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1. Continuum Polarization from Stellar Atmospheres

The continuum radiation emerging from a stellar atmosphere will in general be be slightly

polarized due to the scattering component of the extinction. This polarization varies with

the angle between the emergent ray and the normal to the surface, and is greatest near the

stellar limb.

Chandrasekhar (1946, 1960) solved the radiative transfer equations including polariza-

tion for a plane-parallel atmosphere with opacity due entirely to scattering according to a

Rayleigh (dipole) phase function. This was thought to be relevant to a hot stellar atmosphere

where electron scattering can be the main opacity source. This solution is independent of

wavelength and results in a maximum polarization at the limb of 11.7%. Unfortunately,

pure electron scattering opacity is not realistic for hot stars. The appropriate equations for

a mixture of scattering and absorption were formulated by Code (1950), who considered

atmospheres with a constant ratio of scattering to absorption. He showed that the degree

of polarization depended upon (i) the ratio of scattering to absorption, and (ii) the gradient

of the source function with depth in the atmosphere. The gradient of the source function

depends strongly on the wavelength – the gradient of the Planck function with temperature

is much smaller at long wavelengths compared to wavelengths near the peak of the Planck

function – and thus the polarization from a hot star at visual wavelengths will be much

smaller than Chandrasekhar’s pure scattering result.

Harrington (1969) suggested that there could be substantial polarization from the atmo-

spheres of cool stars, due to the Rayleigh scattering by molecular hydrogen. In cool stars

the gradient of the source function is steep at visual wavelengths, and his solutions showed

that the polarization might actually exceed that of the Chandrasekhar pure scattering case.

This early work was not based upon realistic model atmospheres. We now have programs

which calculate the structure of atmospheres for a full range of effective temperatures, grav-

ities and chemical compositions. But polarization of the emergent radiation is generally

neglected in such programs – the scattering is normally assumed to be isotropic. This is be-

cause there is little difference in limb darkening computed with the assumption of isotropic

scattering compared to a model where the true dipole phase function is used. As regards the

polarization, for an unresolved spherical star, symmetry will cause it to cancel completely

(any limb region will have an identical region oriented at a right angle to it) so that it is of

no observational interest.

Recently, however, the interest in exoplanets have prompted a reconsideration of stellar
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polarization. The transit of an exoplanet breaks the spherical symmetry of the star thus gives

rise to a polarization signature (e.g., Carciofi and Magalhães, 2005). This signal, diluted by

the whole stellar flux, will be very small (a fractional polarization of ∼ 10−5), but could

reveal important information about the exoplanet orbit. At the same time, there is great

interest in the detection of the polarization signal from starlight that is scattered by the

atmosphere of a “hot Jupiter”, so it is likely that there will be efforts to achieve the highest

possible accuracy in polarization measurements. It is thus useful to have computations of the

polarization expected for a variety of realistic stellar atmospheres. Some results have been

presented by Kostogryz and Berdyugina (2015). To avoid recomputing model atmospheres,

Harrington (2015) used tabulated models for both hot and cool stars. This is possible if the

tabulated models include both the scattering and the monochromatic continuum absorption

as a function of depth. Harrington2 presents results at 28 wavelengths for 52 hot stellar

models (15,000K – 50,000K) and at 20 wavelengths for 438 cool star models (2500K – 6000K).

More recently, Kostogryz et al. (2016) have obtained results for stars with extended, spherical

atmospheres.

Such calculations show that the amount of polarization depends, firstly, upon the effective

temperature of the star. To have a source of scattering, the star must either be hot, so that

opacity by free electrons is important, or cool, so that there is Rayleigh scattering by atomic

hydrogen, helium or molecular hydrogen. The polarization is greater for stars of lower surface

gravity due to their lower density atmospheres. For stars of intermediate temperature - solar-

type stars - the continuum polarization is very small.3 A key point is that the amount of

polarization depends upon the anisotropy of the radiation field near the surface (τ < 1),

and this in turn depends on the gradient of the Planck function. For hot stars at visible

wavelengths, the radiation field is not strongly peaked outward, and the polarization is found

to be quite small. Hot stars will have strong polarization in the far ultraviolet, but there are

no instruments to measure polarization at these wavelengths. Cool stars do have a strong

gradient of the Planck function at the blue end of the visual spectrum and thus are the most

promising candidates for detection.

The purpose of this paper is to provide some results for another signature of atmospheric

polarization. It is an effect that can be substantial but which only appears at high spectral

resolution in stars of rather small rotational velocities.

2. The Öhman Effect

When the emergent radiation from the atmosphere of a rotating star is partially polar-

ized, some polarization should be seen as we scan across the rotationally broadened profiles

of the absorption lines in the star’s spectrum. This effect was first proposed by Öhman

2http://www.astro.umd.edu/∼jph/ Stellar Polarization.html

3Continuum polarization is well measured for the sun, with levels of ∼ 0.01% near the limb.
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(1946). To observe the effect, it is necessary that the polarimeter be able to resolve the line,

since the polarization will vanish if the radiation is averaged over the width of the line.

To see how this effect arises, consider a rotating star where the velocity of the equatorial

limb is such that the Doppler shift is a few times the line width. If we look at the line

center, the radiation which comes from the star’s surface along the rotation axis will show

no Doppler shift, thus that intensity will be suppressed by the absorption line. We will

also receive, at line center, radiation from the edges of the star near the equator, but that

radiation will be red or blue shifted away from the absorption line and thus show show the full

continuum intensity. Now the continuum radiation from the equatorial regions is polarized

parallel to the rotation axis, while the radiation from the poles is polarized perpendicular to

that axis. In the absence of the absorption line, radiation from these regions would cancel

so we would see no net polarization. But the absorption line suppresses the intensity from

the poles, and we will see a net polarization parallel to the axis. Furthermore, radiation

at the local line center from either of the equatorial regions will be shifted to the wing (as

seen by a distant observer) so that contribution is suppressed. Thus the polarization from

the poles will only be partly canceled. So as distant observers scan across the line, they

will see polarization which swings from − to + to − (we denote parallel polarization by +).

Note that the polarization which appears is continuum polarization. The line just reveals

it by blocking part of the star and breaking the spherical symmetry. The Öhman effect has

nothing to do with line polarization or the Hanle effect.

2.1. Previous Work

I am not aware of any observations of the Öhman effect. A detailed discussion and some

calculations for hot stars were presented by Collins and Cranmer (1991) and by Collins,

Truax and Cranmer (1991). Collins and Cranmer present an analysis using what they term

the “Struve-Unsöld model”, which is a uniformly bright rotating, spherical star with a delta-

function absorption line. Based on the pure scattering solution of Chandrasekhar, they

adopt a simple fit to Q(µ), the Stokes parameter of the emergent radiation, and are able

to derive an analytic expression for the polarization across the rotationally broadened line.

They find a peak polarization at line center of ∼ 4%. They also refine the model by relaxing

the uniformly bright star to a model with parameterized limb darkening. The problem, as

they acknowledge, is that it is essential to discard the pure scattering model and consider

the emergent intensity I(µ) and Stokes Q(µ) of a realistic model atmosphere. Furthermore,

one must consider the behavior of Iλ(µ) and Qλ(µ) within the line, which will not in general

be simply proportional to the continuum limb darkening. The point of the analytic analysis

is, however, to demonstrate clearly the reality of the (non-intuitive) Öhman effect and the

“− + −” shape of the polarization profile.

Collins and Cranmer (1991) do present a realistic calculation in their paper. They use

one of the model atmospheres discussed in Collins, Truax and Cranmer (1991), which are

based on the ATLAS6 model atmosphere program. They consider a star of spectral type
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B1 V (Teff ≃ 25, 000K, log g = 4) and evaluate the effect for two wavelengths: the extreme

UV Si III λ1113 lines and the visual He I λ4026 line. For the Si III line they find maximum

Q/I of 0.004, while for the He I line in the visible part of the spectrum, the maximum effect

is an underwhelming Q/I = −4× 10−5. (We verify this result – see below.)

2.2. “Milne-Eddington Lines” in Model Atmospheres

As discussed in the section above, we have obtained results for the continuum limb

darkening I(µ) and Stokes Q(µ) across the spectrum for a large number of both hot and cool

stellar atmospheres. We would like to evaluate the Öhman effect for these stars. The proper

treatment of the polarization that arises for line photons, where radiation is scattered in

transitions between atomic or molecular levels, is a notoriously difficult problem. It involves

all four Stokes Stokes parameters and the effect of the (unknown) magnetic field; substantial

progress in this area has been made mainly in the case of the solar atmosphere. We will

ignore the line scattering problem treat the lines as pure absorption features. As justification,

we note that examination of “The Second Solar Spectrum” (Gandorfer, 2002) shows that

most of the features in the high resolution I/Ic and Q/I of plots of the solar limb spectrum

appear to be “depolarizing”,i.e., there is a drop in the polarization at the wavelengths of the

absorption lines. This implies that the spectrum can be well modeled by just adding pure

LTE line absorption to the background of continuum absorption and scattering.

We will consider two approaches. The first and simplest is to take from the tabulated

model atmospheres (MARCS models for cool stars and TLUSTY models for the hot stars)

the run of temperature T (τ), of continuum absorption κc(τ) and of scattering σ(τ), as a

function of monochromatic optical depth τ . From these data, we can construct what we will

call a “Milne-Eddington” line. In the classical Milne-Eddington approximation, the Planck

function is taken as a linear function of optical depth and the ratio of line to continuum

absorption is taken as constant with optical depth. These assumptions allow an analytic

solution of the transfer equation. By contrast, we will take the variation of the temperature

and, most importantly, the variation of the ratio of scattering to continuous absorption, from

the model atmospheres. We refer to our approach as a “Milne-Eddington” line (with quotes)

because we take the ratio of line to continuum absorption to be independent of depth. Thus

we replace the continuous absorption κc
λ(τ) with

κx(τ) = κc
λ(τ) [1 + rl φ(x)] and φ(x) =

1√
π

e−x2

, (1)

where rl is the ratio of line to continuum absorption and τ is the optical depth in the

continuum at the line wavelength λ0. Here we assume a Doppler line profile, where x is

the frequency in Doppler widths: x = (λ − λ0)/∆λD . The Doppler width, ∆λD , can be

written in terms of the thermal velocity vth as ∆λD = (λ0/c) vth, and this velocity, in turn,

is vth = 12.85 [T/104A]1/2 km/sec. Here, A is the atomic weight of the atom (or molecule)

in question. For stronger lines we may generalize φ(x) to a Voigt profile. The parameter rl
determines the line strength.
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Then for each frequency x across the line profile, we compute the monochromatic optical

depth in the line, τx, by integrating the opacity:

dτx(τ) =
κx(τ) + σλ(τ)

κc
λ(τ) + σλ(τ)

dτ (2)

We thus obtain the Planck function Bλ[T (τx)] and the key absorption to extinction ratio

λx(τx) = κx(τx)/[κx(τx) + σλ(τx)]. We interpolate these quantities at a pre-defined grid of

τ ’s and solve for Ix(µ) and Qx(µ) using finite integral transforms as outlined in Harrington

(2015). Note that the limb darkening and Stokes Qx will differ from the adjacent continuum

behavior; usually, the added absorption will suppress not only Qx but the ratio Qx/Ix.

To keep this study as simple as possible we will assume that the stellar rotation is

“slow”. As a consequence of rotation, stars increase their equatorial radius, and the surface

temperature will vary with the effective surface gravity: Teff ∝ g1/4. But these effects only

become significant for rapidly rotating stars: e.g., for a star rotating at 1/2 its break-up

velocity the increase in the equatorial radius is only 4%. Thus we will assume a spherical

star with a uniform effective temperature and surface gravity.

Let the rotation axis of the star be the z-axis of a spherical coordinate system. Let θ be

the angle measured from the z-axis (the co-latitude) and let φ be the azimuthal (longitudinal)

angle measured from the direction to the observer. The velocity of any point on the stellar

surface is given by v(θ) = v0 sin θ , where v0 is the rotational velocity of the stellar equator.

The component of this velocity seen by a distant observer is given by

vobs = v0 sin θ sinφ sin i , (3)

where i is the angle between the rotation axis and the direction of the observer. This velocity

will produce a Doppler shift of ∆λ = λ vobs/c . Thus the Doppler shift at a given point on

the stellar surface can be written

∆λ(θ, φ) = 3.336× 10−6 λ v0 sin i sin θ sinφ , (4)

where λ and ∆λ are in Å units and v0 is in km s−1. This is the shift that we must apply to

the Stokes parameters I and Q of the line profile at each point on the stellar surface. We

see from equation (4) that the Doppler shift of every point is scaled by sin i. Thus we need

only consider the case where the inclination i = 90o. A star with a rotational velocity of v0
viewed at an inclination i will look exactly like a star with rotational velocity v′0 = v0 sin i

seen at i = 90o.

To combine the polarization from different patches on the stellar surface, we must express

the local polarization with reference to a common axis, which we take to be the projection

of the stellar rotation axis. Let the projection of the local normal onto the plane of the sky

make an angle ξ with the z-axis. Then we need to rotate the local emergent Q(µ) clockwise

(as seen traveling with the ray) through the angle ξ. Call the rotated parameters I ′, Q′ and

U ′. In the local reference frame the Stokes parameter U = 0, but the rotation gives rise to

a non-zero U ′. The equations for rotation are:

I ′(µ) = I(µ) , Q′(µ) = Q(µ) cos(2ξ) , U ′(µ) = Q(µ) sin(2ξ) . (5)
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The angle ξ is given by tan ξ = sinφ tan θ . While this produces a non-zero U ′, we can

disregard this parameter since a U ′ contribution from a point above the equator will be

canceled exactly by the contribution from the same latitude below the equator, which will

have the same Doppler shift but a value of −U ′. The following integrals give the parameters

as seen by the distant observer:

Ix = R2

∫ π/2

−π/2

∫ π

0

Ix(θ, µ) µ sin θ dθ dφ (6)

and

Qx = R2

∫ π/2

−π/2

∫ π

0

Qx(θ, µ) cos(2ξ) µ sin θ dθ dφ . (7)

The value of µ(θ, φ) follows from µ = sin θ cosφ. We carry out the evaluation of (6) and

(7) as follows: We first specify the effective temperature and gravity of the star. From the

tabulated model atmospheres we extract the values of κc(τ), σ(τ) and T (τ), interpolated

at the selected line wavelength λ0, and with equations (1) and (2) we get τ(xi) and λ(xi)

for a grid xi across the (half-)line profile. We solve the transfer equations for the emergent

I(xi, µ) and Q(xi, µ) at these wavelengths for a grid of 18 µk, adequate for interpolation in

µ. We cover the visible surface of the star with a grid of 181 points in θ and 121 points in

φ for a total of 21901 points. For each point we evaluate the value of µ and interpolate to

find the emergent I(xi, θ, φ) and Q(xi, θ, φ) profile. Using our selected equatorial rotational

velocity v0, we Doppler-shift each profile according to the location of the grid point (eqn 4),

and interpolate back to a standard xi-grid of the distant observer. Finally, we sum these

Stokes I(xi) and Q(xi), weighted properly, over the stellar surface.

Let us consider a MARCS model atmosphere with Teff = 4000K and log g = 3.5 (a

K4 giant). Fig. 1 shows the percent polarization, 100 × Q(µ)/I(µ), for 11 wavelengths.

For readability, we do not plot the polarization for µ < 0.02 (∼ 1o from the limb). The

magnitude of the polarization increases as we go from 6000Å toward shorter wavelengths.

At a wavelength of 4000Å, the polarization at µ = 0.1 is about −3%. (We adopt a convention

where Q is negative for polarization perpendicular to the meridian.)

We now wish to evaluate the Öhman effect for a line at 4000Å. We set the line-to-

continuum ratio at rl = 10, which produces a line with a central depth of 0.13 Ic, where Ic
is the continuum intensity. We consider four rotational velocities such that the equatorial

Doppler shift v0 is 1.5, 3, 6 and 10 times the Doppler width of the line. Fig. 2 shows

the results. The thin black line in the left panel is the emergent flux from a point on the

stellar surface in the local fame of reference. The four colored lines are I(x) as given by

equation (6) for the four velocities. (The values of I(x) are normalized by dividing by the

continuum intensity Ic.) The right panel shows the values of 100 ∗Q(x) from equation (7),

again normalized by Ic. We plot this quantity to avoid the enhancement of the polarization

as the intensity drops near line center. This also makes it easier to see that the area of

positive Q is equal to that of negative Q.

The Öhman effect is rather small: (Q/Ic) ≃ 3× 10−4 (0.03%) at line center. The effect
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Fig. 1.— Polarization of Radiation from a MARCS model atmosphere.

Fig. 2.— The Öhman effect for a Doppler line profile in a MARCS K4 III model atmosphere. This is

a “Milne-Eddington” line with rl = 10. The left panel shows the unbroadened profile (black), and after

broadening by four rotational velocities. The right panel shows the polarization induced by these rotations.

These results are for a stellar model with T=4000K and log g=3.5 at a central wavelength of 4000Å.
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is greater at shorter wavelengths, but the flux from a 4000K star is dropping steeply towards

the UV. For the case considered here, the greatest value of Q(x) occurs for a rotational

velocity ∼ 3 Doppler widths, for which 100 ∗ Qx = 0.0354 at x = 0. But shapes of the Qx

curves involves not only the continuum limb darkening and the center-to-limb variation of

the continuum polarization, but also how this interacts with the shape of the line profile for

a given rotational Doppler shift.

To disentangle these factors let us consider a totally black line with a rectangular profile:

In other words, we integrate equations (6) and (7) while masking off a strip parallel to the

rotation axis. The width of the strip represents the ratio of the line width to the rotation

velocity. We have done this for the same stellar atmosphere and show the results in Fig. 3.

The Qx curves are similar to those of Fig 2. We should explain the dip at x = 0 for the

R = 1 case. Here the rotation is so slow that the shifted line can cover the whole star, so

Ix = 0 at x = 0. Thus Qx = 0 there also (since Q ≤ I). This explains the central dip in

the R = 1.5 curve in for the Doppler profile (Fig. 2): It is due to the drop in intensity near

x = 0; if we plot the polarization Q(x)/I(x) there would be no such dip. Looking again at

the R = 1 curves of Fig. 3, note that for this curve Ix = 0.5 and Qx = 0 at x = ±1. That is

because the sharp rectangular line covers exactly 1/2 the stellar disk, and Q averaged over

the right or left hemisphere is zero. The greatest value of Qx occurs for R = 2, ∼ 0.04%,

a bit greater than that for a “Milne-Eddington” Doppler line. Our rectangular line does,

however, give a reasonable upper bound to the Öhman effect.

Stronger spectral lines have damping wings and are not well represented by a pure

Doppler line profile. We can get an idea of their behavior by considering a Voigt profile for

φ(x, a), where a is the ratio of the damping parameter Γ to the Doppler width: a = Γ/4π∆λD.

We illustrate this with a stronger line, rl = 500, and a large damping parameter a = 0.1,

again at a wavelength of 4000Å. Some results are shown in Fig. 4. The black curve in the

left panel shows the unbroadened profile. The maximum value of 100 ∗ Q is 0.027, which

occurs for R = 15. As we go to higher rotational velocities, the peak value declines. If,

however, we consider the detectability of the effect, we should also look at Q > 0 and Q < 0

integrated over wavelength. We find that the integrated |Qx| continues to increase with the

rotational velocity. In addition, the regions of positive and negative Qx move further apart,

so less spectroscopic resolution would be needed to detect the effect.

The magnitude of the effect will vary with the star’s effective temperature and surface

gravity. In Fig. 5 we show the results for a fairly weak line, rl = 5, and a ratio of Doppler shift

to line width of R = 4. We see that the results are broadly similar for effective temperatures

of 3500K, 4000K and 4500K. The magnitude of the effect increases strongly towards lower

surface gravities, as that increases the continuum scattering/absorption ratio.

The wavelength of the absorption line also has a profound effect on the amount of

polarization. In Fig. 6 we show results for nine wavelengths from 3400Å to 8000Å. The

results are as expected: Because the scattering for these stars is Rayleigh scattering by

atoms or molecules, it decreases strongly with wavelength, so that the effect essentially
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Fig. 3.— The Öhman effect for a rectangular line profile. The left panel shows the profile (black) after

broadening by 4 rotational velocities. The right panel shows the polarization induced by this rotation.

These results are for a stellar model with T=4000K and log g=3.5.

Fig. 4.— The Öhman effect for a Voigt line profile in the “Milne-Eddington” approximation with the

(line/continuum) ratio r=500 and damping ratio a=0.1. The left panel shows the profile (black) after

broadening by 5 different rotational velocities. The right panel shows the polarization induced by this

rotation. These results are for a stellar model with T=4000K and log g=3.5.
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Fig. 5.— The Öhman effect for a Doppler line profile in the “Milne-Eddington” approximation with the

(line/continuum) ratio rl = 5 at 4000Å. The ratio of rotational Doppler shift to Doppler line width is R = 4

in all cases. The panels show three effective temperatures: 3500K, 4000K and 4500K. For each temperature

we show the percent polarization, 100 × Q(x)/Icontinuum, for five gravities: log g = 5.0, 4.5, 4.0, 3.5, 3.0. In

all cases, the effect decreases with increasing surface gravity.

Fig. 6.— The Öhman effect for a Doppler line profile in the “Milne-Eddington” approximation with the

(line/continuum) ratio rl = 10 and with a ratio of rotational Doppler shift to Doppler line width of R = 4.

Results are presented for nine wavelengths between 3400Å and 8000Å.
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disappears at the red end of the spectrum.

2.3. The Öhman Effect for Hot Stars

Now let us consider hot stars, where the scattering is due primarily to free electrons.

We may obtain the needed parameters from the stellar atmosphere code TLUSTY, if we run

the code with the keyword IPOPAC=1 set. This generates a file (fort.85) with the needed

continuum opacities at hundreds of wavelengths. From the opacities we can compute the

monochromatic optical depths, while the electron scattering is obtained from the tabulated

electron number N e and the gas density. Then, following the same procedure as for the cool

MARCS atmospheres, we can evaluate the Öhman effect for Doppler and Voigt profiles at

any wavelength.

To understand the effect in hot stellar atmospheres, we should review the polarization

of the emergent radiation as a function of µ at various wavelengths. In Fig. 7 we show

this for a 30,000K model. We see that in the far UV (1200Å-1500Å) the polarization is

substantial and negative (i.e., perpendicular to the normal). But in the visible (4000Å-

6000Å) the polarization is small and, except very near the limb, is positive, with the plane

parallel to the normal of the stellar surface. In the near UV (e.g. 2500Å) the polarization

mixed, with the outer part of the stellar disc showing Q(µ) < 0 while the center of the disc

shows Q(µ) > 0. This leads to very small amplitudes as well as a self-reversal of the profile

in some cases (see the T=30,000K 1900Å profile in Fig. 8).

In Fig. 8 we show the results for three hot atmospheres as we range in wavelength from

1200Å to 6000Å. While we expect to see substantial polarization in the far UV – up to

0.15% at line center – the polarization in the visible is expected to be much smaller and of

the opposite sense: the central peak will be negative.

Fig. 7.— Polarization of Radiation from a hot model atmosphere. We only plot values for µ > 0.02. Note

that at visible wavelengths, the polarization is positive for µ > 0.05− 0.13.
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2.4. Modeling the Effect in Hot Stars with a Spectrum Synthesis Code

While the foregoing results gives us an idea of the magnitude of the expected effect

for stars of various temperatures and gravities as a function of wavelength, the “Milne-

Eddington” model is only approximate: in reality, the line opacity will depend upon the the

ionization balance of the ion or atom in question and the excitation of the atomic levels. Thus

the variation of the line opacity with depth will not track the variation of the continuum

absorption. The next step beyond the “Milne-Eddington” line model is to use the I(µ)

and Q(µ) from a spectral synthesis program. We have provided such results (under “2nd

Spectrum for some hot stars”). It is straightforward to integrate these (Doppler shifted)

Stokes parameters over the surface of the rotating star to obtain the net polarization. But

the resultant polarization curve would be choppy since spectral resolution of our input “2nd

spectrum” is barely adequate for this sort of calculation. We have thus run the SYNSPEC

spectral synthesis code at a higher resolution of 0.01Å to obtain the input I(µ) and Q(µ).

It is interesting to compare our results with the case shown by Collins and Cranmer

(1991) for the He I λ4026 line in a B1 V star (Figure 5 of their paper). We used a TLUSTY

25000K, log g=4.0 model as input to the SYNSPEC code. The result is shown in the left

panel of Fig. 9. Our calculation contains weak lines on the wings of the He I line not

modeled by Collins and Cramner, and our model codes differ. Nevertheless, the results are

quite similar. The central peak is negative due to the shallow gradient of the Planck function

in the visible, as explained in the preceding section. The amplitude of the spread from the

negative central dip to the positive peaks on either side is Q/I = 6× 10−5, the same as their

result. (The calculations of Collins and Cranmer include the distortion in the shape of the

star due to its rotation, and this in turn induces an overall polarization of the continuum,

so that their Q/I curves do not go to zero in the far wings. We do not include the change of

shape of the star.)

We also include, in the right panel of Fig. 9, the result of putting a Voigt profile into a

similar model atmosphere (the temperature is slightly lower) using our “Milne-Eddington”

approximation: the ratio of line to continuum absorption is held constant with depth. The

results are given in terms of the Doppler width, ∆λD , which can be written in terms of the

thermal velocity vth as ∆λD = (λ0/c) vth. This velocity, in turn, is vth = 12.85 [T/104A]1/2

km/sec. Here, T is the temperature of the stellar atmosphere and A the atomic weight of

the atom (or molecule) in question. For this He I line (A=4) at 23,000K, we have vth = 9.74

km/s. Thus 50 km/s corresponds to R=5, and the line parameters for the right panel

(rl = 1000, a = 0.2, R = 5) were set to produce a profile similar to the synthetic spectrum

line in the left panel. It can be seen that the variation of Q across the line is similar to the

result in the left panel, both in shape and in magnitude.

In the far ultraviolet the polarization is much stronger and the central peaks are positive.

In this part of the spectrum there is a crowding of lines, which produces a rather complex

result. In Fig. 10 we show about 10Å of spectrum around the Si IV λ1402.7 for a 20,000K,

log g = 3.5 star. The projected equatorial velocity of this model has been set at 20 km/s. The
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Fig. 8.— The Öhman effect for Doppler line profiles in hot stellar atmospheres at various wavelengths.

We use the “Milne-Eddington” approximation with a (line/continuum) ratio of rl = 20. The ratio of

rotational Doppler shift to Doppler line width is R = 4 in all cases. The panels show three effective

temperatures: 20,000K, 25,000K and 30,000K. For each temperature we show the percent polarization,

100×Q(x)/Icontinuum, across the line.

Fig. 9.— The Öhman effect for the He I 4026Å line. The left panel shows the synthetic spectrum result

for comparison with Figure 5 of Collins and Cranmer (1991). The amplitude of the central dip, −4× 10−5,

agrees with their result. The right panel is a “Milne-Eddington” Voigt profile with parameters adjusted to

mimic the He I line in the left panel.
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Fig. 10.— The Öhman effect for a section of synthetic stellar spectrum in the far UV. The stellar temperature

is 20,000K and the log surface gravity 3.5.
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Fig. 11.— The Öhman effect a synthetic stellar spectrum near 1523Å. The stellar temperature is 20,000K

and the log surface gravity 4.0.
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Fig. 12.— The Öhman effect a synthetic stellar spectrum near 1523Å. The stellar temperature is 30,000K

and the log surface gravity 4.0.
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scale on the y-axis is the percent polarization, 100*Q/I, while below is the Doppler broadened

intensity, and for comparison, the unbroadened emergent flux from the atmosphere. (The

flux scale is arbitrary, scaled to fit on the figure with the polarization.) Note that the broad

Si IV line produces little polarization since it is wide compared to the Doppler shifts.

2.5. The Effects of Micro- and Macroturbulence

We have presented most of our results in terms of the Doppler width of the absorption

lines. The relevant line width is, however, not just the thermal Doppler width, but rather

the width we would observe from an extended patch on the stellar surface. That is, the line

width must include bulk motions, which are traditionally decomposed into the two limiting

scales: microturbulence (motions over distances where the optical depth changes little) and

macroturbulence (motions of optically thick sections of the stellar atmospheres).

2.5.1. Microturbulence

Microturbulence can be modeled by simply replacing the thermal velocity vth with a

velocity V defined by V 2 = v2th + ξ2mic, where ξmic is the microturbulent velocity (usually a

few km/sec). This simply increases the Doppler widths of all lines to ∆λD = (λ0/c)V . Since

the Doppler width of heavy metal lines is small, e.g., 1 km/s for an iron line at 4000K (0.013Å

at 4000Å), most lines will have a velocity V where the microturbulent width dominates the

thermal broadening.

2.5.2. Macroturbulence

Macroturbulence may be larger than microturbulence however, and it cannot be treated

so simply. We assume some distribution of macroturbulent velocities along the line-of-sight

with the corresponding distribution of Doppler shifts ζ(x). Ideally, the macroturbulent ve-

locity distribution would come from a hydrodynamic model of the granulation and convective

motions in the stellar atmosphere, but such data is not generally available. The simplest

approach is to assume that the macroturbulent velocity distribution ζ(x) is a Gaussian dis-

tribution which is independent of the viewing angle. However, observations imply that ζ(x)

is not isotropic. This is discussed, e.g., in Chapter 17 of Gray (2005). A more satisfactory

model seems to be one in which the motions are not turbulent, but one in which the material

rises in granules, flows across them, and then descends at the granule boundaries. This im-

plies that the motion is exclusively radial or tangential. The model assumes that the velocity

distributions in both the radial and tangential directions are Gaussian with widths ζR and

ζT , respectively. We let the fraction of the stellar surface where the flow is radial be AR

while the complementary area where the motion is tangential is AT = 1−AR. Furthermore,

the simplest R-T (radial-tangential) model is where ζR = ζT = ζRT and AR = AT = 0.5.
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It might at first seem that the simplest R-T model would be equivalent to an isotropic

Gaussian with width ζRT , but that is not the case. In the R-T model, at the disk center

(µ = 1) we see the sum of an unbroadened profile (tangential motion perpendicular to the

line-of-sight) and a profile broadened by the full width ζRT (the radial motions). At the limb

(µ = 0) , we see the same combination, this time an unbroadened profile from the radial

motions and the full width ζRT from the tangential motions. However, at other positions

on the disk, the profile will be different. Consider θ = π/4 (µ = 1/
√
2 = 0.707107) where

cos θ = sin θ. Then both the radial and tangential motions make a 45o angle with the line-

of-sight, and both will produce the same profile, but the effective width of the Gaussian will

be reduced to µ ζRT .

We have made some calculations of the Öhman effect polarization for “Milne-Eddington”

lines using the simplest R-T model discussed above. The calculation proceeds as follows:

For each point on the visible stellar surface, we interpolate the profiles I(µ) and Q(µ) for the

µ of that point. We then broaden the profiles with the radial and tangential macroturbulent

velocities of widths µ ζRT and
√

1− µ2 ζRT by taking the Fourier transforms of these two

Gaussians, multiplying by the transforms of the I(µ) and Q(µ) profiles, and taking the

inverse Fourier transform. We then sum the two broadened I and Q profiles and apply the

appropriate Doppler shift for the specific point. The Stokes Q of each point is rotated to the

coordinate system aligned with the rotation axis, and the I and Q profiles are summed over

the visible stellar surface.

For comparison, we have also made some models with isotropic macroturbulence. We

do not find much difference in the flux profile between an R-T model and a model with

isotropic Gaussian macroturbulence, where the width of the Gaussian is set to (2/3)ζRT .

While Fig. 17.5 of Gray (2005) shows a large difference, that is for a model with no limb

darkening. We are comparing results from models where the continuum is limb-darkened

and where the profile shape is also a function of the angle µ. The polarization profiles also

show little difference between the isotropic and the R-T models.

We show the comparison in Fig. 13. Shown there is emergent profile of a line at

4000Å of strength rl = 10, with a Gaussian microturbulent width of unity (thin black

line). This profile is then broadened by either (a) isotropic macroturbulence (orange line)

or (b) simple R-T macroturbulence (yellow and purple curves). If the value of ζRT is 1.5

times the isotropic value, the results are nearly the same (orange and purple lines). These

profiles are not yet broadened by rotation; the blue, green and red profiles show the result of

applying a maximum rotational Doppler shift which is twice ζiso (i.e., R=4, 4 times the unit

microturbulent width, since we have set ζiso = 2). The lower panel shows the polarization

that results from rotation. Note that even though the depths of the lines are reduced by

macroturbulence, the polarization is not reduced proportionally (compare Fig. 2).

We have also made some calculations using R-T macroturbulence for strong lines with

Voigt profiles, as in Fig. 4. There are no surprises – the polarization is almost unchanged.
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Fig. 13.— Top panel: The black line is a Milne-Eddington line with rl = 10 at 4000Å; the only broadening

is microturbulence with a width of unity. The orange line profile includes additional broadening by isotropic

macroturbulence of width 2, the yellow uses R-T macroturbulence with width ζRT = 2, and the purple uses

ζRT = 3. (The orange and purple profiles are nearly coincident.) The blue, green and red profiles are the

result of applying Doppler broadening of width 4 (R=4) to the orange, yellow and purple profiles. Again,

the isotropic macroturbulence with ζiso = 2 (blue) is almost the same as R-T macroturbulence with ζRT = 3

(red). Note that the equivalent widths of all these line profiles is the same. Lower panel: The Öhman effect

polarization corresponding to the blue, green and red cases above.
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2.6. Observability of the Effect

We have seen that the magnitude of the Öhman effect polarization is small. Coupled with

the required high spectral resolution, this may make observation of the effect problematical.

We have seen that for hot stars the polarization in at visible wavelengths is quite small, so

until there is a space-based spectropolarimeter we should concentrate on the cooler stars.

As we see from Fig. 5, the expected polarization will be greater for stellar atmospheres of

lower surface gravity. However, as stars evolve to the giant branch, their rotational velocity

decreases due to the conservation of angular momentum. If the projected rotational velocity

is less than the total (micro- plus macroturbulent) line broadening, the Öhman effect is very

small (Fig. 14). There are some giant stars, however, with relatively high rotation (Tayar

et al., 2015). If has been proposed that these stars have been spun up by the engulfment of

a companion (Privitera et al., 2016).

It may be possible to increase the observability of the Öhman effect by noting that

nearly the same Q/I profile will apply to all the lines in a section of the stellar spectrum.

For example, consider the far UV lines shown in Fig. 11 and Fig. 12. We note that the same

sort of Q profile corresponds to each strong line. Thus by bining the Stokes Q/I and U/I

based on the location of the absorption features, we may be able to detect a faint polarization

signal that could not be seen in a single line. Incidentally, the direction of such polarization

would reveal the angle of the star’s rotation axis projected on the plane of the sky.

8 July, 2016
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Fig. 14.— We show the Öhman effect polarization for a Milne-Eddington line in a T=4000K, log g=3.5 (K

giant) model atmosphere. The line is at 4000Å with a line strength of rl = 10. The microturbulent velocity

is unity and the R-T macroturbulence has width ζRT = 2. We show the percent polarization for four values

of R, the maximum equatorial Doppler shift due to rotation. It is seen that if the rotation is only half the

microturbulent line width (R = 0.5), the polarization drops to ∼ 10−5 (green profile).
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