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1. On the Roche Potential of Close Binary Stars

Let Ψ be the potential of a particle due to the gravitational attraction of two masses M1

and M2, revolving in circular orbits about their center of mass. The separation of the masses

is a, and from Kepler’s third law, the angular velocity of the revolution about the center of

mass, ω, is ω2 = G(M1 + M2)/a
3. We assume the particle is rotating at the same angular

velocity ω, so that the potential must also include the centrifugal force. The centrifugal

term due to the rotation is −1
2
ω2R2

∗
, where R∗ is the distance from the axis of rotation. We

adopt a coordinate system with the origin at M1 and the x-axis along the line to M2. Let

the mass ratio be q = M2/M1. The location of the center of mass, also on the x-axis is

Xcm = aM2/(M1 + M2) = a q/(1 + q). The system revolves about the center of mass, and

we chose the z-axis to be parallel to the axis of rotation.

Fig. 1.— The coordinate system a binary pair.

The potential energy per unit mass of a particle is then

Ψ = − GM1

R1
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where R1 and R2 are the distances of our point at (X, Y, Z) from M1 and M2, respectively.

We will adopt the separation a as our unit of length, and we write R1/a = r, R2/a = r′ and

R∗/a = r∗. Also X/a = x, Y/a = y and Z/a = z. Then

a Ψ = − GM1

r
− GM2

r′
− 1

2
G(M1 + M2) r2

∗
. (2)

We then can introduce a dimensionless potential Ω defined by

Ω = − 2a

G(M1 + M2)
Ψ . (3)

The distance from any point (x, y, z) to M1 (the origin of our coordinate system) is

r =
√

x2 + y2 + z2 , (4)

while the distance to M2, located at (1,0,0), is

r′ =
√

(1 − x)2 + y2 + z2 . (5)

Then Ω becomes

Ω =
2

1 + q

1

r
+

2q

1 + q

1

r′
+ (x − xcm)2 + y2 , (6)

where xcm = q/(1 + q).

The gradient of the potential in Cartesian coordinates is

∇Ω =
∂Ω

∂x
î +

∂Ω

∂y
ĵ +

∂Ω

∂z
k̂ (7)

Taking the derivatives we find the components of the gradient:

∂Ω

∂x
=

2

1 + q

(−x

r3

)

+
2q

1 + q

(

1 − x

(r′)3

)

+ 2

(

x − q

1 + q

)

(8)

∂Ω

∂y
=

2

1 + q

(−y

r3

)

+
2q

1 + q

( −y

(r′)3

)

+ 2y (9)

∂Ω

∂z
=

2

1 + q

(−z

r3

)

+
2q

1 + q

( −z

(r′)3

)

(10)

We may also examine a spherical coordinate system. The relationships to xyz coordinates

are

x = r sin θ cos φ y = r sin θ sin φ z = r cos θ (11)

Substituting into eqn (5), we find

r′ =
√

r2 − 2rλ + 1 where λ = sin θ cos φ . (12)

The remaining terms of eqn (6) are

(x − xcm)2 + y2 = (r sin θ cos φ − xcm)2 + (r sin θ sin φ)2 = r2 sin2 θ − 2rλxcm + x2
cm , (13)
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and we recall that xcm = q/(1 + q). Gathering these terms, the expression for the potential

in spherical coordinates is

Ω =
2

1 + q

1

r
+

2q

1 + q

{

1√
1 − 2rλ + r2

− rλ

}

+ r2 sin2 θ +

(

q

1 + q

)2

(14)

As the last term is a constant, it is often omitted. We retain it so our values of Ω will agree

in both coordinates.

In spherical coordinates, the gradient of the potential is

∇Ω =
∂Ω

∂r
r̂ +

1

r

∂Ω

∂θ
θ̂ +

1

r sin θ

∂Ω

∂φ
φ̂ (15)

Differentiating, we obtain the components of the gradient:

∂Ω

∂r
=

2

1 + q

(−1

r2

)

+
2q

1 + q

{

λ − r

(1 − 2rλ + r2)3/2
− λ

}

+ 2r sin2 θ (16)

1

r

∂Ω

∂θ
=

2q

1 + q

{

cos θ cos φ

(1 − 2rλ + r2)3/2
− cos θ cos φ

}

+ 2r sin θ cos θ (17)

and with dλ/dφ = − sin θ sin φ,

1

r sin θ

∂Ω

∂φ
=

2q

1 + q

{

1 − 1

(1 − 2rλ + r2)3/2

}

sin φ (18)

The inner Lagrangian point, L1, is located on the x-axis in the (0,1) interval. We can

obtain the location of this point for a given mass ratio q by solving the equation ∂Ω/∂x = 0.

Looking at eqn (8), we see that for y = z = 0, r3 = x3 and (r′)3 = (1 − x)3. After

multiplication by (1 + q)/2, we obtain

q

(1 − x)2
− 1

x2
+ (1 + q)x − q = 0 (19)

This 5th order equation in x does not have an algebraic solution, but it is easily solved

numerically. Note that we could also use eqn (16) and set ∂Ω/∂r = 0. To do this, note that

on the x-axis, λ = 1 and the term in braces becomes
{

1 − r

(1 − r)3
− 1

}

, (20)

and, with sin2 θ = 1, we obtain the same equation for r as eqn (19) for x. The Roche lobes

are defined by the surface of constant potential which passes through the L1. If we evaluate

eqn (6) on the x-axis for the point (L1,0,0) we have

Ω(L1) =

(

2

1 + q

)

1

L1

+

(

2q

1 + q

)

1

1 − L1

+

(

L1 − q

1 + q

)2

(21)

Thus for a given q, we may solve eqn (19) for the location of the Lagrange point L1,

using any numerical root solver (such as Brent’s method). Then eqn (21) provides the value
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of the potential for the Roche lobe. To find the radius of the lobe for any (θ, φ) pair, we

insert this potential into eqn (14) to obtain an equation for r, which we may again solve by

Brent’s method. Once we have r(θ, φ), we can use eqns (8-10) to evaluate −∇Ω, which is

just the effective gravity at this point. In Table 1 we give a few values for q in the range

0.3-3.0.

Table 1: Parameters for Roche lobes of various q

q = M2/M1 r at L1 Ω (L1) r at L2 |∇Ω(L2)|
0.3 0.62087 3.8475 0.5151 4.5065

0.5 0.57075 3.9456 0.4679 4.7961

0.8 0.52295 3.9942 0.4250 4.8508

1.0 0.5 4.0 0.4050 4.7939

1.2 0.48124 3.9961 0.3889 4.7079

1.5 0.45838 3.9809 0.3696 4.5577

2.0 0.42925 3.9456 0.3454 4.3017

3.0 0.38926 3.8707 0.3128 3.8554

Stars which do not fill the Roche lobe will assume a shape that will correspond to values

of r(θ, φ) obtained by solving eqn (14) using a value of Ω larger than that obtained from eqn

(21). We are thus able to obtain the shape and effective surface gravity of any star in a binary

system, to the extent that the gravitational potential of the stars can be approximated by

that of a point mass.

As a star in a close binary system evolves, it will generally expand, the surface following

successive equipotentials, until it reaches the critical Ω(L1), at which point mass transfer to

the companion may occur. We will be interested in the variations in the flux and polarization

of radiation of stars with substantial distortion, i.e., stars filling potential surfaces near Ω(L1).

The surfaces just inside the critical surface correspond to slightly larger values of Ω. See

Fig. 2.

To evaluate the radiation from the binary, we also need the surface temperature at each

(θ, φ) point. The earliest attempt to solve this problem resulted in the von Zeipel (1924)

“law”, which states that the flux from the surface should be proportional to the local effective

gravity so that Teff ∝ g
1/4

eff . Subsequent work suggested that while the von Zeipel law may be

nearly correct for stars with radiative envelopes, it was not justified for stars with convective

envelopes. Lucy (1967) found that for convective stars Teff ∝ g0.08
eff . However, more recent

work by Espinosa Lara and Rieutord (2012) concludes that exponent varies in the range

0.20-0.25. We will thus adopt the von Zeipel exponent of 0.25.

1.1. Polarization from Distorted Binaries

Radiation emerging from stellar atmospheres is generally slightly polarized especially for

hot or cool stars. Due to the spherical symmetry of most stars, this polarization cancels

out for a distant observer. The tidal and centrifugal distortion of a star in a close binary
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Fig. 2.— Some potential surfaces in the xy plane for a mass-ratio of q = 1. The critical surface passing

through the Lagrange point L1 is Ω(L1) [labeled OM(L1)]. Higher values of Ω (corresponding to more

negative Ψ) give surfaces inside the critical lobe. We show surfaces corresponding to 1.01,1.025 and 1.05

×Ω(L1).

system brakes the symmetry. We will evaluate the net polarization to be expected in such

situations.

We first consider the simplest case where we view the star (assumed corotating) in the

plane of the orbit - the x-y plane. We integrate the emergent radiation over the over the

visible surface as seen from all φ0 angles from 0 to π. The most direct way to do this is to

cover the entire star with elements of area dA and then calculate µ, the cosine of the angle

between the normal to the stellar surface and line of sight. We then zero out all regions

where µ < 0. The vector towards the observer is ô = (cos φ0)x̂ + (sin φ0)ŷ , where φ0 is

the phase angle of the viewer. The normal to the equipotential surface is n̂ = −~geff/|geff |,
where ~geff = ∇Ω. Then µ = ô · n̂. The surface normal, n̂, will not generally be parallel to the

radial vector r̂. Let γ be the angle between the two vectors; then cos γ = r̂ · n̂. The element

of surface area is dA = 2πr2 (sin θ/ cos γ) dθ dφ , where the factor 1/(cos γ) accounts for the

increase in the element of area dA to the extent that it is inclined to r̂. The flux from the

binary component M1 viewed from phase angle φ0 in the orbital plane is given by

I(φ0) =

∫

I(µ) µ dA (22)

where I(µ) is the intensity emerging at angle cos−1 µ with respect to the normal to the
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surface, µ is a function of θ,φ and φ0, and I(µ) must take into account the von Zeipel

variation of the total flux with effective surface gravity.

To evaluate the net polarization, we integrate the Stokes parameter Q(µ). (We need not

consider the Stokes U , as it will cancel out by symmetry.) To do this, we need to take the

emergent Q(µ), which is referenced to the local normal n̂ and rotate it so it is referred to

the z-axis. This will involve a rotation through an angle ξ, which is the angle between the

projection of n̂ on the plane perpendicular to ô and the z-axis. If we first rotate n̂ about the

z-axis by −φ0, so the new y-z plane is the plane of the sky, then ξ is the arctan of the new

y-component of n̂ divided by the z-component. The net Stokes parameter is then given by

Q(φ0) =

∫

Q(µ) cos(2ξ) µ dA (23)

We first look at the classic (but unrealistic) case of a pure electron-scattering atmosphere

as solved originally by Chandrasekhar (1960). To get the largest effect, we assume the star

nearly fills the Roche lobe: we use a potential surface slightly higher (inside of) the critical

surface: Ω = 1.01 Ω(L1). Fig. 3 shows results for three values of the mass ratio q.

Fig. 3.— The polarization for a pure electron-scattering atmosphere for three values of q = M2/M1. The

potential surface is 1.01 Ω(L1). The polarization is negative, i.e., perpendicular to the z-axis.

While we have considered the changing magnitude of the polarization as viewed in the

plane of the orbit, it is also easy to compute the polarization as seen along the z-axis. From

this viewpoint the magnitude of the polarization is constant, but the angle of the polarization

will rotate twice through 180o during one orbital period. For this calculation we just make

ô = ẑ. For pure electron scattering, assuming Ω = 1.01Ω(L1), the percentage polarization is
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0.0896, 0.142, and 0.182 for mass ratios q = 0.3,1, and 3, respectively.

Fig. 4.— The polarization for a MARCS stellar atmosphere. Results are shown for four wavelengths. The

potential surface is 1.01 Ω(L1).

For a more realistic estimate of this effect, we have made use of the I(µ) and Q(µ) Stokes

parameters from a MARCS stellar atmosphere model with T = 4000K and log g = 3.5,

with solar abundances. A careful calculation would take into account the changing surface

temperature and gravity over the star. However, for this estimate, we have simply scaled the

magnitude of I and Q from each point according to von Zeipel’s relation: I, Q ∝ geff . The

results are shown in Fig. 4. We see that the maximum change in polarization during the

cycle is no more than ∼ 0.03%. As viewed along the z-axis, the amplitude of the rotating

polarization is 0.0201, 0.0156, 0.00927 and 0.00429 for wavelengths of 3800, 4000, 4400 and

5000Å, respectively.

When the star is viewed from an arbitrary angle other that the orbital plane (inclination

= 90o) or along the z-axis (inclination = 0o), the results are more complicated, as both the

magnitude and angle of the polarization will vary with phase. In this case, we must consider

the Stokes U parameter, which will arise when we rotate the frame of reference from the

vector normal to the element of the stellar surface to the direction of the projected z-axis.

The integrated U is given by an equation similar to eqn (23):

U(φ0) =

∫

U(µ) sin(2ξ) µ dA , (24)

where now to obtain the angle ξ, we must, in addition to rotating the normal vector n̂ about

the z-axis by −φ0, rotate about the new y-axis by by π/2 − inc, where inc is the angle
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Fig. 5.— Polarization as a function of phase angle for a viewing inclination of 60o. We show the variation of

the Stokes Q (blue) and U (red) as percent of the total intensity I, while the magnitude of the polarization,

P = 100 ×
√

Q2 + U2/I , is the green curve. The black curve is the total intensity I, scaled to fit the plot.

This is for a 4000K, log g = 3.5 MARCS stellar atmosphere at 4000Å. As before, the potential surface is

1.01 Ω(L1).

.

between the line-of-sight and the z-axis. Just to give an indication of the effects predicted,

we present some results for the case considered above: T = 4000K and log g = 3.5, at a

wavelength of 4000Å. In Fig. 5 we show how the Stokes Q and U vary with phase. We can

find the angle of the polarization (w.r.t. the z-axis) from χ = (1/2) arctan(U/Q).

In Figs. 6 and 7 we show how the amplitude of the polarization varies with phase for 11

different angles. In Fig. 7 it is interesting to note that for inc = 65o the polarization drops

to nearly zero for a phase angle of 0o, i.e. viewed in the x-z plane.

We have also done a few calculations for hot stars, using the TLUSTY model atmospheres

with solar abundances. We show some results in Figs. 8 and 9. Here we have considered a

viewing angle of inc = 75o; the results do not differ much from the view in the orbital plane.

The polarization can be relatively large in the (unobservable!) far UV, but is very small in

the visible. This is in general true for hot atmospheres.

These calculations are for the single component of a binary system. They do not take

into account the transit of the companion or eclipse of it. If the companion star is nearly

spherical (i.e., not near its critical Roche surface), such geometrical effects would not be

hard to compute. However, we have only considered gravity darkening, while the companion
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Fig. 6.— The magnitude of the polarization as a function of phase angle as seen from six angles of inclination

between 0o and 55o. At 0o we are looking perpendicular to the orbital plane and the magnitude of the polar-

ization remains constant, while the angle rotates. As the inclination increases, the variation in magnitude of

the polarization increases. As above, we use a T=4000K, log g = 3.5 MARCS stellar atmosphere at 4000Å;

the potential surface is 1.01 Ω(L1).

.

could illuminate the star’s atmosphere and and thus change the distribution of flux over the

surface as well as the structure of the atmosphere and hence the polarization of the emergent

radiation. While this could also be an interesting effect, in view of the small amplitudes seen

in. Fig. 4, it does not seem worthwhile to pursue this further. Indeed, in a binary system

where one of the stars is near the critical surface, we expect material to escape the stellar

atmosphere and this circumstellar material will give rise to larger polarization effects not

contemplated in these models.

5 December 2016
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Fig. 7.— The magnitude of the polarization as a function of phase angle as seen from six angles of inclination

between 55o and 90o. At 90o we are looking in the orbital plane and we obtain the red curve of Fig. 4. As

above, we use a T=4000K, log g = 3.5 MARCS stellar atmosphere at 4000Å.

.

P.S. The code used for these computations can be found at

http://www.astro.umd.edu/∼jph/Binary.ijs (pure electron scattering)

http://www.astro.umd.edu/∼jph/BinA.ijs (cool star atmospheres)

http://www.astro.umd.edu/∼jph/BinB.ijs (hot star atmospheres)
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Fig. 8.— The percentage of polarization for wavelengths between 1400Å and 2400Å. This is for a star with

T=30,000K and log g=4.0, seen an angle of inc = 75o. Again, the potential surface is 1.01 Ω(L1).

.

Fig. 9.— The percentage of polarization for wavelengths between 2400Å and 5000Å. As in Fig. 8, T=30,000K

and log g=4.0, and the star is seen an angle of inc = 75o. At these wavelengths, the behavior is more complex.

.
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Fig. 10.— Here we plot the Stokes Q parameter for the same star as in Figs. 8 and 9, for wavelengths

between 2400Å and 5000Å. We see that in the UV, Q is negative (polarization perpendicular to the z-axis),

while in the visible, Q is positive (polarization parallel to the z-axis). The cross over occurs around 3000Å for

this atmosphere. This is because the sense of the polarization is determined by the poles (large |z|) which do

not experience the equatorial gravity darkening. For hot stars, the emergent radiation is polarized parallel

to the surface of the atmosphere in the UV, but switches to polarization perpendicular to the surface in the

visible.

.
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