
1. White Dwarfs and Neutron Stars

We now want to see the implications of degeneracy for stellar structure. But first, it is

useful to draw back and get an overview of the conditions we might encounter inside stars

and where different “equations of state” (i.e., the P = P (ρ, T ) relationship) will apply.

1.1. Equations of State in the T-ρ Plane

We can find an estimate of where we must switch from ordinary gas pressure to degenerate

electron pressure by equating the two expressions to see at what ρ and T they will be equal:
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Thus for example, if T = 107 K and µe = 2, degeneracy sets in for ρ > 1500 g cm−3, while

if T = 105 K, it sets in at 1.5 g cm−3. The degeneracy will become relativistic for densities

above xF = 1, which is ρ = 1.07 × 106 µe g cm−3, independent of T . Another equation of

state is important in very massive stars, where the temperature is high but the density low.

Then radiation pressure becomes important. Since Prad = 1

3
arad T 4 , at sufficiently high

temperatures it will dominate gas pressure.

The figure on the next page shows what equation of state applies for various values of

temperature and density. The red dot shows the sun’s core, which is still in the ideal gas

region, even though the density is over 100 g cm−3.

1.2. The Structure of White Dwarfs

We saw that the pressure of degenerate electrons has two limiting cases, both of the form

P ∝ ργ , where in the non-relativistic limit γ = 5/3 , while in the highly relativistic limit

γ = 4/3 . These are examples of the polytropic equation of state, where the polytropic index

n is related to γ by γ = 1 + 1/n . Thus a white dwarf with non-relativistic electrons will

have the structure of a polytrope of index n = 1.5 , while if the electrons are relativistic,

the structure will be that of a n = 3 polytrope. Go back to the class notes on “Stellar

Structure” and look at the density distributions for the various polytropes: Evidently, the

structure of a white dwarf will be between the curves for n = 1.5 and n = 3.

Clearly, the interior of a white dwarf shows a great range of density. In our discussion

of polytropes in the notes on “Stellar Structure”, we introduced a variable θ such that
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ρ(r) = ρc θn(r) , and obtained the Lane-Emden (polytrope) equation:
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This equation must be solved by numerical integration. One of the results of the solutions

is the relation between the central density, ρc and the mean density ρ . We find that for

the non-relativistic case (n = 1.5) that ρc = 6.0 ρ while for the relativistic case (n = 3 )

the central condensation is greater: ρc = 54 ρ . Most white dwarfs, however, will fall

between these extreme cases. And such an intermediate case is not a polytrope with some

1.5 < n < 3 . Rather, we must use the more general expression for degenerate pressure given

by equation (17) of our notes on “Degenerate Pressure”. In 1935 Chandrasekhar showed

that use of this equation leads to the following differential equation:
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We see that it closely resembles the polytrope equation (3). The parameter y0 determines

what mass white dwarf the model represents, with the more massive models being more

relativistic in their central regions. In the limit as y0 → ∞ so that 1/y2

0
→ 0 , the equation

becomes, in fact, the polytrope equation for n = 3. The other limit is y0 → 1 , which,

though it’s not so obvious, gives the n = 1.5 polytrope. The intermediate values, which

represent real white dwarfs, are shown in the figure on the next page.

When we examine the mass and radius of the various solutions, we find a strange thing.

The larger the mass of the star, the smaller its radius! In fact, for the lower mass white

dwarfs, we find R ∝ M−1/3 . This behavior can be derived from the virial theorem,

making use of the P ∝ ρ5/3 equation of state, as you are asked to do in the homework.

(The virial theorem approach will not, of course, give an accurate value for the constant

of proportionality.) However, as the mass increases to the point where much of the star is

becoming relativistic, an even stranger thing occurs: the radius begins to decrease toward

zero. On page 5, we show the calculated mass-radius relations.

We may well ask what is happening here. It turns out that the slightly softer relativistic

equation of state is not able to halt the contraction of the star against gravity. We can see

this from the virial theorem. The virial theorem is

3(γ − 1) U = − Ω where U is the internal energy and the (5)

gravitational potential energy Ω can be written, for a polytrope of index n , as follows:

Ω = −
3
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For the relativistic case, γ = 4/3 and n = 3, so we have

U =
3

2

GM2

R
(7)
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Fig. 1.— The white dwarf mass-radius relation. The green line uses the correct equation of state.
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The volume of the star is V = 4

3
π R3 , and the total internal energy U = V u , where u is

the internal energy per unit volume. But u is related to the pressure: u = P/(γ −1) = 3P .

So we have
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R
. (8)

For the pressure, we insert the relativistic form we obtained earlier:
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Next, we make a key approximation, which is dimensionally correct, but will reduce the

accuracy of our result. We need to use some average value for the density, and we will

simply use the average over the whole star: < ρ >= M/V = 3M/4πR3 . Then equation

(10) becomes
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After some cancellation we have
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And here is the startling result: the star’s radius R cancels out, leaving an equation in M

only! This means that no adjustment of the radius can bring the star into agreement with

the virial theorem. Solving this equation for the mass gives us
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= 8.8 × 1032g = 0.44 M⊙ , (13)

where we have assumed µe = 2 . So we see that there is a critical value for the mass of a

white dwarf – even though the numerical value we obtain is too small by a factor of three.

(Indeed, we would expect our value to be too small, since we used a straight average of the

density, while the pressure depends upon ρ4/3 and the central density is ∼ 50 times the

average density.)

To get the correct numerical value, we must appeal to the actual solution of the polytropic

equation for n = 3 (e.g., Choudhuri, pp 135-136). The famous result is

MCh = 1.456

(

2

µe

)2

M⊙ The Chandrasekhar Mass (14)

It is hard to overstate the importance of this result. If a star, during its lifetime, cannot

loose enough mass to slip below MCh , it is destined to end as a supernova. (Stars apparently

try hard to loose their mass – even stars that start out at 5M⊙ manage to expel enough

mass to end as white dwarfs.)
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1.3. White Dwarf Temperatures and Their Evolution

White dwarfs get their name from fact that many of them have high surface temperatures

(e.g., 16,000K for 40 Eridani B, the first white dwarf discovered) and thus appear white in

color. But their surface temperatures are low compared to the temperatures of the interiors

of these stars, which may be millions or tens of millions K.

When we speak of the interior temperature of a white dwarf, we are referring to the

ions (nuclei of He, C, O, etc.) which are not degenerate and have a Maxwellian velocity

distribution. The degenerate electrons have kinetic energies much higher than the ions,

but they cannot give up their energy since the Pauli exclusion principle prevents them from

moving to lower (filled) energy levels. However, the streaming electrons do result in a uniform

temperature throughout the interior, by providing efficient conduction – the same exclusion

principle prevents them from having energy-changing collisions.

The hot interior is insulated by a thin layer of non-degenerate gas near the surface. This

non-degenerate layer is less than a percent of the radius of the white dwarf but in this layer

the temperature drops from ∼ 107 K to the surface temperature of ∼ 104 K. Radiation from

the surface slowly drains the ionic thermal energy of the interior, but this will take billions

of years. The luminosity of the white dwarf is

L = 4πR2 σT 4

eff (15)

where Teff is the effective temperature of the surface. As a white dwarf cools, its radius

R does not change. Thus, in the H-R diagram, it cools along a track with L ∝ T 4

eff . As

the temperature drops by a factor of 2, the luminosity will drop by a factor of 24 = 16. And

since the rate at which the white dwarf loses thermal energy equals L, the cooling proceeds

ever more slowly. The coolest white dwarfs have Teff ∼ 4000 K, and have been cooling for

∼ 8 × 109 yrs. From the mass-radius graph we see that white dwarfs of mass 0.4, 0.8 and

1.25 M⊙ will have radii of 0.015, 0.010 and 0.005 R⊙ , respectively. ( 0.01 R⊙ is about the

radius of the earth.) Since the luminosity varies as R2 , if these stars had the same surface

temperature, their luminosities would be in the ratios 2.25 : 1 : 0.25, with the most massive

the faintest. This means that in an H-R diagram, the cooling tracks would be parallel with

the more massive white dwarfs below the less massive. Furthermore, since the more massive

stars have, at a given temperature, more internal energy but lower luminosity, they will

evolve more slowly. The figure on the next page shows the cooling tracks in a “theorist’s

H-R diagram (i.e., log
10

L vs log
10

Teff ).
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1.4. Neutron Stars

If a star should approach the Chandrasekhar mass limit, MCh = 1.46 M⊙ , its radius will

shrink and the density will increase as R−3 . At some point, new physics will intervene. A

neutron in free space will live for only about 15 minutes before undergoing decay to a proton,

electron and anti-neutrino: n → p + e− + νe . The reverse reaction p + e− → n + νe

is also possible, but, since the neutron is more massive than the combined masses of the

proton and electron, energy must be supplied for this reaction to occur. But if we consider a

mixture of protons and electrons compressed to ever higher densities, the Fermi energy EF

of the electrons will at some point be high enough for the p + e− → n + νe reaction to

proceed. At the same time, the neutron decay reaction will be blocked, because the quantum

states into which the electron would go are all filled. This process of converting protons to

neutrons would begin at ρ & 107 g cm−3. But the protons will not be free, but will be

inside nuclei. When this is taken into account, the process of conversion to neutrons (called

“neutron drip”) is thought to take place for ρ & 3 × 1011 g cm−3.

We are thus led to contemplate a shrinking star where the electrons have been gobbled

up by protons and the nuclei have dissolved into a dense neutron gas. What about the

stability of such an object? Our first idea is to use the same equations as for the electrons:

A degenerate neutron gas. We just replace the mass m in the white dwarf equations by the

mass of the neutron. We also need to reconsider µe : µn will now be the mass per neutron,

and thus 1 rather than 2. Looking at equation (14), we see that the mass limit for our ball of

neutrons would be 5.8 M⊙ . That seems good – we can halt the collapse of our too-massive

white dwarf. But we soon realize that we have not included important physics. For, if we

make such a model with a mass of, say, 3.2 M⊙ , our white dwarf equations give us a value

for the radius of R = 7.7 km, and a mean density of < ρ >= 3.4 × 1015 g cm−3. But the

radius of a 3.2 M⊙ black hole is 9.5 km! Oops!

Clearly, we must use equations that take general relativity into consideration. This was

done by Tolman and by Oppenheimer and Volkoff in 1939. The so-called TOV equation is
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= −

G Mr

r2
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= 4πr2 ρ < ρ > =

Mr

4

3
πr3

rs =
2G Mr

c2
(17)

Here, rs is just the Schwarzschild radius of a mass equal to that enclosed by radius r. If we

neglect the last three terms of equation (16), you see it is just the equation of hydrostatic

equilibrium. The first two of those last three factors accounts for the added mass due to

energy in the form of pressure, while the last is a space-curvature correction.

So what happens when we use the TOV equation along with the full P = A f(x)

pressure equation for degenerate neutrons? Well, good news & bad news. We do get stable

neutron stars, but the limiting mass is too small: Mmax = 0.7 M⊙ . Our models near this

limit will have a radius of R = 9.6 km and a central density of ρc = 5 × 1015 g cm−3.
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Since most observed neutron stars have masses around 1.4 M⊙ – twice this “maximum” –

something must be wrong. The problem is not hard to find. For our white dwarf models,

we assumed the electrons were an ideal (i.e., non-interacting) gas; that was justified. But at

densities of ρ ∼ 1015 g cm−3, neutrons are not an ideal gas. These are the densities we find

within an atomic nucleus, and the neutrons interact with one another via the strong force.

Thus we see that to model neutron stars we need the TOV equation and an equation

of state that includes not only degeneracy but the nuclear forces between the neutrons.

Unfortunately, we don’t have any such definitive equation of state. Many approximate

models have been made, and they do raise Mmax quite a bit, so that we can model observed

neutron stars. The next page shows some early models. Some of these models have already

been shown to be inadequate by observations: We know of a neutron star (a pulsar in a

close orbit to a white dwarf) with a well determined mass of 2 M⊙. More exotic ideas

abound, such as quark stars where, at sufficiently high densities, the neutrons dissolve into

their constituent up and down quarks, and some become strange quarks ...

With such uncertainty, are we sure there is any mass limit to neutron stars? Yes, because

there is a limit to the pressure that material can exert, regardless of the (unknown) equation

of state. And it’s really quite simple. The speed of sound, vs , is related to the pressure

and density by v2

s = P/ρ . But there is a limit to the sound speed: It must not exceed the

speed of light, otherwise causality breaks down. So we must have vs < c , regardless of the

equation of state. This implies that P must be less than ρ c2 . So if we just set P to ρ c2

in the TOV equation we have:

dρ

dr
= −

G Mr

c2 r2
ρ (2)

(

1 +
3ρ

< ρ >

)(

r

r − rs

)

. (18)

If we make models by integrating this equation, we find Mmax ∼ 5 M⊙ . And this is a real

upper limit – things that exceed it we identify as black holes! Most theorists think the actual

mass limit is less, . 3 M⊙ . It may be that we turn the problem around, and are able to

use observed masses and radii of neutron stars to pin down the nuclear equation of state.
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Fig. 2.— Some (old) neutron star models with different equations of state. Note that models leftward of the

peak in the mass-radius curve are unstable – the peak is the model with the maximum mass.
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