
1. Plane-parallel atmospheres with polarized scattering.

In the treatment by Chandrasekhar (1960, pp 38-50), the transfer equations are expressed

in terms of Il and Ir, the intensities in directions parallel and perpendicular to the meridian

plane. In terms of Stokes parameters, this is I = Il + Ir and Q = Il − Ir, where the meridian

plane is the reference plane for Q. Because of the symmetry of the problem, the polarization

can only be parallel or perpendicular to the meridian plane (Note: In an atmosphere where

the temperature increases with depth, the emerging radiation will be most intense in the

vertical direction. Then, if we are looking near the limb of the star, scattering will tend to

polarize light perpendicular to the z-axis. This will make Ir > Il, so that we will expect

negative values of Q.)

We then find the radiation can be described by the following two transfer equations

(Harrington, 1970):

µ
dIν

dτν

= Iν −

{

sν(τν) +

(

1

3
− µ2

)

pν(τν)

}

(1)

and

µ
dQν

dτν

= Qν −
{(

1 − µ2
)

pν(τν)
}

, (2)

where we have defined two auxiliary functions, sν(τν) and pν(τν):

sν(τν) = (1 − λν) Jν + λνBν(τν) (3)

pν(τν) =
3

8
(1 − λν)

{

(Jν − 3Kν) + 3
(

JQ
ν − KQ

ν

)}

(4)

Here, Jν and Kν have their usual definitions:

Jν =
1

2

∫ 1

−1

Iν dµ Kν =
1

2

∫ 1

−1

Iν µ2 dµ , (5)

while we define

JQ
ν =

1

2

∫ 1

−1

Qν dµ KQ
ν =

1

2

∫ 1

−1

Qν µ2 dµ . (6)
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The quantity λν is the ratio of pure absorption to extinction, and (1 − λν) the ratio

of scattering to extinction. We then see that sν(τν) is just the usual source function for

unpolarized radiation. We can regard pν(τν) as a sort of source function for the polarization.

It will tend toward zero as τν becomes large. Recalling Eddington’s approximation, 3Kν ≃

Jν , and we see that the first term of the r.h.s. of eq. (4) will vanish at depth. Since the

second term depends only on Qν , and Qν = Il − Ir will decrease as the radiation field

becomes more isotropic, it will also vanish at depth.

We may use the formal solutions of the transfer equations to write the corresponding

integral equations for sν(τν) and pν(τν) (Harrington, 1970):

sν(τν) = (1 − λν)

[

Λτν
(sν) +

1

3
Mτν

(pν)

]

+ λνBν(τν) (7)

pν(τν) =
3

8
(1 − λν) [Mτν

(sν) + Nτν
(pν)] (8)

Here, Λτ is the familiar Λ-operator,

Λτ {f(t)} =
1

2

∫ ∞

0

f(t) E1(|t − τ |) dt . (9)

If we ignore the term involving Mτ (p), we see that eq. (7) is just the familiar Schwarzschild-

Milne equation for unpolarized radiation in a plane-parallel atmosphere. The new Mτ and

Nτ operators (which have no relation to the Mn(τ) and Nn(τ) used in Kourganoff (1963) p.

259) are defined as

Mτ {f(t)} =

∫ ∞

0

f(t)

[

1

2
E1(|t − τ |) −

3

2
E3(|t − τ |)

]

dt (10)

Nτ {f(t)} =

∫ ∞

0

f(t)

[

5

3
E1(|t − τ |) − 4E3(|t − τ |) + 3E5(|t − τ |)

]

dt (11)

The kernels of all three operators have a logarithmic singularity at t = τ . The kernel of

the M -operator has a zero at τM = 0.30533216; it is positive for |t − τ | < τM and negative

for |t− τ | > τM . Fig. 1 shows the behavior of this kernel. Thus the Mτν
(sν) term in eq. (8)

is a measure of the anisotropy of the radiation at τν . Radiation from layers with |t− τ | < τM

will be traveling horizontally, while radiation from layers with |t− τ | > τM will be traveling

vertically and will give a negative contribution to pν .

The kernel of the N -operator is always positive.
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Fig. 1.— The kernel of the M-transform over 0.25 < τ < 4.25.
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From the formal solutions of the transfer equations we then obtain the emergent radiation

field:

Iν(0, µ) =

∫ ∞

0

{

sν(τν) +

(

1

3
− µ2

)

pν(τν)

}

e−τν/µ dτν

µ
(12)

Qν(0, µ) =

∫ ∞

0

{(

1 − µ2
)

pν(τν)
}

e−τν/µ dτν

µ
(13)

2. The equations of the grey atmosphere problem.

In the grey atmosphere problem, where absorption and scattering are assumed not to

vary with frequency, we can replace all the forgoing variables with those integrated over

frequency, writing the integrated quantities without the ν subscript. In addition, in this

case, the condition of radiative equilibrium is

∫ ∞

0

jν dν =

∫ ∞

0

κ Bν dν =

∫ ∞

0

κ Jν dν , (14)

where jν is the thermal emission coefficient. Kirchhoff’s law provides the first equality. κ is

the (frequency independent) coefficient of pure absorption (as opposed to scattering), so the

second equality implies that B = J , and thus by eq. (3), J = s (But this does not imply

that Jν = sν !) This last result then reduces the frequency integrated form form of eq. (7) to

s(τ) = Λτ (s) +
1

3
Mτ (p) (15)

which we must solve along with the frequency integrated eq. (8):

p(τ) =
3

8
(1 − λ) [Mτ (s) + Nτ (p)] . (16)

Now if s(τ) and p(τ) are solutions of equations (15) and (16), then for any constant c,

c s(τ) and c p(τ) are also solutions. This follows from the linearity of the operators (see,

Kourganoff, 1963, p 41). Thus any solution of eqns. (15) and (16) will have an arbitrary

scale; to set the the scale, we may specify the emergent flux from the atmosphere. The

operator that yields the flux for unpolarized radiation is the Φ-operator, defined as

Φτ {f(t)} = 2

∫ ∞

τ

f(t) E2(t − τ) dt − 2

∫ τ

0

f(t) E2(τ − t) dt . (17)

4



If we were dealing with the unpolarized problem, and the source function were s(τ),

then Milne’s second integral equation would hold: Φτ {s(t)} = F , where F is the net flux.

Φ operating on any function s(τ) which is a solution of the grey problem, Λτ {s(t)} = s(τ),

must yield a value F which is the same for all values of τ . Furthermore, we see that the

Φ-operator can set the scale of the solution since Φτ {c s(t)} = c F for any constant c.

In our case with polarization, if we integrate eqn. (1) over frequency and then integrate

over µ, noting that in radiative equilibrium J − s = 0, and further that

∫ 1

−1

(

1

3
− µ2

)

dµ = 0 , (18)

we have the result

d

dτ

{

2

∫ 1

−1

I µ dµ

}

= 0 −→ 2

∫ 1

−1

I µ dµ = constant = F (19)

Using equation (12) for I and reversing the order of integration results in the polarization

analog of Milne’s second equation:

Φτ {s(t)} + Φ(4)
τ {p(t)} = F , (20)

where we introduce another new operator

Φ(4)
τ {f(t)} = 2

∫ ∞

τ

f(t)

{

1

3
E2(t − τ) − E4(t − τ)

}

dt

− 2

∫ τ

0

f(t)

{

1

3
E2(τ − t) − E4(τ − t)

}

dt . (21)

The kernel of Φ
(4)
τ is zero at τ = 0 and is otherwise negative. It reaches a minimum of

-0.121137 at τM ≃ 0.3, the zero of the M -transform. In figure 2 we show the kernel of Φτ

with the kernel of |Φ(4)
τ | scaled up by a factor of 10.

3. Numerical solution of the grey atmosphere problem with polarization.

One method of solution is to lay down a grid of discrete points in τ : τ1, τ2, ..., τN . Our

solution will be represented by two vectors, ~s = s1, s2, ..., sN and ~p = p1, p2, ..., pN We will

represent the Λ-, M -, N -, Φ- and Φ(4)- operators of equations (15), (16) and (20) by N ×N

matrices. E.g., we will find a matrix Λij such that for a vector ~f = f1, f2, ..., fN of the values

of some function f(τ) at our τ -points, the matrix product Λij
~f gives the Λ transform of the

function f at the τ points. We will show below how to compute such matrix representations

based on spline approximations to the function.
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Fig. 2.— The kernel of Φ and of −10 ∗ Φ(4) for 0 < τ < 4.
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4. Spline approximation of the functions.

Following Press et al. “Numerical Recipes” (1992), consider a function y(x) for which

we have tabulated values yi = y(xi) for some xi, i = 1, 2, · · · , N . The linear interpolation

between any two points xi and xi+1 is just

y(x) = A yi + B yi+1 where A = (xi+1 − x)/hi and B = 1−A = (x− xi)/hi (22)

and hi is the interval hi = xi+1−xi . They show that the cubic spline interpolating polynomial

can be written

y(x) = A yi + B yi+1 + C y′′
i + D y′′

i+1 (23)

where y′′
i and y′′

i+1 are the second derivatives of the tabulated function y(x) and C and D

are

C =
h2

i

6

(

A3 − A
)

and D =
h2

i

6

(

B3 − B
)

(24)

Thus, since A and B are linear in x, equation (23) gives y as a cubic polynomial in x. But

what are the 2nd derivatives y′′
i ? They are not the actual 2nd derivatives of y(x), which

are of course unknown, but rather the 2nd derivatives of our cubic spline. It can be shown

that to make the 1st derivative of the spline smooth across the interval boundaries xi (and

have the 2nd derivative continuous there), the y′′
i must satisfy the following condition:

hi−1y
′′
i−1 + 2(hi−1 + hi)y

′′
i + hiy

′′
i+1 =

6

hi−1

yi−1 −

[

6

hi−1

+
6

hi

]

yi +
6

hi

yi+1 (25)

for i = 2, 3, · · · , N − 1. This gives, however, only N − 2 equations for the N 2nd derivatives.

A natural cubic spline is one with y′′
1 = y′′

N = 0. With this choice we have enough equations

to find the remaining y′′
i for i = 2, · · · , N − 1.

These equations form a tridiagonal system which can be solved efficiently. However, for

our purposes, we do not wish to solve the equations directly; rather, we want to express the

y′′
i formally in terms of the yi. Let ~y be the N -element column vector y1, y2, · · · , yN , and

let ~y′′ be the (N − 2)-element column vector y′′
2 , y

′′
3 , · · · , y

′′
N−1. Then equations (25) can be

written as

A × ~y′′ = B × ~y (26)

where A is an (N − 2)× (N − 2) matrix and B is an (N − 2)×N matrix. We thus see that

we can express the 2nd derivatives simply as

~y′′ = C × ~y where C = A−1 × B , (27)

A−1 being the inverse of A. The product C is an (N − 2)×N matrix. With the row index

i = 2, · · · , (N − 1) and column index j = 1, · · · , N , the non-zero elements of B are

Bi,i−1 =
6

hi−1

, Bi,i = −

[

6

hi

+
6

hi−1

]

and Bi,i+1 =
6

hi

. (28)
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Likewise, the elements of A are

Ai,i−1 = hi−1 , Ai,i = 2(hi−1 + hi) and Ai,i+1 = hi , (29)

where the index i = 2, · · · , (N − 1), so that the elements A 2,1 and AN−1,N do not exist.

Thus, given any array of points xi, we can compute the matrix C. Then the 2nd derivatives

for the spline fit of any function are given by the matrix multiplication (27).

Things are a bit more complex if, instead of natural splines, we want to impose a specific

slope on the fit at one or both boundaries. The first derivative of expression (23) is

dy

dx
=

yi+1 − yi

hi

−
hi

6

{(

3A2 − 1
)

y′′
i −

(

3B2 − 1
)

y′′
i+1

}

(30)

At the lower boundary, x = x1, A = 0, B = 1 and we have
[

dy

dx

]

x1

=
y2 − y1

h1

−
h1

6
{2 y′′

1 + y′′
2} (31)

and at the upper boundary, x = xN , A = 1, B = 0 and
[

dy

dx

]

xN

=
yN − yN−1

hN−1

+
hN−1

6

{

y′′
N−1 + 2 y′′

N

}

(32)

which we write in the form of equations (25) as

2h1y
′′
1 + h1y

′′
2 =

(

−
6

h1

)

y1 +

(

6

h1

)

y2 − 6

[

dy

dx

]

x1

(33)

and

hN−1y
′′
N−1 + 2hN−1y

′′
N =

(

6

hN−1

)

yN−1 +

(

−
6

hN−1

)

yN + 6

[

dy

dx

]

xN

(34)

Our system of equations then become

A × ~y′′ = B × ~y + ~z (35)

where ~z is a column vector [z0, z1, · · · , zN−1, zN ] with only two non-zero elements: z0 =

−6[dy/dx]x1
and zN = 6[dy/dx]xN

. Now, however, A is an N × N matrix, as is B. The

elements of A are still given by equation (29) for rows 2 through N−1 , but now the elements

A2,1 and A N−1,N do exist. Further, the first row of A is given by [2h1, h1, 0, · · · , 0] and the

last (Nth) row is [0, · · · , hN−1, 2hN−1].

The elements of B are as given in equation (28) for rows 2 through N −1, while the first

and last rows of B are [(−6/h1), (6/h1), 0, · · · , 0] and [0, · · · , (6/hN−1), (−6/hN−1)]. Then,

multiplying through by A−1 we obtain the desired result

~y′′ = C × ~y + ~d , where C = A−1 × B and ~d = A−1 × ~z . (36)
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Our ultimate aim is to integrate the product of a kernel function and the spline fit to an

arbitrary function y(x). To do this we have to expand equation (23) to isolate the powers

of x. After some algebra we see that, over the interval xi ≤ x ≤ xi+1,

C = C0 + C1x + C2x
2 + C3x

3 (37)

where

C0 =
xi+1(x

2
i+1 − h2

i )

6hi

, C1 = −
3x2

i+1 − h2
i

6hi

, C2 =
xi+1

2hi

, C3 = −
1

6hi

(38)

while for the coefficient D

D0 = −
xi(x

2
i − h2

i )

6hi

, D1 =
3x2

i − h2
i

6hi

, D2 = −
xi

2hi

, D3 =
1

6hi

(39)

We thus can write the cubic spline fit as

y(x) = (ai + αi) + (bi + βi) x + γi x2 + δi x3 for xi ≤ x ≤ xi+1 (40)

where the coefficients are

ai =
1

hi

[xi+1yi − xiyi+1] , αi =
1

6hi

[

xi+1(x
2
i+1 − h2

i )y
′′
i − xi(x

2
i − h2

i )y
′′
i+1

]

, (41)

bi =
1

hi

[−yi + yi+1] , βi =
1

6hi

[

−(3x2
i+1 − h2

i )y
′′
i + (3x2

i − h2
i )y

′′
i+1

]

, (42)

γi =
1

2hi

[

xi+1y
′′
i − xiy

′′
i+1

]

and δi =
1

6hi

[

−y′′
i + y′′

i+1

]

. (43)

At this point, recall from equation (27) or (36) that each of the y′′
i can be obtained as a

weighted sum over all the yk:

y′′
i =

N
∑

k=1

Ci,k · yk or y′′
i =

N
∑

k=1

Ci,k · yk + di . (44)

This means that each of the factors α, β, γ and δ of equation (40) can be expressed as a sum

over the yi multiplied by coefficients whose value can be pre-computed based only on the

choice of the xi grid.

Suppose we wish to evaluate the integral of y(x) times some kernel K(x) over the interval

xi to xi+1. We see this becomes

Ti =

∫ xi+1

xi

y(x) K(x) dx = (ai + αi) I(0)
i + (bi + βi) I(1)

i + γi I
(2)
i + δi I

(3)
i , (45)

where

I(n)
i =

∫ xi+1

xi

xn K(x) dx . (46)
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Note that for a given x-grid the I(n)
i are just numbers that need be evaluated only once.

As the simplest possible example, consider just the integral of y(x), which corresponds to

K(x) = 1. Then

I(0)
i = xi+1−xi , I(1)

i =
1

2
(x2

i+1−x2
i ) , I(2)

i =
1

3
(x3

i+1−x3
i ) , I(3)

i =
1

4
(x4

i+1−x4
i ) (47)

and hence

ai I
(0)
i = [xi+1yi − xiyi+1] , αi I

(0)
i =

1

6

[

xi+1(x
2
i+1 − h2

i )y
′′
i − xi(x

2
i − h2

i )y
′′
i+1

]

, (48)

bi I
(1)
i =

1

2
(xi+1+xi) [−yi + yi+1] , βi I

(1)
i =

1

12
(xi+1+xi)

[

−(3x2
i+1 − h2

i )y
′′
i + (3x2

i − h2
i )y

′′
i+1

]

,

(49)

γi I
(2)
i =

x3
i+1 − x3

i

6hi

[

xi+1y
′′
i − xiy

′′
i+1

]

, (50)

δi I
(3)
i =

x4
i+1 − x4

i

24hi

[

−y′′
i + y′′

i+1

]

(51)

We now add these and regroup to obtain

Ti =
1

2
hi (yi + yi+1) + Ui y′′

i + Vi y′′
i+1 (52)

where

Ui =
1

6

{

xi+1(x
2
i+1 − h2

i ) −
1

2
(xi+1 + xi)(3x

2
i+1 − h2

i ) +
xi+1

hi

(x3
i+1 − x3

i ) −
1

4hi

(x4
i+1 − x4

i )

}

(53)

and

Vi = −
1

6

{

xi(x
2
i − h2

i ) −
1

2
(xi+1 + xi)(3x

2
i − h2

i ) +
xi

hi

(x3
i+1 − x3

i ) −
1

4hi

(x4
i+1 − x4

i )

}

(54)

After tedious manipulation it turns out that

Ui = Vi = −
1

24
(xi+1 − xi)

3 = −
1

24
h3

i !! (55)

So, recalling equation (44), we finally obtain

Ti =
hi

2
(yi + yi+1) −

1

24
h3

i

[

y′′
i + y′′

i+1

]

=
hi

2
(yi + yi+1) −

h3
i

24

N
∑

k=1

[Ci,k + Ci+1,k] yk (56)

The first term is just the result of integrating a linear fit to points yi and yi+1; the

remaining part is the integral of the spline correction to the linear fit. The bottom line is

that we have expressed the integral Ti in the form

Ti =
N

∑

k=1

Wik yk , where Wik =
hi

2
(δii + δi,i+1) −

h3
i

24
[Ci,k + Ci+1,k] (57)

and the range of i is i = 1, · · · , (N − 1). Here, δij stands for the Kronecker delta. The

elements Wik are independent of the yk and can be computed from the xk alone.
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Finally, the total integral of y(x) over the range [x1, xN ] is just

T =
N−1
∑

i=1

Ti =
N

∑

k=1

W̄k · yk , where the vector W̄k =
N−1
∑

i=1

Wik . (58)

For example, on the interval [0,1] with x = 0, 0.1, 0.2, · · · , 1.0 , we get W̄ = 0.0394337, 0.113398,

0.0964088, 0.100967, 0.0997238, 0.100138, 0.100138, 0.0997238, 0.100967, 0.0964088,

0.113398, 0.039433.

In case, instead of natural splines, we wish to specify the slope of the spline fit at the

boundary, equations (57) and (58) become

Ti = Di +
N

∑

k=1

Wik yk , where Di = −
h3

i

24
(di + di+1) (59)

and

T = D̄ +
N

∑

k=1

W̄k · yk , where D̄ =
N−1
∑

i=1

Di = −
h3

i

24

[(

2
N

∑

i=1

di

)

− (d1 + dN)

]

. (60)

If we have information on y′ at x1 and/or xN , then this will improve the fit. Consider

the following cubic polynomial:

y(x) = 4 − 3x + 2x2 − x3 with derivative y′(x) = −3 + 4x − 3x2 (61)

Let’s integrate it over the interval [−1, 3]. The integral of y(x) over this range is exactly 2 2
3
.

Let us choose an x-grid of 5 evenly spaced values: [−1, 0, 1, 2, 3]. If we assume a natural

spline fit with this grid we obtain W̄i = [0.392857, 1.14286, 0.928571, 1.14286, 0.392857].

We then see that

T =
N

∑

k=1

W̄k · yk = 2.57143 , an error of 3.6% (62)

We might expect an exact fit to a cubic polynomial, but note that y′′ = 4 − 6x which is at

odds with y′′ = 0 at x = −1 and x = 3. If instead we force y′(−1) = −10 and y′(3) = −18,

then we obtain W̄i = [0.5, 1, 1, 1, 0.5] and D̄ = 2/3. This leads to

T = D̄ +
N

∑

k=1

W̄k · yk =
2

3
+ 2 = 2

2

3
, (63)

the exact result, as expected. If we were to consider a higher order polynomial for y(x),

neither would give the exact result, but the weights based use of y′(x1) and y′(xN) would be

significantly more accurate.
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5. Matrix representation of the integral operators.

To compute the matrix representations of the Λ, M , N , Φ, and Φ(4) operators where the

function to be transformed is represented by a cubic spline, we must have the integrals of

1, x, x2 and x3 against the exponential integral functions E1, E2, E3, E4, and E5. These are:
∫

E1(x)dx = − E2(x)
∫

x E1(x)dx = E3(x) − e−x

∫

x2 E1(x)dx = − 2E4(x) − x e−x

∫

x3 E1(x)dx = 6E5(x) − e−x (3 + x + x2)
∫

E2(x)dx = − E3(x)
∫

x E2(x)dx = 2E4(x) − e−x

∫

x2 E2(x)dx = − 6E5(x) + e−x(1 − x)
∫

x3 E2(x)dx = 24E6(x) − e−x (6 + x2)
∫

E3(x)dx = − E4(x)
∫

x E3(x)dx = 3E5(x) − e−x

∫

x2 E3(x)dx = − 12E6(x) + e−x(2 − x)
∫

x3 E3(x)dx = 60E7(x) − e−x (11 − x + x2)
∫

E4(x)dx = − E5(x)
∫

x E4(x)dx = 4E6(x) − e−x

∫

x2 E4(x)dx = − 20E7(x) + e−x(3 − x)
∫

x3 E4(x)dx = 120E8(x) − e−x (18 − 2x + x2)
∫

E5(x)dx = − E6(x)
∫

x E5(x)dx = 5E7(x) − e−x

∫

x2 E5(x)dx = − 30E8(x) + e−x(4 − x)
∫

x3 E5(x)dx = 210E9(x) − e−x (27 − 3x + x2)

If we then consider M(x) = 1
2
E1(x) − 3

2
E3(x) , we find that

∫

M(x)dx = − 1
2
E2(x) + 3

2
E4(x)

∫

x M(x)dx = 1
2
E3(x) − 9

2
E5(x) + e−x

∫

x2 M(x)dx = − E4(x) + 18E6(x) − e−x (3 − x)
∫

x3 M(x)dx = 3E5(x) − 90E7(x) + e−x (15 − 2x + x2)
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while with N (x) = 5
3
E1(x) − 4E3(x) + 3E5(x) we obtain

∫

N (x)dx = − 5
3
E2(x) + 4E4(x) − 3E6(x)

∫

x N (x)dx = 5
3
E3(x) − 12E5(x) + 15E7(x) − 2

3
e−x

∫

x2 N (x)dx = − 10
3
E4(x) + 48E6(x) − 90E8(x) + 2

3
e−x (6 − x)

∫

x3 N (x)dx = 10E5(x) − 240E7(x) + 630E9(x) − 2
3
e−x (63 − 5x + x2)

and for Φ(4)(x) = 2
3
E2(x) − 2E4(x) we have

∫

Φ(4)(x) dx = − 2
3
E3(x) + 2E5(x)

∫

x Φ(4)(x) dx = 4
3
E4(x) − 8E6(x) + 4

3
e−x

∫

x2 Φ(4)(x) dx = − 4E5(x) + 40E7(x) − 4
3
e−x(4 − x)

∫

x3 Φ(4)(x) dx = 16E6(x) − 240E8(x) + 4
3
e−x(24 − 3x + x2)

We assume a grid of optical depths [τ0, τ1, · · · , τN−1], at which the functions are known

and at which we want to evaluate the transforms. Usually, τ0 = 0, while τN−1 may be the

central plane of a slab, or the far surface (so that τN−1 = 0 also), or perhaps τN−1 >> 1 for

a semi-infinite atmosphere.

To form the matrix representation of the Λ-operator we will thus need to evaluate the

integrals Λik which give the contribution at τi due to the emission from the material in the

layers between τk and τk+1:

Λik =
1

2

∫ τk+1

τk

f(τ)E1(|τ − τi|)dτ =
1

2

∫ τk+1−τi

τk−τi

f(τi + x)E1(x)dx , (64)

for the case where τk ≥ τi, while if τk+1 ≤ τi we have

Λik =
1

2

∫ τk+1

τk

f(τ)E1(|τ − τi|)dτ =
1

2

∫ τi−τk

τi−τk+1

f(τi − x)E1(x)dx , (65)

Now from equation (40) we see that

f(τi + x) = (ak + αk) + (bk + βk)(τi + x) + γk(τi + x)2 + δk(τi + x)3 (66)

so that equation (64) can be written as

Λik = (a′
k + α′

k) I(0)
ik + (bk + β′

k) I(1)
ik + γ′

k I(2)
ik + δk I(3)

ik . (67)

where we have indicated the integrals by

I(n)
ik = ±

1

2

∫ |τk+1−τi|

|τk−τi|

xn E1(x)dx where the (+) sign is for this (τk ≥ τi) case, (68)
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and, after expanding eqn (66), we see that the primed coefficients are given by

a′
k = ak + τibk , α′

k = αk + τiβk + τi
2γk + τi

3δk ,

β′
k = βk + 2τiγk + 3τi

2δk , γ′
k = γk + 3τiδk . (69)

Likewise, equation (65) can be written as

Λik = (a∗
k + α∗

k) I(0)
ik + (b∗k + β∗

k) I(1)
ik + γ∗

k I(2)
ik + δ∗k I(3)

ik , (70)

but for this case, where τk+1 ≤ τi , equation (68) requires the lower (minus) sign:

1

2

∫ τi−τk

τi−τk+1

xn E1(x)dx = −
1

2

∫ |τk+1−τi|

|τk−τi|

xn E1(x)dx = I(n)
ik , (71)

which is why we used ± in eqn (68). (We cannot just take the absolute value of the integral

because some kernels, like M(x), may take negative values.) Now the coefficients are

a∗
k = a′

k , α∗
k = α′

k , b∗k = − bk , β∗
k = − β′

k , γ∗
k = γ′

k , δ∗k = − δk . (72)

From equations (41), (42) and (43), and defining ∆k = τk+1 − τk , we see that

a′
k =

1

∆k

(τk+1 − τi)yk −
1

∆k

(τk − τi)yk+1 ,

α′
k =

1

6∆k

{

τk+1(τ
2
k+1 − ∆2

k) − τi(3τ
2
k+1 − ∆2

k) + 3τ 2
i τk+1 − τ 3

i

}

yk
′′

+

1

6∆k

{

−τk(τ
2
k − ∆2

k) + τi(3τ
2
k − ∆2

k) − 3τ 2
i τk + τ 3

i

}

yk+1
′′

(73)

bk =

(

−
1

∆k

)

yk +

(

1

∆k

)

yk+1 ,

β′
k =

1

6∆k

{

−(3τ 2
k+1 − ∆2

k) + 6τiτk+1 − 3τ 2
i

}

yk
′′

+
1

6∆k

{

(3τ 2
k − ∆2

k) − 6τiτk + 3τ 2
i

}

yk+1
′′

(74)

γ′
k =

1

2∆k

{τk+1 − τi} yk
′′

+
1

2∆k

{−τk + τi} yk+1
′′

(75)

δk = −
1

6∆k

yk
′′

+
1

6∆k

yk+1
′′

(76)

Now we want to arrange this in the form

Λik = Xik yk + Yik yk+1 + Uik yk
′′

+ Vik yk+1
′′

(77)

From equations (67), (70) and (73)-(76) we see that X,Y, U and V are given by

14



Xik = ∆−1
k

[

(τk+1 − τi)I
(0)
ik ∓ I(1)

ik

]

, Yik = − ∆−1
k

[

(τk − τi)I
(0)
ik ∓ I(1)

ik

]

(78)

(6∆k) Uik =
[

τk+1(τ
2
k+1 − ∆2

k) − τi(3τ
2
k+1 − ∆2

k) + 3τ 2
i τk+1 − τ 3

i

]

I(0)
ik

∓
[

(3τ 2
k+1 − ∆2

k) − 6τiτk+1 + 3τ 2
i

]

I(1)
ik + 3 [τk+1 − τi] I

(2)
ik ∓ I(3)

ik (79)

(6∆k) Vik = −
[

τk(τ
2
k − ∆2

k) − τi(3τ
2
k − ∆2

k) + 3τ 2
i τk − τ 3

i

]

I(0)
ik

±
[

(3τ 2
k − ∆2

k) − 6τiτk + 3τ 2
i

]

I(1)
ik − 3 [τk − τi] I

(2)
ik ± I(3)

ik (80)

Here, the upper sign of the ± and ∓ pair applies when τk ≥ τi and the lower when τk+1 ≤ τi.

The integral Λik can thus be expressed as

Λik =
N

∑

n=1

L(ik)
n yn where L(ik)

n = Xikδnk + Yikδn,k+1 + UikCk,n + VikCk+1,n (81)

But this is only the contribution to the transform from the material between τk and τk+1.

To find the Λ-transform at τi, we need the sum over all k from k = 1 to k = N − 1:

Λi =
N−1
∑

k=1

Λik =
N−1
∑

k=1

N
∑

n=1

L(ik)
n yn =

N
∑

n=1

(

N−1
∑

k=1

L(ik)
n

)

yn =
N

∑

n=1

L(i)
n yn (82)

where, carrying out the sum over k we have

L(i)
n = Xi,n + Yi,n−1 +

N−1
∑

k=1

Ui,k Ck,n +
N−1
∑

k=1

Vi,k Ck+1,n (83)

where for n = 1, Yi,n−1 is absent, and for n = N , Xi,n is absent. The X and Y terms alone

give the transform which results from a linear approximation to the function f(τ).

We thus see that if we construct the matrix Λi,n = L
(i)
n , where each row is evaluates

the transform at the i = 1, · · · , N values of τi, then Λi,n is the matrix approximation to

the Λ-transform that we require. Further, this result extends immediately to the M - and

N -transforms by use of the appropriate functions for the I(n)
ik integrals.

The Φ and Φ(4)-transforms are slightly different. Consider the partial contribution to

the Φ-transform at point τi by radiation from the layers between τk and τk+1. If τk ≥ τi,

then we see from equation (17) that

Φik = 2

∫ τk+1

τk

f(τ)E2(τ − τi)dτ = 2

∫ τk+1−τi

τk−τi

f(τi + x)E2(x)dx (84)
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On the other hand, when τk+1 ≤ τi, we have

Φik = − 2

∫ τk+1

τk

f(τ)E2(τi − τ)dτ = − 2

∫ τi−τk

τi−τk+1

f(τi − x)E2(x)dx (85)

If we now define the integrals I(n)
ik by the expression

I(n)
ik = 2

∫ |τk+1−τi|

|τk−τi|

xn E2(x)dx (86)

we see that I(n)
ik > 0 for τk ≥ τi but I(n)

ik < 0 for τk+1 ≤ τi, as required. Note that this

differs from the form of the earlier equation (68) only in that we do not reverse the sign for

τk+1 ≤ τi. With this definition of the I(n)
ik , equations (78) through (83) also can be applied

to the Φ-transform, and the Φ(4)-transform is analogous.

We now have prescriptions for evaluating the matrix approximations of the transforms

for a slab extending from τ1 to τN . However, in the treatment of a semi-infinite atmosphere,

we must include the contributions to the integrals of material below the last point, τN . To

do this we must make some assumption about the behavior of the function f(τ) over the

interval [τN ,∞]. One simple possibility would to be to assume the function constant over this

interval: f(τ) = f(τN). However, we know that in the unpolarized grey case, the asymptotic

behavior of the source function is linear in τ . Thus, let us suppose that we can write

f(τ) = f(τN) +

[

df

dτ

]

τN

(τ − τN) for τ > τN . (87)

Now, from eqn (32), the derivative of the spline fit to f at τN is
[

df

dτ

]

τN

=
fN − fN−1

∆N−1

+

(

∆N−1

6

)

[

f ′′
N−1 + 2f ′′

N

]

. (88)

in terms of f and the 2nd derivatives f ′′. The first term is just the extrapolated linear fit to

the last two points. Let us define the integrals

I(0)
iN =

1

2

∫ ∞

τN

E1(|τ − τi|) dτ =
1

2

∫ ∞

τN−τi

E1(x) dx =
1

2
E2(τN − τi) (89)

and

I(1)
iN =

1

2

∫ ∞

τN−τi

x E1(x) dx =
1

2

[

e−(τN−τi) − E3(τN − τi)
]

. (90)

We then see that

1

2

∫ ∞

τN

(τ − τN) E1(|τ − τi|) dτ =
[

τiI
(0)
iN + I(1)

iN

]

− τNI
(0)
iN = I(1)

iN − (τN − τi)I
(0)
iN (91)

In this case, since 2E3(x) = e−x − xE2(x), this simplifies further:

I(1)
iN − (τN − τi)I

(0)
iN = I(∗)

iN =
1

2
E3(τN − τi) . (92)
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We thus see that we can write the contribution to the Λ-transform at τi due to emission

from τ > τN , using eqns (87)-(92), as

ΛiN =

(

−
I(∗)

iN

∆N−1

)

fN−1 +

(

I(0)
iN +

I(∗)
iN

∆N−1

)

fN +

(

∆N−1

6
I(∗)

iN

)

[

f ′′
N−1 + 2f ′′

N

]

. (93)

Thus, as in eqn (81) we can write the contribution from beyond τN as

ΛiN =
N

∑

n=1

L(iN)
n yn where now the elements of L(iN)

n are (94)

L(iN)
n =

(

−
I(∗)

iN

∆N−1

)

δn,N−1 +

(

I(0)
iN +

I(∗)
iN

∆N−1

)

δn,N

+

(

∆N−1

6
I(∗)

iN

)

CN−1,n +

(

∆N−1

3
I(∗)

iN

)

CN,n (95)

For “natural splines”, y′′
N = 0 so the CN,n = 0 and the last term vanishes.

So we then must add the vector L
(iN)
n to each L

(i)
n of eqn (83) to account for the radiation

from below τN .

6. Boundary conditions for a finite slab.

In addition to the semi-infinite atmosphere, another important problem is that of a finite

slab. For this case, we may simply take a grid of points through the whole slab and then use

the “natural” y
′′

= 0 conditions at both boundaries. But this problem may be symmetric

about the central plane (but not always: e.g., if the slab is illuminated from one side). If we

do have symmetry, we will only need half half as many points if our grid is defined to cover

0 ≤ τ ≤ τN , where the optical thickness of the whole slab is 2τN . In this case, we will want

to specify the first derivative at τN , since τN is the mid-plane of a slab and thus y′
N = 0 by

symmetry. (This does not mean that y′′
N = 0 , however.)

In the case where we set y′
N = 0, zN of eqn (35) is also zero and as a result ~d of eqn

(36) vanishes and hence does not complicate the expression for y′′. Now the function f(τ))

(e.g., s(τ) and p(τ)) will be symmetric about τN so that f(τ) = f(2τN − τ). The transform

at some τi will now have contributions from both the layer between τk and τk+1 and the

corresponding layer on the far side between (2τN − τk) and (2τN − τk+1) – where the function

f(τ) is described by the same spline fit. So for the Λ-transform, we have

Λik =
1

2

∫ τk+1

τk

f(τ)E1(|τ − τi|)dτ +
1

2

∫ 2τN−τk

2τN−τk+1

f(2τN − τ)E1(τ − τi)dτ . (96)

Note that for the second term, (τ − τi) will always be positive. We let x = τ − τi and define

τ ∗
i = 2τN − τi. We then see that the far-side contribution can be written as
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Λ
(f)
ik =

1

2

∫ τ∗

i
−τk

τ∗

i
−τk+1

f(τ ∗
i − x)E1(x)dx . (97)

By analogy with eqn (66), the spline approximation to f(τ) over this interval can be written

as

f(τ ∗
i − x) = (ak + αk) + (bk + βk)(τ

∗
i − x) + γk(τ

∗
i − x)2 + δk(τ

∗
i − x)3 (98)

and after expanding and collecting coefficients of powers of x, as with eqn (67) and eqn (70),

we can write

Λ
(f)
ik = (a

(f)
k + α

(f)
k ) I(f,0)

ik + (b
(f)
k + β

(f)
k ) I(f,1)

ik + γ
(f)
k I(f,2)

ik + δ
(f)
k I(f,3)

ik (99)

where now the coefficients are

a
(f)
k = ak + τ ∗

i bk , b
(f)
k = −bk , α

(f)
k = αk + τ ∗

i βk + τ ∗
i

2γk + τ ∗
i

3δk ,

β
(f)
k = −βk − 2τ ∗

i γk − 3τ ∗
i

2δk , γ
(f)
k = γk + 3τ ∗

i δk , δ
(f)
k = −δk . (100)

and the integrals are

I(f,n)
ik =

1

2

∫ τ∗

i
−τk

τ∗

i
−τk+1

xn E1(x)dx . (101)

Once again, we go back to eqns (41)-(43), collecting the coefficients of yk, yk+1, y′′
k, and

y′′
k+1 to express the far-side contribution in the form

Λ
(f)
ik = X

(f)
ik yk + Y

(f)
ik yk+1 + U

(f)
ik yk

′′

+ V
(f)
ik yk+1

′′

(102)

where now

X
(f)
ik = ∆−1

k

[

(τk+1 − τ ∗
i )I(f,0)

ik + I(f,1)
ik

]

, Y
(f)
ik = −∆−1

k

[

(τk − τ ∗
i )I(f,0)

ik + I(f,1)
ik

]

(103)

(6∆k) U
(f)
ik =

[

τk+1(τ
2
k+1 − ∆2

k) − τ ∗
i (3τ 2

k+1 − ∆2
k) + 3τ ∗

i
2τk+1 − τ ∗

i
3
]

I(f,0)
ik

+
[

(3τ 2
k+1 − ∆2

k) − 6τ ∗
i τk+1 + 3τ ∗

i
2
]

I(f,1)
ik + 3 [τk+1 − τ ∗

i ] I(f,2)
ik + I(f,3)

ik (104)

(6∆k) V
(f)
ik = −

[

τk(τ
2
k − ∆2

k) − τ ∗
i (3τ 2

k − ∆2
k) + 3τ ∗

i
2τk − τ ∗

i
3
]

I(f,0)
ik

−
[

(3τ 2
k − ∆2

k) − 6τ ∗
i τk + 3τ ∗

i
2
]

I(f,1)
ik − 3 [τk − τ ∗

i ] I(f,2)
ik − I(f,3)

ik (105)

Finally, eqn (44) is used for the y′′, and the contribution from the far half of the slab

has exactly the same form as eqn (83). We then add the near and far sides to get the total

Λi,n matrix transform. The Φi,n and Φ(4)
i,n-transforms are not special cases here since the

radiation from the far side is traveling upwards (positive) for all near-side layers.
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7. The emergent radiation.

From equations (12) and (13), we have the emergent radiation in terms of the source

terms s(τ) and p(τ) :

I(0, µ) =

∫ ∞

0

s(τ) e−τ/µ dτ

µ
+

(

1

3
− µ2

)
∫ ∞

0

p(τ) e−τ/µ dτ

µ
(106)

Q(0, µ) =
(

1 − µ2
)

∫ ∞

0

p(τ) e−τ/µ dτ

µ
(107)

We can define a transform Eµ as

Eµ{f(t)} =

∫ ∞

0

f(t) e−t/µ dt

µ
(108)

so that the emergent radiation is given by

I(0, µ) = Eµ(s) +

(

1

3
− µ2

)

Eµ(p) ; Q(0, µ) =
(

1 − µ2
)

Eµ(p) (109)

To evaluate Eµ based on the values of s and p at the grid points τi, we will need to find Eµ,k

for k = 1, · · · , (N − 1):

Eµ,k =

∫ τk+1

τk

f(τ) e−τ/µ dτ

µ
=

∫ xk+1

xk

f(µx) e−x dx (110)

where xi = τi/µ and f(µxi) = f(τi) = fi. As before, we assume the function is represented

by a cubic spline. Then, going back to eqn (40),

f(µx) = (ak + αk) + (bk + βk)µx + γk µ2x2 + δk µ3x3 (111)

so we can write

Eµ,k = (ak + αk) E (0)
µ,k + (bk + βk) E (1)

µ,k + γk E (2)
µ,k + δk E (3)

µ,k (112)

it terms of the integrals

E (n)
µ,k = µn

∫ xk+1

xk

xn e−x dx where xk = τk/µ , xk+1 = τk+1/µ , (113)

and the integrals against e−x are:
∫

e−x dx = − e−x

∫

x e−x dx = − e−x (1 + x)
∫

x2 e−x dx = − e−x (2 + 2x + x2)
∫

x3 e−x dx = − e−x (6 + 6x + 3x2 + x3)

We next write Eµ,k as

Eµ,k = Xµ,k fk + Yµ,k fk+1 + Uµ,k fk
′′ + Vµ,k fk+1

′′ (114)
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Referring to eqn (41)-(43), we see that

Xµ,k = ∆−1
k

(

τk+1 E (0)
µ,k − E (1)

µ,k

)

, Yµ,k = − ∆−1
k

(

τk E (0)
µ,k − E (1)

µ,k

)

(115)

(6∆k)Uµ,k = τk+1(τ
2
k+1 − ∆2

k) E (0)
µ,k − (3τ 2

k+1 − ∆2
k) E (1)

µ,k + 3τk+1 E (2)
µ,k − E (3)

µ,k (116)

(6∆k)Vµ,k = −τk(τ
2
k − ∆2

k) E (0)
µ,k + (3τ 2

k − ∆2
k) E (1)

µ,k − 3τk E (2)
µ,k + E (3)

µ,k (117)

and thus, using eqn (44),

Eµ,k =
N

∑

n=1

{Xµ,k δnk + Yµ,k δn,k+1 + Uµ,k Ck,n + Vµ,k Ck+1,n} fn (118)

Finally, just as with eqns (81)-(83), our transformation is approximated by

Eµ(f) =
N−1
∑

k=1

Eµ,k =
N

∑

n=1

E(µ)
n fn (119)

where

E(µ)
n = Xµ,n + Yµ,n−1 +

N−1
∑

k=1

Uµ,k Ck,n +
N−1
∑

k=1

Vµ,k Ck+1,n (120)

and, once again, for n = 1, Yµ,n−1 is absent, while for n = N , Xµ,n is absent.

Thus, having chosen a set of M angles µm, we can compute the E
(µm)
n for each of them.

Then, the emergent intensity and polarization are obtained from

I(0, µm) =
N

∑

n=1

E(µm)
n sn +

(

1

3
− µ2

) N
∑

n=1

E(µm)
n pn (121)

Q(0, µm) =
(

1 − µ2
)

N
∑

n=1

E(µm)
n pn (122)

In the case of a slab with symmetric sources, where the last grid point τN is the mid-

point of the slab, we must add the contributions from the far side. From each slab we have

a contribution

E
(f)
µ,k =

∫ τ∗−τk

τ∗−τk+1

f(τ) e−τ/µ dτ

µ
, where τ ∗ = 2τN (123)

By the symmetry of the function f , f(τ ∗ − τ) = f(τ). Let x = τ/µ . Then we can write

E
(f)
µ,k =

∫ µx∗−µxk

µx∗−µxk+1

f(µx∗ − µx) e−x dx . (124)
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The cubic spline representation of f is of the form

f(µx∗ − µx) = (ak + αk) + (bk + βk)µ(x∗ − x) + γk µ2(x∗ − x)2 + δk µ3(x∗ − x)3 (125)

The point of this is that at the edges of the interval, f(µx∗ − µxk) = f(τk) = fk. The

moment integrals we then need are just

E (f,n)
µ,k = µn

∫ x∗−xk

x∗−xk+1

xn e−x dx , where x∗ = 2τN/µ , xk = τk/µ , etc. (126)

and we then write

E
(f)
µ,k = (a

(f)
k + α

(f)
k ) E (f,0)

µ,k + (b
(f)
k + β

(f)
k ) E (f,1)

µ,k + γ
(f)
k E (f,2)

µ,k + δ
(f)
k E (f,3)

µ,k (127)

where now (with τ ∗ = 2τN) the coefficients are

a
(f)
k = ak + τ ∗bk , b

(f)
k = −bk , α

(f)
k = αk + τ ∗βk + τ ∗2γk + τ ∗3δk ,

β
(f)
k = −βk − 2τ ∗γk − 3τ ∗2δk , γ

(f)
k = γk + 3τ ∗δk , δ

(f)
k = −δk . (128)

Proceeding as in section 6, we then write the partial contribution from the far side as

E
(f)
µ,k = X

(f)
µ,k yk + Y

(f)
µ,k yk+1 + U

(f)
µ,k yk

′′

+ V
(f)
µ,k yk+1

′′

(129)

where now

X
(f)
µ,k = ∆−1

k

[

(τk+1 − τ ∗)E (f,0)
µ,k + E (f,1)

µ,k

]

, Y
(f)
µ,k = −∆−1

k

[

(τk − τ ∗)E (f,0)
µ,k + E (f,1)

µ,k

]

(130)

(6∆k) U
(f)
µ,i =

[

τk+1(τ
2
k+1 − ∆2

k) − τ ∗(3τ 2
k+1 − ∆2

k) + 3τ ∗2τk+1 − τ ∗3
]

E (f,0)
µ,k

+
[

(3τ 2
k+1 − ∆2

k) − 6τ ∗τk+1 + 3τ ∗2
]

E (f,1)
µ,k + 3 [τk+1 − τ ∗] E (f,2)

µ,k + E (f,3)
µ,k (131)

(6∆k) V
(f)
µ,k = −

[

τk(τ
2
k − ∆2

k) − τ ∗(3τ 2
k − ∆2

k) + 3τ ∗2τk − τ ∗3
]

E (f,0)
µ,k

−
[

(3τ 2
k − ∆2

k) − 6τ ∗τk + 3τ ∗2
]

E (f,1)
µ,k − 3 [τk − τ ∗] E (f,2)

µ,k − E (f,3)
µ,k (132)

So finally, for the symmetric slab, equation (120) acquires additional terms:

E(µ)
n =

(

Xµ,n + X(f)
µ,n

)

+
(

Yµ,n−1 + Y
(f)
µ,n−1

)

+
N−1
∑

k=1

(

Uµ,k + U
(f)
µ,k

)

Ck,n

+
N−1
∑

k=1

(

Vµ,k + V
(f)
µ,k

)

Ck+1,n (133)
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8. Solution of some specific cases by the matrix transform method.

We now return to the grey problem that we abandoned in section 3. Let us consider

this problem for the semi-infinite atmosphere. Combine the vectors ~s and ~p into one vector

~sp = s1, s2, ..., sN , p1, p2, ..., pN of length 2N . We then can express equations (15) and (16)

as the following 2N × 2N system:
[

Λij − Iij
1
3
Mij

3
8
(1 − λ)Mij

3
8
(1 − λ)Nij − Iij

] [

si

pi

]

=

[

0

0

]

(134)

where Iij is an N × N identity matrix. As it stands, we cannot solve this system since the

r.h.s. is identically zero. But we can use the matrix form of the flux equation (20)

Φij ~s + Φ
(4)
ij ~p = ~F (135)

This provides N equations. We can replace the first N equations with these and solve the

system
[

Φij Φ
(4)
ij

3
8
(1 − λ)Mij

3
8
(1 − λ)Nij − Iij

]

[

si

pi

]

=

[

F

0

]

(136)

where the F on the right hand side represents an N -element column vector with each element

equal to F . This works, but another method seems to give better values just near the surface.

We only need to add any one of the flux equations to the first N equations of (134) to set the

scale. A satisfactory approach seems to be to take the equation for the flux at the surface

(the first equation, i = 1)

N
∑

n=1

Φ1n sn +
N

∑

n=1

Φ
(4)
1n pn = F (137)

and add it to each of the first N equations (134):
[

Λij − Iij + Φ1j
1
3
Mij + Φ

(4)
1j

3
8
(1 − λ)Mij

3
8
(1 − λ)Nij − Iij

]

[

si

pi

]

=

[

F

0

]

(138)

The resulting linear system can be solved by any standard numerical method.

All the foregoing have been implemented in J. The verb “tau grid” constructs a loga-

rithmic series of points τ = 0, τ1, · · · , τN when provided with the arguments tau grid τ1, n,

τN , where n is the number of points per decade. For example

tau grid 0.1 5 3

0 0.1 0.158489 0.251189 0.398107 0.630957 1 1.58489 2.51189 3

We provide some results for a fine grid: τ1 = 0.0001, n = 20, τN = 25 , which yields 110 grid

points.

As opposed to the semi-infinite atmosphere, there is no grey solution for integrated

radiation from a slab, since the equations have no source for the radiation (in the semi-

infinite case, it streams in from beyond the lower boundary). Slabs must have an internal

or external source added to the equations.
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Turning to the monochromatic case described by equations (7) and (8), we see that they

lead to the following set of equations:

[

Iij − (1 − λi)Λij − 1
3
(1 − λi)Mij

−3
8
(1 − λi)Mij Iij −

3
8
(1 − λi)Nij

] [

si

pi

]

=

[

λi Bi

0

]

where Bi = Bν [T (τi)] and we allow that λi , the fraction of opacity due to pure absorption,

may vary with optical depth zone τi.
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