |~k| = c~
(π

L

)

|~n| .
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We notice the following important points:

(1) The possible values of the particle energy is not a continuum, but only has certain

quantized allowed values. The three-tuple ~n must consist of integers; in-between values are

not permitted.

(2) In the limit of a very large box (L → ∞), the possible values of |~p| and E do approach

a continuum, since δ|~p| = (h/2L)δ|~n| → 0 if L → ∞, even though the minimum possible

value for δ|~n| is unity.

(3) It is possible to have independent states of a particle that nevertheless have the same

value of energy, since any three-tuple (nx, ny, nz) that has the same |~n|2 = n2
x + n2

y + n2
z

will have the same energy. These states are different in the sense that the probabilities of

where the particle would be found differ. Particle states that are different, but have the

same energy, are called “degenerate”.

An important question, in terms of assessing particle statistics, is to know, for a given en-

ergy, how many different states are degenerate. This is the number of independent quantum

particles that can have the same energy.

1.2. Counting States

For particles in a box, we can answer the question of how many particles are degenerate

by using a geometrical argument.

Consider a grid in space where each intersection represents a three-tuple (nx, ny, nz).

Then a portion of a shell in space that is 1/8 of a sphere, with radius |~n| and thickness

δ|~n| = 1, will surround all three-tuples that have the same |~n| and different individual

(nx, ny, nz), and therefore represent unique quantum particles.

How many points lie within this 1/8 spherical shell?

∆n = 1
8
× area of sphere × thickness of shell = 1

8
× 4π|~n|2 × 1 = 1

8
4π n2 dn

(Imagine a cube in rectangular coordinates: say nx = 1, 2, 3, 4, 5 , ny = 1, 2, 3, 4, 5 and

nz = 1, 2, 3, 4, 5. The number of states is 5×5×5 = 25 and the volume is also 25, so volume

in ~n space = number of states.)
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Recall that ~p = (h/2L)~n , so this becomes

|~n| =

(

2L

h

)

|~p| ⇒ ∆n =
1

8
4π

(

2L

h
p

)2

d

(

2L

h
p

)

=
L3

h3
4π p2 dp

Since this is the number of states in the cube of size L, if we want the number in some

small volume d3x, we must multiply by the ratio of volumes, d3x/L3, to obtain

dN =
d3x

h3
4πp2 dp =

1

h3
(d3p)(d3x)

Note that, as promised, the size of our box, L, does not appear.

The total number of states is obtained by integrating over the range of positions and

momenta:

N =

∫

dN =
1

h3

∫ ∫

d3p d3x

Thus, we can interpret this as saying the “size” of a single state in position and momentum

is equal to (δx)3(δp)3 = h3 . Any range of momentum and position that is smaller than

this could not accommodate a quantum particle. Equivalently, this says that a particle is

“localized” within a range δx δp ∼ h .

Note that the result

dNspatial states =
d3x d3p

h3

is just a count for the number of independent spatial states of free quantum particles. If the

particles have some other quantity such as spin that is quantized, then we would multiply

dNspatial states by the number of spin (or other) states per spatial state.
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2. Bose-Einstein and Fremi-Dirac Distributions

Although we do not have time here to go into why this comes about, there are two basic

types of elementary particles, Bosons and Fermions, which behave differently with respect

to other particles due to spin considerations.

Bosons (the most familiar of which are photons) are particles which have integer values of

the spin parameter. There is no restriction on how many bosons may be in a given quantum

state.

Fermions (including protons, neutrons, and electrons) are particles which have half-

integer values of the spin parameter. Fermions are constrained such that only zero or one

particle can be in any given quantum state. This is known as the Pauli Exclusion Principle.

The difference between Fermion and Boson behavior at the individual particle level

has major implications when discussing distributions that contain many particles, since

Pauli exclusion effectively means that particles tend to be spread out over more states. In

astrophysics, we are particularly interested in the consequences for thermal distributions of

particles.

First, let’s consider a “gas” of photons in thermal equilibrium. From wave/particle

duality, this is equivalent to a thermal distribution of electromagnetic waves.

From the fundamental Boltzmann probability law, we know that the probability of a

system having energy ǫ is P ∝ e−ǫ/kT . If there are n photons with energy E, then ǫ = nE

and P ∝ e−nE/kT . So the mean number of photons having a certain energy E is therefore

< N(E) > =

∑

∞

n=0 n · P (ǫ = nE)
∑

∞

n=0 P (ǫ = nE)
=

∑

∞

n=0 n · e−nE/kT

∑

∞

n=0 e−nE/kT

If we let x = exp(−E/kT ) , then

< N(E) > =

∑

∞

n=0 n · xn

∑

∞

n=0 xn

We use the familiar expression for the sum of a power series,
∑

∞

n=0 xn = 1/(1− x), and take

x times the derivative of both sides to obtain
∑

∞

n=0 n · xn = x/(1 − x)2 . Thus we have

< N(E) >= x/(1 − x) and thus finally

< N(E) > =
1

eE/kT − 1
.

This is known as the Bose-Einstein occupation number, since it is the average occupation

expected for a given quantum state. The average occupation number per state can be

combined with our previous result for the number of spatial quantum states in a range of

positions d3x and momenta d3p :

dNspatial =
d3x d3p

h3
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Since E = cp for photons, this implies that the number of spatial states per unit volume

in a range of energy dE is

dnspatial =
dNspatial

d3x
=

d3p

h3
=

4π p2dp

h3
=

4π

c3

E2dE

h3

Photons have two possible spin states – independent polarizations – for each spatial state,

so

dnspatial & spin = 2
d3p

h3
=

8π

(hc)3
E2dE

Taking all of these factors together, we conclude that the mean number of photons per

volume in a thermal distribution with energy between E and dE is

d < n > =
8π

(hc)3
E2dE

1

eE/kT − 1
.

This can also be written in terms of the frequency ν = E/h ; the mean number of photons

in a range ν to ν + dν is

d < n > =
8π

c3

ν2dν

ehν/kT − 1
;

or, in terms of the momentum p = E/c , this is

d < n > =
8π

h3

p2dp

ecp/kT − 1
.

This is exactly what was used in an earlier home-work problem to compute the mean

number of cosmic background photons per unit volume:

< n > =

∫

d < n > =
8π

(hc)3

∫

∞

0

E2dE

eE/kT − 1

= 8π

(

kT

hc

)3 ∫

∞

0

x2dx

ex − 1
= (2.40411) × 8π

(

kT

hc

)3

The corresponding total radiation density is

urad =

∫

∞

0

E d < n > =
8π

(hc)3

∫

∞

0

E3dE

eE/kT − 1
=

8π

(hc)3
(kT )4

∫

∞

0

x3dx

ex − 1

Since

∫

∞

0

x3dx

ex − 1
=

π4

15
, urad =

8π5k4

15h3c3
T 4 = arad T 4

where arad = 7.5658 × 10−15 erg cm−3 K−4 .

One of the greatest triumphs of quantum theory is that it was able to explain the

empirical thermal spectrum of radiation, yielding the coefficient in terms of fundamental

physical constants.
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Next, we will consider a “gas of Fermions”. Two important astrophysical examples of

Fermion gases are (1) in the early Universe – when all particles existed in thermal equilibrium,

including protons, neutrons, electrons, positrons, neutrinos, etc.; and (2) in the interiors of

white dwarf stars, where the electrons act as a degenerate Fermion gas.

Just as we did for Bosons, we can compute the average number of Fermions occupying

a given state. This is much simpler than for Bosons, however, since each state is occupied

by either zero particles (with zero energy) or one particle, with energy E. Thus

< N(E) > =
0 · e−0/kT + 1 · e−E/kT

e−0/kT + e−E/kT
=

1

eE/kT + 1

This is known as the Fermi-Dirac occupation number. It looks like the Bose-Einstein occupa-

tion number, except that in the denominator there is a + rather than a − sign. This shows

that at a given energy, (1) the occupation of a Boson state is always greater than that of a

Fermion state, and (2) the Fermi occupation number is ≤ 1 .

The occupation numbers we have derived for Bosons and Fermions in fact apply to the

case where particles can be freely created and destroyed. This is OK for photons, but for any

massive particles (either Bosons or Fermions), the expression as written would apply only

at very high temperatures when particle/antiparticle pairs are easily created. Otherwise, we

must include the chemical potential; including this, the Boltzmann factor P (E) ∝ e−E/kT

becomes P (E) ∝ e−(E−µ)/kT . Making this substitution, E → E − µ , the Boson and

Fermion mean occupation numbers become

< N(E) > =
1

e(E−µ)/kT ∓ 1
for Bosons (−) and Fermions (+)

At sufficiently high temperature both µ/kT and mc2/kT are ≪ 1 (E2−m2c4 = c2p2).

These limits are appropriate for the early universe. For relativistic particles, E = cp . For

neutrinos, there are two spin states per particle. In analogy with the photon distributions,

we thus have

d < n > =
8π

h3

p2dp

ecp/kT + 1
=

8π

(hc)3

E2dE

eE/kT + 1
.

For a given neutrino family, the mean number of neutrinos per unit volume in the early

universe is

< n >=

∫

d < n >=
8π

(hc)3

∫

∞

0

E2dE

eE/kT + 1
= 8π

(

kT

hc

)3 ∫

∞

0

x2dx

ex + 1
= 1.80308×8π

(

kT

hc

)3

Note that the value of the dimensionless integral is exactly 3/4 that of the integral

for photons we obtained on the previous page (1.80308 vs. 2.40411). Thus, at a given

temperature,

< n >neutrinos =
3

4
< n >photons .
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Similarly, the neutrino energy density for a given family is

uneutrino =

∫

E d < n >=
8π

(hc)3

∫

∞

0

E3dE

eE/kT + 1
=

8π(kT )4

(hc)3

∫

∞

0

x3dx

ex + 1
=

8π

(hc)3
(kT )4×

7

8

π4

15

That is, the energy density in a given neutrino family is exactly 7/8 of the photon energy

density:

uneutrino =
7

8
aradT

4 .

Also, since neutrinos are relativistic, the pressure Pneutrino = 1
3

uneutrino .

In the early Universe, for every photon there were 3
4

of a neutrino per family. Assuming

3 neutrino families, the total number density in “relict” neutrinos is therefore 3 × 3
4

the

number density CBR photons. The energy density in relict neutrinos is, similarly, 3 × 7
8

that of the radiation.

Strictly speaking, correction factors (Tν/T )3 and (Tν/T )4 must be applied for neutrino

number density and energy density, respectively, because the radiation temperature increased

by a factor (T/Tν) = (11/4)1/3 after the time of neutrino decoupling, due to the added

energy from electron-positron annihilation. This yields a number density of neutrinos of

3 ×
3

4
×

4

11
× nγ =

9

11
nγ

At the present epoch, this works out to ≈ 340 neutrinos cm−3, filling the cosmos. These

neutrinos have not, however, been directly detected yet.

(The foregoing notes, aside from minor changes, were written in 2009 for ASTR 320 by Dr. Eve Ostriker.)
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